JP2015518179A5 - - Google Patents

Download PDF

Info

Publication number
JP2015518179A5
JP2015518179A5 JP2015504738A JP2015504738A JP2015518179A5 JP 2015518179 A5 JP2015518179 A5 JP 2015518179A5 JP 2015504738 A JP2015504738 A JP 2015504738A JP 2015504738 A JP2015504738 A JP 2015504738A JP 2015518179 A5 JP2015518179 A5 JP 2015518179A5
Authority
JP
Japan
Prior art keywords
crystal element
electro
crystal
optic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015504738A
Other languages
Japanese (ja)
Other versions
JP2015518179A (en
JP6420234B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2013/035343 external-priority patent/WO2013152241A1/en
Publication of JP2015518179A publication Critical patent/JP2015518179A/en
Publication of JP2015518179A5 publication Critical patent/JP2015518179A5/ja
Application granted granted Critical
Publication of JP6420234B2 publication Critical patent/JP6420234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

更に、本発明は、例えば、1100pm/Vより大きな横有効直線E−O係数γT C及び最大527pm/Vの縦有効直線E−O係数γl Cを示し、(ドープされた若しくはドープされていないPMN−PT、PIN−PMN−PT又はPZN−PT強誘電体結晶から作られ得る)超高直線E−O係数γCを示し、非常に多くの変調、コミュニケーション、レーザー及び産業用途において、200V未満の非常に低い半波長電圧Vl π及び87V未満のVT πをもたらすような電気光学(E−O)結晶素子に関する。同様に、本発明は、提案結晶素子は、結果を与える手段として有効であることに付いて言及し、別の言い方をすれば、提案結晶素子は、以下の有効な構造と同じものを含む製品、システム及び装置において200V未満のVl π及び87V未満のVT πの非常に低い半波長電圧をもたらす1100pm/Vよりも大きい横有効直線E−O係数γT C及び最大527pm/Vの縦有効直線E−O係数γ l C を提供するための手段である。 Furthermore, the present invention shows, for example, a lateral effective straight line EO coefficient γ T C greater than 1100 pm / V and a longitudinal effective straight line EO coefficient γ l C of up to 527 pm / V, (doped or doped). Not very PMN-PT, PIN-PMN-PT or PZN-PT ferroelectric crystal), exhibiting a very high linear EO coefficient γ C , 200V in many modulation, communication, laser and industrial applications The present invention relates to an electro-optic (EO) crystal element that provides a very low half-wave voltage V 1 π of less than and V T π of less than 87V. Similarly, the present invention mentions that the proposed crystal element is effective as a means of giving results, in other words, the proposed crystal element includes the same effective structure as follows: A transverse effective straight line EO coefficient γ T C greater than 1100 pm / V and a longitudinal of up to 527 pm / V resulting in a very low half-wave voltage of V l π less than 200 V and V T π less than 87 V in the system and apparatus. It is a means for providing an effective straight line EO coefficient γ l C.

E−O単結晶材料は、PMN−PT(マグネシウムニオブ酸鉛−チタン酸鉛)若しくはPIN−PMN−PT(インジウムニオブ酸鉛−マグネシウムニオブ酸鉛−チタン酸鉛)又はPZN−PT(亜鉛ニオブ酸鉛−チタン酸鉛)若しくは上記のドープ結晶から選択され得る。発明は、特に、再分極可能設計、即ち結晶中のポーリング方向<011>に平行な応用電場に関する。E−O結晶素子は、(1)(操作温度-30℃〜85℃で)350〜1100pm/Vの範囲と同じ高さで有効横直線E−O係数γT C及び45V(l/d=1)未満の非常に低い半波長電圧VT πを示し、(2)(操作温度-30℃〜110℃で)280〜800pm/Vの範囲と同じ高さで有効縦直線E−O係数γl C及び300V(l/d=1)未満、好ましくは約200V、より好ましくは約150V未満の非常に低い半波長電圧Vl πを示す。再ポーリング能の性質に加えて、超高有効E−O係数γC及び非常に低いVπが、新世代のE−O結晶素子として各種のE−O装置への発明結晶素子の使用を可能にしている。特に、しかし限定されないが、E−O切り替え、E−O位相変調、E−O振幅変調、レーザービーム変調及び光学複屈折装置に利用可能である。 The EO single crystal material is PMN-PT (lead magnesium niobate-lead titanate) or PIN-PMN-PT (lead indium niobate-lead magnesium niobate-lead titanate) or PZN-PT (zinc niobate). Lead-lead titanate) or the above doped crystals. The invention particularly relates to a repolarizable design, ie an applied electric field parallel to the poling direction <011> in the crystal. The EO crystal element has (1) an effective horizontal straight line EO coefficient γ T C and 45 V (l / d = at the same height as the range of 350 to 1100 pm / V (at an operating temperature of −30 ° C. to 85 ° C.). 1) showing a very low half-wave voltage V T π of less than (2) (at an operating temperature of −30 ° C. to 110 ° C.) an effective longitudinal straight line EO coefficient γ at the same height as the range of 280 to 800 pm / V It exhibits a very low half-wave voltage V l π of l C and less than 300 V (l / d = 1), preferably about 200 V, more preferably less than about 150 V. In addition to the nature of the re-polling ability, the ultra-high effective EO coefficient γ C and very low V π enable the use of the inventive crystal element in various EO devices as a new generation EO crystal element I have to. In particular, but not limited to, EO switching, EO phase modulation, EO amplitude modulation, laser beam modulation and optical birefringence devices.

