JP2016003878A - Method and device for measuring concentration of heavy metal scavenger - Google Patents

Method and device for measuring concentration of heavy metal scavenger Download PDF

Info

Publication number
JP2016003878A
JP2016003878A JP2014122461A JP2014122461A JP2016003878A JP 2016003878 A JP2016003878 A JP 2016003878A JP 2014122461 A JP2014122461 A JP 2014122461A JP 2014122461 A JP2014122461 A JP 2014122461A JP 2016003878 A JP2016003878 A JP 2016003878A
Authority
JP
Japan
Prior art keywords
heavy metal
acid
concentration
metal scavenger
scavenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014122461A
Other languages
Japanese (ja)
Other versions
JP5880625B2 (en
Inventor
寿和 ▲高▼橋
寿和 ▲高▼橋
Toshikazu Takahashi
義尚 岸根
Yoshinao Kishine
義尚 岸根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014122461A priority Critical patent/JP5880625B2/en
Priority to PCT/JP2015/060321 priority patent/WO2015190161A1/en
Priority to TW104119087A priority patent/TW201610416A/en
Publication of JP2016003878A publication Critical patent/JP2016003878A/en
Application granted granted Critical
Publication of JP5880625B2 publication Critical patent/JP5880625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus, capable of stably and accurately measuring the concentration of a dithiocarbamic acid based heavy metal scavenger in a water sample.SOLUTION: The method for measuring the concentration of a dithiocarbamic acid heavy metal scavenger in a water sample comprises: adding a heavy metal compound to a water sample including the dithiocarbamic acid heavy metal scavenger; reacting and colouring the heavy metal compound with the dithiocarbamic acid heavy metal scavenger remaining in a heavy metal containing wastewater; measuring an absorbance or a transmittance in a wavelength of 400-700 nm; and measuring the concentration of the dithiocarbamic acid heavy metal scavenger in the water sample on the basis of the measurement result. A pH is stabilized by adding a pH buffer solution to the water sample.

Description

本発明は、光の透過率又は吸光度に基づいて、水中のジチオカルバミン酸系重金属捕集剤濃度を測定する方法及び測定装置に関するものである。   The present invention relates to a method and a measuring apparatus for measuring a concentration of a dithiocarbamic acid heavy metal scavenger in water based on light transmittance or absorbance.

メッキ排水、塗装排水等の重金属含有排水は、銅、クロム、亜鉛、鉛、マンガン、鉄、ニッケル、カドミウム等の重金属を含むものであり、これらの重金属含有排水は、水質汚濁防止法等により適切な処理を行うことが義務づけられている。   Heavy metal-containing wastewater such as plating wastewater and paint wastewater contains heavy metals such as copper, chromium, zinc, lead, manganese, iron, nickel, and cadmium. These heavy metal-containing wastewater is appropriate according to the Water Pollution Control Law, etc. Is obliged to carry out appropriate processing.

重金属含有排水の処理法として、ジチオカルバミン酸基を主体とするキレート系重金属捕集剤を添加して、凝集沈殿処理を行う方法が知られている(特許文献1)。このジチオカルバミン酸系重金属捕集剤を用いた重金属含有排水の処理方法において、重金属含有排水の水質変動にかかわらず、キレート系重金属捕集剤を定量添加して処理すると、キレート系重金属捕集剤添加量の不足や過剰添加によって処理水質が低下する。また、過剰添加の場合にはジチオカルバミン酸系重金属捕集剤コストが徒に嵩む。   As a method for treating heavy metal-containing wastewater, a method is known in which a chelating heavy metal scavenger mainly composed of dithiocarbamic acid groups is added to perform a coagulation sedimentation treatment (Patent Document 1). In the treatment method of heavy metal containing wastewater using this dithiocarbamic acid type heavy metal scavenger, chelate heavy metal scavenger addition is performed when chelating heavy metal scavenger is added and treated regardless of the water quality fluctuation of heavy metal containing wastewater. The quality of treated water decreases due to insufficient or excessive addition. In addition, in the case of excessive addition, the cost of the dithiocarbamic acid heavy metal scavenger increases.

特許文献1には、重金属含有排水にキレート系重金属捕集剤を加えて該排水中の重金属成分を除去する方法として、該重金属含有排水にキレート系重金属捕集剤を添加し、このキレート系重金属捕集剤の添加量と、このキレート系重金属捕集剤の添加前後の該排水の酸化還元電位の変化量を測定し、この測定結果に基いて、必要添加量を決定する方法が記載されている。   In Patent Document 1, as a method of adding a chelate heavy metal scavenger to heavy metal-containing wastewater to remove heavy metal components in the wastewater, a chelate heavy metal scavenger is added to the heavy metal-containing wastewater, and this chelate heavy metal A method is described in which the addition amount of the scavenger and the amount of change in the oxidation-reduction potential of the wastewater before and after the addition of the chelate heavy metal scavenger are measured, and the required addition amount is determined based on the measurement result. Yes.

キレート系重金属捕集剤は、キレート形成基(ジチオカルバミン酸基)を持ち、この基が排水中の重金属イオンと反応して不溶化物を作り沈殿を生成する。この反応時には、酸化還元電位(ORP)が低下する。特許文献1の方法は、このORPの変化、即ち、処理対象排水へのキレート系重金属捕集剤の添加濃度を変化させるとそれに応じて、重金属捕集剤の添加濃度が高くなるほどORPが低くなるように変化することを利用したものである。   The chelate heavy metal scavenger has a chelate-forming group (dithiocarbamic acid group), and this group reacts with heavy metal ions in the wastewater to form an insolubilized product and generate a precipitate. During this reaction, the redox potential (ORP) decreases. According to the method of Patent Document 1, when the ORP is changed, that is, when the addition concentration of the chelate heavy metal scavenger to the wastewater to be treated is changed, the ORP becomes lower as the addition concentration of the heavy metal scavenger increases. It is used to change.

特許文献2には、ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水中の残留ジチオカルバミン酸系重金属捕集剤濃度の測定方法が記載されている。この測定方法では、ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水に対し、水溶性鉄塩、銅塩等の重金属化合物を添加して重金属イオンと残留ジチオカルバミン酸系重金属捕集剤とを反応させて発色させる。そして、400〜700nmの吸光度又は透過率を測定し、残留捕集剤を定量する。   Patent Document 2 describes a method for measuring the concentration of residual dithiocarbamic acid heavy metal scavenger in a heavy metal-containing wastewater to which a dithiocarbamic acid heavy metal scavenger is added. In this measurement method, a heavy metal compound such as a water-soluble iron salt or copper salt is added to a heavy metal-containing wastewater to which a dithiocarbamate heavy metal scavenger is added, and a heavy metal ion and a residual dithiocarbamate heavy metal scavenger are added. React to develop color. And the light absorbency or transmittance | permeability of 400-700 nm is measured, and a residual scavenger is quantified.

具体的には、ジチオカルバミン酸系重金属捕集剤を含有する試料水に塩化第一鉄を添加して発色させた後、この被測定液を透明な測定セル中に収容し、特定波長の光を用いて吸光度(又は透過率)を測定する。また、これとは別に、例えば透明液に対する特定波長の光の透過光強度とから吸光度(又は透過率)を求める。そして、予め既知濃度の試料により作成した、吸光度(又は透過率)と溶解物濃度との関係を示す検量線を用いて、試料水中のジチオカルバミン酸系重金属捕集剤濃度を求める。   Specifically, after ferrous chloride is added to a sample water containing a dithiocarbamate heavy metal scavenger to cause color development, this liquid to be measured is placed in a transparent measurement cell, and light of a specific wavelength is received. Use to measure the absorbance (or transmittance). Separately from this, for example, the absorbance (or transmittance) is obtained from the transmitted light intensity of light of a specific wavelength with respect to the transparent liquid. Then, the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water is determined using a calibration curve showing the relationship between the absorbance (or transmittance) and the lysate concentration prepared in advance with a sample having a known concentration.

なお、吸光度(又は透過率)の測定装置には、特許文献2に記載されているように、発光素子と受光素子とが測定セルを挟むように対向して配置されている透過型と、特許文献3に記載されているように反射板を用い、発光体および受光体とを同じ側に配置した反射型がある。   In addition, as described in Patent Document 2, the absorbance (or transmittance) measuring device includes a transmission type in which a light emitting element and a light receiving element are arranged so as to sandwich a measurement cell, and a patent. As described in Document 3, there is a reflection type in which a reflector is used and a light emitter and a light receiver are arranged on the same side.

ところで、ジチオカルバミン酸系重金属捕集剤と重金属イオンの反応は、pHによって変動する。そのため、被測定液の吸光度(又は透過率)は、pHによって変化する。このため、ジチオカルバミン酸系重金属捕集剤を正確に測定するためには、被測定液のpHに応じた検量線を用意する必要があった。   By the way, the reaction of the dithiocarbamic acid heavy metal scavenger and heavy metal ions varies depending on the pH. Therefore, the absorbance (or transmittance) of the liquid to be measured varies depending on the pH. For this reason, in order to accurately measure the dithiocarbamic acid heavy metal scavenger, it is necessary to prepare a calibration curve corresponding to the pH of the liquid to be measured.

