JP2016002511A - Method for removing water molecule from carbon compound - Google Patents

Method for removing water molecule from carbon compound Download PDF

Info

Publication number
JP2016002511A
JP2016002511A JP2014123414A JP2014123414A JP2016002511A JP 2016002511 A JP2016002511 A JP 2016002511A JP 2014123414 A JP2014123414 A JP 2014123414A JP 2014123414 A JP2014123414 A JP 2014123414A JP 2016002511 A JP2016002511 A JP 2016002511A
Authority
JP
Japan
Prior art keywords
water molecules
carbon compound
crystalline zeolite
removing water
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014123414A
Other languages
Japanese (ja)
Other versions
JP5626820B1 (en
Inventor
克延 村上
Katsunobu Murakami
克延 村上
博幸 依田
Hiroyuki Yoda
博幸 依田
伊藤 光雄
Mitsuo Ito
光雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOYAMA, KASUMI
Original Assignee
KOYAMA, KASUMI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOYAMA, KASUMI filed Critical KOYAMA, KASUMI
Priority to JP2014123414A priority Critical patent/JP5626820B1/en
Application granted granted Critical
Publication of JP5626820B1 publication Critical patent/JP5626820B1/en
Publication of JP2016002511A publication Critical patent/JP2016002511A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently removing water molecules contained in liquid hydrocarbons and the like.SOLUTION: The existence of malodorous components such as ammonia (NH), hydrogen sulfide (HS) and the like can be detected even if the content is a trace amount. The effective diameters of ammonia (NH) and hydrogen sulfide (HS) are substantially equal to those of water molecules. Then, the malodorous components are adsorbed and removed by crystalline zeolite to the same extent as the water molecules when the malodorous components are added to liquid carbon compounds at a ratio of the containing ratio of the water molecules or higher. It can be considered that the water molecules in the liquid carbon compounds do not exist (the content becomes a predetermined value or less) when the additional ratio of the malodorous components is equal to the containing ratio of the water molecules or higher and the malodorous components are not detected.

Description

本発明は冷却サイクル装置に用いる冷媒やコンプレッサ油などの炭素化合物からの水分子除去方法に関する。   The present invention relates to a method for removing water molecules from a carbon compound such as a refrigerant or compressor oil used in a cooling cycle apparatus.

従来の冷媒には塩素を含んだフロンが用いられていたが、オゾン破壊係数が高いため、代替フロンが用いられている。代替フロンとしてはHFC‐32(CH)、HFC‐125(CHF)、HFC‐32とHFC125とを混合したR410A、HFC‐134a(CHFCF)、HFO‐1234yf(CH=CFCF)、HFO‐1234ze(CHF=CHFCF)等が挙げられる。 Conventionally, chlorofluorocarbon containing chlorine has been used as a refrigerant, but substitute chlorofluorocarbon is used because of its high ozone depletion coefficient. HFC-32 (CH 2 F 2 ), HFC-125 (CHF 2 F 3 ), R410A in which HFC-32 and HFC 125 are mixed, HFC-134a (CH 2 FCF 3 ), HFO-1234yf (CH 2 = CFCF 3 ), HFO-1234ze (CHF = CHFCF 3 ) and the like.

上記代替フロンはHFO‐1234yfとHFO‐1234zeを除き、地球温暖化係数が高いという問題があるため、非特許文献1に示すように、地球温暖化係数が低い新たな自然冷媒として、R290(プロパン)、R600a(イソブタン)、R1270(プロピレン)、R744(CO)などに注目が集まっている。 Except for HFO-1234yf and HFO-1234ze, the above-mentioned alternative chlorofluorocarbons have a problem of a high global warming potential. Therefore, as shown in Non-Patent Document 1, R290 (propane) ), R600a (isobutane), R1270 (propylene), R744 (CO 2 ) and the like.

