JP2016003847A - Two-stage combustion method - Google Patents

Two-stage combustion method Download PDF

Info

Publication number
JP2016003847A
JP2016003847A JP2014126513A JP2014126513A JP2016003847A JP 2016003847 A JP2016003847 A JP 2016003847A JP 2014126513 A JP2014126513 A JP 2014126513A JP 2014126513 A JP2014126513 A JP 2014126513A JP 2016003847 A JP2016003847 A JP 2016003847A
Authority
JP
Japan
Prior art keywords
gas
air
combustion
primary combustion
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014126513A
Other languages
Japanese (ja)
Inventor
怜史 和才
Satoshi Wasai
怜史 和才
川合 辰哉
Tatsuya Kawai
辰哉 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2014126513A priority Critical patent/JP2016003847A/en
Publication of JP2016003847A publication Critical patent/JP2016003847A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a two-stage combustion method capable of sufficiently suppressing production of NOx even when fuel gas is burnt at a high air ratio.SOLUTION: Primary combustion air and nitrogen gas are mixed into fuel gas; the fuel gas is burned for production of primary combustion gas; and secondary combustion air is mixed into the primary combustion gas to burn the primary combustion gas. The used amount of total combustion air, in which the primary combustion air and secondary combustion air are combined together, is an amount in which an air ratio is in the range of 2.0-2.5. In addition, the used amount of the nitrogen gas is more than 0 vol.% and 20 vol.% or less of the fuel gas.

Description

本発明は二段燃焼方法に関する。   The present invention relates to a two-stage combustion method.

ガス燃料を二段燃焼方式で燃焼させる二段燃焼バーナーは、一次燃焼室と二次燃焼室とを備えている。一次燃焼室において、理論空気量未満の一次燃焼用空気でガス燃料を燃焼させ、一次燃焼ガスを発生させる。そして、一次燃焼ガスを一次燃焼室から二次燃焼室に移すとともに、二次燃焼室に二次燃焼用空気を供給し、一次燃焼ガスに含まれている可燃成分を燃焼させる(例えば特許文献1,2を参照)。   A two-stage combustion burner that burns gas fuel by a two-stage combustion method includes a primary combustion chamber and a secondary combustion chamber. In the primary combustion chamber, gas fuel is burned with primary combustion air less than the theoretical air amount to generate primary combustion gas. Then, the primary combustion gas is transferred from the primary combustion chamber to the secondary combustion chamber, and air for secondary combustion is supplied to the secondary combustion chamber to combust combustible components contained in the primary combustion gas (for example, Patent Document 1). , 2).

一次燃焼用空気及び二次燃焼用空気の量は、二段燃焼バーナーが備えるダンパー等によって調整されるため、最適な空気比でガス燃料を燃焼させることができる。また、ガス燃料を二段階で燃焼させることにより、燃焼反応の急激な進行が抑制され火炎温度が低下するとともに、燃焼時の酸素濃度が低くなるので、二段燃焼バーナーを用いれば燃焼時のNOxの生成が抑制される。   Since the amounts of the primary combustion air and the secondary combustion air are adjusted by a damper or the like provided in the two-stage combustion burner, the gas fuel can be burned at an optimal air ratio. In addition, by burning the gas fuel in two stages, the rapid progress of the combustion reaction is suppressed, the flame temperature is lowered, and the oxygen concentration at the time of combustion is lowered. Therefore, if a two-stage combustion burner is used, NOx at the time of combustion is reduced. Generation is suppressed.

多くのガス燃料加熱炉は、熱効率の観点から、空気比1.1〜1.2の二段燃焼方式でガス燃料を燃焼させているが、設備上の理由、例えば燃焼ガスの温度を低下させる必要がある場合などでは、高空気比(例えば空気比2.0)の二段燃焼方式でガス燃料を燃焼させている。
しかしながら、このような高空気比でガス燃料を燃焼させる場合には、燃焼時の酸素濃度が十分に低くならないため、二段燃焼バーナーが備えるダンパー等で空気量調整を行っても、NOxの生成を十分に抑制することができない場合があるという問題があった。
Many gas fuel heating furnaces burn gas fuel by a two-stage combustion method with an air ratio of 1.1 to 1.2 from the viewpoint of thermal efficiency. However, for example, the temperature of the combustion gas is reduced. When necessary, gas fuel is burned by a two-stage combustion method with a high air ratio (for example, air ratio 2.0).
However, when gas fuel is burned at such a high air ratio, the oxygen concentration at the time of combustion does not become sufficiently low. Therefore, even if the amount of air is adjusted with a damper or the like provided in the two-stage combustion burner, NOx is generated. There is a problem in that it may not be possible to sufficiently suppress.