すなわち、被測定液がアルカリ性の場合には、重金属イオンの一部は、ジチオカルバミン酸系重金属捕集剤と反応せずに重金属水酸化物となる。そのため、重金属水酸化物が、測定セルへの入射光を吸収することにより、試料水中のジチオカルバミン酸系重金属捕集剤量に相当する吸光度よりも測定吸光度が増大(又は透過率が低下)することがある。また、試料水に添加した重金属イオンが重金属水酸化物となることで消費され、試料水中のジチオカルバミン酸系重金属捕集剤が全量反応せず、試料水中に含有されるジチオカルバミン酸系重金属捕集剤量に相当する吸光度よりも測定吸光度が低下(又は透過率が増大)することがあり、正確にジチオカルバミン酸系重金属捕集剤濃度を測定することができなかった。   That is, when the liquid to be measured is alkaline, some of the heavy metal ions become a heavy metal hydroxide without reacting with the dithiocarbamic acid heavy metal scavenger. Therefore, when the heavy metal hydroxide absorbs incident light to the measurement cell, the measured absorbance increases (or the transmittance decreases) than the absorbance corresponding to the amount of the dithiocarbamic acid heavy metal scavenger in the sample water. There is. Also, the heavy metal ions added to the sample water are consumed as heavy metal hydroxides, and the dithiocarbamic acid heavy metal collector in the sample water does not react completely, and the dithiocarbamic acid heavy metal collector contained in the sample water The measured absorbance may be lower (or the transmittance increased) than the absorbance corresponding to the amount, and the concentration of the dithiocarbamic acid heavy metal scavenger could not be measured accurately.

したがって、試料水中のジチオカルバミン酸系重金属捕集剤濃度を正確に求めるためには、被測定液のpHごとの検量線を作成しなければならず、連続計測装置には膨大な検量線を用意しなければならない問題があった。また、被測定液がアルカリ性の場合には、ジチオカルバミン酸系重金属捕集剤濃度を、正確に求めることができないという問題があった。   Therefore, in order to accurately determine the concentration of the dithiocarbamate heavy metal scavenger in the sample water, it is necessary to create a calibration curve for each pH of the solution to be measured, and prepare a huge calibration curve for the continuous measurement device. There was a problem that had to be. In addition, when the liquid to be measured is alkaline, there is a problem that the concentration of the dithiocarbamic acid heavy metal scavenger cannot be determined accurately.

特開2001−340874号公報JP 2001-340874 A 特開2014−28342号公報JP 2014-28342 A 特開2010−181150号公報JP 2010-181150 A

本発明は、以上の点に鑑み、試料水中のジチオカルバミン酸系重金属捕集剤物濃度を正確に測定することができる測定方法及び測定装置を提供することを目的とする。   An object of this invention is to provide the measuring method and measuring apparatus which can measure the dithiocarbamic-acid type heavy metal scavenger concentration in sample water correctly in view of the above point.

本発明のジチオカルバミン酸系重金属捕集剤の濃度測定方法は、ジチオカルバミン酸系重金属捕集剤を含有する試料水に重金属化合物を加え、該重金属化合物と該重金属含有排水中に残留するジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400〜700nmの波長の吸光度又は透過率を測定し、この測定結果に基づいて、前記試料水中のジチオカルバミン酸系重金属捕集剤の濃度を測定するジチオカルバミン酸系重金属捕集剤の濃度測定方法において、前記試料水にpH緩衝液を添加してpHを安定化させることを特徴とする。   The method for measuring the concentration of a dithiocarbamic acid heavy metal scavenger according to the present invention comprises adding a heavy metal compound to sample water containing a dithiocarbamic acid heavy metal scavenger, and dithiocarbamic acid heavy metal remaining in the heavy metal-containing wastewater containing the heavy metal compound. Dithiocarbamine that measures the absorbance or transmittance at a wavelength of 400 to 700 nm after reacting with the collection agent to develop color, and measures the concentration of the dithiocarbamate heavy metal collection agent in the sample water based on the measurement result In the method for measuring the concentration of an acid heavy metal scavenger, a pH buffer solution is added to the sample water to stabilize the pH.

本発明のジチオカルバミン酸系重金属捕集剤の濃度測定装置は、ジチオカルバミン酸系重金属捕集剤を含有する試料水に重金属化合物を添加する添加手段と、該重金属化合物と該重金属含有排水中に残留するジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400〜700nmの波長の吸光度又は透過率を測定する測定手段と、この測定結果に基づいて、前記試料水中のジチオカルバミン酸系重金属捕集剤の濃度を演算する演算手段とを有するジチオカルバミン酸系重金属捕集剤の濃度測定装置において、前記試料水にpH緩衝液を添加する手段を備えたことを特徴とする。   An apparatus for measuring the concentration of a dithiocarbamic acid-based heavy metal scavenger according to the present invention includes an adding means for adding a heavy metal compound to sample water containing a dithiocarbamic acid-based heavy metal scavenger, the heavy metal compound and the heavy metal-containing wastewater remaining in the waste water. A measuring means for measuring the absorbance or transmittance at a wavelength of 400 to 700 nm after reacting with a dithiocarbamic acid heavy metal scavenger to develop a color, and based on the measurement result, collecting the dithiocarbamic acid heavy metal in the sample water An apparatus for measuring the concentration of a dithiocarbamic acid heavy metal scavenger having an arithmetic means for calculating the concentration of the agent, further comprising means for adding a pH buffer solution to the sample water.

前記pH緩衝液は、pKa6〜8の中性pH緩衝液であることが好ましい。   The pH buffer is preferably a neutral pH buffer of pKa 6-8.

前記pH緩衝液は、pH緩衝剤としてN−(2−アセトアミド)−2−アミノエタンスルホン酸、N−(2−アセトアミド)イミノジ酢酸、N,N−ビス(2−ヒドロキエチル)−2−アミノエタンスルホン酸、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、3−[N,N−ビス(2−ヒドロキシエチル)アミノ]−2−ヒドロキシプロパンスルホン酸、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸、2−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]エタンスルホン酸、2−ヒドロキシ−3−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]プロパンスルホン酸、2−モルホリノエタンスルホン酸、3−モルホリノプロパンスルホン酸、2−ヒドロキシ−3−モルホリノプロパンスルホン酸、ピペラジン−1,4−ビス(エタンスルホン酸)、ピペラジン−1,4−ビス(2−ヒドロキシ−3−プロパンスルホン酸)、2−ヒドロキシ−N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸、及びN−トリス(ヒドロキシメチル)−2−アミノエタンスルホン酸よりなる群から選ばれる少なくとも1種を含有水することが好ましい。   The pH buffer solution contains N- (2-acetamido) -2-aminoethanesulfonic acid, N- (2-acetamido) iminodiacetic acid, N, N-bis (2-hydroxyethyl) -2-amino as a pH buffering agent. Ethanesulfonic acid, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid, 3- [4- (2- Hydroxyethyl) -1-piperazinyl] propanesulfonic acid, 2- [4- (2-hydroxylethyl) -1-piperazinyl] ethanesulfonic acid, 2-hydroxy-3- [4- (2-hydroxylethyl) -1- Piperazinyl] propanesulfonic acid, 2-morpholinoethanesulfonic acid, 3-morpholinopropanesulfonic acid, 2-hydroxy- -Morpholinopropanesulfonic acid, piperazine-1,4-bis (ethanesulfonic acid), piperazine-1,4-bis (2-hydroxy-3-propanesulfonic acid), 2-hydroxy-N-tris (hydroxymethyl) methyl It is preferable to contain water containing at least one selected from the group consisting of -3-aminopropanesulfonic acid and N-tris (hydroxymethyl) -2-aminoethanesulfonic acid.

前記重金属化合物としては、水溶性の鉄塩及び/又は銅塩、特に鉄塩が好ましい。   The heavy metal compound is preferably a water-soluble iron salt and / or copper salt, particularly an iron salt.

本発明では、ジチオカルバミン酸系重金属捕集剤を含有する試料水にpH緩衝液を添加して被測定液のpHを安定化させる。これにより、種々のpHの試料水中のジチオカルバミン酸系重金属捕集剤濃度を正確に測定することができる。   In the present invention, a pH buffer solution is added to sample water containing a dithiocarbamic acid heavy metal scavenger to stabilize the pH of the solution to be measured. Thereby, the concentration of the dithiocarbamic acid heavy metal scavenger in sample water of various pHs can be accurately measured.

また、ジチオカルバミン酸系重金属捕集剤濃度の演算部に、pH別の膨大な検量線データを用意することなく、ジチオカルバミン酸系重金属捕集剤濃度を求めることができる。   In addition, the concentration of the dithiocarbamic acid heavy metal scavenger can be obtained without preparing a huge amount of calibration curve data for each pH in the calculation unit for the concentration of the dithiocarbamic acid heavy metal scavenger.

重金属含有排水の処理システムを示すブロック図である。It is a block diagram which shows the processing system of heavy metal containing waste_water | drain. 実施の形態に係るジチオカルバミン酸系重金属捕集剤の測定装置のブロック図である。It is a block diagram of the measuring apparatus of the dithiocarbamic acid type heavy metal scavenger which concerns on embodiment. 測定セル部分の斜視図である。It is a perspective view of a measurement cell part. 発光部の回路図である。It is a circuit diagram of a light emission part. 受光部の回路図である。It is a circuit diagram of a light-receiving part. 実施の形態に係るジチオカルバミン酸系重金属捕集剤の濃度測定方法を示すフローチャートである。It is a flowchart which shows the density | concentration measuring method of the dithiocarbamic-acid type heavy metal scavenger which concerns on embodiment. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.

本発明方法及び装置は、重金属含有排水に、無機凝集剤及びジチオカルバミン酸系重金属捕集剤をこの順に添加して、該排水中の重金属を該捕集剤と反応させて不溶化させる重金属含有排水の処理方法において、該捕集剤濃度を測定する場合に採用するのに好適である。   The method and apparatus according to the present invention adds an inorganic flocculant and a dithiocarbamic acid heavy metal scavenger in this order to a heavy metal containing wastewater, and reacts the heavy metal in the wastewater with the scavenger to insolubilize the heavy metal containing wastewater. In the processing method, it is suitable for use when measuring the concentration of the scavenger.

この重金属含有排水としては、鉄鋼や半導体及び自動車製造のメッキ工程、清掃工場や発電所の洗煙、集塵工程、電池、硝子製造工程、金属加工工程、産業廃棄物処理場の埋立浸出水などからの排水が例示されるが、これに限定されない。   This heavy metal-containing wastewater includes steel, semiconductor, and automobile manufacturing plating processes, smoke cleaning of garbage factories and power plants, dust collection processes, batteries, glass manufacturing processes, metal processing processes, landfill leachate from industrial waste treatment plants, etc. Although the drainage from is illustrated, it is not limited to this.