上記冷媒中に水分が混入していると、配管内において当該水分が凍結し、空調装置等の作動を阻害するおそれがある。また水分が混入していることで分解が進んでしまうことが考えられる。例えば、HFO‐1234yfは作動効率も比較的高く地球温暖化係数が4と低く、HFO‐1234zeは地球温暖化係数が6と低いため優れているのであるが、分子量が比較的大きく作動効率が悪く、また不安定であるため水分の混入割合が大きいと容易に分解すると言われている。
またCOは燃焼しないため安全性は優れるのであるが、常圧では液化しないため、高圧化して液化する必要があり、また水が混入していると不純物と反応してより大きなコンタミとなってしまうことが考えられる。
If moisture is mixed in the refrigerant, the moisture is frozen in the pipe, which may hinder the operation of the air conditioner or the like. Moreover, it is possible that decomposition | disassembly advances by the water | moisture content mixing. For example, HFO-1234yf has a relatively high operating efficiency and a low global warming potential of 4, and HFO-1234ze is excellent because it has a low global warming potential of 6, but it has a relatively large molecular weight and poor operating efficiency. In addition, it is said that if it contains a large amount of water, it is easily decomposed because it is unstable.
In addition, CO 2 does not burn, so safety is excellent, but it does not liquefy at normal pressure, so it must be liquefied by increasing the pressure, and if water is mixed, it reacts with impurities and becomes greater contamination. It is possible to end up.

そこで、上記冷媒などに用いられる炭化水素を合成する際には、純度の高い材料を用いて含有水分量が低くなるようにしている。しかしながら、合成の過程などで不可避的に水分子が混入するため、10ppm(質量ppm、以下単にppmと称する)以下の水分量の製品を製造するのは困難である。   Therefore, when synthesizing hydrocarbons used in the refrigerant or the like, the moisture content is made low by using a material with high purity. However, since water molecules are inevitably mixed in the process of synthesis and the like, it is difficult to manufacture a product having a moisture content of 10 ppm (mass ppm, hereinafter simply referred to as ppm) or less.

10ppmは水分量としては極めて少量ではあるが、更に水分量を強制的に少なくすることで、上記したように不安定な物質の分解を抑制することができるだけでなく新たな特性が得られることがある。
例えば、本発明者らはプロパンとプロピレンの混合物は従来から非共沸点物質と考えられているが、両者の混合割合を50:50とし且つ水分量を極めて少なくすることで、疑似共沸点の挙動を示すことの知見を得た。
Although 10 ppm is a very small amount of water, it is possible not only to suppress the decomposition of unstable substances as described above but also to obtain new characteristics by forcibly reducing the amount of water. is there.
For example, the present inventors have conventionally considered a mixture of propane and propylene to be a non-azeotropic substance, but by setting the mixing ratio of both to 50:50 and extremely reducing the amount of water, the behavior of pseudo-azeotropic point is achieved. The knowledge of showing was obtained.

水分子を除去する方法として、結晶性ゼオライト(人工ゼオライト)を用いる方法が特許文献1に提案されている。即ち、特許文献1には水分を含む固体に液体を接触させて固体から水分を除去し、この水分が含まれた液体を結晶性ゼオライトに接触させることで液体中の水分を結晶性ゼオライトに吸着させて除去する方法が開示されている。   As a method for removing water molecules, Patent Document 1 proposes a method using crystalline zeolite (artificial zeolite). That is, in Patent Document 1, a liquid is brought into contact with a solid containing moisture, moisture is removed from the solid, and the liquid containing the moisture is brought into contact with the crystalline zeolite to adsorb the moisture in the liquid to the crystalline zeolite. And a method for removing it is disclosed.

特開2006−198575号公報JP 2006-198575 A

TRANSITIONING TO LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION/ U.S. Environmental Protection AgencyTRANSITIONING TO LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION / U.S. Environmental Protection Agency

結晶性ゼオライトと接触させ、ゼオライトの細孔内に水分子をトラップして水分子を除去するのは有効である。しかしながら、水分子がどの程度除去されたか或いは未だ水分子が残っているかを簡便に認識する手段がない。
即ち、製造工程においてサンプルをとって精密に水分量を測定することはできるが、これをやると時間がかかり効率的でく大幅なコストアップとなる。
It is effective to contact the crystalline zeolite and trap the water molecules in the pores of the zeolite to remove the water molecules. However, there is no means for simply recognizing how much water molecules have been removed or how much water molecules still remain.
That is, it is possible to accurately measure the moisture content by taking a sample in the manufacturing process, but if this is done, it is time consuming and efficient, resulting in significant cost increase.

