JP2015533990A - Parts made of ceramic material with base and wall - Google Patents

Parts made of ceramic material with base and wall Download PDF

Info

Publication number
JP2015533990A
JP2015533990A JP2015537332A JP2015537332A JP2015533990A JP 2015533990 A JP2015533990 A JP 2015533990A JP 2015537332 A JP2015537332 A JP 2015537332A JP 2015537332 A JP2015537332 A JP 2015537332A JP 2015533990 A JP2015533990 A JP 2015533990A
Authority
JP
Japan
Prior art keywords
base
sintering
core
porosity
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015537332A
Other languages
Japanese (ja)
Other versions
JP6236458B2 (en
Inventor
ポドゴルスキ,マイケル
モリ,リュドビック・エドモン・カミーユ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of JP2015533990A publication Critical patent/JP2015533990A/en
Application granted granted Critical
Publication of JP6236458B2 publication Critical patent/JP6236458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • C04B2235/775Products showing a density-gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0077Materials with a non-porous skin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Filtering Materials (AREA)

Abstract

本発明は、ベース(11)を形成する部分と、壁(13)を形成する部分とからなり、ベース(11)は低多孔率のセラミックス材料から作られ、壁(13)は粉末の焼結によって得られ、外被(13E)とコア(13N)を有し、コアは外被の中に位置し、コアの多孔率はベースの多効率より大きく、ベースから遠ざかるに従って増加することを特徴とする、セラミックス材料からなる部品(10)に関する。The present invention comprises a part forming a base (11) and a part forming a wall (13), the base (11) being made of a low porosity ceramic material, and the wall (13) being a sintered powder. Characterized in that it has a jacket (13E) and a core (13N), the core is located in the jacket, and the porosity of the core is larger than the multi-efficiency of the base and increases with increasing distance from the base. The present invention relates to a component (10) made of a ceramic material.

Description

本発明は、少なくとも一部セラミックス材料で作られた部品の製造の分野に関し、より詳細には、タービンエンジン、特にタービンローターブレードまたは固定ノズル羽根のようなガスタービンエンジン用の部品に関する。   The present invention relates to the field of manufacturing components made at least in part of ceramic materials, and more particularly to components for turbine engines, particularly gas turbine engines such as turbine rotor blades or fixed nozzle vanes.

高温のガスが流れるタービンエンジンの高温部品においては、このような温度レベルに耐える能力のある合金が用いれられ、必要に応じて、材料の安定性を超えた温度でこれらの部品が作動できるよう流体を使った適切な冷却を行っている。   High-temperature components in turbine engines where high-temperature gas flows use alloys capable of withstanding such temperature levels and, if necessary, fluids that allow these components to operate at temperatures beyond the stability of the material. Proper cooling using

航空分野における新しいガスタービンエンジンの開発との関連の中で、高温でも良好な構造特性を有するより一層軽い材料が求められている。セラミックスは、このような要求に適う材料である。セラミックスは、燃焼室より下流のタービンからエンジン後部に位置する部品用で使用される。   In connection with the development of new gas turbine engines in the aviation field, there is a need for lighter materials with good structural properties even at high temperatures. Ceramics are materials that meet these requirements. Ceramics are used for components located in the rear of the engine from the turbine downstream from the combustion chamber.

粉末焼結の製造技術は、機械部品や他のものをいくぶん細かい粉末から直接作製するものであり、従来技術である。ある製造方法によれば、種々の工程を経て粉末を塊状にして、半製品状態の部品を形成する。この部品は、接触部分に沿った拡散によって粒子が溶融するかまたは相互に結合するのに十分な温度に加熱される。このようにして、部品は所与のレベルに結合される。ある特定の技術によれば、部品は連続した層から造られる。この方法では、材料は粉末状であり、部品の一部分の表面に対応する行路に沿って導かれたレーザービームまたは電子ビームの作用の下で加熱される。粉末を付着し、レーザーまたは電子ビームを用いて前記粉末を焼結する工程を繰り返すことにより、部品が徐々に厚みを増し、所望の形状を得ることができる。レーザービームまたは電子ビームによって印加される熱量は、材料の性質に依存する。必要に応じて、感熱性のポリマー(プレセラミックスの場合もあればそうでない場合もある)を使用して部品形成中の結合を確保することもでき、プレセラミックスポリマーを使用しない場合には、後で熱処理によってポリマーを除去することもできる。図2は、レーザー加熱により部品を製造する装置の説明であり、この技術の実施の詳細を以下に述べる。   The powder sintering manufacturing technique is a conventional technique, in which mechanical parts and others are made directly from somewhat finer powder. According to a certain manufacturing method, the powder is agglomerated through various processes to form a semi-finished part. The component is heated to a temperature sufficient for the particles to melt or bond together by diffusion along the contact area. In this way, parts are coupled to a given level. According to one particular technique, the part is made from successive layers. In this method, the material is in powder form and is heated under the action of a laser beam or electron beam directed along a path corresponding to the surface of a part of the part. By repeating the step of attaching the powder and sintering the powder using a laser or an electron beam, the part gradually increases in thickness and a desired shape can be obtained. The amount of heat applied by the laser beam or electron beam depends on the nature of the material. If necessary, a heat-sensitive polymer (with or without preceramics) can be used to ensure bonding during part formation. The polymer can also be removed by heat treatment. FIG. 2 is an illustration of an apparatus for producing parts by laser heating, and details of the implementation of this technique are described below.

