JP2016003161A - Graphite crucible - Google Patents

Graphite crucible Download PDF

Info

Publication number
JP2016003161A
JP2016003161A JP2014124096A JP2014124096A JP2016003161A JP 2016003161 A JP2016003161 A JP 2016003161A JP 2014124096 A JP2014124096 A JP 2014124096A JP 2014124096 A JP2014124096 A JP 2014124096A JP 2016003161 A JP2016003161 A JP 2016003161A
Authority
JP
Japan
Prior art keywords
graphite crucible
weight
graphite
thermal conductivity
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014124096A
Other languages
Japanese (ja)
Other versions
JP6223287B2 (en
Inventor
成規 山本
Shigenori Yamamoto
成規 山本
茂 森本
Shigeru Morimoto
茂 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP2014124096A priority Critical patent/JP6223287B2/en
Publication of JP2016003161A publication Critical patent/JP2016003161A/en
Application granted granted Critical
Publication of JP6223287B2 publication Critical patent/JP6223287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a graphite crucible having higher thermal conductivity, capable of reducing the melting time of nonferrous metal and further capable of more reducing fuel cost.SOLUTION: Provided is a graphite crucible produced by adding a binder to flake graphite of 60 to 75 wt.%, silicon carbide of 10 to 20 wt.% and an oxidation inhibitor component of 10 to 30 wt.%, kneading the same and performing molding and firing. In this way, the graphite crucible having higher thermal conductivity, capable of reducing the melting time of nonferrous metal and further capable of more reducing fuel cost is composed.

Description

本発明は、主に非鉄金属の溶解精錬や溶融非鉄金属の保持に用いる黒鉛坩堝に関する。   The present invention relates to a graphite crucible used mainly for melting and refining nonferrous metals and holding molten nonferrous metals.

従来より、アルミニウムや銅合金の非鉄金属の溶解精錬や溶融非鉄金属の保持容器として、熱伝導性がよく耐熱衝撃に強いC−SiC系の黒鉛坩堝が使用されている。
この種の黒鉛坩堝の一般的な組成は、以下の表1に示すように、熱伝導率が高く熱膨張率が小さい鱗状黒鉛30〜45重量%、SiC25〜50重量%、酸化防止剤成分15〜35重量%であり、熱伝導率は20〜35W/m・Kであった。
Conventionally, C-SiC-based graphite crucibles having high thermal conductivity and strong thermal shock resistance have been used as melting and refining of non-ferrous metals such as aluminum and copper alloys and as holding containers for molten non-ferrous metals.
As shown in Table 1 below, the general composition of this type of graphite crucible is 30 to 45% by weight of scaly graphite having a high thermal conductivity and a low coefficient of thermal expansion, 25 to 50% by weight of SiC, and an antioxidant component 15 The thermal conductivity was 20 to 35 W / m · K.

Figure 2016003161
Figure 2016003161

ところで、坩堝は熱伝導率が高いほど、非鉄金属の溶解時間を短縮することができると共に省エネ効果を発揮することから、より熱伝導率の高い黒鉛坩堝が嘱望されていた。   By the way, the higher the thermal conductivity of the crucible, the shorter the melting time of the non-ferrous metal and the more energy saving effect. Therefore, a graphite crucible with higher thermal conductivity has been desired.

引用なしNo quote

そこで、本発明の課題は、熱伝導率がより高く、非鉄金属の溶解時間を短縮することができると共に燃料コストをより低減できる黒鉛坩堝を提供することにある。   Accordingly, an object of the present invention is to provide a graphite crucible that has higher thermal conductivity, can reduce the melting time of nonferrous metals, and can further reduce fuel costs.