上記課題を解決するため、本発明は結晶性ゼオライトに液状または気体状の炭素化合物を接触させることで炭素化合物中の水分子を除去する方法であって、前記結晶性ゼオライトの細孔径は水分子の有効直径よりも大きく且つ前記炭素化合物を構成する分子の有効直径よりも小さく、更に前記炭素化合物中には前記結晶性ゼオライトの細孔径よりも有効直径が小さい悪臭成分を含有させ、この悪臭成分を水分子の残留割合の指標とし悪臭成分の臭いを検知しなくなるまで前記結晶性ゼオライトに前記炭素化合物を接触させる。   In order to solve the above problems, the present invention is a method for removing water molecules in a carbon compound by contacting the crystalline zeolite with a liquid or gaseous carbon compound, the pore size of the crystalline zeolite being a water molecule A malodorous component having an effective diameter smaller than the effective diameter of the molecule constituting the carbon compound and having a smaller effective diameter than the pore diameter of the crystalline zeolite. Is used as an indicator of the residual ratio of water molecules, and the carbon compound is brought into contact with the crystalline zeolite until no odor of malodorous components is detected.

悪臭成分の含有割合としては、目的とする最終水分量によるが、余り少ないと検知しにくくなり、多すぎると悪臭成分であるため作業がしにくくなる。
また、水分は除去できたにも拘わらず、悪臭成分が残ってしまうことも考えられる。そこで、悪臭成分の種類にもよるが、目安としては炭素化合物中の水分子量に対し質量割合で1/1000以上添加する。
The content ratio of the malodorous component depends on the intended final moisture content, but if it is too small, it is difficult to detect, and if it is too large, it is difficult to work because it is a malodorous component.
It is also conceivable that malodorous components remain despite the removal of moisture. Therefore, although it depends on the type of malodorous component, as a guideline, it is added in an amount of 1/1000 or more in terms of mass ratio to the water molecular weight in the carbon compound.

臭いの検知はセンサでもよいが、一般に人間の嗅覚は悪臭成分に対しては敏感に検知するので、作業員などの嗅覚によって判断することが可能である。
例えば、アンモニアは1.5ppm、インドールは0.0003ppm、硫化水素は0.00041ppm、メチルメルカプタンは0.00007ppmが検出限界と言われている。
Odor detection may be performed by a sensor, but since human olfaction is generally sensitive to malodorous components, it can be determined by the olfaction of a worker or the like.
For example, the detection limit is said to be 1.5 ppm for ammonia, 0.0003 ppm for indole, 0.00041 ppm for hydrogen sulfide, and 0.00007 ppm for methyl mercaptan.

前記炭素化合物としては、液状としたものを吸着槽に送り込んで水分子を吸着するのがスペース的及び運転上効率がよいが、COに関しては、液状にするには150kg/cm以上の圧力を必要とするため、吸着槽の構造も複雑になり、取り扱いも面倒になるので、気体状のCOを吸着槽に送り込んでもよい。 As the carbon compound, it is efficient in terms of space and operation to adsorb water molecules by feeding a liquid form into an adsorption tank. Regarding CO 2 , a pressure of 150 kg / cm 2 or more is required to make it liquid. Therefore, the structure of the adsorption tank becomes complicated and the handling becomes troublesome, and gaseous CO 2 may be fed into the adsorption tank.

前記結晶性ゼオライトとしては、複数のタイプがあり、例えばタイプ4Aは細孔径が0.4nm、タイプ3Aは細孔径が0.3nmである。
細孔径が0.4nm(タイプ4A)の結晶性ゼオライトを用いる場合には、前記炭素化合物はプロパン(C)、前記した代替フロン、iso-化合物、または環状炭化水素などとし、前記悪臭成分はアンモニア(NH)または硫化水素(HS)とする。
The crystalline zeolite includes a plurality of types, for example, type 4A has a pore diameter of 0.4 nm, and type 3A has a pore diameter of 0.3 nm.
When a crystalline zeolite having a pore diameter of 0.4 nm (type 4A) is used, the carbon compound is propane (C 3 H 8 ), the above-mentioned alternative chlorofluorocarbon, iso-compound, or cyclic hydrocarbon, and the malodor The component is ammonia (NH 3 ) or hydrogen sulfide (H 2 S).