この重金属含有排水中の重金属としては、水銀、カドミウム、砒素、鉛、6価クロム、セレン、銅、亜鉛、マンガン、鉄、ニッケル、スズ、コバルトなどが例示されるが、これに限定されない。   Examples of heavy metals in the heavy metal-containing wastewater include, but are not limited to, mercury, cadmium, arsenic, lead, hexavalent chromium, selenium, copper, zinc, manganese, iron, nickel, tin, and cobalt.

重金属含有排水中の重金属イオン濃度は、通常は約100ppm以下、例えば1〜50ppm程度であるが、これに限定されない。   The heavy metal ion concentration in the heavy metal-containing wastewater is usually about 100 ppm or less, for example, about 1 to 50 ppm, but is not limited thereto.

ジチオカルバミン酸系重金属捕集剤としては、ジチオカルバミン酸塩、ジアルキルジチオカルバミン酸塩、シクロアルキルジチオカルバミン酸塩、ピペラジンビスジチオカルバミン酸塩、テトラエチレンペンタミンジチオカルバミン酸塩、ポリアミンのジチオカルバミン酸塩などが例示されるが、これに限定されない。なお、これらの1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the dithiocarbamate heavy metal scavenger include dithiocarbamate, dialkyldithiocarbamate, cycloalkyldithiocarbamate, piperazine bisdithiocarbamate, tetraethylenepentamine dithiocarbamate, and polyamine dithiocarbamate. However, the present invention is not limited to this. In addition, these 1 type may be used independently and may use 2 or more types together.

重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加して好ましくはゆっくりと撹拌することにより、不溶化物が生成する。   A dithiocarbamic acid heavy metal scavenger is added to the heavy metal-containing wastewater, and preferably slowly stirred to produce an insolubilized product.

この不溶化物含有液に対し無機凝集剤及び高分子凝集剤を添加し、好ましくはゆっくりと撹拌し、無機凝集剤によりこの不溶化物を凝集させ、高分子凝集剤によりフロックを粗大化させることが可能となる。   It is possible to add an inorganic flocculant and a polymer flocculant to this insolubilized material-containing liquid, and preferably agitate slowly to agglomerate this insolubilized material with the inorganic flocculant and coarsen the floc with the polymer flocculant It becomes.

無機凝集剤としてはPAC、硫酸アルミニウム、塩化鉄(I)、塩化鉄(II)、硫酸鉄(I)、ポリ硫酸鉄(II)などを用いることができる。高分子凝集剤としては、アニオン性の高分子凝集剤であるアクリルアミドのホモポリマー、アクリル酸ナトリウムとアクリルアミドのコポリマー、アクリル酸ナトリウムとアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸のターポリマーなどを使用することができる。   As the inorganic flocculant, PAC, aluminum sulfate, iron (I) chloride, iron (II) chloride, iron (I) sulfate, polyiron sulfate (II) and the like can be used. Polymer flocculants include anionic polymer flocculant homopolymers of acrylamide, copolymers of sodium acrylate and acrylamide, terpolymers of sodium acrylate, acrylamide and 2-acrylamido-2-methylpropane sulfonic acid. Can be used.

上記の通り、ジチオカルバミン酸系重金属捕集剤の添加によって生成した不溶化物を含有する液に、必要に応じて無機凝集剤及び高分子凝集剤を添加して凝集処理した後に、固液分離処理する。この固液分離処理水に対し、重金属化合物を添加して発色させ、該処理水中のジチオカルバミン酸系重金属捕集剤濃度を測定する。   As described above, an inorganic flocculant and a polymer flocculant are added to the liquid containing the insolubilized material generated by the addition of the dithiocarbamic acid heavy metal scavenger, if necessary, and then subjected to solid-liquid separation treatment. . A heavy metal compound is added to the solid-liquid separation treated water to cause color development, and the concentration of the dithiocarbamic acid heavy metal scavenger in the treated water is measured.

重金属捕集剤添加水に対し添加され、残留捕集剤と反応して発色する重金属化合物(発色試薬)としては、Fe2+、Fe3+、Cu2+、Zn2+、Pb2+、Ni2+、Cd2+、Mn2+などの硫酸塩、塩酸塩等の水溶性塩が挙げられるが、発色の度合や分析作業終了後の放流時に特段の処理が不要となることからFe2+又はFe3+の塩例えば塩化第一鉄、硫酸第一鉄、塩化第二鉄、硫酸第二鉄が好適である。 Examples of heavy metal compounds (coloring reagents) that are added to the heavy metal scavenger-added water and react with the residual scavenger to develop a color (Fe 2+ , Fe 3+ , Cu 2+ , Zn 2+ , Pb 2+ , Ni 2+ , Cd 2+). , Sulfate salts such as Mn 2+, and water-soluble salts such as hydrochloride, etc. However, since no special treatment is required at the time of discharge after the degree of color development or analysis, a salt of Fe 2+ or Fe 3+ Ferrous, ferrous sulfate, ferric chloride, and ferric sulfate are preferred.

一般に、上記ジチオカルバミン酸系重金属捕集剤の希薄水溶液に上記重金属化合物を添加した場合、該重金属化合物の添加量が増加するほど発色が濃くなるが、水中の捕集剤の全量と添加重金属化合物とが反応する当反応量以上になると、重金属化合物添加量を多くしても発色はそれ以上濃くならない。従って、本発明において、水中の残留捕集剤濃度を定量するときには、上記の当反応量以上(例えば当反応量の1〜10倍、特に1.5〜5倍程度)に重金属化合物(発色試薬)を添加することが好ましい。通常は、試料水に対し重金属化合物(発色試薬)を20mg/L以上特に50mg/L以上、例えば20〜200mg/L特に50〜150mg/L添加することが望ましい。   In general, when the heavy metal compound is added to a dilute aqueous solution of the dithiocarbamic acid heavy metal scavenger, the color becomes deeper as the amount of the heavy metal compound increases, but the total amount of the scavenger in water and the added heavy metal compound When the reaction amount exceeds the reaction amount, the color development does not become deeper even if the heavy metal compound addition amount is increased. Therefore, in the present invention, when the residual scavenger concentration in water is quantified, the heavy metal compound (coloring reagent) is more than the above reaction amount (for example, about 1 to 10 times, particularly about 1.5 to 5 times the reaction amount). ) Is preferably added. Usually, it is desirable to add a heavy metal compound (coloring reagent) to the sample water in an amount of 20 mg / L or more, particularly 50 mg / L or more, for example, 20 to 200 mg / L, particularly 50 to 150 mg / L.

本発明では、重金属を含有する試料水に対し、上記発色用重金属化合物だけでなく、pH緩衝液を添加してpHを安定化させる。特に、pHを6〜8に安定化させると、測定感度が良好となる。そのため、このpH緩衝液中のpH緩衝剤としては、酸解離定数pKa6〜8特に6〜7のpH緩衝剤が好適である。   In the present invention, not only the above-described heavy metal compound for color development but also a pH buffer solution is added to sample water containing heavy metal to stabilize the pH. In particular, when the pH is stabilized at 6 to 8, the measurement sensitivity is improved. Therefore, as the pH buffer in this pH buffer, a pH buffer having an acid dissociation constant pKa of 6 to 8, particularly 6 to 7 is suitable.

また、重金属含有排水には、カルシウムやマグネシウム等の金属類を多量に含有する場合がある。これらの金属類は、pH緩衝液と反応することで、pH緩衝能を低下させる。そのため、pH緩衝液中のpH緩衝剤は、金属類との反応性の乏しいpH緩衝剤であることが好適である。具体的には、pH緩衝剤としては、N−(2−アセトアミド)−2−アミノエタンスルホン酸、N−(2−アセトアミド)イミノジ酢酸、N,N−ビス(2−ヒドロキエチル)−2−アミノエタンスルホン酸、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、3−[N,N−ビス(2−ヒドロキシエチル)アミノ]−2−ヒドロキシプロパンスルホン酸、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸、2−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]エタンスルホン酸、2−ヒドロキシ−3−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]プロパンスルホン酸、2−モルホリノエタンスルホン酸、3−モルホリノプロパンスルホン酸、2−ヒドロキシ−3−モルホリノプロパンスルホン酸、ピペラジン−1,4−ビス(エタンスルホン酸)、ピペラジン−1,4−ビス(2−ヒドロキシ−3−プロパンスルホン酸)、2−ヒドロキシ−N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸、及びN−トリス(ヒドロキシメチル)−2−アミノエタンスルホン酸よりなる群から選ばれる少なくとも1種が好適であるが、これに限定されない。   Moreover, heavy metal containing wastewater may contain a large amount of metals such as calcium and magnesium. These metals reduce the pH buffer capacity by reacting with the pH buffer solution. Therefore, it is preferable that the pH buffer in the pH buffer is a pH buffer having poor reactivity with metals. Specifically, as the pH buffering agent, N- (2-acetamido) -2-aminoethanesulfonic acid, N- (2-acetamido) iminodiacetic acid, N, N-bis (2-hydroxyethyl) -2- Aminoethanesulfonic acid, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid, 3- [4- (2 -Hydroxyethyl) -1-piperazinyl] propanesulfonic acid, 2- [4- (2-hydroxylethyl) -1-piperazinyl] ethanesulfonic acid, 2-hydroxy-3- [4- (2-hydroxylethyl) -1 -Piperazinyl] propanesulfonic acid, 2-morpholinoethanesulfonic acid, 3-morpholinopropanesulfonic acid, 2-hydroxy-3 Morpholinopropanesulfonic acid, piperazine-1,4-bis (ethanesulfonic acid), piperazine-1,4-bis (2-hydroxy-3-propanesulfonic acid), 2-hydroxy-N-tris (hydroxymethyl) methyl- Although at least 1 sort (s) chosen from the group which consists of 3-aminopropanesulfonic acid and N-tris (hydroxymethyl) -2-aminoethanesulfonic acid is suitable, it is not limited to this.

pH緩衝剤は、試料水をpH6〜8程度の中性にpH調整できればよく、濃度の限定はない。なお、pH緩衝液を高濃度にする程pH緩衝能が高くなるので、通常はpH緩衝剤の濃度を10〜40質量%とし、試料水中に0.5〜2質量%添加するのが好ましい。   The pH buffering agent is not limited as long as it can adjust the pH of the sample water to a neutral pH of about 6-8. In addition, since pH buffer capacity becomes so high that a pH buffer solution is made high, it is usually preferable to make the density | concentration of a pH buffer agent into 10-40 mass%, and to add 0.5-2 mass% in sample water.

pH緩衝液は、重金属化合物(発色試薬)よりも先に試料水に添加されることが好ましい。試料水のpHが変動すると、重金属捕集剤と発色用重金属化合物との反応率が変動するために、濃度測定結果に誤差が生じるおそれがある。   The pH buffer solution is preferably added to the sample water prior to the heavy metal compound (coloring reagent). When the pH of the sample water fluctuates, the reaction rate between the heavy metal scavenger and the color developing heavy metal compound fluctuates, which may cause an error in the concentration measurement result.