本発明の一つの態様にしたがって、電気光学結晶素子を製造する方法が提供され、以下の化学式の一つによって表わされる化学組成を有する強誘電体結晶を作成する工程と、
(I)Pb(Mg1/3Nb2/3)1-xTixO3 式中xは0.22〜0.38として定義、
若しくは
(II)Pb(Zn1/3Nb2/3)1-yTiO3 式中yは0.04〜0.11として定義され、
全ての結晶素子は、最大6%(質量%)のランタン(La)、アンチモン(Sb)、最大8%(質量%)のタンタル(Ta)、最大31%(質量%)のインジウム(In)、最大5%(質量%)のジルコニウム(Zr)及びセリウム(Ce)、エルビウム(Er)、テルビウム(Tb)、スカンジウム(Sc)並びにネオジム(Nd)からなる群から選択された最大8%(質量%)の少なくとも一つの希土類元素と一緒にドープ又は共ドープすることができ、
(011)にその結晶素子をスライスし、ウェハースを形成する工程と、
95℃未満の温度範囲で、抗電場(Ec)の2倍の下で、<011>方向にその結晶素子をポーリングすることによってmm2対称構造で分極する工程とを含む。
In accordance with one aspect of the present invention, a method of manufacturing an electro-optic crystal element is provided, the method comprising creating a ferroelectric crystal having a chemical composition represented by one of the following chemical formulas:
(I) Pb (Mg 1/3 Nb 2/3 ) 1-x Ti x O 3 where x is defined as 0.22 to 0.38,
Or (II) Pb (Zn 1/3 Nb 2/3 ) 1-y Ti y O 3 where y is defined as 0.04 to 0.11;
All crystal elements consist of up to 6% (mass%) lanthanum (La), antimony (Sb), up to 8% (mass%) tantalum (Ta), up to 31% (mass%) indium (In), Up to 5% (mass%) of zirconium (Zr) and cerium (Ce), erbium (Er), terbium (Tb), scandium (Sc) and up to 8% (mass%) selected from the group consisting of neodymium (Nd) ) And at least one rare earth element can be doped or co-doped,
(011) slicing the crystal element to form a wafer;
At a temperature range of less than 95 ° C., under a double anti-electric field (Ec), a step of polarization in mm2 symmetric structure by polling the crystal element in the <011> direction.

本発明の別の態様にしたがって、電気光学結晶素子を製造する方法が提供され、分極の工程が単一ドメイン並びに複数のナノドメイン構造の一つをもたらす。 In accordance with another aspect of the present invention, a method for fabricating an electro-optic crystal element is provided, wherein the step of polarization results in a single domain as well as one of a plurality of nanodomain structures.

本発明の別の態様にしたがって、横モード結晶素子を提供する電気光学結晶素子及び<011>分極を提供し、室温20℃で527pm/Vよりも大きい横有効E−O係数γT C及び87.5V(l/d=1)よりも小さい半波長電圧V T πを与える、横モード結晶素子を製造する方法が提供される。 In accordance with another aspect of the present invention, an electro-optic crystal element providing a transverse mode crystal element and <011> polarization is provided, and a transverse effective EO coefficient γ T C and 87 greater than 527 pm / V at room temperature 20 ° C. .5V (l / d = 1) gives a small half-wave voltage V T [pi than, a method for producing a transverse mode crystal device is provided.

本発明の別の態様にしたがって、縦モード結晶素子上に透明な電極をコーティングしつつ縦モード結晶素子を提供する電気光学結晶素子及び室温20℃で427pm/Vよりも大きい縦有効E−O係数γl C及び300Vよりも小さいVl π<011>分極を提供する縦モード結晶素子を製造する方法が提供される。 In accordance with another aspect of the present invention, an electro-optic crystal element providing a longitudinal mode crystal element while coating a transparent electrode on the longitudinal mode crystal element, and a longitudinal effective EO coefficient greater than 427 pm / V at room temperature 20 ° C. A method is provided for fabricating a longitudinal mode crystal device that provides <011> polarization of γ l C and V l π less than 300V.

本発明の別の態様にしたがって、電気光学結晶素子を製造する方法が提供され、下記化学式によって表わされる化学組成を有する強誘電体結晶を作成する工程と、
(III) y*[Pb(In1/2Nb1/2)O3]-(1-y)*[Pb(Mg1/3Nb2/3)1-xTixO3]
式中xは、0.00〜0.35として定義、
yは0.00〜0.35として定義され、
その結晶素子を(011)ウェハースにスライスする工程と、
95℃未満の温度範囲で、抗電場(Ec)の2倍の下で、<011>方向にその結晶素子をポーリングすることによってmm2対称構造で分極する工程とを含む。
According to another aspect of the present invention, there is provided a method of manufacturing an electro-optic crystal element, and producing a ferroelectric crystal having a chemical composition represented by the following chemical formula:
(III) y * [Pb (In 1/2 Nb 1/2 ) O 3 ]-(1-y) * [Pb (Mg 1/3 Nb 2/3 ) 1-x Ti x O 3 ]
Where x is defined as 0.00 to 0.35,
y is defined as 0.00-0.35,
Slicing the crystal element into a (011) wafer;
At a temperature range of less than 95 ° C., under a double anti-electric field (Ec), a step of polarization in mm2 symmetric structure by polling the crystal element in the <011> direction.