また細孔径が0.3nm(タイプ3A)の結晶性ゼオライトを用いる場合には、前記炭素化合物は二酸化炭素(CO)、エチレン(C)、エタン(C)、メタノール(CHOH)、エタノール(COH)、プロピレン(C)、ブタジエン(C)、プロパン(C)、前記した代替フロン、iso-化合物または環状炭化水素などとし、前記悪臭成分はアンモニア(NH)とする。 When a crystalline zeolite having a pore size of 0.3 nm (type 3A) is used, the carbon compound is carbon dioxide (CO 2 ), ethylene (C 2 H 4 ), ethane (C 2 H 6 ), methanol ( CH 3 OH), ethanol (C 2 H 5 OH), propylene (C 3 H 6 ), butadiene (C 4 H 6 ), propane (C 3 H 8 ), alternative fluorocarbons, iso-compounds or cyclic hydrocarbons as described above And the malodorous component is ammonia (NH 3 ).

結晶性ゼオライトとしては上記の孔径よりもさらに大きな孔径のものも市販されているが、あまり孔径が大きくなると水分子をトラップしにくくなるので、細孔径は水分子の有効直径に近い0.3〜0.5nmのものを用いるのが好ましい。   Crystalline zeolite having a pore size larger than the above pore size is also commercially available, but if the pore size is too large, it becomes difficult to trap water molecules. It is preferable to use 0.5 nm.

アンモニア(NH)や硫化水素(HS)の悪臭成分は極微量でもその存在を検出できる。またアンモニア(NH)や硫化水素(HS)の有効直径は水分子とほぼ同じである。そこで、水分子の含有割合以上の割合で液状炭素化合物に前記悪臭成分を添加した場合、水分子と同程度に悪臭成分は結晶性ゼオライトに吸着除去される。
ここで、悪臭成分の添加割合は水分子の含有割合以上の割合としたので、悪臭成分を検知しなくなった時点で、液状炭素化合物中の水分子はなくなったと看做すことができる。
The presence of odorous components such as ammonia (NH 3 ) and hydrogen sulfide (H 2 S) can be detected even in a very small amount. The effective diameters of ammonia (NH 3 ) and hydrogen sulfide (H 2 S) are almost the same as water molecules. Therefore, when the malodorous component is added to the liquid carbon compound at a ratio equal to or higher than the water molecule content, the malodorous component is adsorbed and removed by the crystalline zeolite to the same extent as the water molecule.
Here, since the ratio of the malodorous component added is equal to or greater than the content ratio of the water molecules, it can be considered that the water molecules in the liquid carbon compound have disappeared when the malodorous component is no longer detected.

上記したように、本発明にあっては悪臭成分を水分子の残留指標としたことで、液状炭素化合物中から水分子が抜かれたことを簡単に確認することができる。したがって、水分子が既に吸着除去されたにもかかわらず結晶性ゼオライトとの接触運転を続けたり、水分子が未だ吸着されていないにもかかわらず作業を終了してしまうなどが防げる。 As described above, in the present invention, it is possible to easily confirm that water molecules have been removed from the liquid carbon compound by using the malodorous component as a residual index of water molecules. Therefore, it is possible to prevent the contact operation with the crystalline zeolite from continuing even though the water molecules have already been adsorbed and removed, or to end the operation even though the water molecules have not yet been adsorbed.

特に、製造工程においてサンプルを採取してその水分量を測定するという面倒で時間がかかる作業を廃止できるので、量産に適している。 In particular, the laborious and time-consuming work of collecting a sample and measuring the amount of water in the manufacturing process can be eliminated, which is suitable for mass production.

水分子除去装置の全体図Overall view of water molecule removal device 結晶性ゼオライト、シリカゲル及び活性炭の孔径分布図Pore size distribution chart of crystalline zeolite, silica gel and activated carbon

以下に本発明を実施するための最良の形態を図面に基づいて説明する。
水分子除去装置は結晶性ゼオライトを充填した吸着槽1を循環用配管2の途中に接続して構成される。
結晶性ゼオライトは水分子を吸着すると発熱するため、吸着槽1及び循環用配管2は適宜冷却することが好ましい。
The best mode for carrying out the present invention will be described below with reference to the drawings.
The water molecule removing apparatus is configured by connecting an adsorption tank 1 filled with crystalline zeolite in the middle of a circulation pipe 2.
Since crystalline zeolite generates heat when it adsorbs water molecules, it is preferable to cool the adsorption tank 1 and the circulation pipe 2 appropriately.