上記課題を解決するものは、鱗状黒鉛60〜75重量%と、炭化珪素10〜20重量%と、酸化防止剤成分10〜30重量%にバインダーを添加して混練し、成形および焼成して作製したことを特徴とする黒鉛坩堝である。前記黒鉛坩堝の表面は施釉され酸化防止層が形成されていることが好ましい。前記黒鉛坩堝は、混練した原料を加圧冷却して造粒した後、成形されて形成されていることが好ましい。前記酸化防止剤成分は、炭化珪素より多く配合されていることが好ましい。前記酸化防止剤成分は、酸化物と非酸化物にて形成されており、前記非酸化物は、前記酸化物より多く配合されていることが好ましい。   What solves the said subject is produced by adding a binder to 60-75 weight% of scaly graphite, 10-20 weight% of silicon carbide, and 10-30 weight% of antioxidant components, kneading | mixing, shape | molding and baking. A graphite crucible characterized by the above. The surface of the graphite crucible is preferably glazed to form an antioxidant layer. The graphite crucible is preferably formed by pressure-cooling and kneading the kneaded raw material, and then molding. The antioxidant component is preferably blended more than silicon carbide. The antioxidant component is formed of an oxide and a non-oxide, and the non-oxide is preferably blended more than the oxide.

請求項1に記載した発明によれば、熱伝導率がより高く、非鉄金属の溶解時間を短縮することができると共に燃料コストをより低減できる黒鉛坩堝を構成できる。
請求項2に記載した発明によれば、上記請求項1の効果に加え、耐酸化性を備えた黒鉛坩堝を構成できる。
請求項3に記載した発明によれば、上記請求項1または2の効果に加え、混練した原料を予め加圧冷却して造粒することで成形時の過大な収縮やラミネーションを抑制することができる。
According to the first aspect of the present invention, it is possible to configure a graphite crucible that has higher thermal conductivity, can reduce the melting time of the nonferrous metal, and can further reduce the fuel cost.
According to the invention described in claim 2, in addition to the effect of claim 1, a graphite crucible having oxidation resistance can be configured.
According to the invention described in claim 3, in addition to the effect of claim 1 or 2, it is possible to suppress excessive shrinkage and lamination during molding by preliminarily cooling and kneading the kneaded material. it can.

本発明では、鱗状黒鉛60〜75重量%と、炭化珪素10〜20重量%と、酸化防止剤成分10〜30重量%にバインダーを添加して混練し、成形および焼成して作製したことで、熱伝導率がより高く、非鉄金属の溶解時間を短縮することができると共に燃料コストをより低減できる黒鉛坩堝を実現した。   In the present invention, it is produced by adding and kneading a binder to 60 to 75% by weight of scaly graphite, 10 to 20% by weight of silicon carbide, and 10 to 30% by weight of an antioxidant component, and molding and firing. A graphite crucible that has higher thermal conductivity, can shorten the melting time of non-ferrous metals, and can further reduce fuel costs.

本発明の黒鉛坩堝は、鱗状黒鉛60〜75重量%と、炭化珪素10〜20重量%と、酸化防止剤成分10〜30重量%にバインダーを添加して混練し、成形および焼成して作製したものである。以下、各構成について順次詳述する。   The graphite crucible of the present invention was prepared by adding a binder to 60 to 75% by weight of scaly graphite, 10 to 20% by weight of silicon carbide and 10 to 30% by weight of an antioxidant component, kneading, molding and firing. Is. Hereinafter, each configuration will be described in detail.

鱗状黒鉛は、熱伝導率を高く熱膨張率を小さくするために配合されるものであり、60〜75重量%の範囲内で配合される。60重量%未満であると従来の黒鉛坩堝に比して熱伝導率を十分に上げることができないからであり、75重量%を越えると、SiCや酸化防止剤成分を十分に配合できず、十分な強度と酸化防止効果を得られないからである。   Scaly graphite is blended in order to increase the thermal conductivity and decrease the thermal expansion coefficient, and is blended within the range of 60 to 75% by weight. If the amount is less than 60% by weight, the thermal conductivity cannot be sufficiently increased as compared with the conventional graphite crucible. If the amount exceeds 75% by weight, SiC and the antioxidant component cannot be blended sufficiently, and sufficient. This is because a sufficient strength and an antioxidant effect cannot be obtained.

