JP2016002591A - Mold flux for continuous casting and continuous casting method - Google Patents

Mold flux for continuous casting and continuous casting method Download PDF

Info

Publication number
JP2016002591A
JP2016002591A JP2014126581A JP2014126581A JP2016002591A JP 2016002591 A JP2016002591 A JP 2016002591A JP 2014126581 A JP2014126581 A JP 2014126581A JP 2014126581 A JP2014126581 A JP 2014126581A JP 2016002591 A JP2016002591 A JP 2016002591A
Authority
JP
Japan
Prior art keywords
mold flux
rim
continuous casting
mold
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014126581A
Other languages
Japanese (ja)
Other versions
JP6340945B2 (en
Inventor
亮 西岡
Akira Nishioka
亮 西岡
望 吉広
Nozomi Yoshihiro
望 吉広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014126581A priority Critical patent/JP6340945B2/en
Publication of JP2016002591A publication Critical patent/JP2016002591A/en
Application granted granted Critical
Publication of JP6340945B2 publication Critical patent/JP6340945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold flux for continuous casting and a continuous casting method capable of suppressing the occurrence of a surface flaw and the occurrence of breakout by optimally performing a control of rim produced along a wall surface of a casting mold on a meniscus position.SOLUTION: A mold flux for continuous casting primarily comprises CaO and SiO. Therein, CaO/SiOis 0.90 to 1.20, MgO is 2 to 7 mass%, NaO is 3 to 7 mass%, a solidification temperature is 1050 to 1150°C and a viscosity at 1300°C is 1.0 to 3.0 P. NaO/MgO is set less than 1.0, and an Fe source contained on a surface of the mold flux before fusion is set to be 0.2 mass% or more. A low-carbon steel slab having a C-concentration of 0.02 to 0.07 mass% is cast by using the mold flux.

Description

本発明は、連続鋳造時、鋳型内に供給して溶鋼の表面を覆うモールドフラックス、及びこのモールドフラックスを用いた連続鋳造方法に関するものである。本発明は、特に、C 濃度が0.02〜0.07質量%の低炭素鋼を連続鋳造する際に、モールドフラックスが鋳型壁面に沿って焼結することで発生するパウダーリム(以下、単にリムという。)に起因して発生する表面疵及びブレークアウトの抑制を目的としたものである。   The present invention relates to a mold flux that is supplied into a mold and covers the surface of molten steel during continuous casting, and a continuous casting method using the mold flux. In the present invention, in particular, when continuously casting low carbon steel having a C concentration of 0.02 to 0.07% by mass, a powder rim generated by sintering the mold flux along the mold wall surface (hereinafter simply referred to as a rim). The purpose is to suppress surface flaws and breakouts that occur due to the above.

鋼の連続鋳造時、前記モールドフラックスは、鋳型内における溶鋼の保温、溶鋼の大気からの遮断、溶鋼中の非金属介在物の溶融除去、鋳型と凝固シェル間の潤滑、凝固シェルの成長制御といった大きな役割を果たしている。   During continuous casting of steel, the mold flux keeps the molten steel in the mold, shields the molten steel from the atmosphere, melts and removes nonmetallic inclusions in the molten steel, lubricates between the mold and the solidified shell, and controls the growth of the solidified shell. Plays a big role.

このようなモールドフラックスに関して、従来は、CaO /SiO2(以下、塩基度とも言う。)、凝固温度、粘度を中心に開発され、鋳型と凝固シェルの間に生成するモールドフラックスフィルムに関する提案が大多数である(例えば特許文献1,2)。 With regard to such mold fluxes, conventionally, there have been many proposals for mold flux films that have been developed with a focus on CaO / SiO 2 (hereinafter also referred to as basicity), solidification temperature, and viscosity, and formed between the mold and the solidified shell. There are many (for example, Patent Documents 1 and 2).

しかしながら、鋳造性及び鋳片品質に影響を与える要因は前記モールドフラックスフィルムだけではなく、凝固シェルと鋳型間にモールドフラックスが流入する過程で、溶鋼表面位置(以下、メニスカス位置という。)で鋳型壁面に沿って発生する前記リムも大きな要因である。   However, the factors affecting the castability and slab quality are not only the mold flux film but also the mold wall surface in the molten steel surface position (hereinafter referred to as meniscus position) in the process of mold flux flowing between the solidified shell and the mold. The rim generated along the line is also a major factor.

