JP2015514306A5 - - Google Patents

Download PDF

Info

Publication number
JP2015514306A5
JP2015514306A5 JP2015500633A JP2015500633A JP2015514306A5 JP 2015514306 A5 JP2015514306 A5 JP 2015514306A5 JP 2015500633 A JP2015500633 A JP 2015500633A JP 2015500633 A JP2015500633 A JP 2015500633A JP 2015514306 A5 JP2015514306 A5 JP 2015514306A5
Authority
JP
Japan
Prior art keywords
laser light
light source
frequency
laser
ofdr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015500633A
Other languages
Japanese (ja)
Other versions
JP6305975B2 (en
JP2015514306A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2013/031657 external-priority patent/WO2013138653A1/en
Publication of JP2015514306A publication Critical patent/JP2015514306A/en
Publication of JP2015514306A5 publication Critical patent/JP2015514306A5/ja
Application granted granted Critical
Publication of JP6305975B2 publication Critical patent/JP6305975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

OFDRの一例では、光は200THz(波長1500nm)の公称周波数からマイクロ秒当たり10MHzの速度で光周波数が着実に増加し、この周波数掃引は1000マイクロ秒の期間維持され得る。1kmの距離でファイバ内の不連続部(例えば、欠陥、コネクタ、端面等)から反射される光は、約10μsの往復遅延を発生する(ファイバ内の光の速度のための典型的な値を使用して)。したがって、光周波数掃引の間、反射光は、生成された光周波数が100MHz遅かった時のレーザ光源からのものであろう。反射光と現在のレーザ出力周波数との間のこの特定の周波数差は、掃引が維持される限り、この距離からの全ての光の特性であろう。他の全ての距離からの反射光は、異なる特性の周波数差を有することになる。
In one example of OFDR, light steadily increases in optical frequency from a nominal frequency of 200 THz (wavelength 1500 nm) at a rate of 10 MHz per microsecond, and this frequency sweep can be maintained for a period of 1000 microseconds. Light reflected from discontinuities in the fiber (eg, defects, connectors, end faces, etc.) at a distance of 1 km will generate a round trip delay of about 10 μs (typical values for the speed of light in the fiber). Use). Thus, during the optical frequency sweep, the reflected light will be from the laser source when the generated optical frequency is 100 MHz slow. This particular frequency difference between the reflected light and the current laser output frequency will be a property of all light from this distance as long as the sweep is maintained. Reflected light from all other distances will have different characteristic frequency differences .

Claims (9)