炭化珪素は、熱伝導率を高くすると共に十分な強度を得るために、さらに黒鉛坩堝の酸化防止のために配合されるものであり、10〜20重量%の範囲内で配合される。10重量%未満であると、強度が不十分となることからであり、20重量%を越えると、酸化防止成分の添加量が少なくなり耐酸化性が不十分となるからである。   Silicon carbide is blended for preventing oxidation of the graphite crucible in order to increase the thermal conductivity and to obtain sufficient strength, and is blended within the range of 10 to 20% by weight. This is because if it is less than 10% by weight, the strength becomes insufficient, and if it exceeds 20% by weight, the amount of the antioxidant component added becomes small and the oxidation resistance becomes insufficient.

酸化防止剤成分は、黒鉛坩堝の酸化防止のために配合されるものであり、10〜30重量%範囲内で配合される。10重量%未満であると、耐酸化性が不十分となるからであり、30重量%を越えると、熱伝導性が低くなることと熱間での強度が不十分となるからである。   An antioxidant component is mix | blended for antioxidant of a graphite crucible, and is mix | blended within 10 to 30 weight%. This is because if it is less than 10% by weight, the oxidation resistance becomes insufficient, and if it exceeds 30% by weight, the thermal conductivity becomes low and the strength during hotness becomes insufficient.

酸化防止剤成分としては、例えば、Al、SiO、Bなどの酸化物やSi、BC、BNなどの非酸化物が好適に使用できる。また、酸化防止剤成分は、非酸化物と酸化物の双方が配合されており、非酸化物は酸化物より多く配合されていることが好ましい。これにより、黒鉛坩堝の強度をより保持することができると共に、熱伝導率を低下させることなく、さらに耐酸化性をより向上させることができる。 As the antioxidant component, for example, oxides such as Al 2 O 3 , SiO 2 and B 2 O 3 and non-oxides such as Si, B 4 C and BN can be preferably used. Moreover, it is preferable that the antioxidant component contains both a non-oxide and an oxide, and the non-oxide is added more than the oxide. Thereby, while being able to hold | maintain the intensity | strength of a graphite crucible more, oxidation resistance can be improved more, without reducing thermal conductivity.

酸化防止剤成分は、炭化珪素より多く配合されていることが好ましく、これにより、黒鉛坩堝の耐酸化性をより向上させることができる。   It is preferable that the antioxidant component is blended more than silicon carbide, which can further improve the oxidation resistance of the graphite crucible.

そして、本発明の黒鉛坩堝は、上記鱗状黒鉛60〜75重量%と、炭化珪素10〜20重量%と、酸化防止剤成分10〜30重量%に、バインダーとして樹脂もしくはタール及びピッチを添加して混練したものを成形および焼成して作製されている。   And the graphite crucible of this invention adds resin or tar, and pitch as a binder to the said scaly graphite 60-75 weight%, silicon carbide 10-20 weight%, and antioxidant component 10-30 weight%. The kneaded product is formed and fired.

なお、本発明の黒鉛坩堝は、鱗状黒鉛の配合割合が多いため、成形時に過大な収縮が生じ易く製品寸法を取り難いことや、ラミネーション(層状となる)の欠陥が出易い傾向にあるが、混練した原料を加圧冷却して造粒した後、成形することで成形時の過大な収縮やラミネーションを抑制することができる。   In addition, the graphite crucible of the present invention has a large proportion of scaly graphite. Excessive shrinkage and lamination during molding can be suppressed by molding the kneaded raw material after pressure cooling and granulation.

黒鉛坩堝の成形方法としては、ロクロ成形、油圧成形、フリクション成形、静水圧成形などのすべての方法にて作製可能である。また、焼成温度と時間は1200℃程度で48時間以上が好適である。   As a method for forming a graphite crucible, it can be produced by all methods such as lo-cro forming, hydraulic forming, friction forming, and isostatic pressing. The firing temperature and time are preferably about 1200 ° C. and 48 hours or longer.

(具体的実施例)
以下の表2に示すような配合の実施例1ないし4と、比較例1ないし4の黒鉛坩堝を作製し、それぞれの熱伝導率を測定した。
(Specific examples)
The graphite crucibles of Examples 1 to 4 and Comparative Examples 1 to 4 blended as shown in Table 2 below were prepared, and the thermal conductivity of each was measured.