特許第3226829号公報Japanese Patent No. 3226829 特開2012−66304号公報JP 2012-66304 A

本発明が解決しようとする問題点は、モールドフラックスに関して提案されている従来の技術はモールドフラックスフィルムに関するものが大多数で、リムについては考慮されたものはなかったという点である。   The problem to be solved by the present invention is that most of the conventional techniques proposed for the mold flux are related to the mold flux film, and the rim has not been considered.

本発明は、
メニスカス位置において鋳型壁面に沿って発生するリムの制御を最適に行うために、
CaO ,SiO2を主成分とし、CaO /SiO2が0.90〜1.20、MgO が2 〜7 質量%、Na2Oが3 〜7 質量%で、凝固温度が1050〜1150℃、1300℃における粘度が1.0 〜3.0 poise の連続鋳造用モールドフラックスであって、
Na2O/MgO を1.0 未満とし、溶融前のモールドフラックス表面に含有されるFe源を0.2 質量%以上とすることを最も主要な特徴としている。
The present invention
In order to optimally control the rim generated along the mold wall surface at the meniscus position,
CaO, and SiO 2 as the main component, CaO / SiO 2 is 0.90 to 1.20, MgO is 2-7 wt%, with Na 2 O is 3-7% by mass, the solidification temperature of 1050-1,150 ° C., a viscosity at 1300 ° C. 1.0 to 3.0 poise mold flux for continuous casting,
The main features are that Na 2 O / MgO is less than 1.0 and the Fe source contained on the mold flux surface before melting is 0.2 mass% or more.

本発明において、Fe源とは、Feを含む化合物全般をさすが、製品に対して要求される成分範囲への溶鋼汚染を考慮して適宜選択される。例えば、FeO ,Fe2O3 等のスケールがその一例である。 In the present invention, the Fe source refers to all compounds containing Fe, and is appropriately selected in consideration of molten steel contamination in the component range required for the product. For example, scales such as FeO and Fe 2 O 3 are examples.

また、本発明において、溶融前のモールドフラックス表面にFe源が含有されるとは、リムと接する部分の顆粒状のモールドフラックスの表面側部分にFe源が付着している状態をさす。   In the present invention, the fact that the Fe source is contained on the surface of the mold flux before melting refers to a state in which the Fe source is attached to the surface side portion of the granular mold flux in contact with the rim.

上記本発明では、低融点化合物であるMgO 、Na2Oの濃度比である、Na2O/MgO を1.0 未満とすることで、メニスカスに発生するリムの強度を上昇し、リム崩れによる鋳片へのリムの噛み込みを抑制する。また、溶融前のモールドフラックス表面に含有されるFe源を0.2 質量%以上とすることで、モールドフラックスの凝固温度を低下させる。 In the present invention, the strength of the rim generated in the meniscus is increased by setting the Na 2 O / MgO, which is the concentration ratio of the low melting point compound MgO 2 and Na 2 O, to less than 1.0, and the slab due to rim collapse Suppresses biting of the rim into the Further, the solidification temperature of the mold flux is lowered by setting the Fe source contained on the mold flux surface before melting to 0.2 mass% or more.

本発明では、リム生成においてバインダーの役割を果たす低融点化合物に、液相での表面張力の高いMgO を主体にすることで、リム生成の促進を図っている。また同時に、モールドフラックスの表面にリム生成においてバインダーの役割を果たすFe源を存在させることで、リム生成の促進と強度確保を図っている。従って、リムの崩壊等に伴う表面疵の発生やブレークアウトの発生を効果的に抑制することができる。   In the present invention, rim generation is promoted by mainly using MgO, which has a high surface tension in the liquid phase, as the low melting point compound that plays a role in binder formation. At the same time, the presence of an Fe source serving as a binder in rim generation on the surface of the mold flux promotes rim generation and secures strength. Therefore, it is possible to effectively suppress the occurrence of surface flaws and breakout due to the collapse of the rim.

