JP2015233095A - Solar battery unit and method for manufacturing solar battery unit - Google Patents

Solar battery unit and method for manufacturing solar battery unit Download PDF

Info

Publication number
JP2015233095A
JP2015233095A JP2014119791A JP2014119791A JP2015233095A JP 2015233095 A JP2015233095 A JP 2015233095A JP 2014119791 A JP2014119791 A JP 2014119791A JP 2014119791 A JP2014119791 A JP 2014119791A JP 2015233095 A JP2015233095 A JP 2015233095A
Authority
JP
Japan
Prior art keywords
solar battery
solar cell
wiring member
solar
cell unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014119791A
Other languages
Japanese (ja)
Inventor
木沢 桂子
Keiko Kizawa
桂子 木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014119791A priority Critical patent/JP2015233095A/en
Publication of JP2015233095A publication Critical patent/JP2015233095A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide: a solar battery unit having good solar battery characteristics with solar battery cells arranged to be connected to wiring members via no bus-bar electrode; and a method for manufacturing such a solar battery unit.SOLUTION: A solar battery unit 1 comprises: solar battery cells 2; and wiring members 5 electrically connecting between the solar battery cells 2. Each solar battery cell 2 is bonded to the wiring member 5 by an adhesive member 6 via no bus-bar electrode 11 at least on the side of a light-receiving surface 2a of the solar battery cell 2. The adhesive member 6 has a total light transmittance of 50% or larger. According to this embodiment, light reaching under each wiring member 5 will be incident on the light-receiving surface 2a of the solar battery cell 2 underlying the wiring member 5, contributing to power generation and therefore, the solar battery characteristics can be enhanced.

Description

本発明は、太陽電池ユニット及び太陽電池ユニットの製造方法に関する。   The present invention relates to a solar cell unit and a method for manufacturing a solar cell unit.

太陽電池ユニットは、太陽電池セルの表面電極(細線電極)等に電気的に接続されたバスバー電極及び配線部材(タブ線)を介して、複数の太陽電池セルが直列及び/又は並列に接続された構造を有している。太陽電池は屋外環境で使われるため、気温変化、湿潤、強風、積雪等に対する耐性を確保する必要があり、バスバー電極及び配線部材が接続された太陽電池セル群は封止部材によって封止されるのが一般的である。通常、強化ガラス、バックシート等で複数枚のエチレンビニルアセテート(EVA)等の封止部材を挟み、更に封止部材間に、配線部材が接続された太陽電池セル群を積層するように挟んだ後、真空ラミネータによって封止が行われる。   In the solar cell unit, a plurality of solar cells are connected in series and / or in parallel via bus bar electrodes and wiring members (tab wires) electrically connected to the surface electrodes (thin wire electrodes) of the solar cells. Have a structure. Since solar cells are used in outdoor environments, it is necessary to ensure resistance to temperature changes, moisture, strong winds, snow accumulation, etc., and the solar cell group to which the bus bar electrodes and wiring members are connected is sealed with a sealing member. It is common. Usually, a plurality of sealing members such as ethylene vinyl acetate (EVA) are sandwiched between tempered glass and a back sheet, and further sandwiched between the sealing members so as to laminate a group of solar cells to which wiring members are connected. Thereafter, sealing is performed by a vacuum laminator.

太陽電池ユニットを作製する際、表面電極と配線部材との接合には、従来、はんだが用いられてきた(例えば、特許文献1及び2参照)。はんだは、導通性、固着強度等の接続信頼性に優れ、安価で汎用性があることから広く用いられている。しかしながら、はんだによる接合方法では、はんだの溶融温度が通常230〜260℃程度であることから、接合に伴う高温、はんだの体積収縮等が太陽電池セルの半導体構造に悪影響を及ぼし、太陽電池セルの特性劣化を引き起こす場合がある。   Conventionally, solder has been used for joining the surface electrode and the wiring member when manufacturing the solar cell unit (see, for example, Patent Documents 1 and 2). Solder is widely used because it is excellent in connection reliability such as electrical conductivity and fixing strength, is inexpensive and versatile. However, in the soldering method, since the melting temperature of the solder is usually about 230 to 260 ° C., the high temperature accompanying the joining, the volumetric shrinkage of the solder, etc. adversely affect the semiconductor structure of the solar battery cell. It may cause characteristic deterioration.

