JP2016001506A - Electronic equipment - Google Patents

Electronic equipment Download PDF

Info

Publication number
JP2016001506A
JP2016001506A JP2015186079A JP2015186079A JP2016001506A JP 2016001506 A JP2016001506 A JP 2016001506A JP 2015186079 A JP2015186079 A JP 2015186079A JP 2015186079 A JP2015186079 A JP 2015186079A JP 2016001506 A JP2016001506 A JP 2016001506A
Authority
JP
Japan
Prior art keywords
imaging
subject
unit
image
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015186079A
Other languages
Japanese (ja)
Inventor
政一 関口
Masaichi Sekiguchi
政一 関口
山本 哲也
Tetsuya Yamamoto
哲也 山本
正洋 根井
Masahiro Nei
正洋 根井
政光 柳原
Masamitsu Yanagihara
政光 柳原
哲 萩原
Satoru Hagiwara
哲 萩原
功 戸塚
Isao Totsuka
功 戸塚
松山 知行
Tomoyuki Matsuyama
知行 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2015186079A priority Critical patent/JP2016001506A/en
Publication of JP2016001506A publication Critical patent/JP2016001506A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electronic equipment capable of appropriately notifying abnormality.SOLUTION: The electronic equipment includes: a detection part for detecting a change in the posture of an object person; a determination part for determining abnormality on the basis of the change in the posture; and a communication part for, when the abnormality is determined by the determination part, notifying external equipment of the abnormality.

Description

本発明は、電子機器に関する。   The present invention relates to an electronic device.

従来より、オフィス内の人に無線発信装置を持たせて、オフィスで災害が発生したときに、避難を誘導する避難誘導システムが提案されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an evacuation guidance system has been proposed that guides evacuation when a person in the office has a wireless transmission device and a disaster occurs in the office (see, for example, Patent Document 1).

特開2005−338991号公報JP 2005-338991 A

しかしながら、従来の避難誘導システムでは、オフィス内の人に無線発信装置を持たせなければならなかった。このため、無線発信装置を例えば机の上に置き忘れた際には、避難をさせるべき人が机にいると誤検出してしまったり、無線発信装置を外した人に対する避難誘導ができなかったりするおそれがある。   However, in the conventional evacuation guidance system, a person in the office has to have a wireless transmission device. For this reason, for example, if the wireless transmission device is left on the desk, it may be erroneously detected that there is a person to be evacuated or the person who removed the wireless transmission device cannot be evacuated. There is a fear.

そこで、本発明は上記の課題に鑑みてなされたものであり、適切に異常を通知することが可能な電子機器を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and an object thereof is to provide an electronic device that can appropriately notify abnormality.

本発明の電子機器は、対象者の姿勢の変化を検出する検出部と、前記姿勢の変化に基づいて異常を判定する判定部と、前記判定部が異常と判定すると外部機器に異常を通知する通信部と、を有する。   The electronic device according to the present invention includes a detection unit that detects a change in the posture of the subject, a determination unit that determines an abnormality based on the change in the posture, and notifies the external device of the abnormality when the determination unit determines an abnormality. And a communication unit.

適切に異常を通知することが可能な電子機器を提供することができるという効果を奏する。   There is an effect that it is possible to provide an electronic device capable of appropriately notifying an abnormality.

一実施形態に係る誘導装置が導入されたオフィスビルを示す図である。It is a figure showing the office building where the guidance device concerning one embodiment was introduced. 誘導装置を示すブロック図である。It is a block diagram which shows a guidance device. 画像取得装置を示すブロック図である。It is a block diagram which shows an image acquisition apparatus. CPUにおいてプログラムが実行されることにより実現される機能を示すブロック図である。It is a block diagram which shows the function implement | achieved when a program is performed in CPU. 図5(a)は、ホストコンピュータのハードウェア構成を示す図であり、図5(b)は、ホストコンピュータの機能ブロック図である。FIG. 5A is a diagram illustrating a hardware configuration of the host computer, and FIG. 5B is a functional block diagram of the host computer. 撮像部の具体的な構成を示す図である。It is a figure which shows the specific structure of an imaging part. 図7(a)は、広角レンズ系の前側焦点から撮像した人(対象者)の頭までの距離と、像(頭部分)の大きさとの関係を示すグラフであり、図7(b)は、図7(a)のグラフを床からの高さに変換したグラフである。FIG. 7A is a graph showing the relationship between the distance from the front focal point of the wide-angle lens system to the head of the person (subject) and the size of the image (head portion), and FIG. FIG. 8 is a graph obtained by converting the graph of FIG. 7A to a height from the floor. 像の大きさの変化率を示すグラフである。It is a graph which shows the change rate of the magnitude | size of an image. 図9(a)、図9(b)は、対象者の姿勢に応じた頭の像の大きさの変化を模式的に示す図である。FIG. 9A and FIG. 9B are diagrams schematically showing changes in the size of the head image according to the posture of the subject. 対象者の位置に応じて、撮像素子に撮像される対象者の頭の像の大きさの変化を示す図である。It is a figure which shows the change of the magnitude | size of the image of a subject's head imaged by an image pick-up element according to a subject's position. 入場処理において作成されるデータを示す図である。It is a figure which shows the data produced in an entrance process. オフィスビル内の1つの区画と、当該区画内に設けられた画像取得装置の撮像部の撮像領域と、の関係を模式的に示す図である。It is a figure which shows typically the relationship between one division in an office building, and the imaging area of the imaging part of the image acquisition apparatus provided in the said division. 図13(a)、図13(b)は、図12の1つの区画内において4人の対象者(対象者A,B,C,Dとする)が移動する場合の追跡処理について説明するための図(その1)である。FIGS. 13A and 13B are diagrams for explaining the tracking process in the case where four subjects (subjects A, B, C, and D) move within one section of FIG. (No. 1) 図14(a)〜図14(c)は、図12の1つの区画内において4人の対象者(対象者A,B,C,Dとする)が移動する場合の追跡処理について説明するための図(その2)である。FIGS. 14A to 14C illustrate tracking processing when four subjects (subjects A, B, C, and D) move within one section of FIG. (No. 2) 図15(a)〜図15(d)は、エレベータEVにおける対象者の追跡方法を説明するための図(その1)である。Fig.15 (a)-FIG.15 (d) are the figures (the 1) for demonstrating the tracking method of the subject in the elevator EV. 図16(a)〜図16(c)は、エレベータEVにおける対象者の追跡方法を説明するための図(その2)である。Fig.16 (a)-FIG.16 (c) are the figures (the 2) for demonstrating the tracking method of the subject in the elevator EV. オフィスビルにおいて火災が発生した状況を示す図である。It is a figure which shows the condition where the fire broke out in the office building. 避難誘導処理を示すフローチャートである。It is a flowchart which shows an evacuation guidance process.

以下、一実施形態について、図1〜図18に基づいて詳細に説明する。図1には、誘導装置100(図2参照)が導入されたオフィスビル200の一例が示されている。なお、誘導装置100は、オフィスビルに限らず、学校や集合住宅などに導入することも可能である。   Hereinafter, an embodiment will be described in detail with reference to FIGS. FIG. 1 shows an example of an office building 200 in which a guidance device 100 (see FIG. 2) is introduced. In addition, the guidance device 100 can be introduced not only in an office building but also in a school, an apartment house, or the like.

図1に示すように、オフィスビル200は、一例として6階建ての建物であり、人は、各フロア(階)間を階段24を用いて移動することができるものとする。また、オフィスビル200には、エレベータEVが設けられているので、当該エレベータEVを利用することでも、各フロア間を移動することが可能となっている。なお、各フロアのエレベータEV近傍には、エレベータホール41が設けられている。また、各フロアには、図1において破線で囲んで示すように、3つの区画(部屋)43があるものとする。また、本実施形態では、オフィスビル200の入り口が、1階にあるものとする。   As shown in FIG. 1, the office building 200 is a 6-story building as an example, and a person can move between the floors (floors) using the stairs 24. Moreover, since the elevator EV is provided in the office building 200, it is possible to move between the floors by using the elevator EV. An elevator hall 41 is provided in the vicinity of the elevator EV on each floor. In addition, each floor has three sections (rooms) 43 as shown by being surrounded by broken lines in FIG. In the present embodiment, it is assumed that the entrance of the office building 200 is on the first floor.

図1においては、誘導装置100に含まれる画像取得装置2が、各フロアの天井部に配置された状態が示されている。ここで、1つの区画43は、図1のX軸方向及びY軸方向に広がるフロアであり、当該区画43には、X軸方向に沿って3つ、Y方向に沿って3つの計9つの画像取得装置2が設けられているものとする。ただし、図1では、図示の便宜上、1区画に対して3つの画像取得装置2が設置されている状態を示している。なお、画像取得装置2の数は、区画43の広さや、画像取得装置2が有する撮像部の光学性能などに基づいて、適宜決定することができる。   FIG. 1 shows a state in which the image acquisition device 2 included in the guidance device 100 is arranged on the ceiling of each floor. Here, one section 43 is a floor extending in the X-axis direction and the Y-axis direction in FIG. 1, and the section 43 has nine in total along the X-axis direction and three along the Y-direction. It is assumed that an image acquisition device 2 is provided. However, in FIG. 1, for convenience of illustration, a state in which three image acquisition devices 2 are installed for one section is illustrated. Note that the number of the image acquisition devices 2 can be appropriately determined based on the size of the section 43, the optical performance of the imaging unit included in the image acquisition device 2, and the like.

図2には、誘導装置100がブロック図にて示されている。この図2に示すように、誘導装置100は、各フロアに設けられた複数の画像取得装置2と、各フロアの画像取得装置2との通信が可能な状態とされた第1〜第6CPU(3a〜3f)と、を備える。また、誘導装置100は、エレベータEV内に設けられた画像取得装置2と、エレベータEV内の画像取得装置2が接続されるエレベータ用CPU3gと、を備える。更に、誘導装置100は、各CPU3a〜3gが接続されたホストコンピュータ4と、読取装置20と、を備える。   FIG. 2 shows the guidance device 100 in a block diagram. As shown in FIG. 2, the guidance device 100 includes a plurality of image acquisition devices 2 provided on each floor and first to sixth CPUs (in a state where communication with the image acquisition devices 2 on each floor is possible). 3a-3f). Moreover, the guidance device 100 includes an image acquisition device 2 provided in the elevator EV, and an elevator CPU 3g to which the image acquisition device 2 in the elevator EV is connected. Furthermore, the guidance device 100 includes a host computer 4 to which the CPUs 3a to 3g are connected, and a reading device 20.

画像取得装置2は、所定範囲内(撮像領域内)に存在する人(撮影(追跡)対象者(以下、単に「対象者」と呼ぶ))の頭を含む画像を取得したり、対象者に対して、避難経路を示したりする。なお、画像取得装置2の詳細な構成等については、後述する。   The image acquisition apparatus 2 acquires an image including the head of a person (photographing (tracking) target person (hereinafter simply referred to as “target person”) within a predetermined range (in an imaging region) or On the other hand, an evacuation route is indicated. The detailed configuration of the image acquisition device 2 will be described later.

第1〜第6CPU(3a〜3f)、エレベータ用CPU3gは、画像取得装置2で取得した情報を処理したり、画像取得装置2の動作を制御したりする。なお、本実施形態では、CPUを各階ごとに1つずつ設置するものとしているが、これに限らず、各階に複数のCPUを設けることとしてもよい。この場合、各CPU間での情報のやり取りは、有線もしくは無線による通信手段により行うこととすればよい。なお、CPU3a〜3gの詳細な構成等については、後述する。   The first to sixth CPUs (3a to 3f) and the elevator CPU 3g process information acquired by the image acquisition device 2 and control the operation of the image acquisition device 2. In this embodiment, one CPU is installed for each floor. However, the present invention is not limited to this, and a plurality of CPUs may be provided on each floor. In this case, information exchange between the CPUs may be performed by wired or wireless communication means. The detailed configuration of the CPUs 3a to 3g will be described later.

ホストコンピュータ4は、CPU3a〜3gから出力される情報に基づいて、火災などの災害が発生した場合に、オフィス内にいる人に災害の発生を報知するとともに、避難を誘導するものである。   When a disaster such as a fire occurs based on information output from the CPUs 3a to 3g, the host computer 4 notifies the person in the office of the occurrence of the disaster and guides evacuation.

なお、図2では、オフィスビル200が6階建ての場合の誘導装置を図示しているが、オフィスビルが1階建ての場合には、図2のCPU3b〜3gや、ホストコンピュータ4を省略してもよい。この場合、ホストコンピュータ4の機能を第1CPU3aに持たせることとすればよい。   In FIG. 2, the guidance device when the office building 200 is 6 stories is illustrated. However, when the office building is 1 story, the CPUs 3 b to 3 g and the host computer 4 in FIG. 2 are omitted. May be. In this case, the function of the host computer 4 may be given to the first CPU 3a.

読取装置20は、例えば、オフィスビル200の玄関や受付近傍に設けられているものとする。読取装置20は、ICカードに記録されている情報を読み取ることが可能なカードリーダを有している。対象者は、内部メモリに個人情報(個人識別情報)が記録されている従業員証(ICカード)を読取装置20にかざすことで、個人情報を読取装置20に読み込ませることができる。また、対象者がゲストである場合には、受付で渡されるゲスト証(ICカード)を読取装置20にかざすことで、ゲスト情報を読取装置20に読み込ませることができる。   For example, the reading device 20 is provided near the entrance of the office building 200 or in the vicinity of the reception. The reading device 20 has a card reader capable of reading information recorded on the IC card. The subject can read the personal information into the reading device 20 by holding the employee card (IC card) in which the personal information (personal identification information) is recorded in the internal memory over the reading device 20. If the target person is a guest, the guest information can be read into the reading device 20 by holding the guest certificate (IC card) passed at the reception over the reading device 20.

次に、図3に基づいて、画像取得装置2の具体的な構成について説明する。図3には、画像取得装置2のブロック図が示されている。図3に示すように、画像取得装置2は、撮像部8と、照度計10と、焦電センサ12と、火災センサ15と、マイク13と、通信部9と、LED(Light Emitting Diode:発光ダイオード)11と、フラッシュメモリ16と、スピーカ14と、処理部18と、を備える。また、画像取得装置2は、二次電池17を備える。なお、画像取得装置2は、通常は、一次電源(例えばオフィス用電源)を用いて動作する。   Next, a specific configuration of the image acquisition device 2 will be described with reference to FIG. FIG. 3 shows a block diagram of the image acquisition device 2. As shown in FIG. 3, the image acquisition device 2 includes an imaging unit 8, an illuminometer 10, a pyroelectric sensor 12, a fire sensor 15, a microphone 13, a communication unit 9, and an LED (Light Emitting Diode). Diode) 11, flash memory 16, speaker 14, and processing unit 18. Further, the image acquisition device 2 includes a secondary battery 17. The image acquisition device 2 normally operates using a primary power source (for example, an office power source).

撮像部8は、オフィスビル200内及びオフィスビル200内に存在する人(対象者)を撮像するものである。なお、撮像部8の具体的な構成等については、後述する。   The imaging unit 8 images the office building 200 and a person (target person) existing in the office building 200. A specific configuration of the imaging unit 8 will be described later.