リムの噛み込みにより発生する表面疵及びブレークアウトの発生メカニズムを説明する図で、(a)はリムの成長過程の説明図、(b)はリム崩れ及び凝固シェルへの巻き込み過程の説明図、(c)はリムが溶融して表面疵やブレークアウトが発生する過程の説明図である。It is a figure explaining the generation | occurrence | production mechanism of the surface wrinkles and breakout which generate | occur | produce by the biting of a rim, (a) is explanatory drawing of the growth process of a rim, (b) is explanatory drawing of the rim collapse and the winding process to the solidification shell, (C) is explanatory drawing of the process in which a rim fuse | melts and a surface flaw and a breakout generate | occur | produce. MgO 源の上昇による表面張力への影響を示した図である。It is the figure which showed the influence on the surface tension by the raise of MgO source. MgO 源の上昇によりリム強度を確保できる原理を説明する図で、(a)は液相の表面張力によりリムが強固に保持されていることを説明する図、(b)は液相の表面張力が弱く、外乱によりリムが欠落することを説明する図である。FIG. 4 is a diagram for explaining the principle that the rim strength can be secured by increasing the MgO source, (a) is a diagram explaining that the rim is firmly held by the surface tension of the liquid phase, and (b) is the surface tension of the liquid phase. It is a figure explaining that a rim | limb is missing by disturbance and is weak. 従来例、比較例1,2、発明例1,2の表面疵発生率を示した図である。It is the figure which showed the surface flaw occurrence rate of the prior art example, the comparative examples 1 and 2, and the invention examples 1 and 2. Na2O/MgO と表面疵発生率の関係を示した図である。It is a diagram showing the relationship of Na 2 O / MgO and surface flaws incidence. 溶融前のモールドフラックス表面に含有されるFe源濃度と表面疵発生率の関係を示した図である。It is the figure which showed the relationship between the Fe source concentration contained in the mold flux surface before melting, and the surface flaw occurrence rate.

発明者らは、連続鋳造鋳片の表面に発生した疵をSEM-EDS 分析(走査型電子顕微鏡(Scanning Electron Microscope:SEM )と、それに付属するSi/Li半導体検出器、多重波高分析器を用いて得たX線スペクトルのピークエネルギから元素の同定、ピーク高さから定量分析するエネルギ分散法(Energy Dispersive Spectroscopy:EDS ))した結果、疵部からは、Ca,Si,Mgなどが検出された。これらはモールドフラックス系のスラグに含有される成分であるため、表面疵はモールドフラックスに起因して発生することを確認した。   The inventors used SEM-EDS analysis (Scanning Electron Microscope: SEM), Si / Li semiconductor detector and multi-wave height analyzer attached to the surface of the continuous cast slab. As a result of the energy dispersion method (Energy Dispersive Spectroscopy: EDS) that identifies the element from the peak energy of the X-ray spectrum and quantitatively analyzes it from the peak height, Ca, Si, Mg, etc. were detected from the heel. . Since these are components contained in the mold flux slag, it was confirmed that surface defects occurred due to the mold flux.

一方で、前記表面疵の形態は、モールドフラックスが噛み込んだ形態ではなく、鋳型内での溶鋼の漏れを伴うものであり、その原因は、連続鋳造中にモールドフラックスが鋳型の内壁面に沿って焼結することで発生したリムが崩れて凝固シェルに噛み込んだことによるものであることを確認した。   On the other hand, the form of the surface flaw is not a form in which mold flux is bitten, but is accompanied by leakage of molten steel in the mold, and the cause is that the mold flux follows the inner wall surface of the mold during continuous casting. It was confirmed that the rim generated by sintering was broken and caught in the solidified shell.

すなわち、表面疵の原因となるリム1は、連続鋳造中にモールドフラックス2が鋳型3の内壁面に沿って焼結することで発生する(図1(a)参照)。そして、このリム1が脆弱で連続鋳造中に崩れた場合、この崩れたリム1aが凝固シェル4に噛み込むことになる(図1(b)参照)。その結果、凝固シェル4に噛み込まれたリム1aは溶鋼5が保有する熱によって溶融し、当該溶融箇所から溶鋼5が漏れて表面疵やブレークアウトが発生する(図1(c)参照)。   That is, the rim 1 that causes surface flaws is generated when the mold flux 2 is sintered along the inner wall surface of the mold 3 during continuous casting (see FIG. 1A). When the rim 1 is fragile and collapses during continuous casting, the broken rim 1a bites into the solidified shell 4 (see FIG. 1B). As a result, the rim 1a bitten by the solidified shell 4 is melted by the heat held by the molten steel 5, and the molten steel 5 leaks from the melted portion to cause surface defects and breakout (see FIG. 1C).