本実施例では吸着槽1を2台設置し、循環用配管2の途中に切替弁3を設けることで、1台の吸着槽1で吸着している間に他の1台については乾燥を行い、装置全体として連続運転ができるようにしている。 In this embodiment, two adsorption tanks 1 are installed, and a switching valve 3 is provided in the middle of the circulation pipe 2 so that the other one is dried while being adsorbed by one adsorption tank 1. The entire device can be operated continuously.

吸着槽1内に充填した結晶性ゼオライト(商品名:モレキュラーシーブ3A,4A、5A,13Xのうちの1種)は、天然ゼオライト、シリカゲル或いは活性炭と比べて孔径分布に特徴がある。
即ち、図2に示すようにシリカゲルは1〜100nmの範囲で孔径が分布し、5nm近辺に平均孔径が存在する。また活性炭は1〜1000nmの範囲で孔径が分布し10nm近辺に平均孔径が存在する。
これに対し結晶性ゼオライトの分布は曲線にならず、1本の縦線になっており、孔径は一定値であることを示している。
Crystalline zeolite (trade name: one of molecular sieves 3A, 4A, 5A, and 13X) filled in the adsorption tank 1 is characterized by a pore size distribution compared to natural zeolite, silica gel, or activated carbon.
That is, as shown in FIG. 2, silica gel has a pore size distribution in the range of 1 to 100 nm and an average pore size in the vicinity of 5 nm. Activated carbon has a pore size distribution in the range of 1 to 1000 nm and an average pore size in the vicinity of 10 nm.
On the other hand, the distribution of the crystalline zeolite is not a curve but is a single vertical line, indicating that the pore diameter is a constant value.

上記の水分子除去装置を用いて、プロパン、HFO‐1234yf、CO及びプロピレンについて実験を行った。結果を以下に記す。 Experiments were conducted on propane, HFO-1234yf, CO 2 and propylene using the above water molecule removing apparatus. The results are described below.

プロパン
含有水分量(質量%)が20ppmのプロパンに悪臭成分として硫化水素(HS)を0.02ppm加え、これを水分子除去装置の循環用配管に送り込み循環させた。使用した結晶性ゼオライトはモレキュラーシーブ4A(孔径0.4nm),水分測定は静電容量式露点計(DPO−6:エアリキッド(株)製)を用いた。
24時間、48時間及び72時間循環させたときの実験結果を以下の表に示す。
Propane <br/> moisture content (mass%) is added 0.02ppm hydrogen sulfide (H 2 S) as a malodorous component propane 20 ppm, which was fed circulated in the circulation pipe of the water molecule removal device. The crystalline zeolite used was a molecular sieve 4A (pore size 0.4 nm), and the water content was measured using a capacitance dew point meter (DPO-6: manufactured by Air Liquid Co., Ltd.).
The following table shows the experimental results when circulating for 24 hours, 48 hours and 72 hours.

HFO‐1234yf
含有水分量(重量%)が50ppmのHFO‐1234yfに悪臭成分として硫化水素(HS)を0.02ppm加え、これを水分子除去装置の循環用配管に送り込み循環させた。使用した結晶性ゼオライトはモレキュラーシーブ4A(孔径0.4nm),水分測定は静電容量式露点計(DPO−6:エアリキッド(株)製)を用いた。
24時間、48時間及び72時間循環させたときの実験結果を以下の表に示す。
HFO-1234yf
0.02 ppm of hydrogen sulfide (H 2 S) was added as an offensive odor component to HFO-1234yf having a water content (wt%) of 50 ppm, and this was sent to the circulation pipe of the water molecule removing apparatus and circulated. The crystalline zeolite used was a molecular sieve 4A (pore size 0.4 nm), and the water content was measured using a capacitance dew point meter (DPO-6: manufactured by Air Liquid Co., Ltd.).
The following table shows the experimental results when circulating for 24 hours, 48 hours and 72 hours.