なお、非酸化物としては、Si、BCを使用し、酸化物としてはBを使用した。また、比較例1は従来の銅合金溶解用黒鉛坩堝であり、比較例2または3は従来のアルミ合金溶解用黒鉛坩堝であり、比較例4は鱗状黒鉛を80重量%配合した黒鉛坩堝である。 Note that Si and B 4 C were used as the non-oxide, and B 2 O 3 was used as the oxide. Comparative Example 1 is a conventional graphite crucible for melting copper alloy, Comparative Example 2 or 3 is a conventional graphite crucible for melting aluminum alloy, and Comparative Example 4 is a graphite crucible containing 80% by weight of scaly graphite. .

Figure 2016003161
Figure 2016003161

上記表2に示すように、実施例1ないし4の熱伝導率は50〜60W/m・Kであり、従来の黒鉛坩堝(比較例1ないし3の20〜35W/m・K)に比して、1.42〜3倍に熱伝導率が高くなったことが確認された。   As shown in Table 2 above, the thermal conductivity of Examples 1 to 4 is 50 to 60 W / m · K, as compared to the conventional graphite crucible (20 to 35 W / m · K of Comparative Examples 1 to 3). Thus, it was confirmed that the thermal conductivity was increased 1.42 to 3 times.

つぎに、アルミ合金を比較例2、比較例3、実施例1ないし実施例4で溶解した際の溶解時間およびガス使用量をそれぞれ計測し省エネ効果を確認した。なお、溶解したアルミ合金(ADC12)は250Kgで、密閉型のガス炉を使用した。その結果、下記の表3に示す測定結果を得た。   Next, the melting time and the amount of gas used when the aluminum alloy was dissolved in Comparative Example 2, Comparative Example 3, and Examples 1 to 4 were measured to confirm the energy saving effect. The molten aluminum alloy (ADC12) was 250 kg, and a sealed gas furnace was used. As a result, the measurement results shown in Table 3 below were obtained.

Figure 2016003161
Figure 2016003161

上記表3に示すように、比較例2に対して、実施例1〜4は溶解時間が8.57〜11.43%、ガス使用量が8.89〜12.59%減少し、省エネ効果が確認された。また、比較例3に対しては、実施例1〜4は溶解時間およびガス使用量が共に5.38〜9.23%減少し、比較例3との対比においても省エネ効果が確認された。   As shown in Table 3 above, in comparison with Comparative Example 2, Examples 1 to 4 have a dissolution time of 8.57 to 11.43% and a reduced gas consumption of 8.89 to 12.59%, thereby saving energy. Was confirmed. Moreover, compared with the comparative example 3, both the melt | dissolution time and gas usage-amount of Examples 1-4 decreased by 5.38 to 9.23%, and the energy-saving effect was confirmed also in comparison with the comparative example 3.

また、銅合金を比較例1、実施例1ないし実施例4で溶解した際の溶解時間およびガス使用量をそれぞれ計測し省エネ効果を確認した。なお、溶解した銅合金(BC6)は200Kgで、開放型のガス炉を使用した。その結果、下記の表4に示す測定結果を得た。   Moreover, the melting time and gas usage amount at the time of melt | dissolving a copper alloy in the comparative example 1, Example 1 thru | or Example 4 were measured, respectively, and the energy saving effect was confirmed. The dissolved copper alloy (BC6) was 200 kg, and an open type gas furnace was used. As a result, the measurement results shown in Table 4 below were obtained.

Figure 2016003161
Figure 2016003161

上記表4に示すように、比較例1に対して、実施例1〜4は溶解時間が4.17〜6.67%、ガス使用量が4.44〜6.67%減少し、省エネ効果が確認された。   As shown in Table 4 above, in comparison with Comparative Example 1, Examples 1 to 4 have a dissolution time of 4.17 to 6.67%, and a gas usage amount of 4.44 to 6.67% is reduced. Was confirmed.

さらに、黒鉛坩堝の表面は施釉され酸化防止層が形成されていることが好ましく、これにより、耐酸化性を備えた黒鉛坩堝を構成できる。酸化防止層の形成材としては、例えばSiO、B、BCなどである。 Furthermore, the surface of the graphite crucible is preferably glazed to form an antioxidant layer, whereby a graphite crucible having oxidation resistance can be configured. Examples of the material for forming the antioxidant layer include SiO 2 , B 2 O 3 , and B 4 C.