これに対し、発色用重金属化合物を添加する前に、pH緩衝液を添加することで、試料水のpHによらず、試料水中のジチオカルバミン酸系重金属捕集剤の濃度を正確に測定できる。   On the other hand, the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water can be accurately measured by adding the pH buffer before adding the color developing heavy metal compound, regardless of the pH of the sample water.

pH緩衝剤及び重金属化合物を添加して吸光度又は透過率を測定した後、予め求めておいた検量線(又は検量関係)に基づいて重金属捕集剤添加水中の残留捕集剤濃度を求める。この検量線(又は検量関係)は、濃度既知の捕集剤水溶液に当反応量以上の重金属化合物を添加して測定した吸光度又は透過率によって求められるものである。本発明では、この検量線(又は検量関係)としてpH6〜8程度の範囲のものを用意しておけば足りる。   After adding a pH buffer and a heavy metal compound and measuring the absorbance or transmittance, the residual scavenger concentration in the heavy metal scavenger-added water is determined based on a calibration curve (or calibration relationship) determined in advance. This calibration curve (or calibration relationship) is obtained from the absorbance or transmittance measured by adding a heavy metal compound of the reaction amount or higher to a collecting agent aqueous solution having a known concentration. In the present invention, it is sufficient to prepare a calibration curve (or calibration relationship) having a pH range of about 6-8.

吸光度又は透過率の測定は、不溶化物の影響を排除するために、不溶化物などの濁質を除去した後に行うことが好ましい。重金属化合物(発色試薬)が固液分離処理後の処理水に添加された場合には、そのまま吸光度を測定することができるが、固液分離前の重金属捕集剤添加水に重金属化合物が添加される場合には、吸光度測定前に別途、沈降分離や濾過などによって濁質を除去することが望ましい。   The measurement of absorbance or transmittance is preferably performed after removing turbidity such as insolubilized material in order to eliminate the influence of insolubilized material. When a heavy metal compound (coloring reagent) is added to the treated water after the solid-liquid separation treatment, the absorbance can be measured as it is, but the heavy metal compound is added to the heavy metal collector-added water before the solid-liquid separation. In this case, it is desirable to separately remove turbidity by sedimentation separation or filtration before measuring the absorbance.

このようにして求めた重金属捕集剤添加水中の捕集剤濃度に基づいて、前記無機凝集剤による凝集処理液に対して添加するジチオカルバミン酸系重金属捕集剤の添加量を制御することができる。   Based on the thus obtained concentration of the collection agent in the heavy metal collection agent-added water, it is possible to control the amount of the dithiocarbamic acid heavy metal collection agent added to the aggregating treatment liquid using the inorganic flocculant. .

吸光度又は透過率の測定波長は400〜700nm、好ましくは400〜660nm、特に好ましくは400〜500nmである。波長がこの範囲より短くなると、排水中の他の有機化合物の影響を受けたり、また、感度も低くなる。波長がこの範囲より長くなると感度が低くなる。   The measurement wavelength of absorbance or transmittance is 400 to 700 nm, preferably 400 to 660 nm, and particularly preferably 400 to 500 nm. When the wavelength is shorter than this range, it is affected by other organic compounds in the waste water, and the sensitivity is also lowered. If the wavelength is longer than this range, the sensitivity decreases.

以下、重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加して固液分離した固液分離処理水中の捕集剤濃度に基づいて排水への捕集剤添加量を制御する排水処理方法のフローの一例について図1を参照して説明する。   Hereinafter, a flow of a wastewater treatment method for controlling the amount of the collection agent added to the wastewater based on the concentration of the collection agent in the solid-liquid separation treated water obtained by adding a dithiocarbamic acid heavy metal collection agent to the heavy metal-containing wastewater and performing solid-liquid separation. An example will be described with reference to FIG.

図1において、重金属含有排水は、反応槽1、凝集槽2、沈殿槽3、処理水槽4の順に流れる。反応槽1中に導入した重金属含有排水に薬注ポンプ8で、タンク7中のジチオカルバミン酸系重金属捕集剤水溶液を添加し、攪拌機(図示略)で撹拌して重金属と捕集剤とを反応させ、不溶化物を生成させる。反応槽1内の不溶化物含有液は、凝集槽2に導入され、無機凝集剤および高分子凝集剤が添加装置2a,2bにより添加され、液中の不溶化物を凝集させると共に、凝集フロックを粗大化させる。粗大化したフロックを含む水は、沈殿槽3で固液分離処理され、沈降した汚泥は沈殿槽3の底部から抜き出され、脱水処理工程に送られる。沈殿槽3の上澄水は、処理水として処理水槽4に導入される。   In FIG. 1, heavy metal-containing wastewater flows in the order of a reaction tank 1, a coagulation tank 2, a precipitation tank 3, and a treated water tank 4. Add the dithiocarbamic acid heavy metal scavenger aqueous solution in the tank 7 to the heavy metal-containing wastewater introduced into the reaction tank 1 with the chemical injection pump 8, and stir with a stirrer (not shown) to react the heavy metal with the scavenger. To produce an insolubilized product. The insolubilized substance-containing liquid in the reaction tank 1 is introduced into the agglomeration tank 2, and the inorganic flocculant and the polymer flocculant are added by the adding devices 2a and 2b to aggregate the insolubilized substances in the liquid and coarsely aggregate flocs. Make it. The water containing the coarsened floc is subjected to solid-liquid separation processing in the settling tank 3, and the settled sludge is extracted from the bottom of the settling tank 3 and sent to the dehydration process. The supernatant water of the sedimentation tank 3 is introduced into the treated water tank 4 as treated water.

この処理水の大部分は、水中ポンプ5から配管6を介して系外に送水される。また、処理水の一部は、配管6から分岐した配管6a及びバルブ6bを介してジチオカルバミン酸系重金属捕集剤濃度測定装置10に供給され、ジチオカルバミン酸系重金属捕集剤の濃度が測定される。   Most of the treated water is sent from the submersible pump 5 to the outside of the system through the pipe 6. A part of the treated water is supplied to the dithiocarbamic acid heavy metal scavenger concentration measuring device 10 through the pipe 6a and the valve 6b branched from the pipe 6, and the concentration of the dithiocarbamic acid heavy metal scavenger is measured. .

この測定結果に応じて、薬注制御装置9が薬注ポンプ8の吐出量を制御し、反応槽1に添加する重金属捕集剤水溶液の量が制御される。薬注制御装置9は、処理水中の重金属捕集剤の濃度が、予め設定した値よりも大きい場合は、薬注ポンプ8によるジチオカルバミン酸系重金属捕集剤の薬注量を所定量だけ減少させる。一方、処理水中の重金属捕集剤濃度が、予め設定した値よりも小さい場合には、薬注ポンプ8による薬注量を所定量増加させる。薬注量の増減方法は特に限定されないが、薬注ポンプ8のオン・オフのタイミングを調整したり、薬注ポンプ8に供給する電流の周波数を調整したりすればよい。薬注量を変更した後、所定時間待機し、この所定時間経過後に再度処理水中のジチオカルバミン酸系重金属捕集剤濃度を測定し、その結果に応じて薬注量を調整する。   According to this measurement result, the chemical injection control device 9 controls the discharge amount of the chemical injection pump 8, and the amount of the heavy metal scavenger aqueous solution added to the reaction tank 1 is controlled. The chemical injection control device 9 decreases the chemical injection amount of the dithiocarbamic acid heavy metal collector by the chemical injection pump 8 by a predetermined amount when the concentration of the heavy metal collector in the treated water is larger than a preset value. . On the other hand, when the concentration of the heavy metal scavenger in the treated water is smaller than a preset value, the amount of medicine injected by the medicine pump 8 is increased by a predetermined amount. The method of increasing / decreasing the chemical injection amount is not particularly limited, but it is only necessary to adjust the on / off timing of the chemical injection pump 8 or adjust the frequency of the current supplied to the chemical injection pump 8. After changing the chemical injection amount, the system waits for a predetermined time. After the predetermined time has elapsed, the concentration of the dithiocarbamic acid heavy metal scavenger in the treated water is measured again, and the chemical injection amount is adjusted according to the result.

濃度測定装置10に取り込まれた処理水のうち、重金属捕集剤の濃度測定に利用しない余剰のものは、処理水槽4へ返送する。また、測定排液は排液処理系(図示略)に送られて処理される。   Of the treated water taken into the concentration measuring device 10, surplus water that is not used for measuring the concentration of the heavy metal scavenger is returned to the treated water tank 4. Further, the measured drainage is sent to a drainage treatment system (not shown) for processing.