本発明の別の態様にしたがって、電気光学結晶素子を製造する方法が提供され、式IIIに従って、更に工程は、横モード結晶素子及び<011>分極を提供し、室温20℃で500pm/Vよりも大きい横有効E−O係数γT C及び、12V(l/d=)よりも小さい半波長電圧VT πを与える横モード結晶素子を提供する工程を含む。 In accordance with another aspect of the present invention, a method of manufacturing an electro-optic crystal element is provided, and according to Formula III, the further step provides a transverse mode crystal element and <011> polarization , from 500 pm / V at room temperature 20 ° C. Providing a lateral mode crystal element that provides a lateral effective EO coefficient γ T C that is greater than 1 V and a half-wave voltage V T π that is less than 12 V (l / d = 7 ).

本発明の別の態様にしたがって、電気光学結晶素子を製造する方法が提供され、縦モード結晶素子を提供する工程と、縦モード結晶素子上に透明な電極をコーティングする工程を含み、縦モード結晶素子が、室温20℃で427pm/Vよりも大きい縦有効E−O係数γl C及び300Vよりも小さいl π<011>分極を提供する。 In accordance with another aspect of the present invention, there is provided a method of manufacturing an electro-optic crystal element, the method comprising providing a longitudinal mode crystal element and coating a transparent electrode on the longitudinal mode crystal element, the longitudinal mode crystal The device provides a longitudinal effective EO coefficient γ 1 C greater than 427 pm / V at room temperature 20 ° C. and <011> polarization with V l π less than 300V.

本発明の別の態様にしたがって、振幅変調器及び位相変調器の一つであるシステムは、式IIIに従う方法によって製造される縦モード電気光学結晶素子及び室温20℃で427pm/Vよりも大きい縦有効E−O係数γl C及び300Vよりも小さいl π<011>分極を提供するための手段を含む縦モード電気光学結晶素子を備える電気光学システムが提供される。 In accordance with another aspect of the present invention, a system that is one of an amplitude modulator and a phase modulator includes a longitudinal mode electro-optic crystal device manufactured by a method according to Formula III and a longitudinal mode greater than 427 pm / V at 20 ° C. An electro-optic system is provided comprising a longitudinal mode electro-optic crystal element including means for providing an effective EO coefficient γ l C and <011> polarization of V l π less than 300V.

本発明の別の態様にしたがって、振幅変調器及び位相変調器の一つであるシステムは、式I若しくは式IIに従う方法によって製造される横モード電気光学結晶素子及び<011>分極を提供し、室温20℃で500pm/Vよりも大きい横有効E−O係数γT C及び87.5V(l/d=1)よりも小さい半波長電圧VT πを与えるための手段を含む横モード電気光学結晶素子を備える電気光学システムが提供される。 In accordance with another aspect of the present invention, a system that is one of an amplitude modulator and a phase modulator provides a transverse mode electro-optic crystal element manufactured by a method according to Formula I or Formula II and <011> polarization , Transverse mode electro-optic including means for providing a transverse effective EO coefficient γ T C greater than 500 pm / V at room temperature 20 ° C. and a half-wave voltage V T π less than 87.5 V (l / d = 1) An electro-optic system comprising a crystal element is provided.

本発明の別の態様にしたがって、振幅変調器及び位相変調器の一つであるシステムは式IIIに従う方法によって製造される横モード電気光学結晶素子及び<011>分極を提供し、室温20℃で500pm/Vよりも大きい横有効E−O係数γT C及び12V(l/d=7)よりも小さい半波電圧VT πを与えるための手段を含む横モード電気光学結晶素子を備える電気光学システムが提供される。 In accordance with another aspect of the present invention, a system that is one of an amplitude modulator and a phase modulator provides a transverse mode electro-optic crystal element manufactured by a method according to Formula III and <011> polarization at room temperature of 20 ° C. Electro-optic comprising a transverse mode electro-optic crystal element including a transverse effective EO coefficient γ T C greater than 500 pm / V and means for providing a half wave voltage V T π less than 12 V (l / d = 7) A system is provided.