特開2003−214602号公報JP 2003-214602 A 特開2001−254913号公報JP 2001-254913 A

そこで、本発明は上記のような従来技術が有する問題点を解決し、高空気比でガス燃料を燃焼させる場合でもNOxの生成を十分に抑制することが可能な二段燃焼方法を提供することを課題とする。   Accordingly, the present invention provides a two-stage combustion method capable of solving the above-described problems of the prior art and sufficiently suppressing NOx generation even when gas fuel is burned at a high air ratio. Is an issue.

前記課題を解決するため、本発明の一態様に係る二段燃焼方法は、ガス燃料に一次燃焼用空気と窒素ガスとを混合し、前記ガス燃料を燃焼させて一次燃焼ガスを発生させ、前記一次燃焼ガスに二次燃焼用空気を混合し前記一次燃焼ガスを燃焼させ、前記一次燃焼用空気と前記二次燃焼用空気とを合わせた全燃焼用空気の使用量は、空気比が2.0以上2.5以下となる量であり、前記窒素ガスの使用量は、前記ガス燃料の0体積%超過20体積%以下であることを要旨とする。   In order to solve the above-described problem, a two-stage combustion method according to an aspect of the present invention includes mixing gaseous fuel with primary combustion air and nitrogen gas, burning the gaseous fuel to generate primary combustion gas, The primary combustion gas is mixed with the secondary combustion air to burn the primary combustion gas, and the total amount of the combustion air used by combining the primary combustion air and the secondary combustion air is an air ratio of 2. The amount is from 0 to 2.5, and the amount of the nitrogen gas used is 0 vol% and 20 vol% or less of the gas fuel.

本発明の二段燃焼方法によれば、高空気比でガス燃料を燃焼させる場合でもNOxの生成を十分に抑制することが可能である。   According to the two-stage combustion method of the present invention, it is possible to sufficiently suppress the generation of NOx even when gas fuel is burned at a high air ratio.

本発明の一実施形態を説明する二段燃焼バーナーの図である。It is a figure of the two-stage combustion burner explaining one embodiment of the present invention. 窒素ガスの使用量と燃焼ガス中のNOx濃度の関係を示すグラフである。It is a graph which shows the relationship between the usage-amount of nitrogen gas, and the NOx density | concentration in combustion gas.

本発明の一実施形態を、図1を参照しながら詳細に説明する。まず、ガス燃料を二段燃焼方式で燃焼させる二段燃焼バーナーの構成について説明する。図1の二段燃焼バーナーは、一方の端部(図1においては左側の端部)が開口し他方の端部(図1においては右側の端部)が閉口した外筒部材1と、外筒部材1の内側に同軸に配され両端部が開口した内筒部材2と、外筒部材1の内周面と内筒部材2の外周面との間に挟まれたダンパー3と、を備えている。以下、図1の二段燃焼バーナーの説明においては、説明の便宜上、外筒部材1の開口端部が形成されている側(図1においては左側)を「火口側」と記し、外筒部材1の閉口端部が形成されている側(図1においては右側)を「基部側」と記す。   An embodiment of the present invention will be described in detail with reference to FIG. First, the structure of the two-stage combustion burner which burns gas fuel by a two-stage combustion system will be described. The two-stage combustion burner of FIG. 1 includes an outer cylindrical member 1 having one end (left end in FIG. 1) opened and the other end (right end in FIG. 1) closed, An inner cylinder member 2 that is coaxially arranged inside the cylindrical member 1 and that is open at both ends, and a damper 3 that is sandwiched between the inner peripheral surface of the outer cylindrical member 1 and the outer peripheral surface of the inner cylindrical member 2 are provided. ing. Hereinafter, in the description of the two-stage combustion burner of FIG. 1, for convenience of explanation, the side (left side in FIG. 1) where the open end of the outer cylinder member 1 is formed is referred to as “crater side”, and the outer cylinder member The side where the closed end portion 1 is formed (the right side in FIG. 1) is referred to as a “base side”.