<濃度測定装置10>
図2は、濃度測定装置10の一例を説明するブロック図、図3はセル部分の概略斜視図である。
<Concentration measuring device 10>
FIG. 2 is a block diagram for explaining an example of the concentration measuring apparatus 10, and FIG. 3 is a schematic perspective view of a cell portion.

前記配管6aから試料水としての処理水が導入されるようにセル11が設けられている。セル11の下面に試料水導入用の前記配管6aが接続され、上面に測定排液の排出用の配管12が接続されている。   A cell 11 is provided so that treated water as sample water is introduced from the pipe 6a. The pipe 6a for introducing the sample water is connected to the lower surface of the cell 11, and the pipe 12 for discharging the measurement waste liquid is connected to the upper surface.

セル11の1対の側面は、アクリル、ガラス、石英等の透明材料にて構成されている。このセル11を挟んで一方の側に発光素子13aを有した発光装置13が配置され、他方の側に受光素子14aを有した受光装置14が配置されている。   A pair of side surfaces of the cell 11 is made of a transparent material such as acrylic, glass, or quartz. A light emitting device 13 having a light emitting element 13a is disposed on one side of the cell 11 and a light receiving device 14 having a light receiving element 14a is disposed on the other side.

なお、セル11の該他方の側面に反射材を設け、セル11の一方の側面に対峙させて発光装置13及び受光装置14を配置した反射型セルを用いてもよい。   A reflective cell in which a reflective material is provided on the other side surface of the cell 11 and the light emitting device 13 and the light receiving device 14 are disposed so as to face the one side surface of the cell 11 may be used.

セル11には、タンク15内の重金属化合物水溶液よりなる発色試薬液が、ポンプ16及び配管17により導入可能とされている。また、セル11には、pH緩衝液がタンク18、ポンプ19及び配管20により導入可能とされている。   A coloring reagent solution made of a heavy metal compound aqueous solution in a tank 15 can be introduced into the cell 11 by a pump 16 and a pipe 17. Further, a pH buffer solution can be introduced into the cell 11 through a tank 18, a pump 19 and a pipe 20.

これらのポンプ16,19と、発光装置13と、前記バルブ6bは、測定制御装置22によって制御される。受光装置14の検出信号は、該測定制御装置22に入力され、試料水(処理水)中のジチオカルバミン酸系重金属捕集剤濃度が演算される。この演算結果が前記薬注制御装置9に与えられる。   The pumps 16 and 19, the light emitting device 13, and the bulb 6 b are controlled by a measurement control device 22. The detection signal of the light receiving device 14 is input to the measurement control device 22, and the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water (treated water) is calculated. The calculation result is given to the medicine injection control device 9.

なお、セル11、発光装置13、受光装置14等の好ましい形態を次に説明する。   In the following, preferred embodiments of the cell 11, the light emitting device 13, the light receiving device 14, etc. will be described.

測定セル11は、内面の反射を防ぐため、光透過部以外は、黒色の材質で形成されることが好ましい。   The measurement cell 11 is preferably formed of a black material except for the light transmitting portion in order to prevent reflection on the inner surface.

セル11の大きさの一例は、光透過用透明部の肉厚2mm程度、セル左右幅T50m程度、セル奥行幅W4mm程度、セル高さH8mm程度、セル11の容量1.6mL程度であるが、これに限定されない。   An example of the size of the cell 11 is a transparent part for light transmission of about 2 mm thick, a cell lateral width T of about 50 m, a cell depth of about W 4 mm, a cell height of about H 8 mm, and a capacity of the cell 11 of about 1.6 mL. It is not limited to this.

<発光装置13>
発光装置13は、図3に示すように、発光素子13aおよび回路基板(図示せず)がケース13b内に収容されものである。この回路基板には、電源供給コネクタが設置されており、電源供給ケーブル13cが接続される。
<Light emitting device 13>
As shown in FIG. 3, the light-emitting device 13 includes a light-emitting element 13a and a circuit board (not shown) housed in a case 13b. A power supply connector is installed on the circuit board, and a power supply cable 13c is connected to the circuit board.

発光素子13aの発光波長は、可視光領域を含んでいれば特に限定されない。発光素子13aとしては、例えば白色発光ダイオード(白色LED)を用いることができる。発光素子13aの前面にフィルターを設置して測定波長を調整しても良い。発光素子13aの前面にレンズを配置し、光拡散や集光してもよい。   The emission wavelength of the light emitting element 13a is not particularly limited as long as it includes the visible light region. As the light emitting element 13a, for example, a white light emitting diode (white LED) can be used. A measurement wavelength may be adjusted by installing a filter in front of the light emitting element 13a. A lens may be disposed in front of the light emitting element 13a to diffuse or collect light.

発光素子13aへの通電回路は、図4に示すように、発光素子13a及び可変抵抗器13dから構成される。可変抵抗器13dは、抵抗値選択式の抵抗器であっても良い。可変抵抗器13dの抵抗値を調整することにより、発光素子13aに流れる電流が調整され、発光強度が調整される。なお、図4に示す電源電圧Vccを調整して、発光素子13aに流れる電流を調整し、発光強度を調整してもよい。   As shown in FIG. 4, the energization circuit for the light emitting element 13 a is composed of a light emitting element 13 a and a variable resistor 13 d. The variable resistor 13d may be a resistance value selection type resistor. By adjusting the resistance value of the variable resistor 13d, the current flowing through the light emitting element 13a is adjusted, and the light emission intensity is adjusted. Note that the light emission intensity may be adjusted by adjusting the power supply voltage Vcc shown in FIG. 4 to adjust the current flowing through the light emitting element 13a.

<受光装置14>
受光装置14は、図3に示すように、受光素子14aおよび回路基板(図示せず)がケース14b内に収容されたものである。この、内部回路基板には、電源供給コネクタが設置されており、電源供給ケーブル14cが接続される。
<Light receiving device 14>
As shown in FIG. 3, the light receiving device 14 includes a light receiving element 14a and a circuit board (not shown) housed in a case 14b. The internal circuit board is provided with a power supply connector, to which a power supply cable 14c is connected.

図5に示すように、この実施の形態では、受光装置14には、3個の受光素子としてのフォトダイオードD1〜D3と、可視光域の光の波長体を3分割(590nm〜720nm、480nm〜600nm、400nm〜540nm)して得られる、レッド・グリーン・ブルー領域成分の光(以下、順に、赤色帯域光、緑色帯域光、青色帯域光という)を夫々選択的に通過させる、赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタと、を有する。   As shown in FIG. 5, in this embodiment, the light receiving device 14 includes three photodiodes D1 to D3 as light receiving elements and a wavelength body of light in the visible light range (590 nm to 720 nm, 480 nm). ˜600 nm, 400 nm to 540 nm), red (R, R, R, R, R) light that selectively transmits light of red, green, and blue region components (hereinafter, referred to as red band light, green band light, and blue band light, respectively) ) Filter, green (G) filter, and blue (B) filter.

また、受光装置14の内部回路は、図5に示すように、フォトダイオードD1、D2、D3を流れる電流を主回路C1〜C3で増幅すると共に電圧に変換し、この電圧をオペアンプO1〜O3で増幅し演算処理装置14dに与えるように構成されている。この演算処理装置14dは、受光装置14に設置されているが、前記測定制御装置22に設置されてもよい。   Further, as shown in FIG. 5, the internal circuit of the light receiving device 14 amplifies currents flowing through the photodiodes D1, D2, and D3 by the main circuits C1 to C3 and converts them into voltages, and this voltage is converted by the operational amplifiers O1 to O3. It is configured to amplify and give to the arithmetic processing unit 14d. The arithmetic processing device 14d is installed in the light receiving device 14, but may be installed in the measurement control device 22.

受光素子は、フォトダイオードに限らず、フォトトランジスタ、太陽電池などを用いても良い。   The light receiving element is not limited to a photodiode, and a phototransistor, a solar cell, or the like may be used.

<演算処理装置14d>
演算処理装置14dは、特定の演算処理を行う演算部と、重金属捕集剤の種類毎に、赤、緑、及び青色帯域光における各光透過率(吸光度)と、重金属捕集剤との関係を示す検量線に関するデータ等を記憶する記憶部と、重金属捕集剤の濃度を送信する送信部とを有する。
<Arithmetic processing device 14d>
14 d of arithmetic processing units are the relationship between the calculation part which performs specific arithmetic processing, each light transmittance (absorbance) in red, green, and blue band light for every kind of heavy metal collection agent, and a heavy metal collection agent. The storage part which memorize | stores the data regarding the analytical curve which shows this, and the transmission part which transmits the density | concentration of a heavy metal scavenger.

演算部は、受光装置14から出力された、赤、緑、及び青色帯域光の強度信号に基づいて、各帯域光についての時間平均強度を算出することができる。また、演算部は、特定色が吸収された光の透過光強度から吸収のない光の透過光強度を差し引いて、赤、緑及び青色帯域光における、ベースライン補正をした吸光度(又は光透過率)を算出することもできる。   The calculation unit can calculate the time average intensity for each band light based on the intensity signals of the red, green, and blue band lights output from the light receiving device 14. In addition, the calculation unit subtracts the transmitted light intensity of the non-absorbed light from the transmitted light intensity of the light in which the specific color is absorbed to obtain the absorbance (or light transmittance) obtained by performing baseline correction in the red, green, and blue band light. ) Can also be calculated.

また、演算部は、赤、緑、及び青色帯域光における、吸光度(又は光透過率)から重金属捕集剤の濃度を算出することもできる。具体的には、記憶部に光透過率と重金属捕集剤濃度との関係を示す検量線が記憶されており、吸光度又は光透過率から重金属捕集剤の濃度を算出することができる。   Moreover, the calculating part can also calculate the density | concentration of a heavy metal scavenger from the light absorbency (or light transmittance) in red, green, and blue band light. Specifically, a calibration curve indicating the relationship between the light transmittance and the heavy metal scavenger concentration is stored in the storage unit, and the concentration of the heavy metal scavenger can be calculated from the absorbance or the light transmittance.