CO
含有水分量(重量%)が20ppmのCO(ガス)に悪臭成分としてアンモニアガス(NH)を10ppm加え、これを水分子除去装置の循環用配管に送り込み循環させた。使用した結晶性ゼオライトはモレキュラーシーブ3A(孔径0.3nm),水分測定は静電容量式露点計(DPO−6:エアリキッド(株)製)を用いた。
24時間、72時間及び120時間循環させたときの実験結果を以下の表に示す。
CO 2
10 ppm of ammonia gas (NH 3 ) was added as an offensive odor component to CO 2 (gas) having a water content (wt%) of 20 ppm, and this was sent to the circulation pipe of the water molecule removal apparatus and circulated. The crystalline zeolite used was molecular sieve 3A (pore diameter 0.3 nm), and the moisture measurement was performed using a capacitance type dew point meter (DPO-6: manufactured by Air Liquid Co., Ltd.).
The following table shows the experimental results when circulating for 24 hours, 72 hours and 120 hours.

プロピレン
含有水分量(重量%)が20ppmのプロピレン(C)に悪臭成分としてアンモニアガス(NH)を10ppm加え、これを水分子除去装置の循環用配管に送り込み循環させた。使用した結晶性ゼオライトはモレキュラーシーブ3A(孔径0.3nm),水分測定は静電容量式露点計(DPO−6:エアリキッド(株)製)を用いた。
24時間、72時間及び120時間循環させたときの実験結果を以下の表に示す。
10 ppm of ammonia gas (NH 3 ) was added as an offensive odor component to propylene (C 3 H 6 ) having a propylene- containing water content (wt%) of 20 ppm, and this was sent to the circulation pipe of the water molecule removal apparatus and circulated. The crystalline zeolite used was molecular sieve 3A (pore diameter 0.3 nm), and the moisture measurement was performed using a capacitance type dew point meter (DPO-6: manufactured by Air Liquid Co., Ltd.).
The following table shows the experimental results when circulating for 24 hours, 72 hours and 120 hours.

プロパン及びHFO‐1234yfについては、72時間連続して水分子除去運転を行うことで、悪臭成分を検出しなくなった。
一方、CO及びプロピレンについては72時間運転しても悪臭成分は検出され、検出しなくなるまでに120時間を要した。これは孔径が0.3nmのモレキュラーシーブを用いたため吸着までに時間がかかったためである。
ここで、プロピレンは無臭ではなく、微臭(玉ねぎが腐ったような臭い)である。このようなプロピレンにアンモニアガス(NH)を添加すると、プロピレン自身が有する臭いよりもアンモニア臭が優先され、このアンモニア臭が無くなると本来の微臭になった。この状態で水分子が吸着されたと考えられる。
As for propane and HFO-1234yf, the malodorous component was not detected by performing the water molecule removing operation continuously for 72 hours.
On the other hand, with regard to CO 2 and propylene, malodorous components were detected even after 72 hours of operation, and 120 hours were required until they were not detected. This is because it took time until the adsorption because a molecular sieve having a pore diameter of 0.3 nm was used.
Here, propylene is not odorless but has a slight odor (smelling smell of onions). When ammonia gas (NH 3 ) was added to such propylene, the ammonia odor was given priority over the odor possessed by propylene itself, and when this ammonia odor disappeared, the original slight odor was obtained. It is thought that water molecules were adsorbed in this state.

本発明に係る水分子除去方法は、冷媒に限らず、水分子よりも大きな有効直径の分子から構成される液状または気体状炭素化合物の水分子除去に利用することができる。 The water molecule removing method according to the present invention is not limited to the refrigerant, and can be used for removing water molecules of liquid or gaseous carbon compounds composed of molecules having an effective diameter larger than that of water molecules.

結晶性ゼオライトと接触させ、ゼオライトの細孔内に水分子をトラップして水分子を除去するのは有効である。しかしながら、水分子がどの程度除去されたか或いは未だ水分子が残っているかを簡便に認識する手段がない。
即ち、製造工程においてサンプルをとって精密に水分量を測定することはできるが、これをやると時間がかかり効率的でなく大幅なコストアップとなる。
It is effective to contact the crystalline zeolite and trap the water molecules in the pores of the zeolite to remove the water molecules. However, there is no means for simply recognizing how much water molecules have been removed or how much water molecules still remain.
That is, although it is possible to measure precisely the water content taking the sample in the manufacturing process, a substantial cost not efficient time consuming when doing this.