照度計10は、撮像部8がオフィス内を撮像する際の、撮像領域内の照度を測定する。照度計10による測定結果は、処理部18に入力される。焦電センサ12は、撮像部8の撮像領域内に人が存在しているか否かを検知するためのセンサである。焦電センサ12としては、人が発生する赤外線を検出する赤外線センサやフレネルレンズ等を有する焦電センサを用いることができる。焦電センサ12による検出結果は、処理部18及び通信部9を介して、CPU(3a〜3g)に対して出力される。なお、本実施形態では、1つの撮像部8の撮像領域を、1つの焦電センサ12でカバーできるように、撮像部8の撮像領域に応じて、焦電センサ12の視野角(検出角度)および検出視野(検出距離)が設定されているものとする。ただし、これに限らず、焦電センサ12は、個々の画像取得装置2に対して複数個設けてもよい。または、複数の画像取得装置2で1つの焦電センサ12を共用することとしてもよい。   The illuminometer 10 measures the illuminance in the imaging area when the imaging unit 8 images the inside of the office. The measurement result obtained by the illuminometer 10 is input to the processing unit 18. The pyroelectric sensor 12 is a sensor for detecting whether a person is present in the imaging area of the imaging unit 8. As the pyroelectric sensor 12, an infrared sensor that detects infrared rays generated by a person, a pyroelectric sensor having a Fresnel lens, or the like can be used. The detection result by the pyroelectric sensor 12 is output to the CPUs (3a to 3g) via the processing unit 18 and the communication unit 9. In the present embodiment, the viewing angle (detection angle) of the pyroelectric sensor 12 is set according to the imaging region of the imaging unit 8 so that the imaging region of one imaging unit 8 can be covered by the single pyroelectric sensor 12. In addition, it is assumed that a detection visual field (detection distance) is set. However, the present invention is not limited to this, and a plurality of pyroelectric sensors 12 may be provided for each image acquisition device 2. Alternatively, one pyroelectric sensor 12 may be shared by a plurality of image acquisition devices 2.

火災センサ15は、火災発生時の煙を感知するセンサであり、例えば、LEDなどの発光部と、PD(Photo Diode)などの受光部を備えているものとする。火災センサ15では、発光部から発光された光のうち、煙の粒子により反射された反射光を受光部にて受光することで、火災を検知する。なお、火災センサ15としては、煙を感知するセンサに代えて、火災発生時の熱量を感知するセンサを採用することとしてもよい。また、図3では、1つの画像取得装置2に対して1つの火災センサ15を設けることとしているが、これに限らず、個々の画像取得装置2に対して火災センサ15を複数個設けてもよい。または、複数の画像取得装置2において1つの火災センサ15を共用するようにしてもよい。   The fire sensor 15 is a sensor that detects smoke when a fire occurs, and includes, for example, a light emitting unit such as an LED and a light receiving unit such as a PD (Photo Diode). The fire sensor 15 detects a fire by receiving reflected light reflected by smoke particles out of the light emitted from the light emitting unit at the light receiving unit. The fire sensor 15 may be a sensor that detects the amount of heat when a fire occurs, instead of a sensor that detects smoke. In FIG. 3, one fire sensor 15 is provided for one image acquisition device 2. However, the present invention is not limited to this, and a plurality of fire sensors 15 may be provided for each image acquisition device 2. Good. Alternatively, a plurality of image acquisition devices 2 may share one fire sensor 15.

マイク13は、人(対象者)等の音声を取得して、処理部18に入力する。処理部18では、例えば、マイク13から入力された音声が「助けて」であった場合に、当該音声に基づいて、救助が必要であると判定したりする。   The microphone 13 acquires the voice of a person (target person) and inputs it to the processing unit 18. For example, when the voice input from the microphone 13 is “help”, the processing unit 18 determines that rescue is necessary based on the voice.

通信部9は、CPU3a〜3gなどとの通信を行う。具体的には、通信部9は、アンテナ、送信部、受信部などを有しており、各画像取得装置2が直接的に接続されているCPU(3a〜3g)に対して、対象者の状態等の情報を送信するとともに、ホストコンピュータ4や他の画像取得装置2の通信部9との通信も行う。   The communication unit 9 performs communication with the CPUs 3a to 3g and the like. Specifically, the communication unit 9 includes an antenna, a transmission unit, a reception unit, and the like. The CPU (3a to 3g) to which each image acquisition device 2 is directly connected is connected to the target person. In addition to transmitting information such as the status, communication with the host computer 4 and the communication unit 9 of another image acquisition device 2 is also performed.

LED11は、例えば夜間などでオフィスが部分的に消灯され、照度計10により測定した照度が低い場合に、処理部18からの指示に応じて、オフィス内の特定領域(例えば、撮像部8の撮像領域)を照明する。フラッシュメモリ16は、撮像した画像や、オフィス内に存在している対象者の位置情報を記憶する記憶媒体である。スピーカ14は、音又は音声で、対象者に対する情報(災害発生状況の情報や、避難経路の情報など)を発信する。   For example, when the office is partly turned off at night and the illuminance measured by the illuminometer 10 is low, the LED 11 is operated in accordance with an instruction from the processing unit 18 (for example, imaging of the imaging unit 8). Illuminate the area. The flash memory 16 is a storage medium that stores captured images and position information of subjects present in the office. The speaker 14 transmits information (such as disaster occurrence status information and evacuation route information) to the target person by sound or voice.

処理部18は、撮像部8で撮像された画像や、その他各部において検出された検出結果等に基づいた処理を実行するとともに、画像取得装置2内の構成各部の処理を統括的に制御する。   The processing unit 18 performs processing based on the image captured by the imaging unit 8 and the detection results detected by the other units, and comprehensively controls the processing of each component in the image acquisition device 2.

二次電池17は、停電や災害などの発生により、画像取得装置2に対して一次電源から電力が供給されないときに、画像取得装置2に対して電力供給するバックアップ電源である。二次電池17としては、例えば、リチウムイオン電池を用いることができる。ただし、これに限らず、二次電池としては、オフィス用の太陽光発電などを用いることとしてもよい。   The secondary battery 17 is a backup power source that supplies power to the image acquisition device 2 when power is not supplied from the primary power source to the image acquisition device 2 due to the occurrence of a power failure or disaster. As the secondary battery 17, for example, a lithium ion battery can be used. However, the present invention is not limited to this, and as the secondary battery, solar power generation for offices or the like may be used.

図4には、CPU3a〜3gにおいてプログラムが実行されることにより、実現される機能をブロック図にて示した図である。この図4に示すように、CPU3a〜3gは、追跡部61、姿勢判定部62、通信部63として機能する。なお、図4では、追跡部61と姿勢判定部62に接続されたメモリ64についても図示している。追跡部61は、対象者がオフィスビル200の入り口から入場した後から、撮像部8による撮像結果に基づいて、プライバシを保護した状態で対象者を追跡する。姿勢判定部62は、撮像部8による撮像結果に基づいて、対象者のプライバシを保護した状態で、対象者の姿勢(直立、中腰、倒れているなど)を判定する。また、姿勢判定部62は、姿勢の変化に基づいて、対象者が異常か否かも判定する。通信部63は、画像取得装置2の通信部9や、ホストコンピュータ4との間で情報のやり取りを行う。例えば、姿勢判定部62において、対象者に異常が発生していないと判定されている間は、通信部63が、対象者に異常がない旨のメッセージをホストコンピュータ4に送信する。この場合、ホストコンピュータ4に対しては、撮像部8で撮像した画像を送信しない。これにより、異常がない状態が継続している間は、対象者のプライバシを保護することができる。一方、対象者に異常が発生した場合には、ホストコンピュータ4に異常が発生した旨のメッセージを送信するが、この場合には、状況を正確に伝えるため、画像を送信することとすることができる。   FIG. 4 is a block diagram illustrating functions realized by executing programs in the CPUs 3a to 3g. As illustrated in FIG. 4, the CPUs 3 a to 3 g function as a tracking unit 61, a posture determination unit 62, and a communication unit 63. In FIG. 4, the memory 64 connected to the tracking unit 61 and the posture determination unit 62 is also illustrated. After the subject enters from the entrance of the office building 200, the tracking unit 61 tracks the subject in a state where privacy is protected based on the imaging result of the imaging unit 8. The posture determination unit 62 determines the posture of the subject (upright, middle waist, lying down, etc.) in a state where the privacy of the subject is protected based on the imaging result of the imaging unit 8. The posture determination unit 62 also determines whether the subject is abnormal based on the change in posture. The communication unit 63 exchanges information with the communication unit 9 of the image acquisition device 2 and the host computer 4. For example, while the posture determination unit 62 determines that there is no abnormality in the subject, the communication unit 63 transmits a message to the host computer 4 that there is no abnormality in the subject. In this case, the image captured by the imaging unit 8 is not transmitted to the host computer 4. As a result, the privacy of the subject can be protected while the state where there is no abnormality continues. On the other hand, when an abnormality occurs in the subject, a message indicating that an abnormality has occurred is sent to the host computer 4, but in this case, an image may be sent to accurately convey the situation. it can.

図5(a)には、ホストコンピュータ4のハードウェア構成が示されている。この図5(a)に示すように、ホストコンピュータ4は、CPU90、ROM92、RAM94、記憶部(ここではHDD(Hard Disk Drive))96、入出力部97等を備えている。これらホストコンピュータ4の構成各部は、バス98に接続されている。ホストコンピュータ4では、ROM92あるいはHDD96に格納されているプログラムをCPU90が実行することにより、図5(b)の各部の機能が実現される。また、入出力部97には、オフィス内のスプリンクラーや排気装置、防護壁(防火扉)の駆動装置が接続されている。スプリンクラーは、火災が発生したときに放水をして消火するものであり、排気装置は有害ガス(煙、一酸化炭素など)をオフィス外に排気するものである。防護壁(放火扉)は、有害ガスの流通を遮断するための扉であり、廊下や階段などに設置されている。また、入出力部97は、消防署や警備会社の通信装置と、有線または無線で接続されている。したがって、ホストコンピュータ4は、入出力部97を介して、災害の発生を消防署や警備会社に通知することができる。更に、入出力部97には、図2の表示装置91が接続されている。   FIG. 5A shows the hardware configuration of the host computer 4. As shown in FIG. 5A, the host computer 4 includes a CPU 90, a ROM 92, a RAM 94, a storage unit (here, an HDD (Hard Disk Drive)) 96, an input / output unit 97, and the like. Each component of the host computer 4 is connected to a bus 98. In the host computer 4, the CPU 90 executes a program stored in the ROM 92 or the HDD 96, thereby realizing the functions of the respective units in FIG. The input / output unit 97 is connected to a sprinkler, an exhaust device, and a drive device for a protective wall (fire door) in the office. Sprinklers discharge water and extinguish it when a fire breaks out. Exhaust devices exhaust harmful gases (smoke, carbon monoxide, etc.) outside the office. Protective walls (fire doors) are doors for blocking the circulation of harmful gases, and are installed in hallways and stairs. The input / output unit 97 is connected to a communication device of a fire department or a security company by wire or wirelessly. Therefore, the host computer 4 can notify the fire department or the security company of the occurrence of a disaster via the input / output unit 97. 2 is connected to the input / output unit 97.

図5(b)には、ホストコンピュータ4の機能ブロック図が示されている。この図5(b)に示すように、ホストコンピュータ4は、設定部5、カレンダ部6、誘導制御部51、移動判定部53、遮断部55、経路決定部57、入場処理部58、通信部59として機能する。設定部5は、複数の画像取得装置2の各種設定を行うものである。設定部5は、例えば、画像取得装置2の画像取得間隔などを設定する。カレンダ部6は、年、月、日、時、分、秒といったカレンダ情報を取得するとともに、時間を計時する機能を有している。カレンダ情報は、ホストコンピュータ4が有するCPU水晶発振子や計時用集積回路から取得することができる。   FIG. 5B shows a functional block diagram of the host computer 4. As shown in FIG. 5B, the host computer 4 includes a setting unit 5, a calendar unit 6, a guidance control unit 51, a movement determination unit 53, a blocking unit 55, a route determination unit 57, an entrance processing unit 58, and a communication unit. 59 functions. The setting unit 5 performs various settings for the plurality of image acquisition devices 2. For example, the setting unit 5 sets an image acquisition interval of the image acquisition device 2. The calendar unit 6 has functions of acquiring calendar information such as year, month, day, hour, minute, and second and measuring time. The calendar information can be acquired from a CPU crystal oscillator included in the host computer 4 or a timing integrated circuit.

誘導制御部51は、災害時(火災発生時など)において、撮像部8の撮像結果に基づいて対象者を避難させるため、画像取得装置2の各部(例えばLED11)における動作を制御する。移動判定部53は、対象者が、誘導制御部51の意図通りに、移動したか否かを判定する。遮断部55は、撮像部8の撮像結果から得られる対象者の存在位置に基づいて、防護壁の駆動装置を介して、オフィスビル200内の防護壁(防火扉)を開閉する。より具体的には、撮像部8の撮像結果から対象者の頭の像の大きさが検出されない場合に、遮断部55が、誘導制御部51が誘導する通路を防護壁にて遮断する。また、遮断部55は、火災発生時に、機械設備への電力供給を遮断する。経路決定部57は、オフィス内の状況に応じて、避難経路を変更する。入場処理部58は、オフィスビル200の入り口から入場する人を、対象者とするための処理を行う。通信部59は、上記各部の処理結果を、CPU3a〜3gの通信部63を介して、画像取得装置2の通信部9に対して送信する。   The guidance control unit 51 controls the operation of each unit (for example, the LED 11) of the image acquisition device 2 in order to evacuate the target person based on the imaging result of the imaging unit 8 at the time of a disaster (such as when a fire occurs). The movement determination unit 53 determines whether or not the subject has moved as intended by the guidance control unit 51. The blocking unit 55 opens and closes the protective wall (fire door) in the office building 200 via the protective wall driving device based on the presence position of the subject obtained from the imaging result of the imaging unit 8. More specifically, when the size of the image of the subject's head is not detected from the imaging result of the imaging unit 8, the blocking unit 55 blocks the passage guided by the guidance control unit 51 with a protective wall. Moreover, the interruption | blocking part 55 interrupts | blocks the electric power supply to mechanical equipment at the time of a fire outbreak. The route determination unit 57 changes the evacuation route according to the situation in the office. The entrance processing unit 58 performs processing for setting a person who enters from the entrance of the office building 200 as a target person. The communication unit 59 transmits the processing results of the respective units to the communication unit 9 of the image acquisition device 2 via the communication units 63 of the CPUs 3a to 3g.

次に、画像取得装置2に含まれる撮像部8の具体的な構成等について、図6に基づいて詳細に説明する。この撮像部8は、主としてオフィスビル内にいる人の頭を撮像するためのものである。ここで、各フロアの天井高は、2.6mであるものとする。すなわち、撮像部8は、2.6mの高さから人の頭などを撮像する。   Next, a specific configuration and the like of the imaging unit 8 included in the image acquisition device 2 will be described in detail based on FIG. The imaging unit 8 is mainly for imaging a person's head in an office building. Here, the ceiling height of each floor is assumed to be 2.6 m. That is, the imaging unit 8 images a human head or the like from a height of 2.6 m.

撮像部8は、図6に示すように、3群構成の広角レンズ系32と、ローパスフィルタ34と、CCD又はCMOSなどからなる撮像素子36と、撮像素子を駆動制御する回路基板38と、を有する。なお、図6では不図示であるが、広角レンズ系32とローパスフィルタ34との間には、不図示のメカシャッターが設けられているものとする。   As shown in FIG. 6, the imaging unit 8 includes a wide-angle lens system 32 having a three-group configuration, a low-pass filter 34, an imaging element 36 such as a CCD or a CMOS, and a circuit board 38 that drives and controls the imaging element. Have. Although not shown in FIG. 6, it is assumed that a mechanical shutter (not shown) is provided between the wide-angle lens system 32 and the low-pass filter 34.