発明者らは、上記リムに起因して発生する表面疵やブレークアウトの抑制を、リム生成に影響する低融点化合物である、Na2O及びMgO の配分量に着目した考察を行った。一方で、リム生成のバインダーとなる溶融前のモールドフラックス表面に含有されるFe源の存在状態についても着目して考察を行った。 The inventors conducted a study focusing on the distribution amount of Na 2 O and MgO, which are low melting point compounds that affect the rim formation, in order to suppress surface defects and breakout caused by the rim. On the other hand, the presence state of the Fe source contained in the mold flux surface before melting, which becomes a binder for rim generation, was also considered and examined.

まず、溶融前のモールドフラックス表面に含有されるFe源の量を上昇させることにより、CaO ,SiO2を主成分とするモールドフラックスの凝固温度が低下する。その結果、リムの生成においてバインダーの役割を果たす液相の生成が促進され、リムが成長しやすくなる。 First, by increasing the amount of Fe source contained on the surface of the mold flux before melting, the solidification temperature of the mold flux mainly composed of CaO 2 and SiO 2 is lowered. As a result, the generation of the liquid phase that plays the role of a binder in the generation of the rim is promoted, and the rim is likely to grow.

一方で、低融点化合物の中において、MgO を含有させる場合はNa2Oを含有させる場合に比べて表面張力が大きくなることが知られている(図2参照)。従って、MgO の含有量を増加させることにより、リムの生成において主体となる高融点化合物同士の結合力が強くなり、リムの生成が促進される(図3(a)参照)。 On the other hand, in the low melting point compound, it is known that when MgO is contained, the surface tension becomes larger than when Na 2 O is contained (see FIG. 2). Therefore, by increasing the content of MgO, the bonding strength between the high melting point compounds that are the main components in the generation of the rim is strengthened, and the generation of the rim is promoted (see FIG. 3A).

また、CaO ,SiO2を主成分とするモールドフラックスにおいて、Na2O/MgO が1.0 以上の場合、生成するリムはメニスカス付近の1000〜1100℃の雰囲気温度において固液共存状態となる。その結果、生成されるリムは脆弱となって、リムが崩れる(図3(b)参照)。 Further, in the mold flux mainly composed of CaO 2 and SiO 2 , when Na 2 O / MgO is 1.0 or more, the rim to be produced is in a solid-liquid coexistence state at an ambient temperature of 1000 to 1100 ° C. near the meniscus. As a result, the generated rim becomes fragile and the rim collapses (see FIG. 3B).

そこで、本発明では、メニスカス位置において鋳型壁面に沿って発生するリムの成長を促進しつつ、メニスカス付近の雰囲気中でリムの強度を確保できるようにするという目的を、Na2O/MgO を1.0 未満とし、溶融前のモールドフラックス表面に含有されるFe源を0.2 質量%以上とすることで実現した。 Therefore, in the present invention, Na 2 O / MgO is set to 1.0 for the purpose of ensuring the strength of the rim in the atmosphere near the meniscus while promoting the growth of the rim generated along the mold wall surface at the meniscus position. This was realized by setting the Fe source contained on the mold flux surface before melting to 0.2% by mass or more.

すなわち、本発明は、
CaO ,SiO2を主成分とし、CaO /SiO2が0.90〜1.20、MgO が2 〜7 質量%、Na2Oが3 〜7質量%で、凝固温度が1050〜1150℃、1300℃における粘度が1.0 〜3.0 poise の連続鋳造用モールドフラックスであって、
Na2O/MgO を1.0 未満とし、溶融前のモールドフラックス表面に含有されるFe源を0.2 質量%以上としているのである。
That is, the present invention
CaO, and SiO 2 as the main component, CaO / SiO 2 is 0.90 to 1.20, MgO is 2-7 wt%, with Na 2 O is 3-7% by mass, the solidification temperature of 1050-1,150 ° C., a viscosity at 1300 ° C. 1.0 to 3.0 poise mold flux for continuous casting,
The Na 2 O / MgO is less than 1.0, and the Fe source contained on the mold flux surface before melting is 0.2% by mass or more.