アンモニア(NH)や硫化水素(HS)の悪臭成分は極微量でもその存在を検出できる。またアンモニア(NH)や硫化水素(HS)の有効直径は水分子とほぼ同じであり、水分子と同程度に悪臭成分は結晶性ゼオライトに吸着除去される。
したがって、悪臭成分を検知しなくなった時点で、液状炭素化合物中の水分子はなくなったと看做すことができる。
The presence of odorous components such as ammonia (NH 3 ) and hydrogen sulfide (H 2 S) can be detected even in a very small amount. The effective diameter of ammonia (NH 3) and hydrogen sulfide (H 2 S) is Ri Der almost the same as water molecules, malodorous components to the same extent as water molecules are removed by adsorption on crystalline zeolite.
Therefore, it can be considered that the water molecules in the liquid carbon compound have disappeared when the malodorous component is no longer detected.

Claims (4)

結晶性ゼオライトに液状または気体状の炭素化合物を接触させることで炭素化合物中の水分子を除去する方法であって、前記結晶性ゼオライトの細孔径は水分子の有効直径よりも大きく且つ前記炭素化合物を構成する分子の有効直径よりも小さく、更に前記炭素化合物中には前記結晶性ゼオライトの細孔径よりも有効直径が小さい悪臭成分を含有させ、この悪臭成分を水分子の残留割合の指標とし悪臭成分の臭いを検知しなくなるまで前記結晶性ゼオライトに前記炭素化合物を接触させることを特徴とする炭素化合物からの水分子除去方法。   A method for removing water molecules in a carbon compound by contacting the crystalline zeolite with a liquid or gaseous carbon compound, wherein the pore diameter of the crystalline zeolite is larger than the effective diameter of the water molecule and the carbon compound The carbon compound further contains a malodorous component having an effective diameter smaller than the pore diameter of the crystalline zeolite in the carbon compound, and the malodorous component is used as an indicator of the residual ratio of water molecules. A method for removing water molecules from a carbon compound, comprising bringing the carbon compound into contact with the crystalline zeolite until no odor of a component is detected. 請求項1に記載の炭素化合物からの水分子除去方法において、前記炭素化合物中に含有せしめる悪臭成分の質量割合を水分子の含有割合の1/1000以上とすることを特徴とする炭素化合物からの水分子除去方法。   The method for removing water molecules from a carbon compound according to claim 1, wherein the mass ratio of malodorous components contained in the carbon compound is 1/1000 or more of the content ratio of water molecules. Water molecule removal method. 請求項1に記載の炭素化合物からの水分子除去方法において、前記結晶性ゼオライトの細孔径は0.4nmであり、前記炭素化合物はプロパン(C)、iso-化合物、または環状炭化水素であり、前記悪臭成分はアンモニア(NH)または硫化水素(HS)であることを特徴とする炭素化合物からの水分子除去方法。 2. The method for removing water molecules from a carbon compound according to claim 1, wherein the crystalline zeolite has a pore diameter of 0.4 nm, and the carbon compound is propane (C 3 H 8 ), an iso-compound, or a cyclic hydrocarbon. And the malodorous component is ammonia (NH 3 ) or hydrogen sulfide (H 2 S), and a method for removing water molecules from a carbon compound. 請求項1に記載の炭素化合物からの水分子除去方法において、前記結晶性ゼオライトの細孔径は0.3nmであり、前記炭素化合物は二酸化炭素(CO)、エチレン(C)、エタン(C)、メタノール(CHOH)、エタノール(COH)、プロピレン(C)、ブタジエン(C)、プロパン(C)、iso-化合物または環状炭化水素であり、前記悪臭成分はアンモニア(NH)であることを特徴とする炭素化合物からの水分子除去方法。 2. The method for removing water molecules from a carbon compound according to claim 1, wherein the crystalline zeolite has a pore diameter of 0.3 nm, and the carbon compound is carbon dioxide (CO 2 ), ethylene (C 2 H 4 ), ethane. (C 2 H 6), methanol (CH 3 OH), ethanol (C 2 H 5 OH), propylene (C 3 H 6), butadiene (C 4 H 6), propane (C 3 H 8), iso- compound or a cyclic hydrocarbon, water molecules method for removing from a carbon compound, wherein said malodorous component is ammonia (NH 3).
JP2014123414A 2014-06-16 2014-06-16 Method for removing water molecules from carbon compounds Active JP5626820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123414A JP5626820B1 (en) 2014-06-16 2014-06-16 Method for removing water molecules from carbon compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123414A JP5626820B1 (en) 2014-06-16 2014-06-16 Method for removing water molecules from carbon compounds