ダンパー3は外筒部材1の軸方向略中間位置に配されており、外筒部材1の内部空間はダンパー3によって軸方向に2つに仕切られ、火口側の内部空間と基部側の内部空間に分離されている。
また、外筒部材1の基部側部分には、空気を供給する配管21が接続されており、外筒部材1の基部側の内部空間に空気が供給されるようになっている。以下、この外筒部材1の基部側の内部空間を「空気室11」と記す。
The damper 3 is disposed at a substantially intermediate position in the axial direction of the outer cylinder member 1, and the inner space of the outer cylinder member 1 is divided into two in the axial direction by the damper 3, and the inner space on the crater side and the inner space on the base side Have been separated.
A pipe 21 for supplying air is connected to the base side portion of the outer cylinder member 1 so that air is supplied to the internal space on the base side of the outer cylinder member 1. Hereinafter, the internal space on the base side of the outer cylinder member 1 is referred to as an “air chamber 11”.

一方、内筒部材2の内側の軸方向略中間位置には、ガス燃料と窒素ガスの混合ガスを噴出する噴出口23が配されている。この噴出口23には、ガス燃料と窒素ガスの混合ガスを供給する配管25が接続されていて、噴出口23から混合ガスが火口側へ向かって噴出するようになっている。すなわち、配管25の下流側端部が噴出口23に接続しているとともに、配管25の上流側端部が2つの枝配管26、27に分岐しており、一方の枝配管26からガス燃料が供給され、他方の枝配管27から窒素ガスが供給されて、ガス燃料と窒素ガスが配管25内で混合されるようになっている。よって、混合ガスが噴出口23から内筒部材2の内部空間のうち火口側の部分に噴出される。なお、この内筒部材2の火口側の内部空間が、ガス燃料の一次燃焼が行われる一次燃焼室13をなしている。   On the other hand, a jet port 23 for jetting a mixed gas of gas fuel and nitrogen gas is disposed at a substantially intermediate position in the axial direction inside the inner cylinder member 2. A pipe 25 for supplying a mixed gas of gas fuel and nitrogen gas is connected to the jet port 23 so that the mixed gas is jetted from the jet port 23 toward the crater side. That is, the downstream end of the pipe 25 is connected to the outlet 23, and the upstream end of the pipe 25 is branched into two branch pipes 26 and 27, and gas fuel is supplied from one branch pipe 26. The nitrogen gas is supplied from the other branch pipe 27, and the gas fuel and the nitrogen gas are mixed in the pipe 25. Therefore, the mixed gas is ejected from the ejection port 23 to the crater side portion of the internal space of the inner cylinder member 2. The inner space on the crater side of the inner cylinder member 2 forms a primary combustion chamber 13 in which primary combustion of gas fuel is performed.

また、内筒部材2の両端部のうち基部側の端部は空気室11内に位置しているので、内筒部材2の内部空間のうち基部側の部分は、空気室11の空気を一次燃焼用空気として一次燃焼室13に送る一次燃焼用空気供給路28をなしていて、一次燃焼用空気を一次燃焼室13に供給できるようになっている。よって、一次燃焼室13にガス燃料、窒素ガス、及び一次燃焼用空気が供給され、ガス燃料の一次燃焼が行われる。   Moreover, since the edge part by the side of a base part is located in the air chamber 11 among the both ends of the inner cylinder member 2, the part by the side of the base part among the internal spaces of the inner cylinder member 2 is primary for the air of the air chamber 11. A primary combustion air supply path 28 that is sent to the primary combustion chamber 13 as combustion air is formed so that the primary combustion air can be supplied to the primary combustion chamber 13. Therefore, gas fuel, nitrogen gas, and primary combustion air are supplied to the primary combustion chamber 13 to perform primary combustion of the gas fuel.