<測定制御装置22>
測定制御装置22は、処理水をセル11内に通流させるタイミング、タンク18内のpH緩衝剤をセル11内に添加するタイミング、及びタンク15内の発色試薬をセル11内に添加するタイミングを制御する。また、演算処理装置14dから送られてきた処理水中のジチオカルバミン酸系重金属捕集剤濃度データを記録するとともに、この処理水中のジチオカルバミン酸系重金属捕集剤濃度を示す信号を薬注制御装置9に送信する。
<Measurement control device 22>
The measurement control device 22 has a timing for flowing the treated water into the cell 11, a timing for adding the pH buffer in the tank 18 into the cell 11, and a timing for adding the color reagent in the tank 15 into the cell 11. Control. Further, the concentration data of the dithiocarbamic acid heavy metal scavenger in the treated water sent from the arithmetic processing device 14d is recorded, and a signal indicating the concentration of the dithiocarbamic acid heavy metal scavenger in the treated water is sent to the drug injection control device 9. Send.

測定制御装置22は、演算機能を備える素子、半導体メモリ等の記憶素子を有する。記憶素子は、不揮発メモリが好ましい。例えば、演算機能を備える素子は、マイクロコントローラ、マイクロプロセッサ、FPGA等を用いることができ、記憶素子はEEROM、フラッシュメモリ、ハードディスク等で構成できる。記憶素子内には、OSや、以下で説明する濃度測定法に関する各工程を実行するプログラム等が格納されている。   The measurement control device 22 includes an element having a calculation function and a storage element such as a semiconductor memory. The storage element is preferably a nonvolatile memory. For example, a microcontroller, a microprocessor, an FPGA, or the like can be used as an element having an arithmetic function, and a storage element can be configured by an EEROM, a flash memory, a hard disk, or the like. In the memory element, an OS, a program for executing each process related to the concentration measurement method described below, and the like are stored.

このプログラムに従って、試料水(処理水)中のジチオカルバミン酸系重金属捕集剤濃度の測定プロセスについて次に説明する。なお、図6はこのプロセスの一例を示すフローチャートである。   The process for measuring the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water (treated water) according to this program will be described below. FIG. 6 is a flowchart showing an example of this process.

まず、処理水を配管6aからセル11内に通流させる。流量や流す時間については、特に限定されないが、例えば、33mL/分の流量で3分間程度通流させる。その後、処理水の流通を停止する。そして、処理水で満たされたセル11に対し発光装置13から1分間、光を照射する。   First, treated water is passed through the cell 11 from the pipe 6a. The flow rate and the flow time are not particularly limited, but for example, the flow rate is 33 mL / min for about 3 minutes. Thereafter, the flow of treated water is stopped. Then, light is emitted from the light emitting device 13 to the cell 11 filled with treated water for 1 minute.

演算処理装置14dは、この約1分間にわたり受光装置14が受光した光の強度を平均して赤、緑、及び青色帯域光の光強度を算出する。これにより、発色試薬添加前の処理水の吸光度又は光透過率を測定することができる。   The arithmetic processing unit 14d calculates the light intensities of the red, green, and blue band light by averaging the intensities of the light received by the light receiving device 14 for about 1 minute. Thereby, the light absorbency or light transmittance of the treated water before adding the coloring reagent can be measured.

次に、ポンプ19を所定時間作動させ、処理水で満たされたセル11内にpH緩衝液を所定量添加して、処理水のpHを安定化させた後、ポンプ16を所定時間作動させ、セル11内に発色試薬を所定量添加する。発色試薬を添加してから所定時間静置して発色反応が十分に進行した後、処理水と同様の方法で吸光度又は光透過率測定を行う。   Next, the pump 19 is operated for a predetermined time, a predetermined amount of a pH buffer solution is added into the cell 11 filled with the treated water to stabilize the pH of the treated water, and then the pump 16 is operated for a predetermined time. A predetermined amount of coloring reagent is added into the cell 11. After the coloring reagent is added, it is allowed to stand for a predetermined time and the coloring reaction proceeds sufficiently, and then the absorbance or light transmittance is measured in the same manner as in the treated water.

演算処理装置14dは、発色試薬添加前の処理水についての測定結果と、発色試薬を添加した測定対象液についての測定結果を用いて、吸光度を算出する。   The arithmetic processing unit 14d calculates the absorbance using the measurement result for the treated water before the addition of the coloring reagent and the measurement result for the measurement target liquid to which the coloring reagent is added.

なお、セル11内の測定対象液が、塩化第一鉄等の発色試薬の添加により、黄色に発色している場合には、この測定対象液は、赤色帯域光と緑色帯域光をほとんど吸収せず、補色光である青色帯域光のみを吸収する。そのため、吸光度又は透過率は、青色帯域光のみから求めることができる。   When the measurement target solution in the cell 11 is colored yellow by adding a coloring reagent such as ferrous chloride, the measurement target solution absorbs most of the red band light and the green band light. Instead, it absorbs only blue band light which is complementary color light. Therefore, the absorbance or transmittance can be obtained only from the blue band light.

また、測定対象液が、例えば、青色に発色している場合には、この測定対象液は、青色帯域光をほとんど吸収せず、赤色帯域光と緑色帯域光を吸収する。そのため、吸光度又は透過率は、赤色帯域光及び緑色帯域光のみから求めることができる。   Further, when the measurement target liquid is colored in blue, for example, the measurement target liquid hardly absorbs blue band light and absorbs red band light and green band light. Therefore, the absorbance or transmittance can be obtained from only red band light and green band light.

測定対象液が、塩化第一鉄等の発色試薬の添加により、白色、茶色、黒色等に発色している場合には、この測定対象液は、赤色帯域光、緑色帯域光、青色帯域光の全ての波長帯域の光を吸収する。そのため、重金属捕集剤の濃度に応じて、波長帯域を選択して、重金属捕集剤の濃度を算出すればよい。   When the liquid to be measured is colored white, brown, black, etc. by adding a coloring reagent such as ferrous chloride, the liquid to be measured has red band light, green band light, and blue band light. Absorbs light in all wavelength bands. Therefore, the wavelength band may be selected according to the concentration of the heavy metal scavenger and the concentration of the heavy metal scavenger may be calculated.

[実施例1]
pHの異なる下記の7種類のジチオカルバミン酸系重金属捕集剤水溶液を調製して試料水とし、この試料水にpH緩衝液を添加して吸光度を測定した。
<ジチオカルバミン酸系重金属捕集剤水溶液>
純水に水酸化ナトリウムを溶解して、pHを6、7、8、9、10、11又は12に調整した水酸化ナトリウム水溶液を作成し、各水酸化ナトリウム水溶液にそれぞれジチオカルバミン酸系重金属捕集剤(ウェルクリン(登録商標)(栗田工業株式会社製))を濃度が10mg/Lとなるように添加した。
[Example 1]
The following seven dithiocarbamic acid heavy metal scavenger aqueous solutions with different pH were prepared as sample water, and a pH buffer solution was added to the sample water to measure absorbance.
<Dithiocarbamic acid heavy metal scavenger aqueous solution>
Dissolve sodium hydroxide in pure water to prepare sodium hydroxide aqueous solution adjusted to pH 6, 7, 8, 9, 10, 11 or 12, and collect dithiocarbamic acid heavy metal in each sodium hydroxide aqueous solution. An agent (Wellclean (registered trademark) (manufactured by Kurita Kogyo Co., Ltd.)) was added so that the concentration was 10 mg / L.

各水溶液50mLにpH緩衝液として、ピペラジン−1,4−ビス(エタンスルホン酸)(PIPES)20質量%濃度水溶液を5mL添加して試料水とした。なお、pH緩衝剤水溶液は、水酸化ナトリウムを用いて、pH6.5に調整した。   5 mL of piperazine-1,4-bis (ethanesulfonic acid) (PIPES) 20 mass% concentration aqueous solution was added to 50 mL of each aqueous solution as a pH buffer solution to prepare sample water. The aqueous pH buffer solution was adjusted to pH 6.5 using sodium hydroxide.

各試料水について、緑色帯(480nm〜600nm)の光透過率Gを測定した。この光透過率を100%とした。 For each water sample was measured light transmittance G 0 of the green band (480nm~600nm). This light transmittance was set to 100%.

次に、各試料水55mLに発色試薬として、塩化鉄(I)の0.025質量%水溶液を1mL添加した。発色試薬を添加して、6分経過後、各液の緑色帯(480nm〜600nm)の光透過率Gをそれぞれ測定し、吸光度を下記式により演算した。結果を図7に示す。 Next, 1 mL of a 0.025 mass% aqueous solution of iron (I) chloride was added as a coloring reagent to 55 mL of each sample water. The coloring reagent was added, after six minutes, the green band of the liquid light transmittance G 1 of (480nm~600nm) were measured, respectively, and calculates the absorbance by the following equation. The results are shown in FIG.

吸光度ABS=Log10(G/GAbsorbance ABS = Log 10 (G 0 / G 1 )

[実施例2]
pH緩衝液として2−モルホリノエタンスルホン酸(MES)の20質量%濃度水溶液を5mL添加した他は実施例1と同様にして光透過率を測定し、吸光度を演算した。結果を図7に示す。
[Example 2]
The light transmittance was measured and the absorbance was calculated in the same manner as in Example 1 except that 5 mL of a 20% strength by weight aqueous solution of 2-morpholinoethanesulfonic acid (MES) was added as a pH buffer solution. The results are shown in FIG.

[比較例1]
pH緩衝液を何も添加しなかったこと以外は実施例1と同様にして光透過率を測定し、吸光度を演算した。結果を図7に示す。
[Comparative Example 1]
The light transmittance was measured in the same manner as in Example 1 except that no pH buffer solution was added, and the absorbance was calculated. The results are shown in FIG.