<011>分極E−O結晶の圧電係数d31の異方性表面である。<011> An anisotropic surface with a piezoelectric coefficient d 31 of a polarized EO crystal. 図1の<011>分極E−O結晶に関する圧電係数d31の異方性表面の3Dプロットである。3 is a 3D plot of an anisotropic surface of piezoelectric coefficient d 31 for the <011> polarized EO crystal of FIG. ユニークな異方性特性、正のd31並びに負のd32を示す図1A中の3DプロットのX−Y切断面の2Dプロットであり、<001>ポーリング並びに<111>ポーリングに対してd31並びにd32は両方とも負である。1D is a 2D plot of an XY cut plane of the 3D plot in FIG. 1A showing unique anisotropy properties, positive d 31 and negative d 32 , d 31 for <001> polling and <111> polling. and d 32 are both negative. <011>分極を持つ横モードE−O結晶素子である。It is a transverse mode EO crystal element having <011> polarization . <011>分極を持つ縦モードE−O結晶素子である。It is a longitudinal mode EO crystal element having <011> polarization . 記載の通り、E−O結晶素子(セル)にするために、さいの目にされ、研磨され、光学的仕上げがなされたE−O結晶ウエハーである。As described, an EO crystal wafer that has been diced, polished, and optically finished to make an EO crystal element (cell). ここに記載の通り、<011>分極E−O結晶素子を用いる縦モードE−O振幅変調システムである。As described herein, it is a longitudinal mode EO amplitude modulation system using <011> polarized EO crystal elements. ここに記載の通り、<011>分極E−O結晶素子を用いる縦モードE−O位相変調器システムである。As described herein, it is a longitudinal mode EO phase modulator system using <011> polarized EO crystal elements. 記載の通り、E−O結晶素子(セル)にするためにさいの目にされ、研磨され、光学的仕上げがなされたE−O結晶ウエハーである。As described, an EO crystal wafer that has been diced, polished and optically finished to make an EO crystal element (cell). ここに記載の通り、<011>分極E−O結晶素子を用いる横モードE−O振幅変調器システムである。As described herein, it is a transverse mode EO amplitude modulator system using <011> polarized EO crystal elements. ここに記載の通り、<011>分極E−O結晶素子を用いる横モードE−O位相変調器システムである。As described herein, it is a transverse mode EO phase modulator system using <011> polarized EO crystal elements. E−O結晶素子(セル)にするために、さいの目にされ、研磨され、光学的仕上げがなされたE−O結晶ウエハーである。An EO crystal wafer that has been diced, polished, and optically finished to make an EO crystal element (cell). 例えば、コミュニケーションシステムに使用するための横モードの<011>分極E−O結晶素子を用いる進行波E−O変調器である。For example, a traveling wave EO modulator using a <011> polarized EO crystal element in a transverse mode for use in a communication system. レーザービームのための典型的なE−O変調器であって、位相内ビームとともに再結合した(011)表面上のマッハツェンダー干渉計変調器の上面図と一体の概略図である。1 is a schematic diagram integral with a top view of a typical EO modulator for a laser beam, on a (011) surface recombined with an in-phase beam. FIG. レーザービームのための典型的なE−O変調器であって、位相外ビームとともに再結合した、(011)表面上のマッハツェンダー干渉計変調器の上面図と一体の概略図である。1 is a schematic diagram integral with a top view of a typical EO modulator for a laser beam, recombined with an out-of-phase beam, on a (011) surface. FIG.

強誘電体E−O単結晶材料は、PMN−PT(マグネシウムニオブ酸鉛−チタン酸鉛)若しくはPIN−PMN−PT(インジウムニオブ酸鉛−マグネシウムニオブ酸鉛−チタン酸鉛)又はPZN−PT(亜鉛ニオブ酸鉛−チタン酸鉛)若しくは上記のドープ結晶であっても良い。特に、発明は、上に述べた、再極化可能設計<011>極化(立方表記)強誘電体結晶に関する。0.41μmから透明である分極化結晶の光透過は、IR領域、すくなくとも5μmまで、任意の顕著な吸収帯も無く連続している。E−O結晶は、超高有効で明確な電気光学係数γC C及び非常に低い87V未満の半波電圧を与える。この<011>再分極化可能特性は、使用の信頼性と便利さに関して実際の応用にとって戦略的に重要である。再分極化可能構造の別の長所は、E−O結晶素子の製作コストが低いことである。<011>極化E−O結晶素子は、(1)(操作温度−30℃〜110℃で)350〜1100pm/Vの範囲と同じ高さで有効横直線E−O係数γT C及び85V(l/d=1)未満と12V(l/d=7)未満の非常に低い半波長電圧VT πを示し、(2)315V未満の非常に低い半波長電圧Vl πをもち(操作温度−30℃〜110℃で)280〜800pm/Vの範囲と同じ高さで有効縦直線E−O係数γl Cを示すことを発見した。再ポーリング能の性質に加えて、超高有効E−O係数γC及び非常に低いVπによって、発明結晶素子が、新世代のE−O結晶素子として各種のE−O装置に使用可能である。特に、E−O切り替え、E−O位相変調、E−O振幅変調、レーザー光変調、同調フィルター及び光複屈折装置に利用可能である。 Ferroelectric EO single crystal materials are PMN-PT (lead magnesium niobate-lead titanate) or PIN-PMN-PT (lead indium niobate-lead magnesium niobate-lead titanate) or PZN-PT ( Zinc niobate-lead titanate) or the above doped crystal may be used. In particular, the invention relates to the repolarizable design <011> poled (cubic notation) ferroelectric crystal described above. The light transmission of the polarized crystal, which is transparent from 0.41 μm, is continuous without any significant absorption band up to the IR region, at least 5 μm. E-O crystals, gives the ultra-high effective and clear electrooptic coefficient γ C / γ * C and very low half-wave voltage of less than 87V. This <011> repolarizable property is strategically important for practical applications in terms of reliability and convenience of use. Another advantage of the repolarizable structure is the low manufacturing cost of the EO crystal element. <011> Polarized EO crystal element has (1) (at an operating temperature of −30 ° C. to 110 ° C.) an effective horizontal straight EO coefficient γ T C and 85 V at the same height as the range of 350 to 1100 pm / V. (l / d = 1) and less than 12V (l / d = 7) of less than very low showed a half-wave voltage V T π, (2) very low has a half-wave voltage V l [pi (operation below 315V It has been found that the effective vertical EO coefficient γ l C is shown at the same height as the range of 280-800 pm / V (at temperatures of −30 ° C. to 110 ° C.). In addition to the nature of re-polling capability, the ultra-high effective EO coefficient γ C and very low V π allow the inventive crystal element to be used in various EO devices as a new generation EO crystal element. is there. In particular, it can be used for EO switching, EO phase modulation, EO amplitude modulation, laser light modulation, tuning filter, and optical birefringence device.

実験サンプル
以下の組成を持つ縦モードE−O結晶素子:67.5%PMN−32.5%PT単結晶素子。カット方向、ポーリング方向及び入射光の構造並びに結晶方向は図2Bに示す。試験の結果は以下の通り、300V未満の非常に低い半波電圧Vl πを具備する20℃で450pm/Vの高さの有効縦直線E−O係数γl Cである。
Experimental sample 2
Longitudinal mode EO crystal element having the following composition: 67.5% PMN-32.5% PT single crystal element. The cut direction, poling direction, incident light structure and crystal direction are shown in FIG. 2B. The result of the test is an effective longitudinal straight line EO coefficient γ 1 C as high as 450 pm / V at 20 ° C. with a very low half-wave voltage V 1 π of less than 300 V as follows.

実験サンプル3
以下の組成を持つ縦モードE−O結晶素子:24%PIN52.4%PMN−23.6%PT単結晶素子。カット方向、ポーリング方向及び入射光の構造並びに結晶方向は図に示す。試験結果は以下の通り、315V未満の非常に低い半波電圧Vl πを具備する20℃で500pm/Vの高さの有効縦直線E−O係数γl Cである。
Experimental sample 3
Longitudinal mode EO crystal element having the following composition: 24% PIN 52.4% PMN-23.6% PT single crystal element. Structure and crystal direction of the cutting direction, the poling direction and the incident light is shown in FIG. The test results are as follows: an effective vertical straight line EO coefficient γ l C with a height of 500 pm / V at 20 ° C. with a very low half-wave voltage V l π less than 315 V.

実験サンプル4
以下の組成を持つ横モードE−O結晶素子:24%PIN52.4%PMN−23.6%PT単結晶素子。カット方向、ポーリング方向及び入射光の構造並びに結晶方向は図に示す。試験結果は以下の通り、95V未満の非常に低い半波電圧VT πを具備する20℃で527pm/Vよりも大きい有効横直線E−O係数γT Cである。
Experimental sample 4
Transverse mode EO crystal element having the following composition: 24% PIN 52.4% PMN-23.6% PT single crystal element. Structure and crystal direction of the cutting direction, the poling direction and the incident light is shown in FIG. The test result is an effective horizontal straight EO coefficient γ T C greater than 527 pm / V at 20 ° C. with a very low half-wave voltage V T π less than 95 V as follows.

さて、図5Aを具体的に参照して、横モード結晶を備えた電気光学システムは、例えば、示されるように、コミュニケーションシステム中に、無反射終端を有し、同様に示されるように変調シグナル源に動作可能にリンクした電気光学結晶間隔伝送線を含んでも良い。追加的に含まれるのは、偏光特性(ここでは4分の1波長板)及び出力偏光板である。その他の支持構造物は、提案発明を研究する各技術分野の当業者によって理解されるものである。結果として、本発明は、電気光学システム、例えば、光学イメージングシステム、レーザーシステム、コミュニケーションシステム又は、提案開示を研究している当業者によって理解されるであろうその他のものを提供する。 Now referring specifically to FIG. 5A, an electro-optic system with a transverse mode crystal has, for example, a non-reflective termination in the communication system, as shown, and a modulated signal as shown as well. An electro-optic crystal spacing transmission line operably linked to the source may be included. Additional included are polarization properties (here a quarter wave plate) and an output polarizer. Other support structures will be understood by those skilled in the art of studying the proposed invention. As a result, the present invention provides electro-optic systems, such as optical imaging systems, laser systems, communication systems, or others that will be understood by those skilled in the art of studying the proposed disclosure.

Claims (18)

下記化学式の一つで表わされる化学組成物を有する結晶素子を製造する工程と、
(I) Pb(Mg1/3Nb2/3)1-xTixO3 ここでxは0.22〜0.38として定義、
若しくは
(II) Pb(Zn1/3Nb2/3)1-yTiyO3 ここでyは0.04〜0.11として定義され
011)に前記結晶素子をスライスする工程と、
95℃未満の温度範囲で、抗電場(Ec)の2倍の下で、<011>方向に前記結晶素子をポーリングすることによってmm2対称構造で分極化する工程と、
横モード結晶素子を提供する工程とを含み、及び
前記横モード結晶素子が、<011>分極を提供し、室温20で527pm/Vより大きな横有効E−O係数γT c及び87.5V(l/d=1)よりも低い半波電圧VT πを与えることを特徴とするE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
Producing a crystal element having a chemical composition represented by one of the following chemical formulas:
(I) Pb (Mg 1/3 Nb 2/3 ) 1-x Ti x O 3 where x is defined as 0.22 to 0.38,
Or (II) Pb (Zn 1/3 Nb 2/3) 1-y Ti y O 3 where y is defined as 0.04 to 0.11,
( 011) slicing the crystal element;
At a temperature range of less than 95 ° C., under 2 times the anti-electric field (Ec), a step of poling in mm2 symmetric structure by polling the crystal element in the <011> direction,
Providing a transverse mode crystal element, and wherein the transverse mode crystal element provides <011> polarization and has a transverse effective EO coefficient γ T c greater than 527 pm / V at room temperature 20 ° C. and 87.5 V A method of manufacturing an electro-optic crystal element for use in an EO crystal device, wherein a half-wave voltage V T π lower than (l / d = 1) is applied.
前記結晶素子を製造する工程は、当該製造の際に最大6%(質量%)のランタン(La)、アンチモン(Sb)、最大8%(質量%)のタンタル(Ta)、最大31%(質量%)のインジウム(In)、最大5%(質量%)のジルコニウム(Zr)及びセリウム(Ce)、エルビウム(Er)、テルビウム(Tb)、スカンジウム(Sc)並びにネオジム(Nd)からなる群から選択された最大8%(質量%)の少なくとも一つの希土類元素を一緒にドープ又は共ドープする請求項1記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。  The step of manufacturing the crystal element includes a maximum of 6% (mass%) lanthanum (La), antimony (Sb), a maximum of 8% (mass%) tantalum (Ta), and a maximum of 31% (mass). %) Indium (In), up to 5% (mass%) zirconium (Zr) and cerium (Ce), erbium (Er), terbium (Tb), scandium (Sc) and neodymium (Nd) A method for producing an electro-optic crystal element for use in an EO crystal device according to claim 1, wherein a maximum of 8% (mass%) of at least one rare earth element is doped or co-doped together. 前記分極化工程が単一ドメインおよびマルチナノドメイン構造の一つをもたらすことを特徴とする請求項1または2に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 3. A method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 1 or 2 , wherein the polarization step results in one of a single domain and a multi-nano domain structure. 更に、前記作成された結晶素子をさいの目にすることを行う工程と、
前記結晶素子の研磨と光学的仕上げを行う工程とを含むことを特徴とする請求項1または2に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
A step of dicing the created crystal element;
The method for producing an electro-optic crystal element for use in an EO crystal device according to claim 1 or 2 , further comprising the steps of polishing and optically finishing the crystal element.
更に、前記結晶素子を電極化する工程を含むことを特徴とする請求項に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 5. The method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 4 , further comprising the step of converting the crystal element into an electrode. 下記化学式の一つで表わされる化学組成物を有する結晶素子を製造する工程と、
(I) Pb(Mg1/3Nb2/3)1-xTixO3 ここでxは0.22〜0.38として定義、
若しくは
(II) Pb(Zn1/3Nb2/3)1-yTiyO3 ここでyは0.04〜0.11として定義され
011)に前記結晶素子をスライスする工程と、
95℃未満の温度範囲で、抗電場(Ec)の2倍の下で、<011>方向に前記結晶素子をポーリングすることによってmm2対称構造で分極化する工程と、
縦モード結晶素子を提供する工程と、
前記縦モード結晶素子上に透明電極をコーティングする工程とを含み、及び
前記縦モード結晶素子が、室温20で427pm/Vより大きな縦有効E−O係数γ c 及び300Vよりも低い半波電圧V l π の<011>分極を提供することを特徴とするE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
Producing a crystal element having a chemical composition represented by one of the following chemical formulas:
(I) Pb (Mg 1/3 Nb 2/3 ) 1-x Ti x O 3 where x is defined as 0.22 to 0.38,
Or
(II) Pb (Zn 1/3 Nb 2/3 ) 1-y Ti y O 3 where y is defined as 0.04-0.11 ,
( 011) slicing the crystal element;
At a temperature range of less than 95 ° C., under 2 times the anti-electric field (Ec), a step of poling in mm2 symmetric structure by polling the crystal element in the <011> direction,
Providing a longitudinal mode crystal element;
Coating a transparent electrode on the longitudinal mode crystal element, and the longitudinal mode crystal element has a longitudinal effective EO coefficient γ l c greater than 427 pm / V at room temperature of 20 ° C. and a half wave lower than 300 V A method of manufacturing an electro-optic crystal element for use in an EO crystal device, characterized by providing <011> polarization of voltage V l π .
前記結晶素子を製造する工程は、当該製造の際に最大6%(質量%)のランタン(La)、アンチモン(Sb)、最大8%(質量%)のタンタル(Ta)、最大31%(質量%)のインジウム(In)、最大5%(質量%)のジルコニウム(Zr)及びセリウム(Ce)、エルビウム(Er)、テルビウム(Tb)、スカンジウム(Sc)ならびにネオジム(Nd)からなる群から選択された最大8%(質量%)の少なくとも一つの希土類元素を一緒にドープ又は共ドープする請求項6記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。  The step of manufacturing the crystal element includes a maximum of 6% (mass%) lanthanum (La), antimony (Sb), a maximum of 8% (mass%) tantalum (Ta), and a maximum of 31% (mass). %) Indium (In), up to 5% (mass%) zirconium (Zr) and cerium (Ce), erbium (Er), terbium (Tb), scandium (Sc) and neodymium (Nd) A method for producing an electro-optic crystal element for use in an EO crystal device according to claim 6, wherein a maximum of 8% (mass%) of at least one rare earth element is doped or co-doped together. 前記分極化工程が単一ドメインおよびマルチナノドメイン構造の一つをもたらすことを特徴とする請求項6または7に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 8. The method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 6 or 7 , wherein the polarization step results in one of a single domain and a multi-nanodomain structure. 更に、前記作成された結晶素子をさいの目にすることを行う工程と、
前記結晶素子の研磨と光学的仕上げを行う工程とを含むことを特徴とする請求項6または7に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
A step of dicing the created crystal element;
The method for producing an electro-optic crystal element for use in an EO crystal apparatus according to claim 6 or 7 , further comprising the steps of polishing and optically finishing the crystal element.
更に、前記結晶素子を電極化する工程を含むことを特徴とする請求項に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 The method for producing an electro-optic crystal element for use in an EO crystal device according to claim 9 , further comprising the step of forming the crystal element into an electrode. 下記化学式の一つで表わされる化学組成物を有する結晶素子を製造する工程と、
(III) y*[Pb(In1/2Nb1/2)O3]-(1-y)*[Pb(Mg1/3Nb2/3)1-xTixO3]
ここでxは、0.0〜0.35として定義、
yは0.0〜0.35として定義され、
(011)に前記結晶素子をスライスする工程と、
95℃未満の温度範囲で、抗電場(Ec)の2倍の下で、<011>方向に前記結晶素子をポーリングすることによってmm2対称構造で分極化する工程と、
横モード結晶素子を提供する工程とを含み、及び
前記横モード結晶素子が、<011>分極を提供し、室温20で500pm/Vより大きな横有効E−O係数γT c及び12V(l/d=7)よりも低い半波電圧VT πを与えることを特徴とするE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
Producing a crystal element having a chemical composition represented by one of the following chemical formulas:
(III) y * [Pb (In 1/2 Nb 1/2 ) O 3 ]-(1-y) * [Pb (Mg 1/3 Nb 2/3 ) 1-x Ti x O 3 ]
Where x is defined as 0.0 to 0.35,
y is defined as 0.0-0.35,
(011) slicing the crystal element;
At a temperature range of less than 95 ° C., under 2 times the anti-electric field (Ec), a step of poling in mm2 symmetric structure by polling the crystal element in the <011> direction,
Providing a transverse mode crystal element, and wherein the transverse mode crystal element provides <011> polarization and has a transverse effective EO coefficient γ T c of greater than 500 pm / V at room temperature of 20 ° C. and 12 V (l / D = 7) A method for producing an electro-optic crystal element for use in an EO crystal device, wherein a half-wave voltage V T π is applied.
前記分極化工程が単一ドメインおよびマルチナノドメイン構造の一つをもたらすことを特徴とする請求項11に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 The method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 11 , wherein the polarization step results in one of a single domain and a multi-nano domain structure. 更に、前記作成された結晶素子をさいの目にすることを行う工程と、
前記結晶素子の研磨と光学的仕上げを行う工程とを含むことを特徴とする請求項11に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
A step of dicing the created crystal element;
12. The method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 11 , comprising the steps of polishing and optically finishing the crystal element.
更に、前記結晶素子を電極化する工程を含むことを特徴とする請求項13に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 14. The method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 13 , further comprising the step of converting the crystal element into an electrode. 下記化学式の一つで表わされる化学組成物を有する結晶素子を製造する工程と、
(III) y*[Pb(In1/2Nb1/2)O3]-(1-y)*[Pb(Mg1/3Nb2/3)1-xTixO3]
ここでxは、0.0〜0.35として定義、
yは0.0〜0.35として定義され、
(011)に前記結晶素子をスライスする工程と、
95℃未満の温度範囲で、抗電場(Ec)の2倍の下で、<011>方向に前記結晶素子をポーリングすることによってmm2対称構造で分極化する工程と、
縦モード結晶素子を提供する工程と、
前記縦モード結晶素子上に透明電極をコーティングする工程とを含み、及び
前記縦モード結晶素子が、室温20で427pm/Vより大きな縦有効E−O係数γ c 及び300よりも低い半波電圧V l π の<011>分極を提供することを特徴とするE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
Producing a crystal element having a chemical composition represented by one of the following chemical formulas:
(III) y * [Pb (In 1/2 Nb 1/2 ) O 3 ]-(1-y) * [Pb (Mg 1/3 Nb 2/3 ) 1-x Ti x O 3 ]
Where x is defined as 0.0 to 0.35,
y is defined as 0.0-0.35,
(011) slicing the crystal element;
At a temperature range of less than 95 ° C., under 2 times the anti-electric field (Ec), a step of poling in mm2 symmetric structure by polling the crystal element in the <011> direction,
Providing a longitudinal mode crystal element;
Coating a transparent electrode on the longitudinal mode crystal element, and the longitudinal mode crystal element has a longitudinal effective EO coefficient γ l c greater than 427 pm / V at room temperature 20 ° C. and a half lower than 300 V A method for producing an electro-optic crystal element for use in an EO crystal device, characterized by providing <011> polarization of a wave voltage V l π .
前記分極化工程が単一ドメインおよびマルチナノドメイン構造の一つをもたらすことを特徴とする請求項15に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 16. The method of manufacturing an electro-optic crystal element for use in an EO crystal device according to claim 15 , wherein the polarization step results in one of a single domain and a multi-nanodomain structure. 更に、前記作成された結晶素子をさいの目にすることを行う工程と、
前記結晶素子を研磨し、光学的仕上げを行う工程と、それによって前記電気光学結晶素子を形成する工程とを含むことを特徴とする請求項15に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。
A step of dicing the created crystal element;
16. The electricity for use in an EO crystal device according to claim 15 , comprising the steps of polishing and crystallizing the crystal element and thereby forming the electro-optic crystal element. A method for producing an optical crystal element.
更に、前記結晶素子を電極化する工程を含むことを特徴とする請求項17に記載のE−O結晶装置に用いるための電気光学結晶素子を製造する方法。 The method for producing an electro-optic crystal element for use in an EO crystal device according to claim 17 , further comprising the step of forming the crystal element into an electrode.
JP2015504738A 2012-04-04 2013-04-04 Method of manufacturing an electro-optic crystal element for use in an EO crystal device Expired - Fee Related JP6420234B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261686350P 2012-04-04 2012-04-04
US61/686,350 2012-04-04
PCT/US2013/035343 WO2013152241A1 (en) 2012-04-04 2013-04-04 Electro-optical single crystal element, method for the preparation thereof, and systems employing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016253907A Division JP2017097368A (en) 2012-04-04 2016-12-27 Electro-optical single crystal element, manufacturing method for the same, and systems employing the same

Publications (3)

Publication Number Publication Date
JP2015518179A JP2015518179A (en) 2015-06-25
JP2015518179A5 true JP2015518179A5 (en) 2018-09-13
JP6420234B2 JP6420234B2 (en) 2018-11-07

Family

ID=53531888

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015504738A Expired - Fee Related JP6420234B2 (en) 2012-04-04 2013-04-04 Method of manufacturing an electro-optic crystal element for use in an EO crystal device
JP2016253907A Pending JP2017097368A (en) 2012-04-04 2016-12-27 Electro-optical single crystal element, manufacturing method for the same, and systems employing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016253907A Pending JP2017097368A (en) 2012-04-04 2016-12-27 Electro-optical single crystal element, manufacturing method for the same, and systems employing the same

Country Status (1)

Country Link
JP (2) JP6420234B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465937B1 (en) * 2000-03-08 2002-10-15 Koninklijke Philips Electronics N.V. Single crystal thickness and width cuts for enhanced ultrasonic transducer
JP2003270602A (en) * 2002-03-18 2003-09-25 Fujitsu Ltd Electrooptical effect element using single crystal of lead zinc niobate - lead titanate mixed crystal ferroelectric material and optical switch using the same
JP2004004194A (en) * 2002-05-30 2004-01-08 Mitsui Chemicals Inc Optical deflection element using 90 degree polarization interface
JP4169202B2 (en) * 2003-09-24 2008-10-22 Tdk株式会社 Method for producing piezoelectric ceramic composition
US7427818B2 (en) * 2004-01-30 2008-09-23 Gifu University Relaxor ferroelectric solid-solution single crystal, device, and method of using device
JP4613032B2 (en) * 2004-05-06 2011-01-12 Jfeミネラル株式会社 Piezoelectric single crystal element and manufacturing method thereof
US20060012270A1 (en) * 2004-07-14 2006-01-19 Pengdi Han Piezoelectric crystal elements of shear mode and process for the preparation thereof
JP2007108515A (en) * 2005-10-14 2007-04-26 Fujitsu Ltd Optical element and method for manufacturing same
WO2011098130A1 (en) * 2010-02-11 2011-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for guiding optical waves
JP2011215260A (en) * 2010-03-31 2011-10-27 Tdk Corp Optical element and variable optical module
WO2012051465A2 (en) * 2010-10-13 2012-04-19 H.C. Materials Corporation High frequency piezoelectric crystal composites, devices, and method for manufacturing the same
US9280006B2 (en) * 2012-04-04 2016-03-08 Pengdi Han Electro-optical single crystal element, method for the preparation thereof, and systems employing the same

Similar Documents

Publication Publication Date Title
US10082687B2 (en) Electro-optical single crystal-element, method for the preparation thereof, and systems employing the same
Yao et al. Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics
CN1083112C (en) Fabrication of patterned poled dielectric structures and devices
Sun et al. Optical interband transitions in relaxor-based ferroelectric 0.93 Pb (Zn1/3Nb2/3) O3–0.07 PbTiO3 single crystal
JP2010026079A (en) Optical device
CN102593705A (en) Method for realizing high repetition frequency electro-optic Q-switching of solid laser based on periodic polar crystal
US6859467B2 (en) Electro-optic modulator material
JP4721455B2 (en) Method for manufacturing periodically poled structure
Bing et al. Optical properties of relaxor ferroelectric crystal: Pb (Zn1/3Nb2/3) O3-4.5% PbTiO3
US8294978B2 (en) Wavelength conversion devices and a method of producing the same
TW200419283A (en) Method of fabricating two-dimensional ferroelectric nonlinear crystals with periodically inverted domains
US11758818B2 (en) Transparent piezoelectric single crystal preparation method
JP2015518179A5 (en)
Hu et al. Achieve single domain state in (111)-oriented rhombohedral phase PMN-PT relaxor ferroelectric single crystals for electro-optical application
US9291874B2 (en) Optical deflection element and optical deflection device
JP2008209449A (en) Wavelength conversion element
JP6420234B2 (en) Method of manufacturing an electro-optic crystal element for use in an EO crystal device
US7463329B2 (en) Materials for freezing light
JP4646150B2 (en) Method for manufacturing periodically poled structure
CN111403592B (en) Nonlinear optical substrate and preparation method thereof
JP5181070B2 (en) Wavelength conversion element and manufacturing method thereof
Zukauskas et al. Periodically poled KTiOAsO 4 for second harmonic generation in the green region
CN102520561A (en) Preparation method of large thickness period polarization ferroelectric crystal material
Yang Tuning optical responses with strain in multiferroelectrics and ferroelectrics
RU110838U1 (en) FUNCTIONAL OPTICAL ELEMENT WITH CONTROLLED PARAMETERS FOR THz OPTICS