広角レンズ系32は、2枚の負メニスカスレンズを有する第1群32aと、正レンズ、接合レンズ、及び赤外カットフィルタを有する第2群32bと、2枚の接合レンズを有する第3群32cと、を有しており、第2群32bと第3群32cとの間に絞り33が配置されている。本実施形態の広角レンズ系32は、系全体の焦点距離が6.188mm、最大画角が80°となっている。なお、広角レンズ系32は、3群構成に限定されるものでもない。すなわち、例えば、各群のレンズ枚数やレンズ構成、並びに焦点距離や画角は、適宜変更することが可能である。   The wide-angle lens system 32 includes a first group 32a having two negative meniscus lenses, a second group 32b having a positive lens, a cemented lens, and an infrared cut filter, and a third group 32c having two cemented lenses. The diaphragm 33 is disposed between the second group 32b and the third group 32c. The wide-angle lens system 32 of this embodiment has a focal length of 6.188 mm and a maximum field angle of 80 °. The wide-angle lens system 32 is not limited to the three-group configuration. That is, for example, the number of lenses in each group, the lens configuration, the focal length, and the angle of view can be changed as appropriate.

撮像素子36は、一例として、23.7mm×15.9mmの大きさで、画素数が4000×3000(1200万画素)であるものとする。すなわち、1画素の大きさは、5.3μmである。ただし、撮像素子36としては、上記と異なるサイズ及び画素数の撮像素子を用いてもよい。   As an example, the image sensor 36 has a size of 23.7 mm × 15.9 mm and a pixel number of 4000 × 3000 (12 million pixels). That is, the size of one pixel is 5.3 μm. However, as the image sensor 36, an image sensor having a different size and the number of pixels from the above may be used.

上記のように構成される撮像部8では、広角レンズ系32に入射した光束はローパスフィルタ34を介して撮像素子36に入射し、回路基板38が撮像素子36の出力をデジタル信号に変換する。そして、ASIC(Application Specific Integrated Circuit)を含む処理部18(図3参照)が、デジタル信号に変換された画像信号に対してホワイトバランス調整、シャープネス調整、ガンマ補正、階調調整などの画像処理を施すとともに、JPEGなどの画像圧縮をする。また、処理部18は、JPEG圧縮された静止画像をフラッシュメモリ16に格納する。   In the imaging unit 8 configured as described above, the light beam incident on the wide-angle lens system 32 enters the image sensor 36 via the low-pass filter 34, and the circuit board 38 converts the output of the image sensor 36 into a digital signal. Then, the processing unit 18 (see FIG. 3) including an ASIC (Application Specific Integrated Circuit) performs image processing such as white balance adjustment, sharpness adjustment, gamma correction, and gradation adjustment on the image signal converted into the digital signal. In addition, image compression such as JPEG is performed. Further, the processing unit 18 stores the JPEG compressed still image in the flash memory 16.

なお、撮像部8の撮像領域は、隣接する画像取得装置2の撮像部8の撮像領域と重複(オーバラップ)している(図12の撮像領域P1〜P4参照)。なお、この点については、後に詳述する。   Note that the imaging area of the imaging unit 8 overlaps with the imaging area of the imaging unit 8 of the adjacent image acquisition device 2 (see imaging areas P1 to P4 in FIG. 12). This point will be described in detail later.

図7(a)には、広角レンズ系32の前側焦点から撮像した人(対象者)の頭までの距離と、像(頭部分)の大きさとの関係がグラフにて示され、図7(b)には、図7(a)のグラフを床からの高さに変換したグラフが示されている。   FIG. 7A is a graph showing the relationship between the distance from the front focal point of the wide-angle lens system 32 to the head of the person (subject) and the size of the image (head portion). FIG. 7B shows a graph obtained by converting the graph of FIG. 7A to the height from the floor.

ここで、前述のように広角レンズ系32の焦点距離が6.188mmであり、対象者の頭の直径が200mmであるとすると、広角レンズ系32の前側焦点から対象者の頭の位置までの距離が1000mmの場合(すなわち、身長1m60cmの人が直立している場合)には、撮像部8の撮像素子36に結像する対象者の頭の直径は1.238mmである。これに対し、対象者の頭の位置が300mm下がって広角レンズ系32の前側焦点から対象者の頭の位置までの距離が1300mmになった場合には、撮像部8の撮像素子に結像する対象者の頭の直径は0.952mmとなる。すなわち、この場合には、頭の高さが300mm変化することで、0.286mm(23.1%)だけ像の大きさ(直径)が変化する。   Here, as described above, when the focal length of the wide-angle lens system 32 is 6.188 mm and the diameter of the subject's head is 200 mm, from the front focal point of the wide-angle lens system 32 to the position of the subject's head. When the distance is 1000 mm (that is, when a person with a height of 1 m 60 cm stands upright), the diameter of the head of the subject imaged on the image sensor 36 of the imaging unit 8 is 1.238 mm. On the other hand, when the position of the subject's head is lowered by 300 mm and the distance from the front focal point of the wide-angle lens system 32 to the position of the subject's head is 1300 mm, an image is formed on the imaging device of the imaging unit 8. The diameter of the subject's head is 0.952 mm. That is, in this case, when the head height changes by 300 mm, the size (diameter) of the image changes by 0.286 mm (23.1%).

同様に、広角レンズ系32の前側焦点から対象者の頭の位置までの距離が2000mmの場合には(対象者が中腰の場合)、撮像部8の撮像素子36に結像する対象者の頭の直径は0.619mmであり、そこから対象者の頭の位置が300mm下がった場合には、撮像部8の撮像素子に結像する対象者の頭の像の大きさは0.538mmとなる。すなわち、この場合には、頭の高さが300mm変化することで、0.081mm(13.1%)だけ頭の像の大きさ(直径)が変化する。このように、本実施形態においては、広角レンズ系32の前側焦点から対象者の頭までの距離が離れるにつれて、頭の像の大きさの変化(変化率)が小さくなる。   Similarly, when the distance from the front focal point of the wide-angle lens system 32 to the position of the subject's head is 2000 mm (when the subject is in the middle waist), the subject's head that forms an image on the image sensor 36 of the imaging unit 8. Is 0.619 mm, and when the position of the subject's head is lowered by 300 mm, the size of the subject's head image formed on the image sensor of the imaging unit 8 is 0.538 mm. . That is, in this case, when the head height changes by 300 mm, the size (diameter) of the head image changes by 0.081 mm (13.1%). Thus, in the present embodiment, as the distance from the front focal point of the wide-angle lens system 32 to the subject's head increases, the change (change rate) in the size of the head image becomes smaller.

図8は、頭の像の大きさの変化率を示すグラフである。図8では、対象者の頭の位置が、横軸に示す値から100mm変化した場合の、像の大きさの変化率を示している。この図8から分かるように、広角レンズ系32の前側焦点から対象者の頭の位置までの距離が1000mmから100mm遠ざかった場合、像の大きさの変化率が9.1%と大きいので、仮に頭の大きさが同一であっても、身長差が100mm程度あれば、複数の対象者を身長差に基づいて容易に識別することができる。これに対し、広角レンズ系32の前側焦点から対象者の頭の位置までの距離が2000mmから100mm遠ざかった場合、像の大きさの変化率は4.8%となっている。この場合、上述した広角レンズ系32の前側焦点から対象者の頭の位置までの距離が1000mmから100mm遠ざかった場合に比べれば、像の変化率は小さくなるものの、同一の対象者の姿勢の変化程度であれば、容易に識別することができる。   FIG. 8 is a graph showing the change rate of the size of the head image. FIG. 8 shows the change rate of the image size when the position of the subject's head changes by 100 mm from the value shown on the horizontal axis. As can be seen from FIG. 8, when the distance from the front focal point of the wide-angle lens system 32 to the position of the subject's head is increased from 1000 mm to 100 mm, the change rate of the image size is as large as 9.1%. Even if the head size is the same, if the height difference is about 100 mm, a plurality of subjects can be easily identified based on the height difference. On the other hand, when the distance from the front focal point of the wide-angle lens system 32 to the position of the subject's head is away from 2000 mm to 100 mm, the change rate of the image size is 4.8%. In this case, although the rate of change of the image is smaller than when the distance from the front focal point of the wide-angle lens system 32 described above to the position of the subject's head is 1000 mm to 100 mm, the change in the posture of the same subject is reduced. If so, it can be easily identified.

このように、本実施形態の撮像部8の撮像結果を用いれば、対象者の頭の像の大きさから広角レンズ系32の前側焦点から対象者までの距離を検出することができるので、CPU(3a〜3g)の姿勢判定部62は、この検出結果を用いることで、対象者の姿勢(直立している、中腰である、倒れている)及び姿勢の変化を判別することができる。この点について、図9に基づいて、より詳細に説明する。   As described above, since the distance from the front focal point of the wide-angle lens system 32 to the subject can be detected from the size of the image of the subject's head by using the imaging result of the imaging unit 8 of the present embodiment, the CPU By using this detection result, the posture determination unit 62 (3a to 3g) can determine the posture of the subject (upright, lying in the middle, or lying down) and the change in posture. This point will be described in more detail based on FIG.

図9(a)、図9(b)は、対象者の姿勢に応じた頭の像の大きさの変化を模式的に示す図である。図9(b)に示すように、撮像部8を天井部に設けて、対象者の頭を撮像すると、図9(b)の左側の対象者のように直立している場合には、図9(a)に示すように頭が大きく撮像され、図9(b)の右側の対象者のように倒れている場合には、図9(a)に示すように頭が小さく撮像される。また、図9(b)の中央の対象者のように、中腰の状態にある場合には、頭の像は、立っているときよりも小さく、倒れているときよりも大きい。したがって、本実施形態では、CPU3a〜3gの姿勢判定部62は、撮像部8から送信されてくる画像に基づいて、対象者の頭の像の大きさを検出することで、対象者の状態を判定することができる。この場合、対象者の頭の像から、対象者の姿勢や姿勢の変化を判別しているので、対象者の顔や体全体などを用いた判別を行う場合と比べて、プライバシを保護することができる。   FIG. 9A and FIG. 9B are diagrams schematically showing changes in the size of the head image according to the posture of the subject. As shown in FIG. 9B, when the imaging unit 8 is provided on the ceiling and the head of the subject is imaged, when the subject is standing upright like the subject on the left side of FIG. When the head is imaged large as shown in FIG. 9 (a) and is tilted like the subject on the right side of FIG. 9 (b), the head is imaged small as shown in FIG. 9 (a). In addition, when the subject is in the middle waist as in the center subject in FIG. 9B, the head image is smaller than when standing and larger than when lying down. Therefore, in the present embodiment, the posture determination unit 62 of the CPUs 3a to 3g detects the size of the image of the subject's head based on the image transmitted from the imaging unit 8, thereby changing the state of the subject. Can be determined. In this case, since the posture of the subject and the change in posture are discriminated from the image of the subject's head, privacy is protected compared to the case where discrimination using the subject's face or whole body is performed. Can do.

なお、図7(a)、図7(b)及び図8では、広角レンズ系32の画角の低い位置(広角レンズ系32の真下)に、対象者が存在している場合におけるグラフを示している。すなわち、対象者が広角レンズ系32の周辺画角位置に存在している場合には、対象者との見込み角に応じたディストーションの影響を受けるおそれがある。これについて、詳述する。   7A, 7B, and 8 show graphs in the case where the subject is present at a position where the angle of view of the wide-angle lens system 32 is low (below the wide-angle lens system 32). ing. That is, when the subject is present at the peripheral field angle position of the wide-angle lens system 32, there is a risk of being affected by distortion according to the expected angle with the subject. This will be described in detail.

図10には、対象者の位置に応じた、撮像素子36に撮像される対象者の頭の像の大きさの変化が示されている。なお、撮像素子36の中心は、広角レンズ系32の光軸中心と一致しているものとする。この場合、対象者が直立している場合であっても、撮像部8の直下に立っている場合と、撮像部8から離れて立っている場合では、ディストーションの影響を受けて、撮像部8に撮像される頭の像の大きさが変化する。ここで、図10の位置p1において、頭が撮像された場合、当該撮像結果からは、撮像素子36で撮像された像の大きさ、撮像素子36の中心からの距離L1、撮像素子36の中心からの角度θ1を取得することができる。また、図10の位置P2において、頭が撮像された場合、当該撮像結果からは、撮像素子36で撮像された像の大きさ、撮像素子36の中心からの距離L2、撮像素子36の中心からの角度θ2を取得することができる。なお、距離L1、L2は、広角レンズ系32の前側焦点と、対象者の頭との距離を表すパラメータである。また、撮像素子36の中心からの角度θ1、θ2は、対象者に対する広角レンズ系32の見込み角を表すパラメータである。このような場合において、姿勢判定部62では、撮像素子36の中心からの距離L1、L2、撮像素子36の中心からの角度θ1、θ2に基づいて、撮像した像の大きさを補正する。換言すれば、対象者が同じ姿勢のときに、撮像素子36の位置p1に撮像される像の大きさと、位置p2に撮像される像の大きさとが実質的に等しくなるように補正する。このようにすることで、本実施形態では、撮像部8と対象者との位置関係(対象者までの距離や対象者との見込み角)にかかわらず、対象者の姿勢を精度よく検出することができる。なお、この補正に用いるパラメータ(補正テーブル)は、メモリ64に記憶されているものとする。   FIG. 10 shows a change in the size of the image of the head of the subject imaged by the image sensor 36 in accordance with the position of the subject. It is assumed that the center of the image sensor 36 coincides with the optical axis center of the wide-angle lens system 32. In this case, even when the subject is standing upright, when the subject is standing directly below the imaging unit 8 and when standing away from the imaging unit 8, the imaging unit 8 is affected by distortion. The size of the image of the head imaged changes. Here, when the head is imaged at the position p1 in FIG. 10, the size of the image captured by the image sensor 36, the distance L1 from the center of the image sensor 36, and the center of the image sensor 36 are obtained from the imaging result. Can be obtained. In addition, when the head is imaged at the position P2 in FIG. 10, from the imaging result, the size of the image captured by the image sensor 36, the distance L2 from the center of the image sensor 36, and the center of the image sensor 36 Can be obtained. The distances L1 and L2 are parameters representing the distance between the front focal point of the wide-angle lens system 32 and the subject's head. Further, the angles θ1 and θ2 from the center of the image sensor 36 are parameters representing the expected angle of the wide-angle lens system 32 with respect to the subject. In such a case, the posture determination unit 62 corrects the size of the captured image based on the distances L1 and L2 from the center of the image sensor 36 and the angles θ1 and θ2 from the center of the image sensor 36. In other words, when the subject is in the same posture, the size of the image captured at the position p1 of the image sensor 36 is corrected so as to be substantially equal to the size of the image captured at the position p2. By doing in this way, in this embodiment, regardless of the positional relationship between the imaging unit 8 and the subject (distance to the subject or the prospective angle with the subject), the posture of the subject can be accurately detected. Can do. It is assumed that parameters (correction table) used for this correction are stored in the memory 64.

ところで、撮像部8は、上述した対象者の頭の画像を取得する機能以外に、通常のカメラとしての機能も有している。すなわち、例えば、広角レンズ系32にズームレンズを追加することで、例えば、対象者が床に倒れている場合などにおいて、対象者の目や口を連続して撮像することができる。この場合、処理部18は、パターンマッチング法等を用いて、目が開いているかどうか、あるいは、眼球が動いているかどうかを判定したり、口が動いているかどうか、あるいは口の動きから呼吸をしているかどうかを判定したりすることができる。   By the way, the imaging unit 8 also has a function as a normal camera in addition to the above-described function of acquiring the image of the subject's head. That is, for example, by adding a zoom lens to the wide-angle lens system 32, for example, when the subject falls on the floor, the subject's eyes and mouth can be continuously imaged. In this case, the processing unit 18 uses a pattern matching method or the like to determine whether the eyes are open or whether the eyeball is moving, whether the mouth is moving, or breathing from the movement of the mouth. It can be determined whether or not.