上記本発明において、CaO /SiO2を0.90〜1.20、凝固温度を1050〜1150℃とするのは、本発明で対象とする、C 濃度が0.02〜0.07質量%の低炭素鋼スラブの連続鋳造時に発生する表面割れ(縦割れ)対策とした凝固シェル生成制御に対して適切な成分及び結晶を生成するためである。 In the present invention, CaO / SiO 2 is set to 0.90 to 1.20 and the solidification temperature is set to 1050 to 1150 ° C. during the continuous casting of the low carbon steel slab having a C concentration of 0.02 to 0.07 mass%, which is the object of the present invention. This is to generate components and crystals suitable for solidified shell generation control as a countermeasure against generated surface cracks (longitudinal cracks).

また、1300℃における粘度を1.0 〜3.0 poise するのは、前記低炭素鋼スラブを高速で連続鋳造する時に必要な溶融モールドフラックスの流入量を確保して、鋳型と凝固シェルの拘束によるブレークアウトを抑制するためである。   Moreover, the viscosity at 1300 ° C is 1.0 to 3.0 poise because the flow rate of molten mold flux necessary for continuous casting of the low-carbon steel slab at a high speed is secured, and the breakout due to the restraint between the mold and the solidified shell is ensured. It is for suppressing.

また、MgO を2 〜7 質量%、Na2Oを3 〜7 質量%、Na2O/MgO を1.0 未満とするのは、連続鋳造時に発生するリムの生成を最適に制御するためである。すなわち、Na2O/MgO が1.0 以上になると、メニスカス域のリムは固液共存状態となってその形状を保持できなくなる結果、リム本来の役割である、鋳型オシレーションの上下振動によりリムが溶融状態のモールドフラックスを流入させるポンプの役割を果たすことができなくなり、流入不良が発生するからである。同時に、欠落したリムが凝固シェルに噛み込むことで、鋳片の表面疵となるからである。 The reason why MgO is 2 to 7% by mass, Na 2 O is 3 to 7% by mass and Na 2 O / MgO is less than 1.0 is to optimally control the generation of rims generated during continuous casting. In other words, when Na 2 O / MgO exceeds 1.0, the rim in the meniscus region becomes a solid-liquid coexistence state and cannot retain its shape. As a result, the rim melts due to the vertical oscillation of the mold oscillation, which is the original role of the rim. This is because it becomes impossible to play the role of a pump for injecting the mold flux in a state, and inflow failure occurs. At the same time, the missing rim bites into the solidified shell and becomes a surface defect of the slab.

また、溶融前のモールドフラックス表面に0.2 質量%以上のFe源を含有させるのは、リムの生成過程において、リム生成時にバインダーの役割を効果的に果たすようにするためである。すなわち、溶融前のモールドフラックス表面に含有されるFe源が0.2 質量%未満の場合は、安定したリムの生成が不可能になり、リムの欠落が発生するためである。但し、モールドパウダー表面のFe源の含有量が多くなると、溶鋼が汚染するので、その上限は5.0 質量%以下であることが望ましい。   The reason why the Fe flux of 0.2% by mass or more is contained in the mold flux surface before melting is to effectively serve as a binder during rim generation in the rim generation process. That is, when the Fe source contained on the mold flux surface before melting is less than 0.2% by mass, it is impossible to generate a stable rim, and the rim is lost. However, when the content of the Fe source on the surface of the mold powder is increased, the molten steel is contaminated. Therefore, the upper limit is desirably 5.0% by mass or less.

上記本発明のモールドフラックスを使用してC 濃度が0.02〜0.07質量%の低炭素鋼スラブを連続鋳造した場合は、ブレークアウトを発生することなく、表面疵の無いスラブを製造することができる。これが本発明の連続鋳造方法である。   When a low carbon steel slab having a C concentration of 0.02 to 0.07% by mass is continuously cast using the mold flux of the present invention, a slab having no surface defects can be produced without causing breakout. This is the continuous casting method of the present invention.

以下、本発明の効果を確認するため行った実験結果について説明する。   The results of experiments conducted to confirm the effect of the present invention will be described below.