目標周波数でレーザ光を出力するように構成されたレーザ光源と、
上記レーザ光源の或る瞬間における実際の周波数と、上記レーザ光源の目標周波数との間の測定された偏差を導出する測定ユニットとを備え
上記測定ユニットは、さらに、
上記レーザ光源によって出力されたレーザ光を分割する第1および第2のレーザ経路を備え、上記第1および第2のレーザ経路は異なる長さを有し、
干渉パターンを観測する検出器を備え、
上記第1のレーザ経路に沿って進むレーザ光が上記第2のレーザ経路に沿って進むレーザ光と再結合されるとき、上記干渉パターンは生成され、
上記測定ユニットは、上記観測された干渉パターンに基づいて、上記実際の周波数と上記目標周波数との間の上記測定された偏差を導出し、
上記実際の周波数と上記目標周波数との間の上記測定された偏差に基づいて、上記レーザ光源からのレーザ出力の一定の周波数を維持するように上記レーザ光源を制御すべく構成されたフィードバック制御ユニット備え、それにより、上記レーザ光源から送信されるレーザ光の周波数が上記レーザ光源の上記目標周波数に調整される装置。
A laser light source configured to output laser light at a target frequency;
Comprising the actual frequency at a certain instant of the laser light source, a measuring unit for deriving the measured deviations between the target frequency of the laser light source,
The measurement unit further comprises:
Comprising first and second laser paths for splitting the laser light output by the laser light source, the first and second laser paths having different lengths;
Equipped with a detector to observe the interference pattern,
When the laser light traveling along the first laser path is recombined with the laser light traveling along the second laser path, the interference pattern is generated,
The measurement unit derives the measured deviation between the actual frequency and the target frequency based on the observed interference pattern;
Based on the measured deviation between the actual frequency and the target frequency, the feedback control that is configured to control the laser light source so as to maintain a constant frequency of the laser output from the laser light source comprising a unit, thereby, device frequency of the laser beam transmitted from the laser light source is adjusted to the target frequency of the laser light source.
請求項1に記載の装置において、
上記フィードバック制御ユニットは、周波数測定のために使用される上記測定ユニットの特性を補償するように構成された無限インパルス応答フィルタを含む装置。
The apparatus of claim 1.
The feedback control unit includes an infinite impulse response filter configured to compensate for the characteristics of the measurement unit used for frequency measurement.
OFDR装置であって、
請求項に記載の装置を備え、
このOFDR装置は、上記レーザ光源から離間したテストされるべき光学部品の点へ上記レーザ光源からレーザ光を出力し、上記出力されたレーザ光と上記点から反射されたレーザ光の瞬時の周波数との間の周波数差を測定するように構成され、
上記フィードバック制御ユニットは、上記レーザ光源から出力されたレーザ光の周波数と上記点から反射された瞬時の周波数との間の一定の周波数差を維持し、それにより、上記周波数差が上記レーザから上記点までの距離に直接比例し、上記反射されたレーザ光の振幅が上記点での反射率に比例して、上記光学部品の反射率プロファイルを特徴付けるように構成されたOFDR装置。
An OFDR device,
Comprising the apparatus of claim 1 ,
The OFDR apparatus outputs laser light from the laser light source to a point of the optical component to be tested that is spaced from the laser light source, and the instantaneous frequency of the output laser light and the laser light reflected from the point Configured to measure the frequency difference between
The feedback control unit maintains a constant frequency difference between the frequency of the laser light output from the laser light source and the instantaneous frequency reflected from the point, whereby the frequency difference is An OFDR device configured to characterize the reflectance profile of the optical component in direct proportion to the distance to a point, and wherein the amplitude of the reflected laser light is proportional to the reflectance at the point.
請求項に記載のOFDR装置において、
上記光学部品は、光ファイバ、光カプラ、光コネクタ、光スイッチ、光集積光導波路、液体、大気、および自由空間の少なくとも一つであるOFDR装置。
The OFDR device according to claim 3 ,
The optical component is an OFDR device that is at least one of an optical fiber, an optical coupler, an optical connector, an optical switch, an optical integrated optical waveguide, liquid, air, and free space.
請求項に記載のOFDR装置において、
上記光ファイバの上記反射率プロファイルは、上記フィードバック制御ユニットによって制御されていない上記レーザ光源によって測定可能な反射率プロファイルを超えた長さで測定可能であるOFDR装置。
The OFDR device according to claim 4 ,
The OFDR apparatus, wherein the reflectance profile of the optical fiber is measurable with a length exceeding the reflectance profile measurable by the laser light source not controlled by the feedback control unit.
請求項に記載のOFDR装置において、
上記光ファイバの上記反射率プロファイルは、1メートルよりも大きい距離で1回の測定で測定可能であるOFDR装置。
The OFDR device according to claim 4 ,
The OFDR apparatus, wherein the reflectance profile of the optical fiber can be measured in one measurement at a distance greater than 1 meter.
請求項1に記載の装置において、
上記フィードバック制御ユニットは、上記レーザ光源の実際の周波数の範囲を上記目標周波数に安定化させるように構成されている装置。
The apparatus of claim 1.
The feedback control unit is configured to stabilize the actual frequency range of the laser light source to the target frequency.
請求項1に記載の装置において、
上記レーザ光源の上記制御は、磁気冷凍材料によって上記レーザ光源の温度を調節することを含む装置。
The apparatus of claim 1.
The control of the laser light source device which comprises adjusting the temperature of the laser light source by a magnetic refrigeration material.
請求項1に記載の装置において、The apparatus of claim 1.
上記レーザ光源の上記制御は、電流チューニング機構によって上記レーザ光源の温度を調節することを含む装置。The control of the laser light source includes adjusting the temperature of the laser light source by a current tuning mechanism.
JP2015500633A 2012-03-14 2013-03-14 Integrated light reflectometer Expired - Fee Related JP6305975B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261610533P 2012-03-14 2012-03-14
US61/610,533 2012-03-14
PCT/US2013/031657 WO2013138653A1 (en) 2012-03-14 2013-03-14 Integrated optics reflectometer

Publications (3)

Publication Number Publication Date
JP2015514306A JP2015514306A (en) 2015-05-18
JP2015514306A5 true JP2015514306A5 (en) 2016-03-17
JP6305975B2 JP6305975B2 (en) 2018-04-04

Family

ID=49161825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015500633A Expired - Fee Related JP6305975B2 (en) 2012-03-14 2013-03-14 Integrated light reflectometer

Country Status (5)