他方、外筒部材1の火口側の内部空間は、内筒部材2の火口側の端部よりも火口側の部分と、内筒部材2の外方側の部分とからなる。これらのうち、内筒部材2の火口側の端部よりも火口側の部分には、一次燃焼によって発生した一次燃焼ガスが一次燃焼室13から送られるようになっている。なお、この外筒部材1の内部空間のうち内筒部材2の火口側の端部よりも火口側の部分が、一次燃焼ガスに含まれている可燃成分を燃焼させる二次燃焼が行われる二次燃焼室15をなしている。   On the other hand, the inner space on the crater side of the outer cylinder member 1 is composed of a part on the crater side with respect to the end part on the crater side of the inner cylinder member 2 and a part on the outer side of the inner cylinder member 2. Among these, the primary combustion gas generated by the primary combustion is sent from the primary combustion chamber 13 to a portion closer to the crater side than the end portion on the crater side of the inner cylinder member 2. A portion of the inner space of the outer cylinder member 1 closer to the crater side than the end portion on the crater side of the inner cylinder member 2 is subjected to secondary combustion in which combustible components contained in the primary combustion gas are burned. A secondary combustion chamber 15 is formed.

また、外筒部材1の内部空間のうち内筒部材2の外方側の部分は、空気室11からダンパー3を介して二次燃焼室15に二次燃焼用空気を供給する二次燃焼用空気供給路29をなしている。ダンパー3によって供給量が調整された二次燃焼用空気が、二次燃焼用空気供給路29によって二次燃焼室15に供給される。よって、二次燃焼室15に一次燃焼ガス及び二次燃焼用空気が供給され、ガス燃料の二次燃焼が行われる。
この二段燃焼バーナーにおいては、一次燃焼用空気及び二次燃焼用空気の供給量は所望の値に調整することができるようになっているので、ガス燃料を所望の空気比で燃焼させることができる。
Further, a portion of the inner space of the outer cylinder member 1 on the outer side of the inner cylinder member 2 is for secondary combustion for supplying secondary combustion air from the air chamber 11 to the secondary combustion chamber 15 via the damper 3. An air supply path 29 is formed. The secondary combustion air whose supply amount is adjusted by the damper 3 is supplied to the secondary combustion chamber 15 through the secondary combustion air supply passage 29. Therefore, the primary combustion gas and the secondary combustion air are supplied to the secondary combustion chamber 15, and secondary combustion of the gas fuel is performed.
In this two-stage combustion burner, the supply amounts of primary combustion air and secondary combustion air can be adjusted to desired values, so that the gas fuel can be burned at a desired air ratio. it can.

次に、図1の二段燃焼バーナーを用いて、空気比2.0以上2.5以下の高空気比でガス燃料を燃焼させる方法について説明する。
枝配管26にガス燃料を通すとともに、枝配管27に窒素ガスを通すと、ガス燃料と窒素ガスが配管25内で混合され、ガス燃料と窒素ガスの混合ガスが配管25を通って噴出口23から一次燃焼室13に噴出される。
Next, a method for burning gas fuel at a high air ratio of 2.0 to 2.5 using the two-stage combustion burner of FIG. 1 will be described.
When gas fuel is passed through the branch pipe 26 and nitrogen gas is passed through the branch pipe 27, the gas fuel and nitrogen gas are mixed in the pipe 25, and the mixed gas of gas fuel and nitrogen gas passes through the pipe 25 and the jet port 23. To the primary combustion chamber 13.