ガスタービンエンジンの高温部品にとって、セラミックスの温度限界が従来技術で用いられている合金よりも高いことを考慮し、本願出願人は、レーザービームまたは電子ビームを使用して粉末を結合させる技術に基づいて、セラミックス材料からタービンローターブレードのような部品を作製することを目的としている。   In view of the higher temperature limits of ceramics for high temperature parts of gas turbine engines than the alloys used in the prior art, Applicants are based on the technology of combining powders using laser beams or electron beams. The purpose is to produce parts such as turbine rotor blades from ceramic materials.

本発明のもう一つの目的は、タービンローターブレードのような回転部品の根元部分における機械的応力を、最大機械的応力が根元部分に留まれる程度にまで減少させる手段の提供である。   Another object of the present invention is to provide means for reducing the mechanical stress at the root portion of a rotating component such as a turbine rotor blade to such an extent that the maximum mechanical stress remains at the root portion.

一体構造のセラミックス材料で作られた部品におけるひずみは、欠陥から引き起こされるため、本発明のもう一つの目的は、臨界サイズの欠陥が発生する可能性を減少させる手段である。   Another aspect of the present invention is a means of reducing the likelihood of critical size defects occurring because strain in parts made of monolithic ceramic materials is caused by defects.

曝される可能性の高い温度はセラミックスの使用限界温度を超える場合があるため、本発明のさらにもう一つの目的は、冷却できる部品の設計である。   Yet another object of the present invention is the design of components that can be cooled, since the temperature at which they are likely to be exposed may exceed the use limit temperature of the ceramic.

冷却は部品中の流体の循環によって確保でき、この目的で部品内に流路を作ることを意図しているので、本発明のさらにもう一つの目的は、部品の作製中にこのような流路を造ることができるようセラミックスを成形する方法である。   Since cooling can be ensured by the circulation of fluid in the part and intended to create a flow path in the part for this purpose, yet another object of the present invention is such a flow path during the production of the part. Is a method of forming ceramics so that can be made.

特にこの方法は大掛かりな機械加工技術を使用する必要がない。   In particular, this method does not require the use of extensive machining techniques.

本発明によると、これらの目的は、セラミックス材料で作られる部品によって達成される。この部品は、ベースを形成する部分と、壁を形成する部分とからなり、ベースは低多孔率のセラミックス材料から作られ、壁はセラミックス粉末の焼結から得られる。壁はさらに、外被あるいは外郭とコアとを有し、コアは外被の中に位置し、コアの多孔率はベースの多孔率より大きく、ベースから遠ざかるに従って増加することを特徴とする。   According to the invention, these objects are achieved by a part made of a ceramic material. This part consists of a part forming a base and a part forming a wall, the base being made from a low-porosity ceramic material and the wall being obtained by sintering ceramic powder. The wall further has a jacket or shell and a core, the core being located in the jacket, wherein the porosity of the core is greater than the porosity of the base and increases with increasing distance from the base.

多孔率あるいは密度の勾配を持つことにより、本発明による部品の構造は、かなり軽い部分を有するものとすることができ、このことによって、可動部品であればベースにかかる応力レベルの減少が確保される。さらに、部品中のセラミックスの分量が減らせるおかげで、前記構造を弱める可能性のある臨界サイズの欠陥の発生可能性を減少させる利点がある。   By having a porosity or density gradient, the structure of the part according to the invention can have a fairly light part, which ensures a reduced stress level on the base if it is a moving part. The Furthermore, thanks to the reduced amount of ceramics in the part, there is the advantage of reducing the possibility of the occurrence of critical size defects that can weaken the structure.

さらに、従来技術と異なり、多孔性や空洞の存在により、機械加工を必要とせずに、冷却流体の循環が可能となる。   Furthermore, unlike the prior art, the presence of porosity and cavities allows circulation of the cooling fluid without the need for machining.

好ましくは、ベースもまたセラミックスの粉末焼結により作製される。   Preferably, the base is also made by powder sintering of ceramics.

別の特徴によれば、ベースを形成する材料の多孔率は3%未満である一方、コアの多孔率は5%以上、好ましくは10%から50%の間である。   According to another characteristic, the porosity of the material forming the base is less than 3%, while the porosity of the core is greater than 5%, preferably between 10% and 50%.

「多孔率」という用語は、部品の該当部分の空隙の割合に関する。この空隙は、材料の構造に関連し、セラミックス材料の粒子の間に作られ構造の中に拘束されている空間に関係する。材料の密度は、多孔率と反比例関係にある。   The term “porosity” relates to the proportion of voids in that part of the part. This void is related to the structure of the material and to the space created between the particles of ceramic material and constrained in the structure. The density of the material is inversely related to the porosity.