また、撮像部8においては、撮像素子36からの信号の高周波成分を抽出して、当該高周波成分が最大になるレンズ位置を検出して焦点検出を行うコントラストAFを適用することができる。この場合、広角レンズ系32の一部を調整することで、合焦状態で画像を取得することができるようになる。   Further, the imaging unit 8 can apply contrast AF that extracts a high-frequency component of a signal from the image sensor 36, detects a lens position where the high-frequency component is maximized, and performs focus detection. In this case, an image can be acquired in a focused state by adjusting a part of the wide-angle lens system 32.

ここで、撮像部8による撮像間隔は、ホストコンピュータ4の設定部5が設定するものとする。設定部5は、オフィスに多くの人がいる可能性が高い時間帯と、それ以外の時間帯で、撮影の頻度(フレームレート)を変更することができる。例えば、設定部5は、カレンダ部6から取得したカレンダ情報から、現在が、オフィスに多くの人がいる可能性が高い時間帯(例えば午前9時から午後6時まで)であると判断した場合には、1秒に1回静止画を撮像(3万2400枚/日)するようにし、それ以外の時間帯と判定した場合には、5秒に1回静止画を撮像(6480枚/日)するようにする、などの設定をすることができる。   Here, the imaging interval by the imaging unit 8 is set by the setting unit 5 of the host computer 4. The setting unit 5 can change the shooting frequency (frame rate) in a time zone where there is a high possibility that many people are in the office and in other time zones. For example, when the setting unit 5 determines from the calendar information acquired from the calendar unit 6 that it is currently a time zone in which there is a high possibility that there are many people in the office (for example, from 9:00 am to 6:00 pm). In this case, a still image is captured once per second (32,400 images / day). If it is determined that the time is other than that, a still image is captured once every five seconds (6480 images / day). ) Can be set.

また、本実施形態では、画像取得装置2が、焦電センサ12を有しているので、処理部18は、当該焦電センサ12の出力に基づいて、撮像部8による撮像タイミングを制御する。より具体的には、処理部18は、焦電センサ12の出力に基づいて、撮像領域内に人が存在していないと判定される撮像部8の撮像を行わないこととし、焦電センサ12の出力に基づいて、撮像領域内に人が存在していると判定される撮像部8の撮像を開始するようにする。これにより、撮像部8で消費される電力の低減及びフラッシュメモリ16の記録領域の節約が可能となる。なお、フラッシュメモリ16の記録領域の節約という観点からは、撮像された静止画は、フラッシュメモリ16に一時的に保存したのち、例えば1日ごとの撮像データをホストコンピュータ4に転送後、フラッシュメモリ16から消去するようにしてもよい。   In the present embodiment, since the image acquisition device 2 includes the pyroelectric sensor 12, the processing unit 18 controls the imaging timing of the imaging unit 8 based on the output of the pyroelectric sensor 12. More specifically, the processing unit 18 does not perform imaging of the imaging unit 8 that is determined that no person is present in the imaging region based on the output of the pyroelectric sensor 12. On the basis of the output, the imaging of the imaging unit 8 determined to have a person in the imaging area is started. As a result, it is possible to reduce the power consumed by the imaging unit 8 and save the recording area of the flash memory 16. From the viewpoint of saving the recording area of the flash memory 16, the captured still image is temporarily stored in the flash memory 16, and then, for example, the captured image data for each day is transferred to the host computer 4, and then the flash memory You may make it erase from 16.

また、本実施形態では、画像取得装置2が照度計10を備えているので、処理部18は、例えば、撮像部8が静止画を撮像する際の撮像時間やISO感度などを、照度計10が検出した照度に基づいて決定する。この場合、例えば、オフィス内が暗い場合には、ISO感度を上げるとともに撮像時間を長くすればよい。また、停電などによりオフィスの照明を一切使用することができない場合には、CPU(3a〜3g)又はホストコンピュータ4が画像取得装置2の電源を一次電源から二次電池17に切り替えた後、処理部18において、LED11によりオフィスを照明し、その状態で撮像部8を用いた撮像を行うこととしてもよい。また、この場合には、処理部18は、前述した焦電センサ12により対象者の位置を確認し、当該位置に照明光を照射できるようにLED11の照明方向を調整するようにしてもよい。かかる場合には、対象者を効率良く照明した状態で、撮像することができる。なお、LED11は天井に設けてもよいし、オフィスの任意の位置に設けてもよい、また、LEDに代えて、他の光源を用いることとしてもよい。   In the present embodiment, since the image acquisition device 2 includes the illuminometer 10, the processing unit 18 uses, for example, the illuminometer 10 to determine the imaging time and ISO sensitivity when the imaging unit 8 captures a still image. Is determined based on the detected illuminance. In this case, for example, when the office is dark, the ISO sensitivity may be increased and the imaging time may be increased. If the office lighting cannot be used at all due to a power failure or the like, the CPU (3a to 3g) or the host computer 4 switches the power supply of the image acquisition device 2 from the primary power supply to the secondary battery 17, and then performs processing. The unit 18 may illuminate the office with the LED 11 and perform imaging using the imaging unit 8 in that state. In this case, the processing unit 18 may confirm the position of the subject by the pyroelectric sensor 12 described above, and may adjust the illumination direction of the LED 11 so that illumination light can be emitted to the position. In such a case, it is possible to take an image while the target person is efficiently illuminated. The LED 11 may be provided on the ceiling, may be provided at an arbitrary position in the office, or another light source may be used instead of the LED.

更に、対象者を撮像する際の静止画は、対象者の異常が検出できる程度の画像が要求されているだけであり、通常鑑賞する静止画とは異なる。このため、暗い状況での撮影の際には、広角レンズ系32内に配置された赤外カットフィルタを不図示の退避機構により退避させて光量を確保するようにしてもよい。   Furthermore, the still image when the subject is imaged only requires an image that can detect the abnormality of the subject, and is different from the still image that is normally viewed. For this reason, at the time of shooting in a dark situation, the infrared cut filter disposed in the wide-angle lens system 32 may be retracted by a retracting mechanism (not shown) to secure the light quantity.

次に、上記のように構成される誘導装置100による処理について説明する。   Next, processing by the guidance device 100 configured as described above will be described.

(通常時(非災害時)の処理)
まず、通常時、すなわち非災害時における処理について、説明する。
(Normal (non-disaster) processing)
First, the processing at the normal time, that is, at the time of non-disaster will be described.

(1)入場処理
以下、対象者がオフィスビル200内に入るときの入場処理について説明する。ホストコンピュータ4の入場処理部58は、オフィスビル200の入り口(前述のように1階にある)に設けられた画像取得装置2(撮像部8)を制御して、入り口付近で直立した状態の入場者の頭の撮影を行う。また、ホストコンピュータ4は、読取装置20を用いて、入場者の保有する従業員証(IDカード)から、入場者の個人情報を取得する。これにより、入場者の個人情報(個人IDなど)と、直立時の頭の像の大きさ(当該直立時の頭の像の大きさは、身長との関係から、頭の大きさそのものを表すともいえる)と、身長とを関連付けたデータを取得することができる(図11参照)。なお、身長については、個人情報に予め紐付けられていてもよいし、上記頭の撮影の際に、別の撮像装置や距離センサなどを用いて検出することとしてもよい。後者の方法を用いれば、入場者がゲストであっても、身長を取得することができる。なお、別の撮像装置としては、対象者を水平方向から撮影する撮像装置を採用することができる。当該別の撮像装置と対象者との距離が常に一定な状態で撮像されていれば、当該撮像結果から対象者の身長を算出することができる。また、距離センサとしてはレーザレンジファインダ等を用いることができる。
(1) Entrance Process Hereinafter, the entrance process when the subject enters the office building 200 will be described. The admission processing unit 58 of the host computer 4 controls the image acquisition device 2 (imaging unit 8) provided at the entrance of the office building 200 (on the first floor as described above), and is in an upright state near the entrance. Take a picture of the head of the visitors. In addition, the host computer 4 uses the reading device 20 to acquire the personal information of the visitors from the employee ID card (ID card) held by the visitors. As a result, the personal information (personal ID, etc.) of the visitors and the size of the head image when standing upright (the size of the head image when standing upright represents the size of the head itself in relation to height. It is also possible to acquire data in which the height is associated (see FIG. 11). The height may be associated with personal information in advance, or may be detected using another imaging device, a distance sensor, or the like when photographing the head. If the latter method is used, the height can be acquired even if the visitor is a guest. As another imaging apparatus, an imaging apparatus that photographs the subject from the horizontal direction can be employed. If the distance between the other imaging device and the subject is always taken in a constant state, the height of the subject can be calculated from the imaging result. A laser range finder or the like can be used as the distance sensor.

また、入場処理部58は、対象者の頭の画像を内部メモリに格納し、当該画像ファイルのファイル名を、図11のデータに頭画像として登録する。   Further, the entrance processing unit 58 stores the head image of the subject in the internal memory, and registers the file name of the image file as the head image in the data of FIG.

なお、本実施形態では、入場者が直立した状態での身長と、頭の像の大きさとが対応付けられていることから(図11参照)、CPU3a〜3gの追跡部61では、入場者を追跡するための情報として、図7(b)のようなグラフを、各入場者ごとに用意することができる。なお、図7(b)のグラフは、図11の上から2番目の入場者(IDが1786033の入場者)の追跡に用いるグラフである。なお、その他の入場者に対しては、身長と頭の像の大きさとの関係に適合したグラフが用意されることになる。   In the present embodiment, since the height of the attendant in an upright state is associated with the size of the head image (see FIG. 11), the tracking unit 61 of the CPUs 3a to 3g selects the attendant. As information for tracking, a graph as shown in FIG. 7B can be prepared for each visitor. Note that the graph of FIG. 7B is a graph used for tracking the second visitor from the top of FIG. 11 (the visitor whose ID is 1786033). For other visitors, a graph suitable for the relationship between the height and the size of the head image is prepared.

(2)1階における対象者の追跡処理
次に、対象者(入場処理が行われた入場者)がオフィスビル200内に入った後における、1階での対象者の追跡処理について説明する。ここでは、ホストコンピュータ4の制御の下、CPU3aの追跡部61が、対象者の追跡を行う。
(2) Tracking process of the target person on the first floor Next, the tracking process of the target person on the first floor after the target person (the attendee who has performed the entrance process) enters the office building 200 will be described. Here, under the control of the host computer 4, the tracking unit 61 of the CPU 3a tracks the subject.

図12には、一例として、オフィスビル200内の1つの区画43と、当該区画43内に設けられた画像取得装置2の撮像部8の撮像領域と、の関係を模式的に示す図である。なお、図1においては、撮像部8が1つの区画43に9つ設けられている場合について説明したが、ここでは、説明の便宜上、1つの区画43内に4つの撮像部8(撮像領域P1,P2,P3,P4のみが図示されている)が設けられているものとする。また、1つの区画が256m2(16m×16m)であるものとする。更に、撮像領域P1〜P4それぞれは円形領域であるものとし、X方向及びY方向において隣接する撮像領域と重複(オーバラップ)した状態となっている。なお、図12では、説明の便宜上、1つの区画を4分割した分割部分(撮像領域P1〜P4それぞれに対応)を分割部分A1〜A4として示している。この場合、広角レンズ系32の画角が80°、焦点距離6.188mmとし、天井の高さを2.6m、対象者の身長を1.6mとすると、広角レンズ系32の真下を中心に半径5.67mの円内(約100m)が撮像領域となる。すなわち、分割部分A1〜A4は64m2となるので、各分割部分A1〜A4を、各撮像部8の撮像領域P1〜P4に含めることができるとともに、各撮像部8の撮像領域の一部を重複させることが可能となる。 FIG. 12 is a diagram schematically showing, as an example, the relationship between one section 43 in the office building 200 and the imaging area of the imaging unit 8 of the image acquisition device 2 provided in the section 43. . In FIG. 1, the case where nine imaging units 8 are provided in one section 43 has been described, but here, for convenience of explanation, four imaging units 8 (imaging regions P <b> 1) in one section 43. , P2, P3, and P4 are shown). One section is assumed to be 256 m 2 (16 m × 16 m). Further, each of the imaging areas P1 to P4 is assumed to be a circular area, and is overlapped (overlapped) with adjacent imaging areas in the X direction and the Y direction. In FIG. 12, for convenience of explanation, a divided portion obtained by dividing one section into four (corresponding to the imaging regions P1 to P4) is shown as divided portions A1 to A4. In this case, assuming that the angle of view of the wide-angle lens system 32 is 80 °, the focal length is 6.188 mm, the height of the ceiling is 2.6 m, and the height of the subject is 1.6 m, centering directly below the wide-angle lens system 32. The inside of a circle having a radius of 5.67 m (about 100 m 2 ) is an imaging region. That is, since the divided portions A1 to A4 are 64 m 2 , the divided portions A1 to A4 can be included in the imaging regions P1 to P4 of each imaging unit 8 and a part of the imaging region of each imaging unit 8 is included. It is possible to overlap.

図12は物体側から見た撮像領域P1〜P4の重複(オーバラップ)の概念を示したが、撮像領域P1〜P4は広角レンズ系32に光が入射する領域であり、この広角レンズ系32に入射した光の全てが矩形の撮像素子36に入射するものではない。このため、本実施の形態においては、隣接する複数の撮像素子36の撮像領域P1〜P4が重複(オーバラップ)するように撮像部8をオフィスに設置すればよい。具体的には、撮像部8にその取り付けを調整するような調整部(例えば長穴や、大き目の調整穴、撮像位置を調整するシフト光学系)を設け、それぞれの撮像素子36が撮像した映像を目しで確認しながら重複(オーバラップ)を調整して、それぞれの撮像部8の取り付け位置を決めるようにすればよい。なお、例えば、図12に示す分割部分A1と撮像素子36の撮像領域とが一致していた場合には、それぞれの撮像部8にて撮像した画像が重複することなく、ぴったりと合うことになる。しかしながら、複数の撮像部8をそれぞれ取り付ける際の自由度や、天井の梁などで取り付け高さが異なる場合を考えると、前述のように複数の撮像素子36の撮像領域P1〜P4を重複(オーバラップ)させるのが好ましい。   FIG. 12 shows the concept of overlapping (overlap) of the imaging regions P1 to P4 as viewed from the object side. The imaging regions P1 to P4 are regions where light is incident on the wide-angle lens system 32, and this wide-angle lens system 32. Not all of the light incident on the light enters the rectangular image sensor 36. Therefore, in the present embodiment, the imaging unit 8 may be installed in the office so that the imaging areas P1 to P4 of the plurality of adjacent imaging elements 36 overlap (overlap). Specifically, an adjustment unit (for example, a long hole, a large adjustment hole, or a shift optical system that adjusts the imaging position) that adjusts the attachment of the imaging unit 8 is provided, and images captured by the respective imaging elements 36. The overlap (overlap) may be adjusted while confirming with the eye, and the mounting position of each imaging unit 8 may be determined. For example, when the divided portion A1 shown in FIG. 12 and the imaging area of the imaging device 36 match, the images captured by the respective imaging units 8 do not overlap each other and are exactly matched. . However, considering the degree of freedom in attaching the plurality of imaging units 8 and the case where the installation height differs depending on the ceiling beam, the imaging regions P1 to P4 of the plurality of imaging elements 36 are overlapped (over) as described above. It is preferable to wrap).