一方、配管21により空気室11に空気を供給すると、図1において空気室11に示した矢印のように、空気室11内の空気の一部が一次燃焼用空気供給路28を通って一次燃焼用空気として一次燃焼室13に供給されるとともに、空気室11内の空気の他部が二次燃焼用空気供給路29を通って二次燃焼用空気として二次燃焼室15に供給される。
このとき、一次燃焼用空気と二次燃焼用空気とを合わせた全燃焼用空気の使用量が、空気比が2.0以上2.5以下となる量となるように、ダンパー3を調整して、二次燃焼室15に供給される二次燃焼用空気の量を調整する。
On the other hand, when air is supplied to the air chamber 11 through the pipe 21, a part of the air in the air chamber 11 passes through the primary combustion air supply passage 28 as shown by the arrow shown in FIG. While being supplied to the primary combustion chamber 13 as working air, the other part of the air in the air chamber 11 is supplied to the secondary combustion chamber 15 as secondary combustion air through the secondary combustion air supply passage 29.
At this time, the damper 3 is adjusted so that the amount of the total combustion air combined with the primary combustion air and the secondary combustion air becomes an amount in which the air ratio is 2.0 or more and 2.5 or less. Thus, the amount of secondary combustion air supplied to the secondary combustion chamber 15 is adjusted.

一次燃焼室13においては、ガス燃料と窒素ガスの混合ガスと一次燃焼用空気とが混合され、図示しない点火装置により点火されて、ガス燃料の一次燃焼が行われる。そして、一次燃焼により発生した一次燃焼ガスは火口側に送られ、一次燃焼室13の下流側に位置する二次燃焼室15に供給される。
二次燃焼室15には、二次燃焼用空気供給路29によって二次燃焼用空気が供給されるので、二次燃焼室15において一次燃焼ガスと二次燃焼用空気が混合され、一次燃焼ガスに含まれている可燃成分を燃焼させる二次燃焼が行われる。二次燃焼により発生した二次燃焼ガスは火口側に送られ、外筒部材1の火口側の端部の開口(すなわち火口)から二次燃焼室15の外部に放出される。
In the primary combustion chamber 13, a mixed gas of gas fuel and nitrogen gas and primary combustion air are mixed and ignited by an ignition device (not shown) to perform primary combustion of the gas fuel. Then, the primary combustion gas generated by the primary combustion is sent to the crater side and supplied to the secondary combustion chamber 15 located on the downstream side of the primary combustion chamber 13.
Since the secondary combustion air is supplied to the secondary combustion chamber 15 through the secondary combustion air supply passage 29, the primary combustion gas and the secondary combustion air are mixed in the secondary combustion chamber 15, and the primary combustion gas is mixed. Secondary combustion is performed to burn the combustible components contained in the. The secondary combustion gas generated by the secondary combustion is sent to the crater side, and is discharged to the outside of the secondary combustion chamber 15 from the opening (that is, the crater) at the end portion of the outer cylinder member 1 on the crater side.

このような本実施形態の二段燃焼方法によりガス燃料を燃焼させれば、一次燃焼室13に窒素ガスを供給しつつ低酸素濃度条件下で一次燃焼を行うので、一次燃焼におけるNOxの生成が抑制される。その結果、最終的な二次燃焼ガス中のNOxの濃度も低濃度となる。よって、空気比2.0以上2.5以下の高空気比でガス燃料を燃焼させる場合であっても、NOxの生成を十分に抑制することが可能である。   If gas fuel is combusted by such a two-stage combustion method of this embodiment, since primary combustion is performed under a low oxygen concentration condition while supplying nitrogen gas to the primary combustion chamber 13, generation of NOx in primary combustion is prevented. It is suppressed. As a result, the concentration of NOx in the final secondary combustion gas is also low. Therefore, even when gas fuel is burned at a high air ratio of 2.0 to 2.5, it is possible to sufficiently suppress the generation of NOx.

ここで、一次燃焼における窒素ガスの使用量は、ガス燃料の0体積%超過20体積%以下とする。この範囲内であれば、失火(すなわち、ガス燃料の燃焼が継続しないこと)を防ぎつつNOxの生成を十分に抑制することができる。
なお、ガス燃料の種類は特に限定されるものではなく、例えば、メタン、エタン、プロパン、ブタン、ペンタン等の炭化水素化合物のガスを使用することができる。あるいは、これら炭化水素化合物を主成分とする天然ガスも使用可能である。さらには、コークス炉ガス、転炉ガス、高炉ガス等の製鉄所で生じる副生ガスも使用可能である。
また、窒素ガスの代わりに、アルゴン、ヘリウム等の不活性ガスを用いてもよい。
Here, the amount of nitrogen gas used in the primary combustion is 0% by volume to 20% by volume or less of the gas fuel. Within this range, it is possible to sufficiently suppress the generation of NOx while preventing misfire (that is, the combustion of gas fuel does not continue).
In addition, the kind of gas fuel is not specifically limited, For example, gas of hydrocarbon compounds, such as methane, ethane, propane, butane, pentane, can be used. Or the natural gas which has these hydrocarbon compounds as a main component can also be used. Furthermore, by-product gases generated in steelworks such as coke oven gas, converter gas, and blast furnace gas can be used.
Moreover, you may use inert gas, such as argon and helium, instead of nitrogen gas.