Country Link
EP (1) EP2826112A4 (en)
JP (1) JP6305975B2 (en)
KR (1) KR102079807B1 (en)
HK (1) HK1206874A1 (en)
WO (1) WO2013138653A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2952015C (en) 2014-06-26 2022-05-31 Baker Hughes Incorporated Ofdr system for localized vibration detection
CN107328429B (en) * 2017-08-09 2023-05-09 武汉昊衡科技有限公司 Device and method for improving proximity sensing stability in optical frequency domain reflection technology
GB202108396D0 (en) * 2021-06-11 2021-07-28 Optasense Holdings Ltd Fibre optic sensing
KR102565800B1 (en) * 2022-03-08 2023-08-10 람다이노비전 주식회사 Linear Laser Frequency Modulation Controller For FMCW LiDAR

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842358A (en) * 1987-02-20 1989-06-27 Litton Systems, Inc. Apparatus and method for optical signal source stabilization
JPH05198887A (en) * 1992-01-23 1993-08-06 Fujitsu Ltd Measurement-control equipment of optical frequency deviation amount of laser
JP3282135B2 (en) * 1993-06-17 2002-05-13 日本電信電話株式会社 Optical frequency domain reflectometer
JP3210152B2 (en) * 1993-09-17 2001-09-17 キヤノン株式会社 Driving method and driving device for semiconductor laser, and optical communication method and optical communication system using the same
JP3262311B2 (en) * 1996-02-09 2002-03-04 日本電信電話株式会社 Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
TW542908B (en) * 2001-11-30 2003-07-21 Univ Nat Chiao Tung Signal processing method to improve spatial resolution in the temperature distribution measurement
US7126693B2 (en) * 2004-03-29 2006-10-24 Carl Zeiss Meditec, Inc. Simple high efficiency optical coherence domain reflectometer design
JP2007271925A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Optical integrated element
WO2008013705A2 (en) * 2006-07-26 2008-01-31 Luna Innovations Incorporated High resolution interferometric optical frequency domain reflectometry ( ofdr) beyond the laser coherence length
JP4917640B2 (en) * 2007-02-28 2012-04-18 日本電信電話株式会社 Optical reflectometry measuring method and apparatus
US20090141756A1 (en) * 2007-11-30 2009-06-04 Hiremath Channamallesh G Adaptive Thermal Feedback System for a Laser Diode
CN101729184B (en) * 2008-10-31 2013-01-02 华为技术有限公司 Method, device and system for adjusting wavelength
JP5730469B2 (en) * 2009-03-27 2015-06-10 古河電気工業株式会社 Tunable light source device
US8428091B2 (en) * 2009-12-21 2013-04-23 Electronics And Telecommunications Research Institute Tunable laser module
JP2012038929A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Thermoelectric transducer, magnetic head using the same, and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JP6612284B2 (en) Brillouin and Rayleigh distribution sensors
JP6393431B2 (en) Optical line inspection device using tunable laser
CN103196584B (en) Measurement method for temperature and stress in fiber and Brillouin optical time domain reflectometer
KR101645274B1 (en) Interferometric distance measuring method for measuring surfaces, and such a measuring arrangement
KR101130344B1 (en) Apparatus and method of distributed fiber sensor using Brillouin optical time domain analysis based on Brillouin dynamic grating
US7212281B2 (en) Optical fiber polarization mode dispersion measurement method and measurement device
WO2015170355A4 (en) Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
JP6206348B2 (en) Optical fiber temperature distribution measuring device
WO2010030884A3 (en) Compact fiber optic geometry for a counter chirp fmcw coherent laser radar
US9835503B2 (en) Optical fiber temperature distribution measuring device
JP2015514306A5 (en)
CN103308903B (en) A kind of distance accuracy proving installation of range finder using laser and method
CN103162742A (en) Novel distributed optical fiber temperature and stress sensor
Liehr Fibre optic sensing techniques based on incoherent optical frequency domain reflectometry
Koizumi et al. High-speed distributed strain measurement using Brillouin optical time-domain reflectometry based-on self-delayed heterodyne detection
CA2840659A1 (en) Apparatus and method for measuring the quantity and optical parameters of a liquid in a container using the principle of optical low coherence reflectometry
KR101727091B1 (en) Apparatus and method of distributed fiber sensor using optical frequency domain reflectometry based on Brillouin dynamic grating
Koizumi et al. High-speed and high-spatial resolution BOTDR based-on self-delayed detection technique
JP5694979B2 (en) Optical line monitoring device
KR20190042218A (en) Apparatus for detecting light temperature using polarization maintaining optical fiber
JP2014196915A (en) Optical damage measuring apparatus
JP2008008836A (en) Distance measuring equipment
Yamaguchi et al. Development of FBG interrogation system using wavelength sweeping of FDML laser
Yamamoto et al. Basic study on real-time vibration displacement measurement using probe light modulated by phase-modulated RF signal
JP2003185534A (en) Dispersion distribution-measuring method and apparatus