なお、重複量は、人の頭の大きさに基づいて設定することができる。この場合、例えば、頭の外周を60cmとすれば、重複する領域に直径約20cmの円形が含まれるようにすればよい。なお、頭の一部が重複する領域に含まれればよいという設定の下では、例えば、直径約10cmの円形が含まれるようにすればよい。重複する量をこの程度に設定すれば、撮像部8を天井に取り付ける際の調整も楽になり、場合によっては調整なしでも複数の撮像部8の撮像領域を重複させることも可能である。   The overlap amount can be set based on the size of the person's head. In this case, for example, if the outer periphery of the head is 60 cm, a circle having a diameter of about 20 cm may be included in the overlapping region. In addition, under the setting that only a part of the head needs to be included in the overlapping region, for example, a circle having a diameter of about 10 cm may be included. If the overlapping amount is set to this level, the adjustment when the imaging unit 8 is attached to the ceiling is facilitated. In some cases, the imaging regions of the plurality of imaging units 8 can be overlapped without adjustment.

以下、図12の1つの区画43内において4人の対象者(対象者A,B,C,Dとする)が移動する場合の追跡処理について、図13、図14に基づいて説明する。なお、各対象者については、オフィスビル200への入場後から継続して追跡しているため、各対象者の頭が、誰の頭であるかをCPU3aは把握できているものとする。   Hereinafter, a tracking process when four subjects (subjects A, B, C, and D) move within one section 43 in FIG. 12 will be described with reference to FIGS. 13 and 14. Since each subject is continuously tracked after entering the office building 200, it is assumed that the CPU 3a knows who the head of each subject is.

図13(a)には、時刻T1における状態が示されている。なお、図13(b)〜図14(c)には、時刻T1以降(時刻T2〜T5)における状態が示されている。   FIG. 13A shows the state at time T1. FIGS. 13B to 14C show states after time T1 (time T2 to T5).

時刻T1においては、分割部分A1に対象者C、分割部分A3に対象者A,Bが存在している。この場合、撮像領域P1を有する撮像部8が対象者Cの頭を撮像し、撮像領域P3を有する撮像部8が対象者A,Bの頭を撮像している。   At time T1, the subject person C exists in the divided portion A1, and the subjects A and B exist in the divided portion A3. In this case, the imaging unit 8 having the imaging region P1 images the head of the subject C, and the imaging unit 8 having the imaging region P3 images the heads of the subjects A and B.

次いで、時刻T2においては、撮像領域P1を有する撮像部8が対象者B,Cの頭を撮像し、撮像領域P3を有する撮像部8が対象者A,Bの頭を撮像している。   Next, at time T2, the imaging unit 8 having the imaging region P1 images the heads of the subjects B and C, and the imaging unit 8 having the imaging region P3 images the heads of the subjects A and B.

この場合、CPU3aの追跡部61は、時刻T1、T2における各撮像部8の撮像結果から、対象者A、Cが、図13(b)の左右方向に移動し、対象者Bが図13(b)の上下方向に移動していることを認識する。なお、対象者Bが時刻T2において2つの撮像部8に撮像されているのは、対象者Bが2つの撮像部8の撮像領域が重複する部分に存在しているからである。   In this case, the tracking unit 61 of the CPU 3a moves the subjects A and C from the imaging results of the imaging units 8 at times T1 and T2 in the horizontal direction of FIG. It recognizes that it is moving up and down in b). The reason why the subject B is captured by the two imaging units 8 at time T2 is that the subject B exists in a portion where the imaging regions of the two imaging units 8 overlap.

次いで、時刻T3においては、撮像領域P1を有する撮像部8が対象者B,Cの頭を撮像し、撮像領域P2を有する撮像部8が対象者Cの頭を撮像し、撮像領域P3を有する撮像部8が対象者Aの頭を撮像し、撮像領域P4を有する撮像部8が対象者A,Dの頭を撮像している。   Next, at time T3, the imaging unit 8 having the imaging region P1 images the heads of the subjects B and C, and the imaging unit 8 having the imaging region P2 images the head of the subject C and has the imaging region P3. The imaging unit 8 images the subject A's head, and the imaging unit 8 having the imaging region P4 images the subjects A and D's head.

この場合、追跡部61は、時刻T3において、対象者Aが分割部分A3と分割部分A4との境界にいる(分割部分A3から分割部分A4に移動中である)ことを認識し、対象者Bが分割部分A1にいることを認識し、対象者Cが分割部分A1と分割部分A2との境界にいる(分割部分A1からA2に移動中である)ことを認識し、対象者Dが分割部分A4にいることを認識する。   In this case, the tracking unit 61 recognizes that the subject A is at the boundary between the divided portion A3 and the divided portion A4 (moving from the divided portion A3 to the divided portion A4) at time T3, and the subject B Recognizes that the user is in the divided part A1, recognizes that the subject C is at the boundary between the divided part A1 and the divided part A2 (moving from the divided part A1 to A2), and the subject D is the divided part. Recognize being at A4.

同様に、追跡部61は、時刻T4において、対象者Aが分割部分A4、対象者Bが分割部分A1、対象者Cが分割部分A2、対象者Dが分割部分A2とA4の間にいることを認識する。また、追跡部61は、時刻T5において、対象者Aが分割部分A4、対象者Bが分割部分A1、対象者Cが分割部分A2、対象者Dが分割部分A2の間にいることを認識する。   Similarly, at time T4, the tracking unit 61 indicates that the subject A is in the divided portion A4, the subject B is in the divided portion A1, the subject C is in the divided portion A2, and the subject D is between the divided portions A2 and A4. Recognize In addition, at time T5, the tracking unit 61 recognizes that the target person A is between the split part A4, the target person B is between the split part A1, the target person C is between the split part A2, and the target person D is between the split part A2. .

本実施形態では、上述のように複数の撮像部8の撮像領域の一部を重複させているので、追跡部61は、対象者の位置および移動方向を認識することができる。このように、本実施形態では、追跡部61は、1階において各対象者を継続的に高精度に追跡することが可能となっている。なお、追跡部61は、追跡している対象者の数から、オフィスビル200の1階にいる対象者の人数を把握することもできる。   In the present embodiment, as described above, since a part of the imaging regions of the plurality of imaging units 8 is overlapped, the tracking unit 61 can recognize the position and moving direction of the subject. Thus, in the present embodiment, the tracking unit 61 can continuously track each target person on the first floor with high accuracy. The tracking unit 61 can also grasp the number of subjects on the first floor of the office building 200 from the number of subjects being tracked.

なお、このような対象者の継続的な追跡において、頭の像の大きさが変化した場合には、姿勢判定部62において、頭の像の大きさと、図7(b)のデータ(各対象者に対応付けられているデータ)とを用いて、対象者の姿勢(倒れている、中腰になっている、直立である、など)を判定することができる。   When the size of the head image changes in such continuous tracking of the subject, the posture determination unit 62 determines the size of the head image and the data shown in FIG. Data) associated with the person) can be used to determine the posture of the subject (falling, lying in the middle, standing upright, etc.).

また、処理部18は、撮像領域の一部が重複する撮像部8それぞれの撮像結果を用いて、撮像領域の一部が重複する撮像部8間の較正(キャリブレーション)を行うこととしてもよい。すなわち、処理部18は、撮像領域の一部が重複する2つの撮像部において、同一の対象者の頭が撮像されている場合に、頭の像の大きさが異なっていても、それらの大きさが一致するように、少なくとも一方の撮像部の撮像結果を較正することとする。これにより、撮像部間の撮像誤差の影響を抑制することが可能である。   The processing unit 18 may perform calibration (calibration) between the imaging units 8 with a part of the imaging region using the imaging results of the imaging units 8 with a part of the imaging region overlapping. . That is, when the same subject's head is imaged in two imaging units in which a part of the imaging region overlaps, the processing unit 18 is different even if the size of the head image is different. The imaging results of at least one of the imaging units are calibrated so that they match. Thereby, it is possible to suppress the influence of the imaging error between the imaging units.

(3)エレベータEVにおける対象者の追跡処理
次に、エレベータEVにおける対象者の追跡方法について図15、図16を用いて説明する。
(3) Target Person Tracking Process in Elevator EV Next, a target person tracking method in the elevator EV will be described with reference to FIGS. 15 and 16.

対象者がエレベータEVによりフロア間を移動する場合には、CPU3gの追跡部61と、CPU3a〜3fの追跡部61とにより、対象者の追跡が行われる。   When the subject moves between floors by the elevator EV, the subject is tracked by the tracking unit 61 of the CPU 3g and the tracking unit 61 of the CPUs 3a to 3f.

ここでは、一例として、図15(a)に示すように、1階で5人(対象者A〜E)がエレベータEVに乗り、図15(b)に示すように、エレベータEVが2階をそのまま通過し、図15(c)に示すように、3階でエレベータEVが停止するものとする。そして、図15(d)に示すように、3階で、エレベータEVから3人(対象者A〜C)が降りるとともに、2人(対象者F、G)が乗り、図16(a)に示すように、エレベータEVが4階をそのまま通過し、図16(b)に示すように、5階で2人(対象者D、E)がエレベータEVから降りたものとする。そして、図16(c)に示すように、6階で残りの2人(対象者F,G)がエレベータから降りたものとする。   Here, as an example, as shown in FIG. 15A, five people (subjects A to E) ride on the elevator EV on the first floor, and the elevator EV moves on the second floor as shown in FIG. 15B. It is assumed that the elevator EV stops on the third floor as shown in FIG. 15 (c). Then, as shown in FIG. 15 (d), on the third floor, three people (subjects A to C) get off from the elevator EV, and two people (subjects F and G) get on, as shown in FIG. 16 (a). As shown, it is assumed that the elevator EV passes through the fourth floor as it is, and two persons (subjects D and E) get off the elevator EV on the fifth floor as shown in FIG. Then, as shown in FIG. 16 (c), it is assumed that the remaining two persons (subjects F and G) get off the elevator on the sixth floor.

このような場合、エレベータEVの天井に設けられた撮像部8は、1階から乗った5人の頭を撮像し、この撮像結果を1階の第1CPU3aの追跡部61と、エレベータ用CPU3gの追跡部61に対して出力する。なお、第1CPU3aの追跡部61への出力は、エレベータ用CPU3gの通信部63を介して行われる。この場合、第1CPU3aの追跡部61は、1階のエレベータホール41でエレベータEVを待っていた対象者を撮像した結果と、エレベータEV内の撮像部8による撮像結果とから、対象者A〜Eが1階からエレベータEVに乗って移動し始めたことを認識する。   In such a case, the imaging unit 8 provided on the ceiling of the elevator EV images the heads of five people riding from the first floor, and the imaging results of the tracking unit 61 of the first CPU 3a on the first floor and the elevator CPU 3g. Output to the tracking unit 61. In addition, the output to the tracking part 61 of 1st CPU3a is performed via the communication part 63 of CPU3g for elevators. In this case, the tracking unit 61 of the first CPU 3a uses the subjects A to E based on the results of imaging the subject who has been waiting for the elevator EV in the elevator hall 41 on the first floor and the imaging results of the imaging unit 8 in the elevator EV. Recognizes that it has started to move on the elevator EV from the first floor.

なお、これに限らず、上記に代えて、1階の第1CPU3aの追跡部61は、1階のエレベータホールに存在している撮像部8が撮像した撮像結果において、対象者A〜Eの頭の画像を取得できなくなったことに基づいて、対象者A〜EがエレベータEVに乗って移動を開始したことを認識するようにしてもよい。   In addition to this, instead of the above, the tracking unit 61 of the first CPU 3a on the first floor has the heads of the subjects A to E in the imaging results captured by the imaging unit 8 present in the elevator hall on the first floor. It may be made to recognize that subjects A to E started moving on the elevator EV based on the fact that it is no longer possible to acquire the image.

1階の第1CPU3aの追跡部61は、上記のようにして認識した結果を、エレベータ用CPU3gの追跡部61に対して送信する。エレベータ用CPU3gは、1階の第1CPU3aの追跡部61の認識結果から、エレベータに乗った人が対象者A〜Eであることを認識することができる。   The tracking unit 61 of the first CPU 3a on the first floor transmits the result recognized as described above to the tracking unit 61 of the elevator CPU 3g. The elevator CPU 3g can recognize from the recognition result of the tracking unit 61 of the first CPU 3a on the first floor that the person on the elevator is the target person A to E.

また、図15(d)に示す状況では、エレベータが3階に停止した後、3階の第3CPU3cの追跡部61と、エレベータ用CPU3gの追跡部61とが、エレベータEVの開閉前後の撮像結果を互いに受け渡す。すなわち、第3CPU3cの追跡部61において、対象者F,Gの頭の画像が認識できなくなった一方で、その直後に、エレベータ用CPU3gの追跡部61において対象者F,Gの頭の画像が出力されたことをもって、エレベータ用CPU3gの追跡部61は、対象者F,Gが3階からエレベータに乗ってきたことを認識する。一方、第3CPU3cの追跡部61は、対象者A〜Cの頭の画像を新たに認識できるようになるが、この時点では、認識している頭が誰の頭なのかを認識することができない。しかるに、エレベータ用CPU3gの追跡部61は、エレベータEV内で対象者A〜Cの頭の画像が撮像できなくなったときに、対象者A〜Cの頭の画像を3階の第3CPU3cの追跡部61に出力することで、第3CPU3cは、エレベータ用CPU3gから入力された対象者A〜Cの頭の画像と、3階のエレベータホールに設けられた撮像部8が撮像した画像とのパターンマッチング処理により、エレベータEVから3階に降りた人が対象者A〜Cであることを認識する。なお、エレベータ用CPU3gの追跡部61は、エレベータが3階に停止して、扉が開く前の画像を第3CPU3cの追跡部61に対して出力するようにしてもよい。これにより、第3CPU3cの追跡部61は、エレベータEVから3階に降りた人が対象者A〜Cであることを、より短時間で認識することが可能となる。   15D, after the elevator stops on the third floor, the tracking unit 61 of the third CPU 3c on the third floor and the tracking unit 61 of the elevator CPU 3g perform imaging results before and after opening and closing of the elevator EV. Pass each other. That is, while the tracking unit 61 of the third CPU 3c can no longer recognize the head images of the subjects F and G, immediately after that, the tracking unit 61 of the elevator CPU 3g outputs the images of the heads of the subjects F and G. As a result, the tracking unit 61 of the elevator CPU 3g recognizes that the target persons F and G have entered the elevator from the third floor. On the other hand, the tracking unit 61 of the third CPU 3c can newly recognize the images of the heads of the subjects A to C, but at this point of time, it cannot recognize who the recognized head is. . Accordingly, when the tracking unit 61 of the elevator CPU 3g cannot capture the images of the heads of the subjects A to C in the elevator EV, the tracking unit of the third CPU 3c on the third floor captures the images of the heads of the subjects A to C. By outputting to 61, the third CPU 3c performs pattern matching processing between the images of the heads of the subjects A to C input from the elevator CPU 3g and the images captured by the imaging unit 8 provided in the elevator hall on the third floor. Thus, it is recognized that the person who got down to the third floor from the elevator EV is the target person A to C. The tracking unit 61 of the elevator CPU 3g may output an image before the elevator stops on the third floor and the door is opened to the tracking unit 61 of the third CPU 3c. Thereby, the tracking unit 61 of the third CPU 3c can recognize in a shorter time that the person who has descended from the elevator EV to the third floor is the target person A to C.

なお、図16(b)や、図16(c)の場合も、上記と同様に、各階のCPUの追跡部61とエレベータEVのCPUの追跡部61との間で情報をやり取りする。以上のような処理を行うことで、エレベータEVで移動する人の追跡を行うことができる。   16B and 16C, information is exchanged between the CPU tracking unit 61 of each floor and the CPU tracking unit 61 of the elevator EV in the same manner as described above. By performing the processing as described above, it is possible to track a person who moves with the elevator EV.