(耐酸化性試験)
比較例1〜4および実施例1〜4の表面を施釉(酸化防止層の形成材としては、Bを使用した。)して焼き付けた直方体サンプルを電気炉内に静置して重量減少を測定することで耐酸化性を評価した。アルミ合金用として800℃で測定し、銅合金用として1200℃で12時間後、24時間後、48時間後に重量減少率をそれぞれ測定した。48時間後の重量減少率(%)を黒鉛含有量(%)で割ったものを指数として、それぞれ算出し、以下の表5の結果を得た。
(Oxidation resistance test)
The rectangular parallelepiped samples baked by glazing the surface of Comparative Examples 1 to 4 and Examples 1 to 4 (B 2 O 3 was used as a material for forming the antioxidant layer) were placed in an electric furnace and weighted. The oxidation resistance was evaluated by measuring the decrease. The weight reduction rate was measured at 800 ° C. for an aluminum alloy, and after 12 hours, 24 hours, and 48 hours at 1200 ° C. for a copper alloy. The weight loss rate after 48 hours (%) divided by the graphite content (%) was calculated as an index, and the results shown in Table 5 below were obtained.

Figure 2016003161
Figure 2016003161

上記表5に示すように、800℃においては、比較例2、比較例3を酸化指数1とすると、実施例1〜4は0.38〜1.00であり、十分な耐酸化性を示した。また、1200℃においては、比較例1を酸化指数1とすると、実施例1〜4は0.47〜0.93であり、十分な耐酸化性を示した。   As shown in Table 5 above, at 800 ° C., when Comparative Example 2 and Comparative Example 3 were set to oxidation index 1, Examples 1 to 4 were 0.38 to 1.00 and showed sufficient oxidation resistance. It was. Moreover, at 1200 degreeC, when the comparative example 1 was made into the oxidation index | exponent 1, Examples 1-4 was 0.47-0.93, and showed sufficient oxidation resistance.

Claims (3)

鱗状黒鉛60〜75重量%と、炭化珪素10〜20重量%と、酸化防止剤成分10〜30重量%にバインダーを添加して混練し、成形および焼成して作製したことを特徴とする黒鉛坩堝。   A graphite crucible produced by adding, kneading, molding and firing a binder to 60 to 75% by weight of scaly graphite, 10 to 20% by weight of silicon carbide, and 10 to 30% by weight of an antioxidant component . 前記黒鉛坩堝の表面は施釉され酸化防止層が形成されている請求項1に記載の黒鉛坩堝。   The graphite crucible according to claim 1, wherein the surface of the graphite crucible is glazed to form an antioxidant layer. 前記黒鉛坩堝は、混練した原料を加圧冷却して造粒した後、成形されて形成されている請求項1または2に記載の黒鉛坩堝。   The graphite crucible according to claim 1 or 2, wherein the graphite crucible is formed by pressure-cooling and kneading the kneaded raw material, followed by molding.
JP2014124096A 2014-06-17 2014-06-17 Graphite crucible and manufacturing method thereof Active JP6223287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124096A JP6223287B2 (en) 2014-06-17 2014-06-17 Graphite crucible and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124096A JP6223287B2 (en) 2014-06-17 2014-06-17 Graphite crucible and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016003161A true JP2016003161A (en) 2016-01-12
JP6223287B2 JP6223287B2 (en) 2017-11-01