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。ガス燃料として理論空気量4.2Nm3 /Nm3 のコークス炉ガスを用い、図1の二段燃焼バーナーを用いて二段燃焼を行った。
一次燃焼室へのコークス炉ガスの供給量は120Nm3 /hとし、空気比が2.25となるように、一次燃焼用空気と二次燃焼用空気とを合わせた全燃焼用空気の使用量を調整した。
そして、一次燃焼室への窒素ガスの供給量を変化させて、一次燃焼における窒素ガスの使用量を、コークス炉ガスの0体積%、及び3体積%以上20体積%以下の範囲内のいずれかとした。窒素ガスの使用量がコークス炉ガスの0体積%のものが比較例であり、3体積%以上20体積%以下の範囲内のいずれかのものが実施例である。
The present invention will be described more specifically with reference to the following examples and comparative examples. A coke oven gas having a theoretical air amount of 4.2 Nm 3 / Nm 3 was used as the gas fuel, and two-stage combustion was performed using the two-stage combustion burner shown in FIG.
The amount of coke oven gas supplied to the primary combustion chamber is 120 Nm 3 / h, and the total amount of combustion air combined with the primary combustion air and the secondary combustion air so that the air ratio is 2.25. Adjusted.
Then, the amount of nitrogen gas supplied to the primary combustion chamber is changed so that the amount of nitrogen gas used in the primary combustion is 0% by volume of the coke oven gas and any of the ranges of 3% to 20% by volume. did. The amount of nitrogen gas used is 0% by volume of the coke oven gas, which is a comparative example, and any one in the range of 3% by volume to 20% by volume is an example.

これら実施例及び比較例の二段燃焼において生成した二次燃焼ガス中のNOxの濃度を測定した。結果を図2のグラフに示す。なお、図2のグラフにおけるNOx濃度の数値は、窒素ガスの使用量がコークス炉ガスの0体積%である比較例のNOx濃度を100とした場合の相対値である。
図2のグラフから、一次燃焼において窒素ガスを使用することにより、二次燃焼ガス中のNOx濃度を5%以上低減できることが分かる。
The concentration of NOx in the secondary combustion gas generated in the two-stage combustion of these examples and comparative examples was measured. The results are shown in the graph of FIG. The numerical value of the NOx concentration in the graph of FIG. 2 is a relative value when the NOx concentration of the comparative example in which the amount of nitrogen gas used is 0% by volume of the coke oven gas is 100.
From the graph of FIG. 2, it can be seen that the use of nitrogen gas in primary combustion can reduce the NOx concentration in the secondary combustion gas by 5% or more.

3 ダンパー
11 空気室
13 一次燃焼室
15 二次燃焼室
21 配管
25 配管
26 枝配管
27 枝配管
28 一次燃焼用空気供給路
29 二次燃焼用空気供給路
3 Damper 11 Air Chamber 13 Primary Combustion Chamber 15 Secondary Combustion Chamber 21 Piping 25 Piping 26 Branch Piping 27 Branch Piping 28 Primary Combustion Air Supply Channel 29 Secondary Combustion Air Supply Channel

Claims (1)

ガス燃料に一次燃焼用空気と窒素ガスとを混合し、前記ガス燃料を燃焼させて一次燃焼ガスを発生させ、前記一次燃焼ガスに二次燃焼用空気を混合し前記一次燃焼ガスを燃焼させ、
前記一次燃焼用空気と前記二次燃焼用空気とを合わせた全燃焼用空気の使用量は、空気比が2.0以上2.5以下となる量であり、
前記窒素ガスの使用量は、前記ガス燃料の0体積%超過20体積%以下である二段燃焼方法。
Mixing primary combustion air and nitrogen gas to gas fuel, burning the gaseous fuel to generate primary combustion gas, mixing secondary combustion air to the primary combustion gas and burning the primary combustion gas,
The total amount of combustion air used in combination of the primary combustion air and the secondary combustion air is such that the air ratio is 2.0 or more and 2.5 or less,
The two-stage combustion method, wherein the amount of nitrogen gas used is greater than 0% by volume and less than 20% by volume of the gas fuel.
JP2014126513A 2014-06-19 2014-06-19 Two-stage combustion method Pending JP2016003847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126513A JP2016003847A (en) 2014-06-19 2014-06-19 Two-stage combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126513A JP2016003847A (en) 2014-06-19 2014-06-19 Two-stage combustion method

Publications (1)

Publication Number Publication Date
JP2016003847A true JP2016003847A (en) 2016-01-12

Family

ID=55223240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126513A Pending JP2016003847A (en) 2014-06-19 2014-06-19 Two-stage combustion method

Country Status (1)

Country Link
JP (1) JP2016003847A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248130A (en) * 1975-10-15 1977-04-16 Sumitomo Metal Ind Ltd Control system for a combustion furnace
JPS5294530A (en) * 1975-12-29 1977-08-09 Engelhard Min & Chem Combustion of fuel containing nitrogen
JP2001272003A (en) * 2000-03-29 2001-10-05 Osaka Gas Co Ltd Method for combustion of low oxygen-concentration gas
JP2005147656A (en) * 2003-11-14 2005-06-09 Air Products & Chemicals Inc Fuel diluting method and device
JP2011074917A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> System and method using low emission gas turbine cycle with partial air separation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248130A (en) * 1975-10-15 1977-04-16 Sumitomo Metal Ind Ltd Control system for a combustion furnace
JPS5294530A (en) * 1975-12-29 1977-08-09 Engelhard Min & Chem Combustion of fuel containing nitrogen
JP2001272003A (en) * 2000-03-29 2001-10-05 Osaka Gas Co Ltd Method for combustion of low oxygen-concentration gas
JP2005147656A (en) * 2003-11-14 2005-06-09 Air Products & Chemicals Inc Fuel diluting method and device
JP2011074917A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> System and method using low emission gas turbine cycle with partial air separation

Similar Documents

Publication Publication Date Title
JP6551375B2 (en) Hydrogen gas burner structure and hydrogen gas burner apparatus equipped with the same
US9181919B2 (en) Plasma oil-free ignition system in oxygen enriched environment
JP2018071354A (en) Gas turbine combustor and method for operating the same
JP2009506250A (en) Apparatus for reforming gaseous fuel contents
JP5023537B2 (en) Burner combustion method
JP2020112280A (en) Boiler device and thermal power generation facility, capable of carrying out mixed combustion of ammonia
JP2014145533A (en) Combustion device and combustion control method of combustion device
JP2011106803A (en) Method of burning blast furnace gas by combustion burner, and method of operating blast furnace
KR20170073104A (en) Burner for reducing nox and high efficiency and combstion equipment having the same
JP4292926B2 (en) Tubular flame burner
JP6429471B2 (en) Regenerative burner and metal heating furnace
JP2016003847A (en) Two-stage combustion method
JP5704248B2 (en) Tubular flame burner
JP6206290B2 (en) Multiple tubular flame burner
WO2012124667A1 (en) Top-firing hot blast stove
JP7262521B2 (en) Gas burner and combustion equipment
JP6123720B2 (en) Multi-tube tubular flame burner
JP7210119B2 (en) industrial furnace
JP5258336B2 (en) Regenerative burner and operation method thereof
JP2022109395A (en) industrial furnace
JP4971008B2 (en) Gas burner
JP2024043212A (en) combustion device
JP2022154831A (en) Burner
JP2004093118A (en) Tubular flame burner
JP2004091922A (en) Steel heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017