発明者らは、従来のモールドフラックス(従来例)、本発明で規定する範囲を外れた比較対象となるモールドフラックス(比較例1,2)、及び本発明のモールドフラックス(発明例1,2)を使用して、低炭素鋼スラブを連続鋳造して、その効果を確認した。   The inventors have obtained a conventional mold flux (conventional example), a mold flux (comparative examples 1 and 2) to be compared and out of the range defined in the present invention, and a mold flux of the present invention (inventive examples 1 and 2). Was used to continuously cast low carbon steel slabs, and the effect was confirmed.

湾曲型及び垂直曲げ型(VB型)連続鋳造機を使用して、下記表1に示した成分組成の低炭素鋼を、1500mm/分の鋳造速度で連続鋳造し、厚み227 mm×幅1250mmのスラブ及び厚み250 mm×幅1260mmのスラブを得、表面疵の発生の有無について調べた。   Using a curved type and vertical bending type (VB type) continuous casting machine, low carbon steel with the composition shown in Table 1 below is continuously cast at a casting speed of 1500 mm / min. A slab having a thickness of 250 mm and a width of 1260 mm was obtained, and the presence or absence of surface defects was examined.

Figure 2016002591
Figure 2016002591

従来例、比較例1,2、及び発明例1,2の成分、塩基度、Na2O/MgO 、凝固温度、1300℃における粘度を下記表2に示す。また、従来例、比較例1,2、及び発明例1,2を使用して連続鋳造した低炭素鋼スラブの表面疵の発生率を図5に示す。ここで、表面疵の発生率は、常温まで冷却したスラブ毎に目視で表面疵の有無を確認し、モールドフラックス毎の対象スラブ数に対して表面疵が発生したスラブ数の割合を導出した。 Table 2 below shows the components, basicity, Na 2 O / MgO 2 , solidification temperature, and viscosity at 1300 ° C. of the conventional examples, comparative examples 1 and 2, and invention examples 1 and 2. Moreover, the generation | occurrence | production rate of the surface flaw of the low carbon steel slab continuously cast using the prior art example, the comparative examples 1 and 2, and the invention examples 1 and 2 is shown in FIG. Here, the occurrence rate of surface flaws was determined by visually confirming the presence or absence of surface flaws for each slab cooled to room temperature, and the ratio of the number of slabs with surface flaws to the number of target slabs for each mold flux was derived.

Figure 2016002591
Figure 2016002591

比較例1は、溶融前のモールドフラックス粒表面にFe源を含有させず、Na2O/MgO のみを従来例よりも低下させた例である。また、比較例2は、Na2O/MgO は従来例と同程度に保ったままリムの生成促進を図り、溶融前のモールドフラックス粒表面にFe源を添加した例である。 Comparative Example 1 is an example in which only the Na 2 O / MgO 2 is reduced as compared with the conventional example without including an Fe source on the mold flux grain surface before melting. Comparative Example 2 is an example in which Na 2 O / MgO is promoted to promote rim formation while maintaining the same level as in the conventional example, and an Fe source is added to the mold flux grain surface before melting.

これに対して、発明例1は、比較例2に対してNa2O/MgO を小さくすることで、リムの強度増加を図った例である。また、発明例2は、溶融前のモールドフラックス粒表面に含有させたFe源による溶鋼汚染を考慮し、発明例1に対してFe源の添加量を減少させた例である。 In contrast, Invention Example 1 is an example in which the strength of the rim is increased by making Na 2 O / MgO smaller than that of Comparative Example 2. Inventive Example 2 is an example in which the amount of Fe source added is reduced with respect to Inventive Example 1, in consideration of molten steel contamination by the Fe source contained on the mold flux grain surface before melting.

従来例よりもNa2O/MgO を低下させた比較例1を使用して鋳造したスラブの場合、表面疵発生率は、従来例を使用した場合の0.42%に対して0.18%と減少し、改善効果は認められたものの、表面疵発生率を0 %にすることはできなかった。 In the case of the slab cast using the comparative example 1 in which Na 2 O / MgO is lower than that of the conventional example, the surface flaw occurrence rate is reduced to 0.18% from 0.42% when the conventional example is used, Although an improvement effect was observed, the surface flaw occurrence rate could not be reduced to 0%.

これは、溶融前のモールドフラックス粒の表面にFe源が存在しないために、リムが成長するきっかけが無いためである。   This is because there is no opportunity for the rim to grow because there is no Fe source on the surface of the mold flux grains before melting.

また、溶融前のモールドフラックス粒表面にFe源を添加した比較例2を使用して鋳造したスラブの場合は、表面疵の発生率は0.20%で、従来例を使用した場合に比べて改善効果は認められたものの、表面疵の発生率を0 %にすることはできなかった。   In addition, in the case of slab cast using Comparative Example 2 in which Fe source was added to the mold flux grain surface before melting, the occurrence rate of surface flaws was 0.20%, an improvement effect compared to the case of using the conventional example However, the incidence of surface flaws could not be reduced to 0%.

これは溶融前のモールドフラックス粒表面にFe源が存在したことにより、リムは生成しやすくなったものの、Na2O/MgO が高いためにリムが固液共存状態にあり、リムの形状を保持するのに十分な強度が得られていなかったためである。 This is because the Fe source was present on the surface of the mold flux grain before melting, but the rim was easily formed, but the rim was in a solid-liquid coexistence state due to the high Na 2 O / MgO, and the shape of the rim was maintained. This is because a sufficient strength was not obtained.

これに対して、比較例2に対してNa2O/MgO を小さくした発明例1は、安定したリムが生成された結果、表面疵の発生率は0 %で、顕著な改善効果が認められた。また、溶融前のモールドフラックス粒表面のFe源による溶鋼汚染を考慮して発明例1よりもFe源の添加量を減少させた発明例2も、表面疵の発生率は0 %で、表面疵に対しては良好な結果が得られた。 In contrast, Invention Example 1 in which Na 2 O / MgO was made smaller than Comparative Example 2 produced a stable rim, resulting in a surface flaw occurrence rate of 0% and a marked improvement effect. It was. In addition, in Invention Example 2, in which the amount of Fe source added was reduced from that in Invention Example 1 in consideration of molten steel contamination by the Fe source on the surface of the mold flux grains before melting, the occurrence rate of surface flaws was 0%. Good results were obtained for.

図5は、比較例2及び発明例1,2における図4に示した表面疵発生率と、低融点化合物であるNa2O/MgO との関係を示したものである。この図5より、Na2O/MgOを1.0 未満とすれば、表面疵の発生は低位となることを確認できた。 FIG. 5 shows the relationship between the surface flaw generation rate shown in FIG. 4 in Comparative Example 2 and Invention Examples 1 and 2, and Na 2 O / MgO which is a low melting point compound. From FIG. 5, it was confirmed that the occurrence of surface defects was low when Na 2 O / MgO was less than 1.0.

一方、従来例及び発明例1,2における図4に示した表面疵発生率と、溶融前のモールドフラックス粒表面のFe源濃度との関係を図6に示す。この図6より、溶融前のモールドフラックス粒表面のFe源を0.2質量%以上とすることで、表面疵の発生率を低下できることを確認できた。   On the other hand, FIG. 6 shows the relationship between the surface flaw generation rate shown in FIG. 4 and the Fe source concentration on the mold flux grain surface before melting in the conventional example and Invention Examples 1 and 2. From FIG. 6, it was confirmed that the generation rate of surface defects can be reduced by setting the Fe source on the surface of the mold flux grains before melting to 0.2 mass% or more.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

1 リム
1a 崩れたリム
2 モールドフラックス
3 鋳型
4 凝固シェル
1 rim 1a broken rim 2 mold flux 3 mold 4 solidified shell

Claims (2)

CaO ,SiO2を主成分とし、CaO /SiO2が0.90〜1.20、MgO が2 〜7 質量%、Na2Oが3 〜7質量%で、凝固温度が1050〜1150℃、1300℃における粘度が1.0 〜3.0 poise の連続鋳造用モールドフラックスであって、
Na2O/MgO を1.0 未満とし、溶融前のモールドフラックス表面に含有されるFe源を0.2 質量%以上とすることを特徴とする連続鋳造用モールドフラックス。
CaO, and SiO 2 as the main component, CaO / SiO 2 is 0.90 to 1.20, MgO is 2-7 wt%, with Na 2 O is 3-7% by mass, the solidification temperature of 1050-1,150 ° C., a viscosity at 1300 ° C. 1.0 to 3.0 poise mold flux for continuous casting,
A mold flux for continuous casting, characterized in that Na 2 O / MgO is less than 1.0 and the Fe source contained on the mold flux surface before melting is 0.2 mass% or more.
C 濃度が0.02〜0.07質量%の低炭素鋼スラブの鋳造において、請求項1に記載の連続鋳造用モールドフラックスを使用することを特徴とする連続鋳造方法。   A continuous casting method, wherein the mold flux for continuous casting according to claim 1 is used in casting a low carbon steel slab having a C concentration of 0.02 to 0.07 mass%.
JP2014126581A 2014-06-19 2014-06-19 Mold flux for continuous casting and continuous casting method Active JP6340945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126581A JP6340945B2 (en) 2014-06-19 2014-06-19 Mold flux for continuous casting and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126581A JP6340945B2 (en) 2014-06-19 2014-06-19 Mold flux for continuous casting and continuous casting method