本件出願の別の実施形態では、壁を形成する部分においては、結合したセラミックス粒が形成する狭い隔壁によって作られる空洞の分量と、隔壁の分量との関係も多孔率という用語で表される。   In another embodiment of the present application, in the portion forming the wall, the relationship between the amount of cavities formed by the narrow partition walls formed by the bonded ceramic grains and the partition wall volume is also expressed in terms of porosity.

さらに、もし冷却を行う場合、ベースは、壁に冷却空気を運ぶための流路も備える。この場合、流路はベースの多孔率の定義には入らない。   In addition, if cooling is performed, the base also includes a flow path for carrying cooling air to the wall. In this case, the channel does not fall within the definition of base porosity.

本件出願では、本発明は次の二つの態様を有する。セラミックスの多孔率、従って密度を制御することと、部品の壁内に空洞を造りだし、その結果、材料の分量を減少させること、である。   In the present application, the present invention has the following two aspects. Controlling the porosity and thus the density of the ceramics, and creating cavities in the part walls, resulting in a reduction in the amount of material.

従って、第一の実施形態によれば、コアは、部分焼結によって結合し間に空隙を形成しているセラミックス粒子で作られる多孔質物資から成る。   Thus, according to the first embodiment, the core consists of a porous material made of ceramic particles that are bonded by partial sintering and form voids therebetween.

「部分焼結」とは、最大密度に至るであろう温度よりも低い温度で焼結する技術を意味するものと理解される。   “Partial sintering” is understood to mean a technique of sintering at a temperature below that which would lead to maximum density.

別の実施形態によれば、コアは隔壁で仕切られた空洞から成り、隔壁は、レーザービームまたは電子ビームを用いた焼結によって作製される。隔壁は密度が高く、その多孔率は3%未満である。   According to another embodiment, the core consists of cavities partitioned by partition walls, which are made by sintering using a laser beam or an electron beam. The partition walls are high in density and the porosity is less than 3%.

有利なことに、コアは異なる空洞を持つ部分を有し、具体的には、ベースから遠ざかるに従って空洞の大きさが増加する部分を有する。   Advantageously, the core has portions with different cavities, specifically a portion where the size of the cavities increases with increasing distance from the base.

特定の実施形態によれば、部品は壁の延長にヒールを備え、ヒールの多孔率はコアを形成する材料の多孔率より小さい。   According to a particular embodiment, the part comprises a heel in the extension of the wall, the porosity of the heel being less than the porosity of the material forming the core.

本発明は特に、ベースがブレードの根元を形成し、壁がブレード翼を形成し、コアの多孔率より小さい多孔率のヒールを任意に有する、タービンエンジンブレードに関する。   In particular, the invention relates to a turbine engine blade where the base forms the root of the blade, the wall forms the blade wing, and optionally has a heel with a porosity less than the porosity of the core.

本発明はこのような部品の製造方法にも関する。この製造方法は、ステップ開始時にベースと面一をなす粉末が入る焼結トレイを用いて壁を形成するステップと、レーザービームまたは電子ビームにより、粉末を連続した層に選択的に焼結するステップとからなり、連続した層は、部品を焼結トレイの中で下方向に漸進的に動かすことによって得られる。   The invention also relates to a method of manufacturing such a part. The method includes the steps of forming a wall using a sintering tray containing powder that is flush with the base at the start of the step, and selectively sintering the powder into a continuous layer by a laser beam or electron beam. A continuous layer is obtained by progressively moving the part downward in the sintering tray.

この方法は特に、粉末焼結によってベースを別途作製することと、その後、セラミックス粉末の連続した層を堆積させ、層の焼結により連続した層を結合することにより壁を形成することとを含む。   In particular, the method includes separately preparing the base by powder sintering and then depositing successive layers of ceramic powder and forming the walls by joining the successive layers by sintering the layers. .

本発明は、添付概略図面を参照し純粋に例示のための非限定的実施例を通して以下に詳細に述べる本発明の実施形態の中でよりよく理解され、また、本発明の他の目的や詳細、特徴や利点もより明らかになろう。   The invention will be better understood in the embodiments of the invention described in detail below through non-limiting examples purely by way of example with reference to the accompanying schematic drawings, and other objects and details of the invention. The features and benefits will also become clearer.

本発明による構造を有する、セラミックス材料で作られたタービンローターブレードを示す図である。1 shows a turbine rotor blade made of a ceramic material having a structure according to the invention. FIG. レーザー溶融焼結装置を示す図である。It is a figure which shows a laser fusion sintering apparatus. 本発明による部品の一つのベースを例示する図である。FIG. 3 illustrates one base of a part according to the invention. 図3のベース上にレーザー焼結によって形成された第一の層を示す図である。It is a figure which shows the 1st layer formed by laser sintering on the base of FIG. 同じベース上に二つのタービンブレードを有する変形例を示す図である。It is a figure which shows the modification which has two turbine blades on the same base.

図1を参照すると、タービンブレード10は、本発明に従って作製することのできる部品を形成していることがわかる。ブレードは、根元すなわちベース11を備え、これによりタービンディスクのリムに取り付けられる。この根元は、その上に取り付けられるプラットホーム12を有し、根元は、軸XXに沿ってエンジン作動中にかかる遠心力の方向に、高温エンジンガスが掃引するブレード翼を形成する壁13に延びている。この場合、ブレードはシールストリップ16を備え、ブレード上に取り付けられたヒール15を有する。ヒール15とプラットホームは、それぞれガスエンジンのダクトの外面と内面の要素であり、その間にブレード翼が半径方向に延在している。シールストリップは、タービン段のステータ上に配設されたリングとともにシールを形成する。   Referring to FIG. 1, it can be seen that the turbine blade 10 forms a part that can be made in accordance with the present invention. The blade has a root or base 11 which is attached to the rim of the turbine disk. This root has a platform 12 mounted thereon, the root extending to a wall 13 forming a blade wing that sweeps hot engine gas in the direction of centrifugal force applied during engine operation along axis XX. Yes. In this case, the blade comprises a sealing strip 16 and has a heel 15 mounted on the blade. The heel 15 and the platform are elements of the outer and inner surfaces of the gas engine duct, respectively, with blade blades extending radially between them. The seal strip forms a seal with a ring disposed on the turbine stage stator.

本発明によれば、セラミックス材料でできたこの部品は、軸XXに沿って密度が変化する。密度変化は、軸XXに直交する平面に沿った断面(軸XXに沿って部品A、B、C、D)で模式的に示されている。   According to the invention, this part made of ceramic material changes in density along the axis XX. The density change is schematically shown in a cross section (parts A, B, C, D along the axis XX) along a plane orthogonal to the axis XX.

ベース11は最大密度を有する。これは、例えば、型の中でセラミックス粉末を成形することによって得られる要素であり、前記粉末はバインダーで結合されていてもよい。このステップに続いて、型で作製された半製品の焼結熱処理が行われる。使用する材料の組成によっては、中間で脱バインダステップを含む処理を行ってもよい。この要素の多孔率は好適には3%未満である。   The base 11 has a maximum density. This is, for example, an element obtained by molding ceramic powder in a mold, and the powder may be bound with a binder. This step is followed by a sintering heat treatment of the semi-finished product made with the mold. Depending on the composition of the material used, an intermediate treatment including a binder removal step may be performed. The porosity of this element is preferably less than 3%.

壁13は、外被13Eとコア13Nを有する。外被は壁の外面を形成する。外被は薄く、例えば1mm未満であり、好適にはおよそ0.5mmであり、ベースのような低多孔率を有する。外被は、比較的多孔率の大きいコア13Nを画定する。コアの多孔率は5%より大きく、好適には10%から50%の間である。相応じて、コアの密度は比較的小さく、この実施例にあるように部品をローター上に取り付けた時、遠心力によりベースにかかる機械的応力を減少させるという上記の利点がもたらされる。有利なことに、密度は軸全体を通して同じではない。断面B、Cに見られるように、この密度は、網目の比較的小さいまたは比較的大きい異なる格子模様で模式的に表されている。断面Dが示すヒールはベースより低密度であってもよく、壁より大きい密度であってもよい。これはセラミックス粉末の焼結粒子で作製される。   The wall 13 has a jacket 13E and a core 13N. The jacket forms the outer surface of the wall. The jacket is thin, for example less than 1 mm, preferably approximately 0.5 mm, and has a low porosity like the base. The jacket defines a core 13N having a relatively high porosity. The porosity of the core is greater than 5%, preferably between 10% and 50%. Correspondingly, the density of the core is relatively small, providing the above advantages of reducing mechanical stress on the base due to centrifugal force when the part is mounted on the rotor as in this embodiment. Advantageously, the density is not the same throughout the axis. As can be seen in sections B and C, this density is schematically represented by different grid patterns that are relatively small or relatively large in the mesh. The heel indicated by the cross section D may be lower in density than the base or may be higher in density than the wall. This is made of sintered particles of ceramic powder.

このような部品は部分的に粉末焼結で作製され、その方法は、図2の装置に関連して改めて以下で述べる。図2は、レーザービームまたは電子ビームを用いた粉末焼結により部品を作製する装置を示す。   Such parts are partly made by powder sintering, the method of which will be described again below in connection with the apparatus of FIG. FIG. 2 shows an apparatus for producing parts by powder sintering using a laser beam or an electron beam.

レーザービームまたは電子ビーム発生装置1は適切な出力を持つビーム2を放射し、ビームは反射鏡3の配列に向かい、反射鏡の最後の鏡4は、例えば上記のブレード10のような作製する部品の表面が確実に掃引されるよう枢動される。   The laser beam or electron beam generator 1 emits a beam 2 having an appropriate output, the beam is directed to an array of reflectors 3, and the last mirror 4 of the reflector is a component to be fabricated, such as the blade 10 described above. Is pivoted to ensure that the surface is swept.

既に形成された部品Pの部分は、規則的な間隔で焼結するのに適した形で粉末7の層で覆われるよう、トレイ6の中に埋められる。粉末を供給する第二のトレイ8が焼結トレイ6の横に置かれ、焼結粉末7で満たされている。部品Pの部分を所与の厚さの粉末層で覆うために、ピストン9を形成する装置は、所与の量の粉末7を供給トレイ8から焼結トレイ6に移動させることができる。この層の厚さは、ビーム2による粒子間の焼結パスを行う間、その部品の部分の厚さの増加分の厚さに対応する。焼結トレイ6を下げ、供給トレイ8を上げる装置により、一方で焼結される部品Pの部分をトレイ6の側と面一に合わせておき、他方で正確な厚さ持った粉末7の層を供給トレイ8のピストン9と対向するように持ってくることが可能となる。   The already formed parts P are buried in the tray 6 so that they are covered with a layer of powder 7 in a form suitable for sintering at regular intervals. A second tray 8 for feeding powder is placed beside the sintering tray 6 and filled with the sintered powder 7. In order to cover a part of the part P with a powder layer of a given thickness, the device forming the piston 9 can move a given amount of powder 7 from the supply tray 8 to the sintering tray 6. The thickness of this layer corresponds to the increased thickness of the part of the part during the sintering pass between the particles by the beam 2. By means of a device that lowers the sintering tray 6 and raises the supply tray 8, on the one hand the part P to be sintered is flush with the side of the tray 6 and on the other hand a layer of powder 7 with the correct thickness. Can be brought to face the piston 9 of the supply tray 8.

部品10を形成する粒子の焼結及び結合は、以下の方式で行われる連続した基本操作で実施される。すなわち、部品Pの部分は焼結トレイ6の側と面一に合わせられているので、ピストン9は、このトレイ6に向かって動き、部品Pの部分の上に所望の厚さの粉末7を堆積させた後、供給トレイ8の終端の待機位置に戻る。レーザービームまたは電子ビーム2は、振動ミラー4を使って部品Pの部分の表面を掃引し、それによって、層の表層部分の部分溶融を引き起こすか、または、粒子間の拡散が促進されるような温度上昇を引き起こし、前記層を部品Pと一体化させて厚さが増す。形成された部品Pの部分は次に、厚みが増した分を相殺するため下方向に移動し、その結果、表面が焼結トレイ6と再び面一となり、他方で、供給トレイ8が上昇して、十分な量の粉末7をピストン9と対向して供給できるようになる。この工程を必要な回数繰り返すことによって、完成部品10に求められる形状と寸法に到達する。   Sintering and bonding of the particles forming the part 10 is performed in a continuous basic operation performed in the following manner. That is, since the part P is flush with the side of the sintering tray 6, the piston 9 moves toward the tray 6 and puts a powder 7 having a desired thickness on the part P. After the deposition, it returns to the standby position at the end of the supply tray 8. The laser beam or electron beam 2 uses the vibrating mirror 4 to sweep the surface of the part P, thereby causing partial melting of the surface part of the layer or promoting diffusion between the particles. A temperature rise is caused, and the layer is integrated with the component P to increase the thickness. The formed part P then moves downwards to offset the increase in thickness, so that the surface is flush with the sintering tray 6 again, while the supply tray 8 is raised. Thus, a sufficient amount of the powder 7 can be supplied facing the piston 9. By repeating this process as many times as necessary, the shape and dimensions required for the finished part 10 are reached.

本発明によれば、作製する部品のベース11は、最初に焼結トレイ6内に配置される。図3で示したベース11は、好適には従来のセラミックス粉末焼結法を用いて別途得る。従来のセラミックス粉末焼結法とは、型の中で、セラミックス粉末とバインダーでできた半製品部品を形成し、次に中間脱バインダー処理ステップを伴う焼結熱処理を行うものである。タービンローターブレードの場合、ベース11は、好適にはブレードの根元を備え、必要に応じてプラットホームを備えてもよい。従来技術の焼結法により、非常に密度が高く多孔率が3%未満の部品を製造することができる。本発明の方法の特徴に従うと、ベース11はその上面に平坦部を備え、プラットホームが提供される場合にはプラットホーム部に備えてもよい。   According to the invention, the base 11 of the part to be produced is first placed in the sintering tray 6. The base 11 shown in FIG. 3 is preferably obtained separately using a conventional ceramic powder sintering method. In the conventional ceramic powder sintering method, a semi-finished part made of ceramic powder and a binder is formed in a mold, and then a sintering heat treatment accompanied by an intermediate debinding process step is performed. In the case of a turbine rotor blade, the base 11 preferably comprises the blade root and may optionally comprise a platform. With the prior art sintering method, parts with very high density and porosity of less than 3% can be produced. According to a feature of the method of the present invention, the base 11 may be provided with a flat portion on the upper surface thereof and, if a platform is provided, on the platform portion.

ベースは、セラミックス粉末とともに焼結トレイの中に配置され、その平坦部は粉末の表面と面一に合わせられている。本方法では、次に、上述したステップに従ってレーザービームまたは電子ビームを用いて、このベース11(図4)上に壁13を作ることも含まれる。ビームの行路は、壁の幾何学的特徴をメモリ中に保持する制御要素によって制御される。層を作るため、ビームは、位置だけでなくエネルギー入力の面でも制御される。   The base is disposed in the sintering tray together with the ceramic powder, and the flat portion thereof is flush with the surface of the powder. The method then includes making a wall 13 on this base 11 (FIG. 4) using a laser beam or electron beam according to the steps described above. The path of the beam is controlled by a control element that keeps the wall geometric features in memory. To create a layer, the beam is controlled not only in position but also in terms of energy input.

従って、外被13Eの表面は所与の多孔率、具体的にはベースと同様に3%未満の多孔率で、層に作り込まれる。この表面の下にはコア13Nが、多孔率が表面の多孔率より大きくなるようにして作られる。部分焼結を行う際に、ビームのエネルギーを低いレベルに維持すれば低密度のものが得られる。多孔率は、ベースの多孔率より大きい。少なくとも5%、好適には10%から50%の間である。層単位で操作して部品を作製することにより、多孔率が軸XXに沿って変化するコアとなるように層を作ることができる。この多孔率は、ベースとヒールの間で都合よく増大する。   Therefore, the surface of the jacket 13E is built into the layer with a given porosity, specifically less than 3% as with the base. Under this surface, the core 13N is made such that the porosity is greater than the porosity of the surface. When performing partial sintering, if the energy of the beam is maintained at a low level, a low density can be obtained. The porosity is greater than the base porosity. At least 5%, preferably between 10% and 50%. By manipulating the layer units to make the part, the layer can be made to be a core whose porosity varies along the axis XX. This porosity advantageously increases between the base and the heel.

壁のコアの変形例によれば、レーザービームの動きを制御して隔壁を作り、隔壁と隔壁の間がハニカム構造となるような空洞を形成する。隔壁は、外被を形成する表面のような密度の大きい材料で作られる。空洞の大きさは好都合なように変更してもよく、好適には、ブレードのベースからヒールの間で増加する。   According to a modification of the wall core, the partition wall is formed by controlling the movement of the laser beam, and a cavity is formed between the partition walls so as to have a honeycomb structure. The partition wall is made of a material having a high density such as a surface forming an outer cover. The size of the cavity may be varied for convenience and preferably increases between the base of the blade and the heel.

使用するセラミックス材料はどのような種類のものであってもよい。好ましくは、1000℃を超える温度で使用できるセラミックスが選定される。例えば、SiCのようなカーバイドや、Alのような酸化物、またはSiのような窒化物がある。共晶セラミックスもまた適している。 Any kind of ceramic material may be used. Preferably, ceramics that can be used at temperatures exceeding 1000 ° C. are selected. For example, there are carbides such as SiC, oxides such as Al 2 O 3 , and nitrides such as Si 3 N 4 . Eutectic ceramics are also suitable.

粉末の粒度は、レーザービームまたは電子ビームを用いて焼結するのが可能となるように選定される。粉末のサイズが小さくなればなるほど、低温度で部分焼結を作りやすいことが観察されている。   The particle size of the powder is selected so that it can be sintered using a laser beam or an electron beam. It has been observed that the smaller the size of the powder, the easier it is to make partial sintering at lower temperatures.

レーザービームまたは電子ビームは、処理する材料に適合させる。例えば、アルミナAlの場合、波長9400cm−1のレーザーを放射し、出力は10Wから30Wの間であり、最適な動きが96mm/SとなるYAGレーザーがこの用途には適している。 The laser beam or electron beam is adapted to the material to be processed. For example, in the case of alumina Al 2 O 3 , a YAG laser that emits a laser with a wavelength of 9400 cm −1 and has an output between 10 W and 30 W and an optimum movement of 96 mm / S is suitable for this application.

セラミックスは、バインダーを形成するホットメルト前駆物質を有する混合物の一部分をなしていてもよく、後で適切な熱処理によって除去してもよい。   The ceramic may form part of a mixture having a hot melt precursor that forms a binder, and may later be removed by a suitable heat treatment.

もし粗さを減少させる必要があれば、仕上げ加工を取り入れてもよい。   If it is necessary to reduce the roughness, finishing may be incorporated.

これらの部品を製造するため使用する方法では、連続して層を溶融することで発生する温度勾配により、大きな残留応力を発生させることとなる。作製する部品の形状や厚さや断面変化に応じて、この温度勾配が増加する場合がある。材料にもよるが、この温度勾配から生じる残留応力は、製造中の部品を変形させることがあり、使用中に亀裂やひびを発生させることがある。従って、焼結工程で温度を制御することと、固化の際の残留応力を最小化するために粉末の温度を均一に保つことが重要である。例えば抵抗加熱手段のような適切な加熱手段をこの目的で使用する。   In the method used to manufacture these parts, a large residual stress is generated by the temperature gradient generated by continuously melting the layers. This temperature gradient may increase depending on the shape, thickness, and cross-sectional change of the part to be manufactured. Depending on the material, the residual stresses resulting from this temperature gradient can deform the part being manufactured and can cause cracks and cracks during use. Therefore, it is important to control the temperature in the sintering process and to keep the temperature of the powder uniform in order to minimize the residual stress during solidification. Any suitable heating means such as resistance heating means is used for this purpose.