<考察>
図7に示すように、試料水にpH緩衝液を添加しない比較例1の場合、試料水のpHによって吸光度が変化する。これに対し、pH緩衝液を添加した実施例1,2では、吸光度は試料水pHに関わりなく殆ど一定である。なお、pH6未満の試料については、ジチオカルバミン酸系重金属捕集剤が分解するために、比較検討を行えないため、実施しなかった。しかしながら、試料水のpHを調整することで、pH6未満の試料水についてもジチオカルバミン酸系重金属捕集剤の濃度を正確に測定することができる。
<Discussion>
As shown in FIG. 7, in the case of Comparative Example 1 in which no pH buffer solution is added to the sample water, the absorbance changes depending on the pH of the sample water. On the other hand, in Examples 1 and 2 to which a pH buffer solution was added, the absorbance was almost constant regardless of the pH of the sample water. In addition, about the sample below pH 6, since the dithiocarbamic-acid type heavy metal scavenger decomposes | disassembles, since it cannot perform comparative examination, it was not implemented. However, by adjusting the pH of the sample water, the concentration of the dithiocarbamic acid heavy metal scavenger can be accurately measured even for sample water having a pH of less than 6.

1 重金属反応槽
2 凝集槽
3 沈殿槽
4 処理水槽
7 重金属捕集剤貯留タンク
8 薬注ポンプ
10 ジチオカルバミン酸系重金属捕集剤濃度測定装置
11 セル
13 発光装置
14 受光装置
22 測定制御装置
DESCRIPTION OF SYMBOLS 1 Heavy metal reaction tank 2 Coagulation tank 3 Precipitation tank 4 Treated water tank 7 Heavy metal collection agent storage tank 8 Chemical injection pump 10 Dithiocarbamic acid type heavy metal collection agent concentration measuring device 11 Cell 13 Light emitting device 14 Light receiving device 22 Measurement control device

本発明のジチオカルバミン酸系重金属捕集剤の濃度測定方法は、ジチオカルバミン酸系重金属捕集剤を含有する試料水に重金属化合物を加え、該重金属化合物と該試料水ジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400〜700nmの波長の吸光度又は透過率を測定し、この測定結果に基づいて、前記試料水中のジチオカルバミン酸系重金属捕集剤の濃度を測定するジチオカルバミン酸系重金属捕集剤の濃度測定方法において、前記試料水にpH緩衝液を添加してpHを安定化させる方法であって、該pH緩衝液は、pH緩衝剤としてN−(2−アセトアミド)−2−アミノエタンスルホン酸、N−(2−アセトアミド)イミノジ酢酸、N,N−ビス(2−ヒドロキエチル)−2−アミノエタンスルホン酸、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、3−[N,N−ビス(2−ヒドロキシエチル)アミノ]−2−ヒドロキシプロパンスルホン酸、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸、2−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]エタンスルホン酸、2−ヒドロキシ−3−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]プロパンスルホン酸、2−モルホリノエタンスルホン酸、3−モルホリノプロパンスルホン酸、2−ヒドロキシ−3−モルホリノプロパンスルホン酸、ピペラジン−1,4−ビス(エタンスルホン酸)、ピペラジン−1,4−ビス(2−ヒドロキシ−3−プロパンスルホン酸)、2−ヒドロキシ−N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸、及びN−トリス(ヒドロキシメチル)−2−アミノエタンスルホン酸よりなる群から選ばれる少なくとも1種を含有することを特徴とする。 A method for measuring the concentration of dithiocarbamate heavy metal scavenger of the present invention, the heavy metal compound is added to the sample water containing dithiocarbamate heavy metal scavenger, heavy metal compound and dithiocarbamate heavy metal scavenger of the sample in water After the color is developed, the absorbance or transmittance at a wavelength of 400 to 700 nm is measured, and based on this measurement result, the concentration of the dithiocarbamate heavy metal scavenger in the sample water is measured. In the method for measuring the concentration of a collecting agent, a pH buffer solution is added to the sample water to stabilize the pH , and the pH buffer solution is N- (2-acetamido) -2- Aminoethanesulfonic acid, N- (2-acetamido) iminodiacetic acid, N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid, bis 2-hydroxyethyl) iminotris (hydroxymethyl) methane, 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid, 3- [4- (2-hydroxyethyl) -1- Piperazinyl] propanesulfonic acid, 2- [4- (2-hydroxylethyl) -1-piperazinyl] ethanesulfonic acid, 2-hydroxy-3- [4- (2-hydroxylethyl) -1-piperazinyl] propanesulfonic acid, 2-morpholinoethanesulfonic acid, 3-morpholinopropanesulfonic acid, 2-hydroxy-3-morpholinopropanesulfonic acid, piperazine-1,4-bis (ethanesulfonic acid), piperazine-1,4-bis (2-hydroxy- 3-propanesulfonic acid), 2-hydroxy-N-tris (hydroxymethyl) Characterized in that it contains at least one selected from the chill-3-amino propane sulfonic acid, and N- tris group consisting of (hydroxymethyl) -2-aminoethanesulfonic acid.

本発明のジチオカルバミン酸系重金属捕集剤の濃度測定装置は、ジチオカルバミン酸系重金属捕集剤を含有する試料水に重金属化合物を添加する添加手段と、該重金属化合物と該試料水ジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400〜700nmの波長の吸光度又は透過率を測定する測定手段と、この測定結果に基づいて、前記試料水中のジチオカルバミン酸系重金属捕集剤の濃度を演算する演算手段とを有するジチオカルバミン酸系重金属捕集剤の濃度測定装置において、前記試料水にpH緩衝液を添加する手段を備えた装置であって、該pH緩衝液は、pH緩衝剤としてN−(2−アセトアミド)−2−アミノエタンスルホン酸、N−(2−アセトアミド)イミノジ酢酸、N,N−ビス(2−ヒドロキエチル)−2−アミノエタンスルホン酸、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、3−[N,N−ビス(2−ヒドロキシエチル)アミノ]−2−ヒドロキシプロパンスルホン酸、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸、2−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]エタンスルホン酸、2−ヒドロキシ−3−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]プロパンスルホン酸、2−モルホリノエタンスルホン酸、3−モルホリノプロパンスルホン酸、2−ヒドロキシ−3−モルホリノプロパンスルホン酸、ピペラジン−1,4−ビス(エタンスルホン酸)、ピペラジン−1,4−ビス(2−ヒドロキシ−3−プロパンスルホン酸)、2−ヒドロキシ−N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸、及びN−トリス(ヒドロキシメチル)−2−アミノエタンスルホン酸よりなる群から選ばれる少なくとも1種を含有することを特徴とする。 Apparatus for measuring the concentration dithiocarbamate heavy metal scavenger of the present invention, an additive means for adding a heavy metal compound in the sample water containing dithiocarbamate heavy metal scavenger, heavy metal compound and dithiocarbamate of the sample in water A measuring means for measuring the absorbance or transmittance at a wavelength of 400 to 700 nm after reacting with a heavy metal scavenger to develop a color, and based on this measurement result, the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water An apparatus for measuring the concentration of a dithiocarbamic acid heavy metal scavenger having an arithmetic means for calculating the pH of the sample water , wherein the pH buffer is used as a pH buffer. N- (2-acetamido) -2-aminoethanesulfonic acid, N- (2-acetamido) iminodiacetic acid, N, N-bis (2-hydroxychi) ) -2-aminoethanesulfonic acid, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid, 3- [ 4- (2-hydroxyethyl) -1-piperazinyl] propanesulfonic acid, 2- [4- (2-hydroxylethyl) -1-piperazinyl] ethanesulfonic acid, 2-hydroxy-3- [4- (2-hydroxyl) Ethyl) -1-piperazinyl] propanesulfonic acid, 2-morpholinoethanesulfonic acid, 3-morpholinopropanesulfonic acid, 2-hydroxy-3-morpholinopropanesulfonic acid, piperazine-1,4-bis (ethanesulfonic acid), piperazine -1,4-bis (2-hydroxy-3-propanesulfonic acid), 2-hydride Characterized in that it contains at least one selected from carboxymethyl -N- tris (hydroxymethyl) methyl-3-amino propane sulfonic acid, and N- tris (hydroxymethyl) group consisting of 2-amino-ethanesulfonic acid .

Claims (5)