なお、エレベータEV及びエレベータホール41に設けられた画像取得装置2では、入場時に取得した頭の画像とのパターンマッチングにより、対象者のエレベータの昇降を監視することとしてもよい。   In addition, in the image acquisition apparatus 2 provided in the elevator EV and the elevator hall 41, it is good also as monitoring raising / lowering of a subject's elevator by pattern matching with the head image acquired at the time of entrance.

また、上記においては、エレベータEVの乗り降りを行った対象者を、頭の画像から認識することとしているが、これに限らず、頭の像の大きさから、対象者を認識することとしてもよい。この認識方法は、エレベータEVに乗っている対象者の、直立時における頭の像の大きさの差異が大きい場合に、特に効果的である。   In the above description, the target person who gets on and off the elevator EV is recognized from the head image. However, the present invention is not limited to this, and the target person may be recognized from the size of the head image. . This recognition method is particularly effective when there is a large difference in the size of the head image of the subject riding on the elevator EV when standing upright.

(4)階段での対象者の追跡処理
階段24での追跡は、基本的には、1階での対象者の追跡処理と同様の方法が用いられる。しかるに、階段のように高さ方向(Z方向)に段差がある場合には、直立しているにもかかわらず、対象者が階段のどの位置(段)にいるかに応じて、撮像した頭の像の大きさが変わる。このため、単に対象者の頭の像を取得して、これに基づいて対象者の姿勢を認識するのでは、対象者の見失いが生じたり、対象者の姿勢や姿勢変化を正しく認識できなかったりするおそれがある。
(4) Tracking process of the subject on the stairs For the tracking on the stairs 24, basically the same method as the tracking process of the target person on the first floor is used. However, if there is a step in the height direction (Z direction) like a staircase, the head of the imaged image will depend on where the subject is on the staircase, even though it is standing upright. The size of the image changes. For this reason, simply acquiring an image of the subject's head and recognizing the posture of the subject based on the image may result in the loss of the subject's posture or inability to correctly recognize the posture or posture change of the subject. There is a risk.

そこで、本実施形態においては、階段に設けられた画像取得装置2のフラッシュメモリ16に階段の段差情報と、撮像部8の撮像素子の撮像位置とを対応させて記憶しておく。例えば、フラッシュメモリ16には、撮像部8において撮像される各段のXY平面内における位置と、当該位置における高さとを対応付けたデータを記憶しておく。具体的には、フラッシュメモリ16には、1段目の階段のXY平面内の位置に対し、階段の0段目からの高さ(例えば170mm)を対応付け、2段目の階段のXY平面内の位置に対し、階段の2段目からの高さ(例えば340mm)を対応付け、…というデータが記憶しておく。   Therefore, in the present embodiment, the step information of the stairs and the imaging position of the imaging element of the imaging unit 8 are stored in correspondence with each other in the flash memory 16 of the image acquisition device 2 provided on the stairs. For example, the flash memory 16 stores data in which the position in the XY plane of each stage captured by the imaging unit 8 is associated with the height at the position. Specifically, the flash memory 16 associates the height from the 0th step of the staircase (for example, 170 mm) with the position in the XY plane of the first step staircase in the XY plane of the second step staircase. The height from the second step of the stairs (for example, 340 mm) is associated with the position in the table, and data such as.

これにより、各CPUの処理部18では、対象者が存在している階段の位置(XY位置)及び階段の高さを考慮して、対象者の姿勢を検出することができるので、対象者の姿勢を高精度に検出することが可能となる。   Accordingly, the processing unit 18 of each CPU can detect the posture of the target person in consideration of the position (XY position) of the stairs where the target person exists and the height of the stairs. The posture can be detected with high accuracy.

なお、階段は、幅は狭いものの段差があるため、階段に設ける撮像部8の広角レンズ系32を、階段用の広角レンズ系に変更することとしてもよい。この場合の広角レンズ系の基本構成としては、上記と同一の構成(3群構成)及び同一のレンズ枚数を採用することができるが、1階から2階まで高さの差(3500mm〜4000mm程度)を考慮して、焦点距離を変更することとする(例えば9mmとする)。このようにすることで、高精度な対象者の追跡を行うことができる。なお、階段用の画像取得装置2の取り付け数は、階段の高さや、踊り場の位置などに応じて適宜選択することができる。   Since the staircase is narrow but has a step, the wide-angle lens system 32 of the imaging unit 8 provided on the staircase may be changed to a wide-angle lens system for staircases. As the basic configuration of the wide-angle lens system in this case, the same configuration (three-group configuration) and the same number of lenses as described above can be adopted, but the difference in height from the first floor to the second floor (about 3500 mm to 4000 mm). ) To change the focal length (for example, 9 mm). By doing in this way, it is possible to track the target person with high accuracy. Note that the number of the image acquisition devices 2 for the stairs can be appropriately selected according to the height of the stairs, the position of the landing, and the like.

(5)2階〜6階での対象者の追跡処理
2階〜6階においては、上述した1階での追跡処理と同様の処理が行われる。この場合、エレベータや階段での追跡処理の結果を用いて、対象者を継続的に追跡する。
(5) Target person tracking process on the second to sixth floors On the second to sixth floors, the same process as the tracking process on the first floor described above is performed. In this case, the target person is continuously tracked using the result of the tracking process at the elevator or the stairs.

(6)対象者の姿勢に基づく、異常判定
処理部18は、通常、対象者を追跡している間に、当該対象者が倒れた状態が所定時間継続した場合(姿勢判定部62において判断)に、対象者に異常が生じていると判定する。なお、処理部18は、CPU3a〜3gの姿勢判定部62から、対象者が倒れた状態となった時刻、及び当該状態が継続している時間を取得することができる。
(6) Abnormality determination based on the posture of the subject When the processing unit 18 normally tracks the subject, the state in which the subject falls down continues for a predetermined time (determined by the posture judgment unit 62). Then, it is determined that an abnormality has occurred in the subject. In addition, the process part 18 can acquire the time when the subject fell into the state which fell down from the attitude | position determination part 62 of CPU3a-3g, and the time when the said state is continuing.

しかるに、オフィスにおいては、対象者が着席した状態で業務を長時間行うこともある。これに対応するため、例えば、対象者が椅子に座った際の頭の像の大きさをフラッシュメモリ16に記憶しておき、処理部18では、頭の像の大きさが椅子に座ったときの大きさで長時間維持されている場合に、椅子に座った状態が続いているため異常ではないと判定することとする。この場合、フラッシュメモリ16には机が配置されている位置情報(XY位置情報)と、撮像素子36の撮像位置と、を対応させて、記憶させてもよい。これにより、より高精度に異常判定を行うことが可能となる。   However, in the office, the business may be performed for a long time with the subject seated. In order to cope with this, for example, the size of the image of the head when the subject is sitting on the chair is stored in the flash memory 16, and the processing unit 18 determines that the size of the image of the head is sitting on the chair. When it is maintained for a long time at the size of, it is determined that there is no abnormality because the sitting state in the chair continues. In this case, the flash memory 16 may store the position information (XY position information) where the desk is arranged and the image pickup position of the image pickup device 36 in association with each other. This makes it possible to perform abnormality determination with higher accuracy.

(7)対象者の有無に基づく撮像部8の撮像タイミング制御
前述のように、焦電センサ12を用いた、撮影タイミングの制御を行える一方で、隣接する撮像領域が重複していることを利用して、撮像タイミングを制御することもできる。
(7) Imaging timing control of the imaging unit 8 based on the presence / absence of the target person As described above, the imaging timing control using the pyroelectric sensor 12 can be performed, but the adjacent imaging areas are overlapped. Thus, the imaging timing can also be controlled.

例えば、各CPU3a〜3gの処理部18は、オフィスにいる人が少ない場合に、ある撮像部8の重複する領域で人の頭が撮像されたことをトリガーにして、その重複する領域に対応する他の撮像部8による撮像を開始するようにする。このようにすることで、撮像領域内に人がいない場合に、撮像を停止(撮像部8への電力供給を停止)することができるので、消費電力の低減等を図ることが可能となる。また、焦電センサ12を省略することもできる。   For example, when there are few people in the office, the processing unit 18 of each of the CPUs 3a to 3g triggers that a person's head is imaged in an overlapping area of a certain imaging unit 8 and corresponds to the overlapping area. Imaging by another imaging unit 8 is started. By doing in this way, when there is no person in the imaging area, imaging can be stopped (power supply to the imaging unit 8 is stopped), so that power consumption can be reduced. Further, the pyroelectric sensor 12 can be omitted.

また、複数の撮像部8の撮像領域の一部を重複させることは、階段に設けられた複数の撮像部8においても採用されるものであるので、階段近傍の撮像部8と、階段に設けられた撮像部8との間で上記のような制御を行うこととしてもよい。これにより、階段に設けられた撮像部8においても省電力化を図ることが可能となる。この場合、階段が非常階段であれば、通常時には然程使用されるものではないので、省電力化が特に有効である。   In addition, since overlapping a part of the imaging areas of the plurality of imaging units 8 is also adopted in the plurality of imaging units 8 provided on the stairs, the imaging units 8 provided near the stairs and the stairs are provided. The above-described control may be performed with the imaging unit 8 that has been provided. Thereby, power saving can be achieved also in the imaging unit 8 provided on the stairs. In this case, if the staircase is an emergency staircase, it is not so often used in normal times, so power saving is particularly effective.

(災害(火災)発生時の処理)
災害(火災)が発生した時には、上述したような通常時の処理に加え、以下のような処理を行う。本実施形態では、図17に示すように、オフィスビル200の2階+Y端の区画で火災が発生したものとする。なお、ここでは、説明の簡単のため、オフィスビル200の1階〜3階のみを図示している。
(Processing when a disaster (fire) occurs)
When a disaster (fire) occurs, in addition to the normal processing as described above, the following processing is performed. In the present embodiment, as shown in FIG. 17, it is assumed that a fire has occurred in a section on the second floor + Y end of the office building 200. Here, only the first to third floors of the office building 200 are shown for the sake of simplicity.

この場合、ホストコンピュータ4の誘導制御部51が、CPU3a〜3gを介して、全ての画像取得装置2を統括的に制御して、オフィスビル200内の全ての人がオフィスビル200の外に避難できるように誘導する処理を実行する。   In this case, the guidance control unit 51 of the host computer 4 comprehensively controls all the image acquisition devices 2 via the CPUs 3a to 3g so that all persons in the office building 200 are evacuated outside the office building 200. Execute the process to guide as much as possible.

具体的には、誘導制御部51は、図18のフローチャートに沿った処理を実行する。   Specifically, the guidance control unit 51 executes processing according to the flowchart of FIG.

図18の処理では、ステップS10において、ホストコンピュータ4の誘導制御部51が、災害を確認するまで待機する。この場合、図17に示すように、オフィスビル200の2階で火災が発生したとすると、当該火災の近傍に位置する画像取得装置2の火災センサ15が、火災を検知するので、当該検知結果が通信部9を介して、第2CPU2b及びホストコンピュータ4に対して出力される。これにより、誘導制御部51は、2階の+Y端の区画にて火災が発生したことを確認することができる。このように、火災が確認された場合には、ステップS10の判断が肯定されて、ステップS12に移行する。なお、誘導制御部51は、カレンダ部6から火災発生時刻を取得するとともに、カレンダ部6では、火災発生時刻から計時を開始する。これは、後述するように、避難誘導を行う際に火災発生から例えば10分を避難終了時刻と設定するためである。なお、誘導制御部51は、災害が確認された場合に、通常時よりも撮像部8の撮像間隔を短くすることとしてもよい。また、誘導制御部51は、災害が確認された場合に、撮像部8による撮像を、静止画の撮像から動画の撮像に切り替えることとしてもよい。   In the process of FIG. 18, in step S10, the guidance control unit 51 of the host computer 4 waits until a disaster is confirmed. In this case, as shown in FIG. 17, if a fire has occurred on the second floor of the office building 200, the fire sensor 15 of the image acquisition device 2 located in the vicinity of the fire detects the fire. Is output to the second CPU 2 b and the host computer 4 via the communication unit 9. Thereby, the guidance control part 51 can confirm that the fire broke out in the + Y end section on the second floor. Thus, when a fire is confirmed, judgment of step S10 is affirmed and it transfers to step S12. The guidance control unit 51 acquires the fire occurrence time from the calendar unit 6, and the calendar unit 6 starts measuring time from the fire occurrence time. This is because, for example, 10 minutes after the occurrence of a fire is set as the evacuation end time when performing evacuation guidance, as will be described later. In addition, the guidance control part 51 is good also as shortening the imaging interval of the imaging part 8 rather than the normal time, when a disaster is confirmed. In addition, when a disaster is confirmed, the guidance control unit 51 may switch the imaging by the imaging unit 8 from still image capturing to moving image capturing.

次いで、ステップS12では、誘導制御部51が、入出力部97を介して火災発生場所近くのスプリンクラーを稼動させて消火を行わせるとともに、全ての画像取得装置2のスピーカ14により火災が発生したことをオフィス内にアナウンスする。   Next, in step S12, the guidance control unit 51 operates the sprinkler near the fire occurrence location via the input / output unit 97 to extinguish the fire, and fires are generated by the speakers 14 of all the image acquisition devices 2. Announce in the office.

次いで、ステップS14では、誘導制御部51が、各階のCPU(3a〜3f)及びエレベータ用CPU3gにおいて取得されるオフィスビル200内の人数を確認する。なお、各CPU3a〜3gは、各画像取得装置2が取得した頭の画像から人数を取得することができる。この際、誘導制御部51は、上記のようにして確認された人数と、オフィスビル200への入場処理をした人数から追跡の結果退場した人数を差し引いた人数が、一致しているか否かを確認しておく。この場合、人数が一致している場合には特に問題がないが、人数が一致していない場合には、誘導制御部51は、その数を認識するとともに、上述した追跡部61による追跡処理により追跡できていない人を特定する。なお、追跡ができていない理由としては、例えば、火災現場に近い画像取得装置2が壊れたり、煙により頭を撮像できない場合などが想定される。   Next, in step S14, the guidance control unit 51 confirms the number of people in the office building 200 acquired by the CPUs (3a to 3f) and the elevator CPU 3g on each floor. In addition, each CPU3a-3g can acquire the number of persons from the head image which each image acquisition apparatus 2 acquired. At this time, the guidance control unit 51 determines whether or not the number of persons confirmed as described above and the number of persons who have entered the office building 200 by subtracting the number of persons who have exited as a result of tracking are the same. Check it. In this case, there is no particular problem when the number of people is the same, but when the number of people is not the same, the guidance control unit 51 recognizes the number and performs the tracking process by the tracking unit 61 described above. Identify people who are not tracked. In addition, as a reason which cannot be tracked, the case where the image acquisition apparatus 2 close | similar to a fire spot is broken, or the head cannot be imaged with smoke etc. are assumed, for example.

次いで、ステップS16では、遮断部55が、災害発生時に予め駆動停止を決めている機械類の駆動を停止させる。この場合、遮断部55は、機械類を適切な状態で停止させることとする。例えば、遮断部55は、エレベータEVを火災が発生している2階を避けて近くの階に停止させて、扉を開くとともに以後の駆動を停止させる。   Next, in step S16, the blocking unit 55 stops the driving of the machinery that has been determined to stop driving in advance when a disaster occurs. In this case, the blocking unit 55 stops the machinery in an appropriate state. For example, the blocking unit 55 stops the elevator EV at a nearby floor while avoiding the second floor where the fire is occurring, opens the door, and stops subsequent driving.