Publications (2)

Publication Number Publication Date
JP5626820B1 JP5626820B1 (en) 2014-11-19
JP2016002511A true JP2016002511A (en) 2016-01-12

Family

ID=52136329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123414A Active JP5626820B1 (en) 2014-06-16 2014-06-16 Method for removing water molecules from carbon compounds

Country Status (1)

Country Link
JP (1) JP5626820B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151236A1 (en) * 2017-02-20 2018-08-23 Agc株式会社 Dehumidifying desiccant device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236363A (en) * 1996-02-26 1997-09-09 Matsushita Electric Ind Co Ltd Air conditioner
JP3243611B2 (en) * 1999-11-08 2002-01-07 文博 太田 Apparatus for removing moisture mixed in refrigerant gas flowing through refrigerant flow pipe
JP2002277117A (en) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp Freezer/air conditioner
JP2004060952A (en) * 2002-07-26 2004-02-26 Matsushita Refrig Co Ltd Refrigerator
JP2005265404A (en) * 2005-03-16 2005-09-29 Sanyo Electric Co Ltd Refrigerator
JP4828293B2 (en) * 2005-07-19 2011-11-30 東京エレクトロン株式会社 Water removal device and inspection device in refrigerant
JP5536270B1 (en) * 2013-09-25 2014-07-02 克延 村上 Mixed refrigerant and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151236A1 (en) * 2017-02-20 2018-08-23 Agc株式会社 Dehumidifying desiccant device

Also Published As

Publication number Publication date
JP5626820B1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
Sosa et al. Absorption of fluorinated greenhouse gases using fluorinated ionic liquids
US9206097B2 (en) Method to purify and stabilize chloroolefins
JP5361735B2 (en) Composition that can be used as a refrigerant
JP2019048853A (en) Process azeotropic mixture of 1,3,3,3-tetrafluoropropene with HF
JP4899013B2 (en) Method for drying a gas stream comprising fluoropropene
KR101104986B1 (en) Tracer-containing compositions
US10308853B2 (en) Heat-transfer fluids having reduced flammability
Asensio-Delgado et al. Thermodynamic and process modeling of the recovery of R410A compounds with ionic liquids
Asensio-Delgado et al. Enhanced absorption separation of hydrofluorocarbon/hydrofluoroolefin refrigerant blends using ionic liquids
BR112012008855B1 (en) PROCESS FOR REMOVING ONE OR MORE UNDESIRABLE (HYDRO)HALOCARBON COMPOUNDS FROM A (HYDRO)FLUOROALKENE
US7597744B2 (en) Use of molecular sieves for the removal of HFC-23 from fluorocarbon products
CN102300975A (en) Azeotrope-like compositions of pentafluoropropane, chlorotrifluoropropene, and hydrogen fluoride
EP2475732A1 (en) Ternary compositions for high-capacity refrigeration
Wanigarathna et al. Adsorption separation of R‐22, R‐32 and R‐125 fluorocarbons using 4A molecular sieve zeolite
Sosa et al. Process evaluation of fluorinated ionic liquids as F-gas absorbents
BR112021009037A2 (en) composition, ternary or higher composition, sprayable composition, use of a composition, vapor compression heat transfer system, cooling production methods, heating production, to extract a substance from biomass, to clean an article, to extract an aqueous solution or particulate solid matrix material, for reconditioning a heat transfer device, to reduce the environmental impact arising from the operation of a product, and, mechanical power generation device
Wanigarathna et al. Adsorption separation of R134a, R125, and R143a fluorocarbon mixtures using 13X and surface modified 5A zeolites
Sosa et al. Sorption of fluorinated greenhouse gases in silica-supported fluorinated ionic liquids
JP6487330B2 (en) Refrigerant composition
JP5626820B1 (en) Method for removing water molecules from carbon compounds
WO2020184635A1 (en) Composition containing 1,1,2-trifluoroethane
JP6475943B2 (en) Gas separation method
JP5536270B1 (en) Mixed refrigerant and manufacturing method thereof
Vega et al. How Molecular Modelling Tools Can Help in Mitigating Climate Change
KR102630950B1 (en) Azeotropic or azeotrope-like compositions of 3,3,3-trifluoropropyne and water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5626820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250