ジチオカルバミン酸系重金属捕集剤を含有する試料水に重金属化合物を加え、
該重金属化合物と該重金属含有排水中に残留するジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400〜700nmの波長の吸光度又は透過率を測定し、
この測定結果に基づいて、前記試料水中のジチオカルバミン酸系重金属捕集剤の濃度を測定するジチオカルバミン酸系重金属捕集剤の濃度測定方法において、
前記試料水にpH緩衝液を添加してpHを安定化させることを特徴とするジチオカルバミン酸系重金属捕集剤の濃度測定方法。
Add a heavy metal compound to sample water containing a dithiocarbamic acid heavy metal scavenger,
After reacting the heavy metal compound and the dithiocarbamic acid heavy metal scavenger remaining in the heavy metal-containing wastewater to cause color development, the absorbance or transmittance at a wavelength of 400 to 700 nm is measured,
Based on this measurement result, in the concentration measurement method of the dithiocarbamic acid heavy metal scavenger for measuring the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water,
A method for measuring the concentration of a dithiocarbamic acid-based heavy metal scavenger, wherein a pH buffer solution is added to the sample water to stabilize the pH.
請求項1において、前記pH緩衝液は、pKa6〜8の中性pH緩衝液であることを特徴とするジチオカルバミン酸系重金属捕集剤の濃度測定方法。   2. The method for measuring the concentration of a dithiocarbamic acid heavy metal scavenger according to claim 1, wherein the pH buffer is a neutral pH buffer of pKa6-8. 請求項2において、前記pH緩衝液は、pH緩衝剤としてN−(2−アセトアミド)−2−アミノエタンスルホン酸、N−(2−アセトアミド)イミノジ酢酸、N,N−ビス(2−ヒドロキエチル)−2−アミノエタンスルホン酸、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、3−[N,N−ビス(2−ヒドロキシエチル)アミノ]−2−ヒドロキシプロパンスルホン酸、3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸、2−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]エタンスルホン酸、2−ヒドロキシ−3−[4−(2−ヒドロキシルエチル)−1−ピペラジニル]プロパンスルホン酸、2−モルホリノエタンスルホン酸、3−モルホリノプロパンスルホン酸、2−ヒドロキシ−3−モルホリノプロパンスルホン酸、ピペラジン−1,4−ビス(エタンスルホン酸)、ピペラジン−1,4−ビス(2−ヒドロキシ−3−プロパンスルホン酸)、2−ヒドロキシ−N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸、及びN−トリス(ヒドロキシメチル)−2−アミノエタンスルホン酸よりなる群から選ばれる少なくとも1種を含有水することを特徴とするジチオカルバミン酸系重金属捕集剤の濃度測定方法。   3. The pH buffer solution according to claim 2, wherein N- (2-acetamido) -2-aminoethanesulfonic acid, N- (2-acetamido) iminodiacetic acid, N, N-bis (2-hydroxyethyl) is used as a pH buffering agent. ) -2-aminoethanesulfonic acid, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid, 3- [ 4- (2-hydroxyethyl) -1-piperazinyl] propanesulfonic acid, 2- [4- (2-hydroxylethyl) -1-piperazinyl] ethanesulfonic acid, 2-hydroxy-3- [4- (2-hydroxyl) Ethyl) -1-piperazinyl] propanesulfonic acid, 2-morpholinoethanesulfonic acid, 3-morpholinopropanesulfonic acid 2-hydroxy-3-morpholinopropanesulfonic acid, piperazine-1,4-bis (ethanesulfonic acid), piperazine-1,4-bis (2-hydroxy-3-propanesulfonic acid), 2-hydroxy-N-tris A dithiocarbamic acid heavy metal containing water containing at least one selected from the group consisting of (hydroxymethyl) methyl-3-aminopropanesulfonic acid and N-tris (hydroxymethyl) -2-aminoethanesulfonic acid Method for measuring concentration of collection agent. 請求項1ないし3のいずれか1項において、前記重金属化合物が水溶性の鉄塩及び/又は銅塩であることを特徴とするジチオカルバミン酸系重金属捕集剤の濃度測定方法。   The method for measuring the concentration of a dithiocarbamic acid heavy metal scavenger according to any one of claims 1 to 3, wherein the heavy metal compound is a water-soluble iron salt and / or copper salt. ジチオカルバミン酸系重金属捕集剤を含有する試料水に重金属化合物を添加する添加手段と、
該重金属化合物と該重金属含有排水中に残留するジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400〜700nmの波長の吸光度又は透過率を測定する測定手段と、
この測定結果に基づいて、前記試料水中のジチオカルバミン酸系重金属捕集剤の濃度を演算する演算手段と
を有するジチオカルバミン酸系重金属捕集剤の濃度測定装置において、
前記試料水にpH緩衝液を添加する手段を備えたことを特徴とするジチオカルバミン酸系重金属捕集剤の濃度測定装置。
An adding means for adding a heavy metal compound to a sample water containing a dithiocarbamic acid heavy metal scavenger;
A measuring means for measuring the absorbance or transmittance at a wavelength of 400 to 700 nm after reacting the heavy metal compound and the dithiocarbamic acid heavy metal scavenger remaining in the heavy metal-containing wastewater to cause color development;
On the basis of this measurement result, in a concentration measurement apparatus for a dithiocarbamic acid heavy metal scavenger having a computing means for calculating the concentration of the dithiocarbamic acid heavy metal scavenger in the sample water,
An apparatus for measuring a concentration of a dithiocarbamic acid heavy metal scavenger, comprising means for adding a pH buffer solution to the sample water.
JP2014122461A 2014-06-13 2014-06-13 Method and apparatus for measuring heavy metal collector concentration Expired - Fee Related JP5880625B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014122461A JP5880625B2 (en) 2014-06-13 2014-06-13 Method and apparatus for measuring heavy metal collector concentration
PCT/JP2015/060321 WO2015190161A1 (en) 2014-06-13 2015-04-01 Method and apparatus for measuring concentration of heavy metal scavenger
TW104119087A TW201610416A (en) 2014-06-13 2015-06-12 Method and apparatus for measuring concentration of heavy metal scavenger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122461A JP5880625B2 (en) 2014-06-13 2014-06-13 Method and apparatus for measuring heavy metal collector concentration

Publications (2)

Publication Number Publication Date
JP2016003878A true JP2016003878A (en) 2016-01-12
JP5880625B2 JP5880625B2 (en) 2016-03-09

Family

ID=54833270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122461A Expired - Fee Related JP5880625B2 (en) 2014-06-13 2014-06-13 Method and apparatus for measuring heavy metal collector concentration

Country Status (3)

Country Link
JP (1) JP5880625B2 (en)
TW (1) TW201610416A (en)
WO (1) WO2015190161A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229830A1 (en) * 2018-05-29 2019-12-05 株式会社日立ハイテクソリューションズ Water quality meter and water quality management system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990097A (en) * 2017-03-23 2017-07-28 华润水泥技术研发有限公司 A kind of method of content of beary metal in quick detection clinker
CN108844904B (en) * 2018-05-03 2020-11-13 曲阜师范大学 Colorimetric detection of trace Cu based on multidentate azacyclotriazole-azo chromophore ratio2+Method (2)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003112A1 (en) * 2000-07-07 2002-01-10 Golden Josh H. Process and apparatus for removal of heavy metals from wastewater
JP2002238598A (en) * 2001-02-15 2002-08-27 Asahi Kasei Corp Composition for calcium ion assay and assaying method
JP2008537144A (en) * 2005-04-19 2008-09-11 スペシャルティー アッセイズ,インコーポレーテッド Method using phosphonazo III for the determination of calcium, magnesium and sodium in analytical samples
JP2012161724A (en) * 2011-02-04 2012-08-30 Kurita Water Ind Ltd Method for controlling chemical feed of heavy metal scavenger
JP2014028342A (en) * 2012-07-31 2014-02-13 Kurita Water Ind Ltd Method and apparatus for treating heavy metal-containing drainage water
WO2014061623A1 (en) * 2012-10-17 2014-04-24 和光純薬工業株式会社 Novel compound, and method for measuring iron concentration by using novel compound as chelate color former

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003112A1 (en) * 2000-07-07 2002-01-10 Golden Josh H. Process and apparatus for removal of heavy metals from wastewater
JP2002238598A (en) * 2001-02-15 2002-08-27 Asahi Kasei Corp Composition for calcium ion assay and assaying method
JP2008537144A (en) * 2005-04-19 2008-09-11 スペシャルティー アッセイズ,インコーポレーテッド Method using phosphonazo III for the determination of calcium, magnesium and sodium in analytical samples
JP2012161724A (en) * 2011-02-04 2012-08-30 Kurita Water Ind Ltd Method for controlling chemical feed of heavy metal scavenger
JP2014028342A (en) * 2012-07-31 2014-02-13 Kurita Water Ind Ltd Method and apparatus for treating heavy metal-containing drainage water
WO2014061623A1 (en) * 2012-10-17 2014-04-24 和光純薬工業株式会社 Novel compound, and method for measuring iron concentration by using novel compound as chelate color former

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229830A1 (en) * 2018-05-29 2019-12-05 株式会社日立ハイテクソリューションズ Water quality meter and water quality management system

Also Published As

Publication number Publication date
JP5880625B2 (en) 2016-03-09
WO2015190161A1 (en) 2015-12-17
TW201610416A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5728983B2 (en) Chemical injection control method for heavy metal scavengers
JP6044160B2 (en) Method and apparatus for treating wastewater containing heavy metals
Di Iaconi et al. Nitrogen recovery from a stabilized municipal landfill leachate
Szabó et al. Significance of design and operational variables in chemical phosphorus removal
CN102001734B (en) Heavy metal settling agent for treating mercury-containing wastewater
RU2690819C2 (en) Addition of aluminium reagents to oxyanion-containing water streams
JP5880625B2 (en) Method and apparatus for measuring heavy metal collector concentration
WO2016031265A1 (en) Device for determining addition amount of chelating agent, and method for determining addition amount of chelating agent
WO2015114805A1 (en) Method and device for treating heavy-metal-containing wastewater
JP4831397B2 (en) Wastewater coagulation sedimentation method
KR20110097405A (en) The phosphorus removal system regarding the automatic determination of coagulant dosing rate using artificial intelligence
CN105439319B (en) A kind of processing method for burning waste water
US10071923B2 (en) Addition of aluminum reagents to oxoanion-containing water streams
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP7157192B2 (en) water treatment method
RU2671931C2 (en) Determination of the concentration of oxoanions with the help of aluminum-containing reagents
JP6314587B2 (en) Concentration measuring device and method for cleaning the concentration measuring device
JP6517570B2 (en) Heavy metal individual separation and recovery apparatus and heavy metal individual separation and recovery method
Marko et al. Removal of bromates from drinking water with seven types of sorbent materials
Bartzatt Reduction of metal ion species in contaminated water by utilizing potassium ferrate (K2FeO4) treatment
JP2021037449A (en) Method for treating fluorine-containing waste water
Aalto et al. Sulfate removal from water streams down to ppm level by using recyclable biopolymer
US10800688B2 (en) Controlling digester biosolids and wastewater activated sludge systems
JP7399685B2 (en) Wastewater treatment method and wastewater treatment system
JP6428719B2 (en) Method for treating hexavalent chromium-containing waste liquid and apparatus for treating hexavalent chromium-containing waste liquid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5880625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees