JP2015524129A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2015524129A5 JP2015524129A5 JP2015518525A JP2015518525A JP2015524129A5 JP 2015524129 A5 JP2015524129 A5 JP 2015524129A5 JP 2015518525 A JP2015518525 A JP 2015518525A JP 2015518525 A JP2015518525 A JP 2015518525A JP 2015524129 A5 JP2015524129 A5 JP 2015524129A5
- Authority
- JP
- Japan
- Prior art keywords
- data
- data unit
- content
- data object
- asset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004590 computer program Methods 0.000 claims 9
- 238000003379 elimination reaction Methods 0.000 claims 2
Claims (15)
前記オペレーションは、
経常収益管理システムにて第1のデータ単位を受信するステップと、
経常収益管理システムにて第2のデータ単位を受信するステップと、
経常収益管理システム内部で定義される資産データモデルの一部である所定のデータオブジェクトのパラメータに基づいて、第1のデータ単位及び第2のデータ単位から、内容を抽出するステップと、
抽出される内容を、所定のデータオブジェクトのインスタンスに加え、参照タグを、第1のデータ単位及び第2のデータ単位の各々から抽出される内容と、関連づけするステップであって、各々の参照タグはその関連する内容のための識別情報を含む、ステップと、
第1のデータ単位から抽出される内容と第2のデータ単位から抽出される内容が、所定のデータオブジェクトのインスタンスの内部の同じフィールドに対して、冗長で対立する値を与える、重複データ状況を検出するステップと、
第1のデータ単位と第2のデータ単位の内容の参照タグ内の識別情報に基づく、対立の解消への所定のアプローチを適用することにより、重複データ状況を解消するステップと
を含む、コンピュータプログラム。 In a computer program comprising instructions that, when executed by at least one programmable processor, cause the at least one programmable processor to perform an operation,
Said operation is
Receiving the first data unit in the recurring revenue management system;
Receiving a second data unit in the current revenue management system;
Extracting content from a first data unit and a second data unit based on parameters of a predetermined data object that is part of an asset data model defined within the ordinary revenue management system;
Adding extracted content to an instance of a predetermined data object and associating a reference tag with the content extracted from each of the first data unit and the second data unit, each reference tag Includes identifying information for its associated content, and
A duplicate data situation in which the content extracted from the first data unit and the content extracted from the second data unit give redundant and conflicting values for the same field inside an instance of a given data object. Detecting step;
Resolving the duplicate data situation by applying a predetermined approach to resolving the conflict based on the identification information in the reference tag of the contents of the first data unit and the second data unit. .
請求項1に記載のコンピュータプログラム。 The predetermined approach includes identifying one or more key fields in the content, each of the one or more key fields having a unique characteristic.
The computer program according to claim 1.
請求項1に記載のコンピュータプログラム。 The predetermined approach includes a clustering algorithm that measures one or more statistical variability for a larger group of objects in the asset data model.
The computer program according to claim 1.
請求項1〜3のうちのいずれか一に記載のコンピュータプログラム。 The asset data model includes one or more of each of a product data object, a recurring revenue asset data object, an opportunity data object, and a contact data object.
The computer program as described in any one of Claims 1-3.
請求項4に記載のコンピュータプログラム。 The content extracted from the first data unit and the content extracted from the second data unit are the asset data model of the product data object, the recurring revenue asset data object, the opportunity data object, and the contact data object. Represents one or more of
The computer program according to claim 4.
重複データ状況の解消に従って、経常収益資産の資産データオブジェクトを生成するステップを含む、
請求項1〜5のうちのいずれか一に記載のコンピュータプログラム。 The operation further includes:
Generating asset data objects for recurring revenue assets according to the elimination of duplicate data situations,
The computer program as described in any one of Claims 1-5.
請求項1〜6のうちのいずれか一に記載のコンピュータプログラム。 The identification information associated with each reference tag includes an indication of the source from which the extracted content was received, and the extracted content further includes the previous reference tag associated with the extracted content with which the reference tag is associated. Including tag history, including history,
The computer program as described in any one of Claims 1-6.
請求項7に記載のコンピュータプログラム。 Each reference tag further includes one or more of the date of receipt, the user identifier, and the user's acceptable level indicating the content to be extracted.
The computer program according to claim 7.
一つ若しくはそれ以上のプロセッサにより、経常収益資産に関連する第2のデータ単位を受信するステップと、
一つ若しくはそれ以上のプロセッサにより、経常収益資産のための経常収益管理システム内部で定義される資産データモデルの一部である所定のデータオブジェクトのパラメータに基づいて、第1のデータ単位及び第2のデータ単位から、内容を抽出するステップと、
一つ若しくはそれ以上のプロセッサにより、抽出される内容を、所定のデータオブジェクトのインスタンスに加え、参照タグを、第1のデータ単位及び第2のデータ単位の各々から抽出される内容と、関連づけするステップであって、各々の参照タグはその関連する内容のための識別情報を含む、ステップと、
一つ若しくはそれ以上のプロセッサにより、第1のデータ単位から抽出される内容と第2のデータ単位から抽出される内容が、所定のデータオブジェクトのインスタンスの内部の同じフィールドに対して、冗長で対立する値を与える、重複データ状況を検出するステップと、
一つ若しくはそれ以上のプロセッサにより、第1のデータ単位と第2のデータ単位の内容の参照タグ内の識別情報に基づく、対立の解消への所定のアプローチを適用することにより、重複データ状況を解消するステップと
を含む、コンピュータに実装される方法。 Receiving, by one or more processors, a first data unit associated with a recurring revenue asset;
Receiving, by one or more processors, a second data unit associated with the recurring revenue asset;
One or more processors, based on parameters of a predetermined data object that is part of an asset data model defined within the recurring revenue management system for recurring revenue assets, a first data unit and a second data unit Extracting content from the data unit of
The content extracted by one or more processors is added to an instance of a given data object, and a reference tag is associated with the content extracted from each of the first data unit and the second data unit. Each reference tag includes identifying information for its associated content; and
The content extracted from the first data unit and the content extracted from the second data unit by one or more processors is redundant and conflicting with the same field inside an instance of a given data object. Detecting a duplicate data situation, giving a value to
By applying a predetermined approach to conflict resolution based on the identification information in the reference tag of the contents of the first data unit and the second data unit by one or more processors, A computer-implemented method comprising the step of resolving.
請求項10に記載の、コンピュータに実装される方法。 The predetermined approach includes identifying one or more key fields in the content, each of the one or more key fields having a unique characteristic.
The computer-implemented method of claim 10.
請求項11に記載の、コンピュータに実装される方法。 The predetermined approach includes a clustering algorithm that measures one or more statistical variability for a larger group of objects in the asset data model.
The computer-implemented method of claim 11.
請求項12に記載の、コンピュータに実装される方法。 The asset data model includes one or more of each of a product data object, a recurring revenue asset data object, an opportunity data object, and a contact data object.
The computer-implemented method of claim 12.
請求項13に記載の、コンピュータに実装される方法。 The content extracted from the first data unit and the content extracted from the second data unit are the asset data model of the product data object, the recurring revenue asset data object, the opportunity data object, and the contact data object. Represents one or more of
The computer-implemented method of claim 13.
重複データ状況の解消に従って、経常収益資産の資産データオブジェクトを生成するステップを含む、
請求項13又は14に記載の、コンピュータに実装される方法。 The operation further includes:
Generating asset data objects for recurring revenue assets according to the elimination of duplicate data situations,
15. A computer implemented method according to claim 13 or 14.
Applications Claiming Priority (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261661299P | 2012-06-18 | 2012-06-18 | |
US61/661,299 | 2012-06-18 | ||
US13/841,681 | 2013-03-15 | ||
US13/844,002 US20140122240A1 (en) | 2012-06-18 | 2013-03-15 | Recurring revenue asset sales opportunity generation |
US13/844,306 | 2013-03-15 | ||
US13/844,306 US20140122176A1 (en) | 2012-06-18 | 2013-03-15 | Predictive model of recurring revenue opportunities |
US13/841,681 US9646066B2 (en) | 2012-06-18 | 2013-03-15 | Asset data model for recurring revenue asset management |
US13/842,398 | 2013-03-15 | ||
US13/844,002 | 2013-03-15 | ||
US13/842,398 US10078677B2 (en) | 2012-06-18 | 2013-03-15 | Inbound and outbound data handling for recurring revenue asset management |
US13/842,035 US10430435B2 (en) | 2012-06-18 | 2013-03-15 | Provenance tracking and quality analysis for revenue asset management data |
US13/842,035 | 2013-03-15 | ||
US13/895,276 US20140156343A1 (en) | 2012-06-18 | 2013-05-15 | Multi-tier channel partner management for recurring revenue sales |
US13/895,294 US20130339088A1 (en) | 2012-06-18 | 2013-05-15 | Recurring revenue management benchmarking |
US13/895,276 | 2013-05-15 | ||
US13/895,302 US9652776B2 (en) | 2012-06-18 | 2013-05-15 | Visual representations of recurring revenue management system data and predictions |
US13/895,302 | 2013-05-15 | ||
US13/895,294 | 2013-05-15 | ||
PCT/US2013/046439 WO2013192245A2 (en) | 2012-06-18 | 2013-06-18 | Service asset management system and method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015524129A JP2015524129A (en) | 2015-08-20 |
JP2015524129A5 true JP2015524129A5 (en) | 2016-08-04 |
JP6301326B2 JP6301326B2 (en) | 2018-03-28 |
Family
ID=52388439
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015518525A Active JP6301326B2 (en) | 2012-06-18 | 2013-06-18 | Service asset management system and method |
JP2015518526A Pending JP2015524130A (en) | 2012-06-18 | 2013-06-18 | Inline benchmarking and comparative analysis of recurring revenue assets |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015518526A Pending JP2015524130A (en) | 2012-06-18 | 2013-06-18 | Inline benchmarking and comparative analysis of recurring revenue assets |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP2862138A4 (en) |
JP (2) | JP6301326B2 (en) |
AU (2) | AU2013277315A1 (en) |
CA (2) | CA2877288A1 (en) |
WO (2) | WO2013192245A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11501175B2 (en) | 2016-02-08 | 2022-11-15 | Micro Focus Llc | Generating recommended inputs |
WO2021158737A1 (en) | 2020-02-04 | 2021-08-12 | The Rocket Science Group Llc | Predicting outcomes via marketing asset analytics |
US11386265B2 (en) | 2020-12-15 | 2022-07-12 | International Business Machines Corporation | Facilitating information technology solution templates |
US11645595B2 (en) * | 2020-12-15 | 2023-05-09 | International Business Machines Corporation | Predictive capacity optimizer |
US20220327634A1 (en) * | 2021-04-01 | 2022-10-13 | Intuit Inc. | Generating relevant attribute data for benchmark comparison |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06119309A (en) * | 1992-10-02 | 1994-04-28 | Intetsuku:Kk | Purchase prospect degree predicting method and customer management system |
JPH0944331A (en) * | 1995-08-03 | 1997-02-14 | Matsushita Electric Ind Co Ltd | Information processor |
JP2852907B2 (en) * | 1996-10-02 | 1999-02-03 | 株式会社エヌエムシイ | Financial audit system |
US7730172B1 (en) * | 1999-05-24 | 2010-06-01 | Computer Associates Think, Inc. | Method and apparatus for reactive and deliberative service level management (SLM) |
AU2001261702B2 (en) * | 2000-05-22 | 2004-04-29 | International Business Machines Corporation | Revenue forecasting and sales force management using statistical analysis |
JP5525673B2 (en) * | 2000-09-28 | 2014-06-18 | オラクル・インターナショナル・コーポレイション | Enterprise web mining system and method |
US7464097B2 (en) * | 2002-08-16 | 2008-12-09 | Sap Ag | Managing data integrity using a filter condition |
JP2004086269A (en) * | 2002-08-23 | 2004-03-18 | Mitsubishi Trust & Banking Corp | Financial information system |
US7797182B2 (en) * | 2002-12-31 | 2010-09-14 | Siebel Systems, Inc. | Method and apparatus for improved forecasting using multiple sources |
US20040172374A1 (en) * | 2003-02-28 | 2004-09-02 | Forman George Henry | Predictive data mining process analysis and tool |
US7437326B2 (en) * | 2003-06-02 | 2008-10-14 | Fmr Corp. | Securities trading simulation |
JP2005071191A (en) * | 2003-08-26 | 2005-03-17 | Nec Corp | User support system, method and server, and computer-executable program |
US20050096950A1 (en) * | 2003-10-29 | 2005-05-05 | Caplan Scott M. | Method and apparatus for creating and evaluating strategies |
US20050108043A1 (en) * | 2003-11-17 | 2005-05-19 | Davidson William A. | System and method for creating, managing, evaluating, optimizing, business partnership standards and knowledge |
US7702718B2 (en) * | 2004-03-30 | 2010-04-20 | Cisco Technology, Inc. | Providing enterprise information |
US8620719B2 (en) * | 2004-08-16 | 2013-12-31 | Accordo Group International Limited | Method, system and software for managing software license annuities |
US20060238919A1 (en) * | 2005-04-20 | 2006-10-26 | The Boeing Company | Adaptive data cleaning |
AU2006263656A1 (en) * | 2005-06-28 | 2007-01-04 | Oracle International Corporation | Revenue management system and method |
JP4690133B2 (en) * | 2005-07-19 | 2011-06-01 | 富士通株式会社 | Insurance sales support method, program and apparatus |
US8311888B2 (en) * | 2005-09-14 | 2012-11-13 | Jumptap, Inc. | Revenue models associated with syndication of a behavioral profile using a monetization platform |
US7506001B2 (en) * | 2006-11-01 | 2009-03-17 | I3Solutions | Enterprise proposal management system |
US8266168B2 (en) * | 2008-04-24 | 2012-09-11 | Lexisnexis Risk & Information Analytics Group Inc. | Database systems and methods for linking records and entity representations with sufficiently high confidence |
US8176083B2 (en) * | 2008-12-18 | 2012-05-08 | Sap Ag | Generic data object mapping agent |
-
2013
- 2013-06-18 JP JP2015518525A patent/JP6301326B2/en active Active
- 2013-06-18 CA CA2877288A patent/CA2877288A1/en not_active Abandoned
- 2013-06-18 JP JP2015518526A patent/JP2015524130A/en active Pending
- 2013-06-18 WO PCT/US2013/046439 patent/WO2013192245A2/en active Application Filing
- 2013-06-18 EP EP13740397.8A patent/EP2862138A4/en not_active Withdrawn
- 2013-06-18 WO PCT/US2013/046440 patent/WO2013192246A2/en active Application Filing
- 2013-06-18 AU AU2013277315A patent/AU2013277315A1/en not_active Abandoned
- 2013-06-18 CA CA2877291A patent/CA2877291A1/en not_active Abandoned
- 2013-06-18 EP EP13739536.4A patent/EP2862055A4/en not_active Ceased
- 2013-06-18 AU AU2013277314A patent/AU2013277314A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2563340A8 (en) | Labeling computing objects for improved threat detection | |
SG10201901732UA (en) | Sensitive information processing method, device, server and security determination system | |
JP2015524129A5 (en) | ||
RU2016137343A (en) | SYSTEMS AND METHODS FOR TRACKING ITEMS | |
WO2013019869A3 (en) | Data fingerpringting for copy accuracy assurance | |
JP2016517291A5 (en) | ||
JP2015005308A5 (en) | ||
JP2018503154A5 (en) | ||
WO2012030853A3 (en) | User list identification | |
US20140317089A1 (en) | Context aware dynamic sentiment analysis | |
US20180239986A1 (en) | Image Clustering Method, Image Clustering System, And Image Clustering Server | |
WO2012177794A3 (en) | Identifying information related to a particular entity from electronic sources, using dimensional reduction and quantum clustering | |
JP2014534532A5 (en) | ||
JP2012234520A5 (en) | ||
JP2015072681A5 (en) | ||
JP2008287744A5 (en) | ||
JP2020518396A5 (en) | ||
JP2018504695A5 (en) | ||
JP2013543154A5 (en) | ||
WO2016141045A3 (en) | Detection and visualization of temporal events in a large-scale patient database | |
MY186871A (en) | Published information processing method and device, and information publishing system | |
IN2014KN01340A (en) | ||
CN105095523A (en) | Alarm event handling method and system | |
WO2013192245A3 (en) | Service asset management system and method | |
Chen | A rough neural network algorithm for multisensor information fusion |