本発明の変形例によれば、図5に示すように、部品は一対のタービンブレードである。従って、本発明が提供する解決策を用いれば、同じベース上に二つの壁を直接作製することが可能である。ベース111はタービンディスク上に取り付けるための根元とプラットホーム112とを備える。二つの壁113、113’は、タービンローターの二つの隣接する壁に対応し、このプラットホーム上で支持されている。この二つの壁は、上記で説明したのと同じ方法で作られる。   According to a variation of the present invention, the part is a pair of turbine blades as shown in FIG. Thus, using the solution provided by the present invention, it is possible to make two walls directly on the same base. The base 111 includes a root for mounting on a turbine disk and a platform 112. Two walls 113, 113 'correspond to two adjacent walls of the turbine rotor and are supported on this platform. The two walls are made in the same way as described above.

Claims (11)

セラミックス材料で作られた部品(10)であって、ベース(11)を形成する部分と、壁(13)を形成する部分とからなり、ベース(11)は低多孔率のセラミックス材料から作られ、壁(13)はセラミックス粉末の焼結によって得られ、壁(13)はさらに、外被(13E)とコア(13N)を有し、コアは外被の中に位置し、コアの多孔率がベースの多効率より大きく、ベースから遠ざかるに従って増加することを特徴とする、部品(10)。   A part (10) made of a ceramic material, comprising a part forming a base (11) and a part forming a wall (13), the base (11) being made from a ceramic material having a low porosity. The wall (13) is obtained by sintering ceramic powder, the wall (13) further comprises a jacket (13E) and a core (13N), the core being located in the jacket, the porosity of the core The component (10), characterized in that is greater than the multi-efficiency of the base and increases with increasing distance from the base. ベース(11)がセラミックス粉末の焼結により作製される、請求項1に記載の部品。   2. Part according to claim 1, wherein the base (11) is made by sintering ceramic powder. ベース(11)を形成する材料の多孔率が3%未満である、請求項1または2に記載の部品。   3. Part according to claim 1 or 2, wherein the material forming the base (11) has a porosity of less than 3%. コア(13N)の多孔率が5%を超え、好適には10%から50%の間にある、請求項1〜3のいずれか一項に記載の部品。   4. Part according to any one of the preceding claims, wherein the porosity of the core (13N) is greater than 5%, preferably between 10% and 50%. コア(13N)が、部分焼結により結合したセラミックス粒子で作られた多孔質物質からなる、請求項1〜4のいずれか一項に記載の部品。   The component according to any one of claims 1 to 4, wherein the core (13N) is made of a porous material made of ceramic particles bonded by partial sintering. コア(13N)が、隔壁で仕切られた空洞からなり、隔壁を形成する材料が3%未満の多効率を有する、請求項1〜3のいずれか一項に記載の部品。   The component according to any one of claims 1 to 3, wherein the core (13N) comprises a cavity partitioned by a partition wall, and a material forming the partition wall has a multi-efficiency of less than 3%. コア(13N)が異なる空洞を有する部分からなり、特に、大きさがベースから遠ざかるに従って増加する、請求項1〜6のいずれか一項に記載の部品。   7. Part according to any one of the preceding claims, wherein the core (13N) consists of parts with different cavities, in particular the size increases as it goes away from the base. 壁(13)の延長にヒール(15)を備え、多孔率がコアを形成する材料の多孔率よりも小さい、請求項1〜7のいずれか一項に記載の部品。   8. Part according to any one of the preceding claims, wherein the extension of the wall (13) comprises a heel (15), the porosity being smaller than the porosity of the material forming the core. タービンエンジンブレードを形成する部品であって、ベースがブレードの根元を形成し、壁がブレード翼を形成し、コアの多効率よりも小さい多孔率のヒールを任意に有する、請求項1〜8のいずれか一項に記載の部品。   A component forming a turbine engine blade, wherein the base forms the root of the blade, the wall forms a blade wing, and optionally has a porosity heel that is less than the multi-efficiency of the core. The component according to any one of the items. ステップ開始時にベース(11)と面一をなす粉末の入る焼結トレイ(6)を使用して壁(13)を形成するステップと、レーザービームまたは電子ビームを用いて粉末を連続した層に選択的に焼結するステップとからなり、連続した層が部品を焼結トレイ(6)の中で下方向に漸進的に動かすことによって得られる、請求項1〜9のいずれか一項に記載の部品を製造するための方法。   Forming a wall (13) using a sintering tray (6) containing powder that is flush with the base (11) at the start of the step, and selecting the powder into a continuous layer using a laser beam or electron beam Sintering step, wherein a continuous layer is obtained by progressively moving the part downward in the sintering tray (6). A method for manufacturing a part. 粉末焼結によってベースを別途作製することと、その後、セラミックス粉末の連続した層を堆積させ、層の焼結により連続した層を結合することにより壁を形成すること、を含む請求項10に記載の方法。   11. The method of claim 10, further comprising: separately producing a base by powder sintering; and subsequently depositing successive layers of ceramic powder and bonding the successive layers by sintering the layers. the method of.
JP2015537332A 2012-10-18 2013-10-16 Parts made of ceramic material with base and wall Active JP6236458B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1259964A FR2997077B1 (en) 2012-10-18 2012-10-18 PIECE OF CERAMIC MATERIAL WITH BASE AND SAIL
FR1259964 2012-10-18
PCT/FR2013/052470 WO2014060699A1 (en) 2012-10-18 2013-10-16 Part consisting of a ceramic material, comprising a base and a wall

Publications (2)

Publication Number Publication Date
JP2015533990A true JP2015533990A (en) 2015-11-26
JP6236458B2 JP6236458B2 (en) 2017-11-22

Family

ID=47833110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015537332A Active JP6236458B2 (en) 2012-10-18 2013-10-16 Parts made of ceramic material with base and wall

Country Status (9)

Country Link
US (1) US10138739B2 (en)
EP (1) EP2909153B1 (en)
JP (1) JP6236458B2 (en)
CN (1) CN104718175B (en)
BR (1) BR112015008626B1 (en)
CA (1) CA2887782C (en)
FR (1) FR2997077B1 (en)
RU (1) RU2642606C2 (en)
WO (1) WO2014060699A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006606B1 (en) * 2013-06-11 2015-07-03 Tech Avancees Et Membranes Industrielles PROCESS FOR MANUFACTURING FILTRATION MEMBRANES BY ADDITIVE TECHNIQUE AND MEMBRANES OBTAINED
CN113649591A (en) * 2021-06-28 2021-11-16 华中科技大学鄂州工业技术研究院 3D printing method for metal/ceramic powder sintering partition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634189A (en) * 1993-11-11 1997-05-27 Mtu Motoren-Und Turbinen Union Munchen Gmbh Structural component made of metal or ceramic having a solid outer shell and a porous core and its method of manufacture
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2078948C1 (en) * 1993-12-30 1997-05-10 Яков Петрович Гохштейн Heat-insulated turbine blade
DE60114453T2 (en) * 2000-11-27 2006-07-13 National University Of Singapore METHOD AND DEVICE FOR PREPARING A THREE-DIMENSIONAL METAL PART USING HIGH-TEMPERATURE DIRECT LASER MELTS
EP1533113A1 (en) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft High temperature layered system for heat dissipation and method for making it
DE10357656A1 (en) * 2003-12-10 2005-07-07 Mtu Aero Engines Gmbh Method for producing gas turbine components and component for a gas turbine
US20050158171A1 (en) * 2004-01-15 2005-07-21 General Electric Company Hybrid ceramic matrix composite turbine blades for improved processibility and performance
DE102008051622A1 (en) * 2008-10-02 2010-04-08 Roland Gschwinder Producing a product by molding of liquid, pulpy, pasty, powdery, granular and/or solid material and/or its composition states using mold, comprises applying a periodic energy influence in the form of energy pulses with short time duration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634189A (en) * 1993-11-11 1997-05-27 Mtu Motoren-Und Turbinen Union Munchen Gmbh Structural component made of metal or ceramic having a solid outer shell and a porous core and its method of manufacture
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders

Also Published As

Publication number Publication date
FR2997077A1 (en) 2014-04-25
EP2909153B1 (en) 2018-05-30
US10138739B2 (en) 2018-11-27
WO2014060699A1 (en) 2014-04-24
BR112015008626A2 (en) 2017-07-04
BR112015008626B1 (en) 2020-10-13
CA2887782A1 (en) 2014-04-24
RU2015116884A (en) 2016-12-10
JP6236458B2 (en) 2017-11-22
FR2997077B1 (en) 2019-11-01
RU2642606C2 (en) 2018-01-25
US20150285084A1 (en) 2015-10-08
CN104718175A (en) 2015-06-17
EP2909153A1 (en) 2015-08-26
CA2887782C (en) 2020-11-10
CN104718175B (en) 2018-01-12

Similar Documents

Publication Publication Date Title
JP7187094B2 (en) CMC components having microchannels and methods for forming microchannels in CMC components
US10570744B2 (en) Method for forming components using additive manufacturing and re-melt
US9770758B2 (en) Method for forming a directionally solidified replacement body for a component using additive manufacturing
US8691333B2 (en) Methods for manufacturing engine components with structural bridge devices
RU2330162C2 (en) High temperature foliated system for heat removal and method for its production (versions)
US8668442B2 (en) Turbine nozzles and methods of manufacturing the same
US9393620B2 (en) Uber-cooled turbine section component made by additive manufacturing
US9175568B2 (en) Methods for manufacturing turbine components
US9718127B2 (en) Method for forming components using additive manufacturing and re-melt
CA2962677A1 (en) High porosity material and method of making thereof
JP6356801B2 (en) Turbine component with negative CTE characteristics
JP6236458B2 (en) Parts made of ceramic material with base and wall
FR3096912A1 (en) A method of manufacturing a turbomachine part by MIM molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6236458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250