次いで、ステップS18では、誘導制御部51が、避難が必要かどうかを判断する。ここでは、誘導制御部51は、火災現場近傍の画像取得装置2から送付されてくる画像や、当該画像取得装置2が火災の影響により駆動できているかどうかなどから避難の要否を判断することができる。ここでの判断が否定された場合、すなわち、スプリンクラーによる消火が進み、火災が沈静化するなどして、避難の必要がなくなった場合には、ステップS20に移行する。一方、ここでの判断が肯定された場合、すなわち、避難の必要がある場合には、ステップS24に移行する。   Next, in step S18, the guidance control unit 51 determines whether evacuation is necessary. Here, the guidance control unit 51 determines whether or not evacuation is necessary based on an image sent from the image acquisition device 2 near the fire site or whether the image acquisition device 2 can be driven by the influence of a fire. Can do. If the judgment here is negative, that is, if the fire extinguishes by the sprinkler and the fire subsides, and the evacuation is no longer necessary, the process proceeds to step S20. On the other hand, if the determination is affirmed, that is, if evacuation is necessary, the process proceeds to step S24.

ステップS20に移行した場合、誘導制御部51は、スピーカ14により避難の必要がないことをアナウンスする。また、遮断部55は、ステップS22において、停止した機械類の駆動を再開させ、図18の全処理を終了する。   When it transfers to step S20, the guidance control part 51 announces that there is no need for evacuation by the speaker 14. FIG. Moreover, the interruption | blocking part 55 restarts the drive of the stopped machinery in step S22, and complete | finishes all the processes of FIG.

一方、ステップS24に移行した場合には、経路決定部57が、避難経路を確定する。この場合、経路決定部57は、火災発生現場に近いところに位置する対象者から順に避難誘導を行う。本実施形態においては、図17に示すように、火災発生場所を第1優先とし(図17の丸数字1の箇所)、次に火災発生場所の上下の区画と隣接する区画を第2優先とし(丸数字2の箇所)、火災発生場所よりも上の階の区画と、1階の中央の区画を第3優先とし(丸数字3の箇所)、その他の区画を第4優先としている(丸数字4の箇所)。なお、1階の中央の区画を第3優先としたのは、上の階の人達が避難する際に1階の出口で人が集中するのを避けるためである。なお、優先順位の設定は、上記のような設定方法に限らず、種々設定方法を採用することができる。例えば、経路決定部57は、対象者の位置(処理部18において検出される)に基づいて基準位置(例えば、火災発生場所)からの距離を求め、当該距離に基づいて誘導の方法を決定することとしてもよい。このようにしても、対象者を適切に誘導することが可能である。また、経路決定部57は、優先順位以外にも、例えば、火災発生現場に近い階段を使用せず、それ以外の階段を用いることで、人が一つの階段に集中しないように、避難経路を決定したりすることができる。   On the other hand, when the process proceeds to step S24, the route determination unit 57 determines the evacuation route. In this case, the route determination unit 57 performs evacuation guidance in order from the target person located near the fire occurrence site. In this embodiment, as shown in FIG. 17, the place where the fire occurred is given first priority (the place indicated by the circled number 1 in FIG. 17), and the section adjacent to the upper and lower sections of the place where the fire occurred next is given second priority. (Places with circled number 2), the section on the floor above the fire location and the center section on the first floor have the third priority (the place with the circled number 3), and the other sections have the fourth priority (circle) Number 4). The reason why the central section on the first floor is given the third priority is to avoid the concentration of people at the exit on the first floor when the people on the upper floor evacuate. Note that the priority setting is not limited to the above setting method, and various setting methods can be employed. For example, the route determination unit 57 obtains a distance from a reference position (for example, a fire occurrence location) based on the position of the subject (detected by the processing unit 18), and determines a guidance method based on the distance. It is good as well. Even in this way, it is possible to guide the subject appropriately. In addition to the priority order, the route determination unit 57 does not use the stairs close to the fire occurrence site, for example, and uses the other stairs so that the person does not concentrate on one stairs. Can be determined.

また、経路決定部57は、いずれかの撮像部8の撮像結果に基づいて、オフィスビル200内に設けられた通路を、対象者が通行できるか否かを判定し、当該判定結果に基づいて、誘導経路を決定することとしてもよい。この場合、経路決定部57は、通常時において予め撮像しておいたサンプル画像(基準画像)と、災害発生時の画像(すなわち、サンプル画像の撮像後に撮像された画像)とを比較(パターンマッチング)する。そして、それらの差異の大小から、通路を対象者が通行できるか否かを判定することとしてもよい。なお、差異が大きい場合には、例えば、書類棚などが倒れている場合が含まれる。したがって、上記のように判定することで、対象者に対して、適切な避難経路を提供することが可能となる。   Further, the route determination unit 57 determines whether or not the target person can pass through the passage provided in the office building 200 based on the imaging result of one of the imaging units 8, and based on the determination result. The guidance route may be determined. In this case, the path determination unit 57 compares the sample image (reference image) captured in advance in the normal time with the image at the time of the disaster (that is, the image captured after capturing the sample image) (pattern matching). ) And it is good also as judging whether a subject can pass through a passage from the size of those differences. Note that the case where the difference is large includes, for example, the case where the document shelf is collapsed. Therefore, by determining as described above, it is possible to provide an appropriate evacuation route to the target person.

なお、経路決定部57は、サンプル画像と災害発生時の画像とのパターンマッチングの結果を、災害発生時の画像とともに、表示装置91に表示するのみでもよい。この場合、パターンマッチングの結果、サンプル画像と災害発生時の画像との乖離度が大きいほど表示優先度を高くし、当該優先度に基づいて、撮像結果を表示するようにしてもよい。表示装置91に表示された内容を見た人が、表示優先度を参考にしつつ災害発生時の画像を確認し、対象者が通路を通行できないと判断した場合に、避難経路を変更する(適切な避難経路をホストコンピュータ4に対して入力する)ようにすれば、対象者は適切な避難経路に沿って避難することが可能となる。   The route determination unit 57 may only display the pattern matching result between the sample image and the image at the time of the disaster on the display device 91 together with the image at the time of the disaster. In this case, as a result of pattern matching, the display priority may be increased as the degree of divergence between the sample image and the image at the time of the disaster increases, and the imaging result may be displayed based on the priority. The person who has seen the content displayed on the display device 91 confirms the image at the time of the disaster with reference to the display priority, and changes the evacuation route when it is determined that the target person cannot pass through the passage (appropriate If an appropriate evacuation route is input to the host computer 4), the subject can evacuate along an appropriate evacuation route.

次いで、ステップS26では、避難誘導を開始する。具体的には、誘導制御部51は、図17の丸数字1の領域にある画像取得装置2のスピーカ14それぞれから、火災発生現場近傍の階段以外を用いた外への避難を呼びかける。なお、この際に、誘導制御部51は、各画像取得装置2のLED11を避難経路に沿って順次点滅させることで、視覚的に避難経路を示すこととしてもよい。そして、誘導制御部51は、丸数字2〜4の領域に存在する人に対して、順次、避難誘導を行う。   Next, in step S26, evacuation guidance is started. Specifically, the guidance control unit 51 calls for evacuation to the outside using a part other than the stairs in the vicinity of the fire occurrence site from each of the speakers 14 of the image acquisition device 2 in the area of the circled numeral 1 in FIG. At this time, the guidance control unit 51 may visually indicate the evacuation route by sequentially blinking the LEDs 11 of each image acquisition device 2 along the evacuation route. And the guidance control part 51 performs evacuation guidance one by one with respect to the person who exists in the area | region of the round numbers 2-4.

次いで、ステップS28では、誘導制御部51は、入出力部97を介して消防署に火災の通報を行う。そして、次のステップS30では、移動判定部53が、各階段に設けられた画像取得装置2の撮像結果を用いて、避難状況を確認する。ここで、例えば、火災発生現場近傍の画像取得装置2が撮像できない状況でも、移動判定部53は、画像取得装置2の撮像結果から避難状況を類推することができる。これは、前述のように、オフィスビル200内では、対象者を常に追尾しているため、追尾ができている対象者については、避難状況を把握することができる一方、追尾ができていない対象者については、ある画像取得装置2において、突然撮像が開始されることになるからである。すなわち、本実施形態では、撮像部8のいずれかにおいて撮像されるべき(撮像される予定の)対象者のうち、ある時点(第1の時点)においていずれの撮像部にも撮像されていない対象者を特定しておくことで、当該ある時点(第1の時点)において撮像部に撮像されず、その後のある時点(第2の時点)において撮像された対象者を、第1の時点で特定された対象者と判断することが可能である。   Next, in step S <b> 28, the guidance control unit 51 reports a fire to the fire department via the input / output unit 97. Then, in the next step S30, the movement determination unit 53 confirms the evacuation situation using the imaging result of the image acquisition device 2 provided on each staircase. Here, for example, even in a situation where the image acquisition device 2 near the fire occurrence site cannot be imaged, the movement determination unit 53 can estimate the evacuation situation from the imaging result of the image acquisition device 2. As described above, since the target person is always tracked in the office building 200, the target person who can be tracked can grasp the evacuation situation, but the target is not tracked. This is because the image acquisition device 2 suddenly starts imaging for a person. That is, in the present embodiment, among subjects who are to be imaged (scheduled to be imaged) in any of the imaging units 8, targets that are not imaged by any imaging unit at a certain time (first time) By specifying the person, the target person who is not imaged by the imaging unit at the certain time point (first time point) and is imaged at the certain time point (second time point) is identified at the first time point. It is possible to determine that the subject has been selected.

次いで、ステップS32では、誘導制御部51が、救助が必要な人がいるか否かを確認する。この場合、姿勢判定部62の判定結果において、撮像している頭の像の大きさ及び位置がほとんど変わっていない場合に、その対象者は動けない人であることを意味する。したがって、誘導制御部51は、姿勢判定部62の判定結果を用いて、そのような頭の画像があるか否かを判断する。なお、救助が必要な場合、画像取得装置2のマイク13から例えば「助けて」などの音声が入力されることもある。したがって、誘導制御部51は、そのような音声の入力があった場合に、救助が必要な人がいると判断してもよい。更には、撮像部8は、対象者が床に倒れている場合などにおいて、対象者の目や口を連続して撮像するようにすることができるので、誘導制御部51は、当該連続して撮像された画像に基づいて、動けない人(例えば気絶している人など)を判別することとしてもよい。なお、ステップS32の判断が否定された場合には、ステップS36に移行するが、肯定された場合には、ステップS34に移行する。   Next, in step S32, the guidance control unit 51 confirms whether there is a person who needs to be rescued. In this case, when the size and position of the image of the head being imaged are almost unchanged in the determination result of the posture determination unit 62, this means that the target person is a person who cannot move. Therefore, the guidance control unit 51 uses the determination result of the posture determination unit 62 to determine whether there is such a head image. When rescue is necessary, a voice such as “help” may be input from the microphone 13 of the image acquisition device 2. Therefore, the guidance control unit 51 may determine that there is a person who needs to be rescued when such a voice is input. Furthermore, since the imaging unit 8 can continuously capture the subject's eyes and mouth when the subject is lying on the floor, the guidance control unit 51 can continuously A person who cannot move (for example, a fainting person) may be determined based on the captured image. If the determination in step S32 is negative, the process proceeds to step S36. If the determination is positive, the process proceeds to step S34.

ステップS34に移行した場合、誘導制御部51は、救助活動が実行されるような処理を行う。具体的には、誘導制御部51は、図2の表示装置91にオフィスビル200のレイアウトを表示するとともに、助けが必要な人がいる領域を点滅させる。そして、誘導制御部51は、入出力部97を介して、消防署に対し、助けが必要な人がいる領域(区画)を連絡する。また、誘導制御部51は、ステップS10で災害を確認してから開始した計時時間(経過時間)を表示装置91に表示するとともに、消防署にも計時時間(経過時間)を連絡する。ステップS34の後は、ステップS32に戻る。   When the process proceeds to step S34, the guidance control unit 51 performs a process such that the rescue operation is executed. Specifically, the guidance control unit 51 displays the layout of the office building 200 on the display device 91 of FIG. 2 and blinks an area where there is a person who needs help. And the guidance control part 51 notifies the area | region (section) where the person who needs help exists to the fire department via the input-output part 97. FIG. In addition, the guidance control unit 51 displays the time measured (elapsed time) started after confirming the disaster in step S10 on the display device 91, and also notifies the fire department of the time measured (elapsed time). After step S34, the process returns to step S32.

一方、ステップS36に移行した場合には、移動判定部53が、全員避難したかどうか判断を行う。具体的には、移動判定部53は、1階の入り口(出口)付近に設けられた画像取得装置2の撮像結果に基づいて何人の対象者がオフィスビル200の外に出たか(避難を終了したか)を確認する。なお、移動判定部53は、1階の入り口(出口)付近以外に設けられた画像取得装置2の撮像結果からオフィスビル200内に残っている人の人数を確認することとしてもよい。この場合、移動判定部53は、オフィスビル200内の全ての画像取得装置2が撮像した画像に頭の画像が全て無くなった時点で、無くなった頭の数と、入場処理をした人の数とが一致していた場合にオフィスビル200内の全員が避難したと判断することができる。ステップS36の判断が否定された場合には、ステップS32に戻る。   On the other hand, when the process proceeds to step S <b> 36, the movement determination unit 53 determines whether all have evacuated. Specifically, the movement determination unit 53 determines how many subjects have moved out of the office building 200 based on the imaging result of the image acquisition device 2 provided near the entrance (exit) on the first floor (end evacuation). Check). In addition, the movement determination part 53 is good also as confirming the number of persons remaining in the office building 200 from the imaging result of the image acquisition apparatus 2 provided in places other than the entrance (exit) vicinity of the 1st floor. In this case, the movement determination unit 53 determines the number of heads lost and the number of people who have performed entrance processing when all the head images are lost in the images captured by all the image acquisition devices 2 in the office building 200. Can be determined that everyone in the office building 200 has evacuated. If the determination in step S36 is negative, the process returns to step S32.

その後、ステップS36の判断が肯定されるまで、ステップS32、S36(又はS34)の処理、判断が繰り返される。   Thereafter, the processes and determinations in steps S32 and S36 (or S34) are repeated until the determination in step S36 is affirmed.

なお、ステップS36においては、全ての画像取得装置2が撮像した画像において頭の画像が全て無くなったにもかかわらず、無くなった頭の数と、入場処理をした人の数とが一致していないという事態も生じうる。このような場合には、火災により撮像ができない画像取得装置2が設置されている領域に避難できていない人がいる可能性が高い。したがって、かかる場合には、誘導制御部51は、次に行われるステップS34において、表示装置91に、撮像ができない画像取得装置2の存在する区画を点滅表示させるとともに、消防署にも同内容の連絡を行うこととする。   In step S36, the number of lost heads does not match the number of people who have performed entrance processing even though all the images of the heads have been lost in the images captured by all the image acquisition devices 2. It can happen. In such a case, there is a high possibility that there is a person who has not evacuated in the area where the image acquisition device 2 that cannot capture images due to a fire is installed. Therefore, in such a case, the guidance control unit 51 causes the display device 91 to blink and display the section where the image acquisition device 2 that cannot be imaged is present in the next step S34, and to notify the fire department of the same content. To do.

なお、図18の処理では、ステップS30において、避難状況の確認を行っているので、遮断部55は、当該確認結果に基づいて、対象者の存在しない通路を閉鎖するように防護壁を遮断するようにすることができる。   In the process of FIG. 18, since the evacuation status is confirmed in step S30, the blocking unit 55 blocks the protective wall so as to close the passage where the subject does not exist based on the confirmation result. Can be.