Publications (2)

Publication Number Publication Date
JP2016002591A true JP2016002591A (en) 2016-01-12
JP6340945B2 JP6340945B2 (en) 2018-06-13

Family

ID=55222299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126581A Active JP6340945B2 (en) 2014-06-19 2014-06-19 Mold flux for continuous casting and continuous casting method

Country Status (1)

Country Link
JP (1) JP6340945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175445A (en) * 2020-06-12 2020-10-29 品川リフラクトリーズ株式会社 Mold powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224063A (en) * 1990-12-21 1992-08-13 Sumitomo Metal Ind Ltd Mold powder for continuous casting
JP2004249315A (en) * 2003-02-19 2004-09-09 Sumitomo Metal Ind Ltd Continuous casting method and continuous casting apparatus for molten metal
JP2009045666A (en) * 2007-08-22 2009-03-05 Sumitomo Metal Ind Ltd Mold flux for continuous casting of steel, and continuous casting method using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224063A (en) * 1990-12-21 1992-08-13 Sumitomo Metal Ind Ltd Mold powder for continuous casting
JP2004249315A (en) * 2003-02-19 2004-09-09 Sumitomo Metal Ind Ltd Continuous casting method and continuous casting apparatus for molten metal
JP2009045666A (en) * 2007-08-22 2009-03-05 Sumitomo Metal Ind Ltd Mold flux for continuous casting of steel, and continuous casting method using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175445A (en) * 2020-06-12 2020-10-29 品川リフラクトリーズ株式会社 Mold powder

Also Published As

Publication number Publication date
JP6340945B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6237343B2 (en) Melting method of high clean steel
JP5703919B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP6340945B2 (en) Mold flux for continuous casting and continuous casting method
JP2006312200A (en) Continuous casting powder and continuous casting method for al-containing ni-based alloy
JP2013066913A (en) Mold flux for continuous casting of steel and continuous casting method
JP6354411B2 (en) Mold flux for continuous casting
JP5835153B2 (en) Mold flux for continuous casting of steel and continuous casting method
CN107695311B (en) Input material and casting method using same
JP5807910B2 (en) Coating agent for ingot casting
JP2014050855A (en) Scum weir, manufacturing method of thin cast piece, manufacturing device of thin cast piece and thin cast piece
JP2013071155A (en) Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
JP4345457B2 (en) High Al steel high speed casting method
JP2006247672A (en) MOLD FLUX FOR CONTINUOUS CASTING TO Ni BASED MOLTEN METAL AND CONTINUOUS CASTING METHOD FOR Ni MATERIAL
JP5336058B2 (en) Continuous casting method of steel using mold flux
JP5219264B2 (en) Continuous casting method of high Al content steel
JP5929744B2 (en) Continuous casting method for round slabs
JP5378108B2 (en) Ladle refining flux
JP2006231400A (en) Mold powder for continuous casting of medium carbon steel, and continuous casting method
JP6578940B2 (en) Mold powder for continuous casting
JP7009228B2 (en) Mold flux for continuous casting and continuous casting method
RU2353467C1 (en) Flux for centrifugal casting of bimetal blanks
JP2018144046A (en) Mold powder for continuous casting, and continuous casting method for steel
JP6613811B2 (en) Mold powder for continuous casting and method for continuous casting of molten metal
JP2011230181A (en) Method for manufacturing high alloy steel by continuous casting
JP2007130684A (en) Mold powder for continuously casting steel and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R151 Written notification of patent or utility model registration

Ref document number: 6340945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350