Family

ID=55222716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124096A Active JP6223287B2 (en) 2014-06-17 2014-06-17 Graphite crucible and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6223287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062454A (en) * 2016-10-14 2018-04-19 明智セラミックス株式会社 Graphitic heat transfer vessel and manufacturing method thereof
CN112225570A (en) * 2019-07-14 2021-01-15 江苏摩铸特种陶瓷有限公司 Three-layer silicon carbide graphite crucible and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104614A (en) * 1977-02-24 1978-09-12 Harima Refractories Co Ltd Process for making graphite containing refractories
JPS5836979A (en) * 1981-08-25 1983-03-04 東京窯業株式会社 Corrosion resistant graphite crucible
JPS62213683A (en) * 1986-03-13 1987-09-19 日本坩堝株式会社 Graphite crucible
JPH06135769A (en) * 1992-10-27 1994-05-17 Osaka Gas Co Ltd Graphitic crucible
JP2001106572A (en) * 1999-10-08 2001-04-17 Nisshin Rifuratetsuku Kk Manufacturing process of graphite crucible
JP2006125730A (en) * 2004-10-28 2006-05-18 Nippon Crucible Co Ltd Heat transfer container, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104614A (en) * 1977-02-24 1978-09-12 Harima Refractories Co Ltd Process for making graphite containing refractories
JPS5836979A (en) * 1981-08-25 1983-03-04 東京窯業株式会社 Corrosion resistant graphite crucible
JPS62213683A (en) * 1986-03-13 1987-09-19 日本坩堝株式会社 Graphite crucible
JPH06135769A (en) * 1992-10-27 1994-05-17 Osaka Gas Co Ltd Graphitic crucible
JP2001106572A (en) * 1999-10-08 2001-04-17 Nisshin Rifuratetsuku Kk Manufacturing process of graphite crucible
JP2006125730A (en) * 2004-10-28 2006-05-18 Nippon Crucible Co Ltd Heat transfer container, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062454A (en) * 2016-10-14 2018-04-19 明智セラミックス株式会社 Graphitic heat transfer vessel and manufacturing method thereof
CN112225570A (en) * 2019-07-14 2021-01-15 江苏摩铸特种陶瓷有限公司 Three-layer silicon carbide graphite crucible and preparation method thereof
CN112225570B (en) * 2019-07-14 2023-02-17 江苏摩铸特种陶瓷有限公司 Three-layer silicon carbide graphite crucible and preparation method thereof

Also Published As

Publication number Publication date
JP6223287B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
CN102765953B (en) Magnesia carbon brick containing composite antioxidant and preparation thereof
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
CN103420683A (en) Tundish low-carbon corundum spinel impact brick and preparation method thereof
TWI457312B (en) Aluminum oxycarbide composition and its manufacturing method with refractory
CN102757248A (en) High-strength high thermal-shock-resistance low-aluminium mullite brick
JP2007269605A (en) Molten siliceous refractory and method for manufacturing the same
RU2017108171A (en) FIRE-RESISTANT PRODUCT, COMPOSITION OF THE BATTERY FOR PRODUCTION OF THE PRODUCT, METHOD OF MANUFACTURE, AND ALSO APPLICATION OF THE PRODUCT
JP6386801B2 (en) Alumina fusion cast refractory and method for producing the same
CN104926323A (en) Refractory material containing silicon carbide
CN103011867B (en) Preparation method of unfired Al-Al2O3 carbon-free composite sliding plate
CN105399328A (en) High-strength enamel pan and production technology thereof
JP6223287B2 (en) Graphite crucible and manufacturing method thereof
CN105272320B (en) Unfired Al2O3-Cr7C3 brick for hot metal ladle wall and preparation method thereof
CN109422537A (en) Continuous casting is with exempting to toast refractory material and preparation method thereof
CN103771878B (en) A kind of method for making of andalusite brick
CN103074510A (en) Refining method of aluminum-magnesium-series cast aluminum alloy material
CN103121849A (en) Ferrosilicon-added slide plate refractory material and production method thereof
CN104193363B (en) A kind of method improving MgO-C brick intensity
CN104150922B (en) forsterite coating
CN105254317A (en) Magnesium-iron-aluminum spinel coal injection pipe
CN105218129A (en) A kind of ferro-magnesium-aluminum spinelle kilneye mould material
CN106588049B (en) Silicon-free carbon-free corundum nozzle stopper rod product for continuous casting and preparation process thereof
CN108911771A (en) A kind of fast repairing material and preparation method thereof
CN103145432A (en) Preparation method of unfired ferrosilicon nitride-brown corundum composite refractory material
CN106747528B (en) Anti-nodulation and aluminum liquid pollution-proof magnesium aluminate spinel castable for aluminum industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250