以上、詳細に説明したように、本実施形態によると、上方(+Z方向)から対象者を含む画像を撮像する撮像部8と、画像から対象者の頭の像の大きさと位置情報(水平面内(XY面内)の位置情報)を検出する処理部18と、撮像部の撮像領域の高さ情報を入手するとともに、処理部18の検出結果と入手した高さ情報とに基づいて、対象者の姿勢を判定する姿勢判定部62と、を備えている。したがって、対象者の姿勢が同一であるにもかかわらず、対象者の水平面内の位置の変化に応じて頭の像の大きさが変化するような場合でも、高精度に対象者の姿勢を判定することができる。   As described above in detail, according to the present embodiment, the imaging unit 8 that captures an image including the subject from above (+ Z direction), and the size and position information (in the horizontal plane) of the image of the subject's head from the image The processing unit 18 for detecting (position information in (XY plane)), the height information of the imaging region of the imaging unit, and the target person based on the detection result of the processing unit 18 and the obtained height information An attitude determination unit 62 for determining the attitude of the camera. Therefore, even when the subject's posture is the same, the posture of the subject can be determined with high accuracy even when the size of the head image changes according to the change in the position of the subject in the horizontal plane. can do.

また、本実施形態では、姿勢判定部62は、対象者の身長と、対象者頭の大きさと、個人情報とをデータとして取得し、当該データと検出された対象者の頭の像の大きさから、対象者の姿勢情報を判定するので、各対象者の身長と頭の像の大きさとを考慮して、対象者の姿勢を判定することが可能である。   In the present embodiment, the posture determination unit 62 acquires the height of the subject, the size of the subject's head, and personal information as data, and the size of the detected image of the subject's head. Therefore, the posture information of the subject person is determined, so that the posture of the subject person can be determined in consideration of the height of each subject person and the size of the head image.

また、本実施形態では、撮像部8が撮像する領域に、対象者が昇降する階段の少なくとも一部が含まれており、姿勢判定部62が、階段の各段の高さ情報を入手するので、対象者が階段上に存在している場合にも、高精度に対象者の姿勢を判定することが可能である。   In the present embodiment, the region captured by the imaging unit 8 includes at least a part of the stair that the subject moves up and down, and the posture determination unit 62 obtains the height information of each step of the staircase. Even when the subject is on the stairs, it is possible to determine the posture of the subject with high accuracy.

また、本実施形態では、撮像部8の撮像領域内における対象者の存在を検知する焦電センサ12を備えており、撮像部8は、焦電センサ12の検知結果に基づいて、撮像の開始及び終了の少なくとも一方を切り替えるので、撮像部8の省電力化を効果的に行うことが可能である。   Moreover, in this embodiment, the pyroelectric sensor 12 which detects presence of the subject in the imaging region of the imaging unit 8 is provided, and the imaging unit 8 starts imaging based on the detection result of the pyroelectric sensor 12. Further, since at least one of the end and the end is switched, it is possible to effectively save the power of the imaging unit 8.

また、本実施形態では、鉛直方向(+Z方向)から撮像した対象者の頭の像の大きさを用いて、対象者の姿勢情報を取得することから、他の方向から撮像した頭の像を用いる場合と比べて、高精度に、対象者の頭の鉛直方向の位置(すなわち姿勢情報)を検出することができる。   In the present embodiment, since the posture information of the subject is acquired using the size of the subject's head image taken from the vertical direction (+ Z direction), the head image taken from another direction is obtained. Compared with the case of using, the position of the subject's head in the vertical direction (that is, posture information) can be detected with high accuracy.

なお、上記実施形態では、天井に撮像部8を設け、上方から対象者の頭を撮像する場合について説明した。しかしながら、これに限られるものではなく、対象者を横から撮影できる位置に撮像部8を設けてもよい。対象者を横から撮像することにより、目、口、鼻などの動きを判別しやすくすることができる。更に、天井に設けられた撮像部8の静止画と、対象者を横から撮像した静止画との両方を用いて対象者が正常かどうか判定することとすれば、高精度な判定が可能となる。   In the above-described embodiment, the case where the imaging unit 8 is provided on the ceiling and the head of the subject is imaged from above has been described. However, it is not restricted to this, You may provide the imaging part 8 in the position which can image | photograph a subject from the side. By imaging the subject from the side, it is possible to easily discriminate movements of the eyes, mouth, nose, and the like. Furthermore, if it is determined whether the subject is normal using both the still image of the imaging unit 8 provided on the ceiling and the still image obtained by imaging the subject from the side, it is possible to make a highly accurate determination. Become.

なお、上記実施形態では、撮像部8の撮像素子36をCMOSとするとともに、メカシャッターに代えて電子シャッター(ローリングシャッター)を採用することとしてもよい。この場合、撮像時の音(シャッター音)の発生を抑制することができる。これにより、撮像による、対象者の円滑な業務遂行への影響を抑制することができる。   In the above embodiment, the image sensor 36 of the imaging unit 8 may be a CMOS, and an electronic shutter (rolling shutter) may be employed instead of the mechanical shutter. In this case, it is possible to suppress the generation of sound (shutter sound) during imaging. Thereby, the influence on the subject's smooth business performance by imaging can be suppressed.

なお、上記実施形態では、撮像部8が静止画を撮像する場合について説明したが、これに限らず、動画の撮影を行うこととしてもよい。この場合、動画を連続して撮影してもよいし、3〜5秒程度の短い動画を間欠的に撮影してもよい。なお、撮像部8が動画を撮像する場合には、処理部18は、画像信号をMPEG処理してフラッシュメモリ16に記録するようにすればよい。   In the above-described embodiment, the case where the imaging unit 8 captures a still image has been described. However, the present invention is not limited thereto, and a moving image may be captured. In this case, moving images may be taken continuously, or short moving images of about 3 to 5 seconds may be taken intermittently. When the imaging unit 8 captures a moving image, the processing unit 18 may perform MPEG processing on the image signal and record it in the flash memory 16.

なお、上記実施形態では、災害発生時に、誘導制御部51が、撮像部8の撮像間隔を変更する点について説明した(ステップS10)。しかしながら、これに限られるものではなく、例えば、姿勢判定部62が、対象者に異常が発生していると判定した場合に、撮像部8の撮像間隔を変更することとしてもよい。   In the embodiment described above, the guidance control unit 51 changes the imaging interval of the imaging unit 8 when a disaster occurs (step S10). However, the present invention is not limited to this. For example, when the posture determination unit 62 determines that an abnormality has occurred in the subject, the imaging interval of the imaging unit 8 may be changed.

なお、上記実施形態では、撮像部8の撮像結果に基づいて、対象者の位置と姿勢を判断する場合について説明したが、これに限られるものではなく、対象者の位置は、対象者に向けて光を照射し、対象者で反射した光を受光することで、対象者の位置を検出する装置(レーザレンジファインダなど)により、検出することとしてもよい。   In the above embodiment, the case where the position and orientation of the subject person are determined based on the imaging result of the imaging unit 8 has been described. However, the present invention is not limited to this, and the position of the subject person is directed toward the subject person. It is good also as detecting by the apparatus (laser range finder etc.) which detects a subject's position by irradiating light and receiving the light reflected by the subject.

なお、上記実施形態では、エレベータEVに設けられている撮像部8の撮像領域とエレベータホール41に設けられている撮像部8の撮像領域とをオーバラップさせることとしてもよい。これにより、エレベータEV及びエレベータホール41間の対象者の移動を、図13、図14と同様の方法で、追跡することが可能である。   In the above embodiment, the imaging area of the imaging unit 8 provided in the elevator EV and the imaging area of the imaging unit 8 provided in the elevator hall 41 may be overlapped. Thereby, it is possible to track the movement of the subject between the elevator EV and the elevator hall 41 by the same method as in FIGS. 13 and 14.

なお、上記実施形態では、対象者を横から撮像することで、身長を計測する場合について例示したが、これに限られるものではない。例えば、オフィスの構造物(例えばドア)と対象者とを同時に撮像し、既知の構造物の寸法(例えばドアの高さが2mで、幅が1mなど)を用いて、対象者の身長を推定するようにしてもよい。この場合、構造物の寸法はフラッシュメモリ16に記録しておけばよい。   In the above embodiment, the case where the height is measured by imaging the subject from the side is exemplified, but the present invention is not limited to this. For example, an office structure (for example, a door) and a subject are imaged simultaneously, and the height of the subject is estimated using known structure dimensions (for example, the height of the door is 2 m and the width is 1 m). You may make it do. In this case, the dimensions of the structure may be recorded in the flash memory 16.

なお、上記実施形態では、説明を省略しているが、プライベート空間(例えばトイレなど)においては、撮像部8による追跡を中止することになる。このような場合でも、プライベート空間から出てきた人を、身長、頭の像の大きさ、頭の画像などから再度特定することで、追跡を再開することが可能である。また、地震発生時などにおいて、机などの下に対象者が隠れた場合にも、上記と同様の処理を行うことが可能である。   In addition, although description is abbreviate | omitted in the said embodiment, in the private space (for example, a toilet etc.), the tracking by the imaging part 8 will be stopped. Even in such a case, tracking can be resumed by re-identifying the person who has come out of the private space from the height, the size of the head image, the head image, and the like. Further, when the subject is hidden under a desk or the like when an earthquake occurs, the same processing as described above can be performed.

なお、上記実施形態では、適宜、追跡している対象者を誤認識していないかの確認を行うこととしてもよい。この確認は、オフィスビル200内で、社員証を用いた部屋への入退室処理を行ったときの情報(個人IDなど)や、パソコンへのログインなどの情報を用いて行うことができる。   In the above-described embodiment, it is possible to appropriately confirm whether or not the target person being tracked is erroneously recognized. This confirmation can be performed in the office building 200 using information (such as a personal ID) when entering and leaving the room using the employee ID, and information such as logging into a personal computer.

なお、上記実施形態では、遮断部55は、防護壁(防火扉)の駆動を制御する場合について説明したが、これに限られるものではなく、排気ダクトなどの排気設備の駆動を制御することとしてもよい。   In the above embodiment, the blocking unit 55 controls the driving of the protective wall (fire door). However, the present invention is not limited to this, and the driving of the exhaust equipment such as an exhaust duct is controlled. Also good.

なお、上記実施形態では、処理部18が、対象者の頭の像の大きさを検出することしたが、これに限られるものではない。例えば、処理部18は対象者の大きさ情報として、肩幅等を検出しても良い。   In the above-described embodiment, the processing unit 18 detects the size of the image of the subject's head, but the present invention is not limited to this. For example, the processing unit 18 may detect a shoulder width or the like as the size information of the subject.

また、上記実施形態では、避難時に、対象者をオフィスビル200の1階入り口からオフィスビル200の外部に誘導する場合について説明したが、これに限られるものではない。例えば、高層ビルの場合には、屋上(ヘリポートなど)に避難させることとしてもよい。また、災害の種類にあわせて、避難場所、避難方法を適宜変更することとしてもよい。更に、オフィスビル200の階ごとに避難場所を異ならせることとしてもよい。   Moreover, although the said embodiment demonstrated the case where an object person was guide | induced to the exterior of the office building 200 from the 1st floor entrance of the office building 200 at the time of evacuation, it is not restricted to this. For example, in the case of a high-rise building, it may be evacuated to the roof (such as a heliport). Further, the evacuation place and evacuation method may be changed as appropriate according to the type of disaster. Furthermore, the evacuation site may be different for each floor of the office building 200.

なお、上記実施形態では、本発明の誘導装置を、災害時における避難に用いる場合について説明したが、これに限られるものではない。例えば、オフィスビル200内の全員を集会所やホールなどに誘導する場合にも用いることができる。   In addition, although the said embodiment demonstrated the case where the guidance apparatus of this invention was used for evacuation at the time of a disaster, it is not restricted to this. For example, it can also be used when all members of the office building 200 are guided to a meeting place or a hall.

上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

8 撮像部
18 処理部
51 誘導制御部
53 移動判定部
57 経路決定部
62 姿勢判定部
8 Imaging unit 18 Processing unit 51 Guidance control unit 53 Movement determination unit 57 Route determination unit 62 Posture determination unit

Claims (3)

対象者の姿勢の変化を検出する検出部と、
前記姿勢の変化に基づいて異常を判定する判定部と、
前記判定部が異常と判定すると外部機器に異常を通知する通信部と、
を有する電子機器。
A detection unit for detecting a change in the posture of the target person;
A determination unit that determines abnormality based on the change in the posture;
A communication unit for notifying the external device of the abnormality when the determination unit determines that the abnormality;
Electronic equipment having
画像を撮像する撮像部をさらに有し、
前記検出部は、前記撮像部が撮像した前記対象者の画像に基づいて前記対象者の姿勢の変化を検出する請求項1に記載の電子機器。
It further has an imaging unit that captures an image,
The electronic device according to claim 1, wherein the detection unit detects a change in the posture of the subject based on an image of the subject captured by the imaging unit.
前記外部機器は、ホストコンピュータを含む請求項1または2に記載の電子機器。   The electronic device according to claim 1, wherein the external device includes a host computer.
JP2015186079A 2015-09-18 2015-09-18 Electronic equipment Pending JP2016001506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186079A JP2016001506A (en) 2015-09-18 2015-09-18 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186079A JP2016001506A (en) 2015-09-18 2015-09-18 Electronic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015105879A Division JP6102982B2 (en) 2015-05-25 2015-05-25 Posture state determination device

Publications (1)

Publication Number Publication Date
JP2016001506A true JP2016001506A (en) 2016-01-07

Family

ID=55077028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186079A Pending JP2016001506A (en) 2015-09-18 2015-09-18 Electronic equipment

Country Status (1)

Country Link
JP (1) JP2016001506A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052626A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Bathroom abnormality detection system
JP2009009413A (en) * 2007-06-28 2009-01-15 Sanyo Electric Co Ltd Operation detector and operation detection program, and operation basic model generator and operation basic model generation program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052626A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Bathroom abnormality detection system
JP2009009413A (en) * 2007-06-28 2009-01-15 Sanyo Electric Co Ltd Operation detector and operation detection program, and operation basic model generator and operation basic model generation program

Similar Documents

Publication Publication Date Title
WO2012066910A1 (en) Guidance system, detection device, and position assessment device
JP5974423B2 (en) Guidance device
US11854288B2 (en) Image determining device to determine the state of a subject
KR101775463B1 (en) Fire supervisory apparatus to be installed on building and unite management system having the same
JP5760315B2 (en) Image determination device
JP2012113368A (en) Detection device
KR20210072285A (en) System for analyzing cctv image information for occupancy realtime monitoring, and method for the same
JP2017045474A (en) Electronic device
JP2016026355A (en) system
JP2016028333A (en) Electronic apparatus
JP6137234B2 (en) Detection device
JP2012113369A (en) Attitude state determination device
JP6102982B2 (en) Posture state determination device
JP2006279516A (en) Monitoring system, monitoring camera, and controller
JP2016001506A (en) Electronic equipment
JP2016028496A (en) Electronic apparatus
JP2016021256A (en) Electronic device
JP2016026354A (en) Electronic device
JP5760313B2 (en) Image determination device
JP6777470B2 (en) Action recording system, terminal device and action recording method
JP5760314B2 (en) Image determination device
KR101393303B1 (en) Method for managing cctv system with video image comparison unit
JP6726067B2 (en) Action recording system, terminal device and action recording method
JP2024003574A (en) Information processing device, method for calculating number of fire emergency stay persons, program, and system for calculating number of fire emergency stay persons
KR20170006057A (en) Omnidirectional anti-crime camera system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314