一方、はんだを使用しない、接着部材を用いた接合方法も知られている。例えば、下記特許文献3〜5には導電性ペーストを用いた接合方法が開示されており、下記特許文献6〜8には導電フィルムを用いた接合方法が開示されている。これらの接着部材を用いた接合方法によれば、下記特許文献9に記載された太陽電池ユニットのようにバスバー電極を介することなく表面電極と配線部材とを接合することも可能となる。バスバー電極を介さないことにより、表面電極と配線部材との間での導通性に優れ、また、配線部材と太陽電池セルとが直接接合することで安定な接続状態が得られる。また、一般にAgを含むバスバー電極を用いないことにより、太陽電池ユニットのAg使用量が減少し低コスト化に寄与する。   On the other hand, a joining method using an adhesive member without using solder is also known. For example, the following patent documents 3 to 5 disclose a joining method using a conductive paste, and the following patent documents 6 to 8 disclose a joining method using a conductive film. According to the joining method using these adhesive members, it becomes possible to join the surface electrode and the wiring member without using the bus bar electrode as in the solar cell unit described in Patent Document 9 below. By not interposing the bus bar electrode, the continuity between the surface electrode and the wiring member is excellent, and a stable connection state can be obtained by directly joining the wiring member and the solar battery cell. Further, in general, by not using a bus bar electrode containing Ag, the amount of Ag used in the solar cell unit is reduced, which contributes to cost reduction.

特開2004−204256号公報JP 2004-204256 A 特開2005−050780号公報JP-A-2005-050780 特開2000−286436号公報JP 2000-286436 A 特開2001−357897号公報JP 2001-357897 A 特許第3448924号公報Japanese Patent No. 3448924 特開2005−101519号公報JP 2005-101519 A 特開2007−214533号公報JP 2007-214533 A 特開2008−300403号公報JP 2008-300403 A 特開2013−51446号公報JP 2013-51446 A

近年、クリーンで枯渇しないエネルギーの供給手段として太陽電池が一層注目を浴びるようになり、太陽電池特性の更なる向上が期待されている。太陽電池特性を向上させる手段の一つとして、太陽電池セルの受光面に入射する光を増加させることが挙げられる。しかしながら、例えば上記の特許文献9に係る太陽電池ユニットでは、太陽電池セルの受光面側には接着部材、配線部材等が配置されている。このため光の一部は、受光面に入光する前に接着部材、配線部材等によって遮蔽又は減衰されてしまうという課題があった。   In recent years, solar cells have attracted more and more attention as a means of supplying clean and undepleted energy, and further improvement of solar cell characteristics is expected. One means for improving the solar cell characteristics is to increase the light incident on the light receiving surface of the solar cell. However, for example, in the solar battery unit according to Patent Document 9 described above, an adhesive member, a wiring member, and the like are arranged on the light receiving surface side of the solar battery cell. For this reason, there is a problem that a part of the light is shielded or attenuated by an adhesive member, a wiring member or the like before entering the light receiving surface.

本発明は、上記の課題に鑑みてなされたものであり、バスバー電極を介することなく配線部材と電気的に接続される太陽電池セルにおいて、良好な太陽電池特性を有する太陽電池ユニット及び太陽電池ユニットの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in a solar cell electrically connected to a wiring member without a bus bar electrode, a solar cell unit and a solar cell unit having good solar cell characteristics It aims at providing the manufacturing method of.

上記課題を解決するため、本発明に係る太陽電池ユニットは、複数の太陽電池セルと、太陽電池セル同士を電気的に接続する配線部材とを備える太陽電池ユニットであって、少なくとも太陽電池セルの受光面側において、太陽電池セルと配線部材とが接着部材により接合されて、バスバー電極を介することなく太陽電池セルの表面電極と配線部材とが接続されており、接着部材の全光線透過率が50%以上である。   In order to solve the above problems, a solar battery unit according to the present invention is a solar battery unit including a plurality of solar battery cells and a wiring member that electrically connects the solar battery cells, at least of the solar battery cells. On the light receiving surface side, the solar cell and the wiring member are joined by the adhesive member, and the surface electrode of the solar cell and the wiring member are connected without the bus bar electrode, and the total light transmittance of the adhesive member is 50% or more.

本発明の太陽電池ユニットによれば、上記構成を有することにより、配線部材下に回りこんだ光が、配線部材下の太陽電池セルの受光面に入光して発電に寄与するため、太陽電池特性を向上させることができる。   According to the solar cell unit of the present invention, by having the above-described configuration, the light that has traveled under the wiring member enters the light receiving surface of the solar cell under the wiring member and contributes to power generation. Characteristics can be improved.

また、接着部材の屈折率が1.4以上、3.6以下であることが好ましい。これにより、光を効率よく配線部材下に導くことができる。   Moreover, it is preferable that the refractive index of an adhesive member is 1.4 or more and 3.6 or less. Thereby, light can be efficiently guided under the wiring member.

また、配線部材が接合された太陽電池セルを封止する封止部材を更に備え、接着部材の屈折率が封止部材の屈折率以上であることが好ましい。これにより、接着部材と封止部材との界面における光の反射を抑止し、光を効率よく配線部材下に導くことができる。   In addition, it is preferable that a sealing member for sealing the solar battery cell to which the wiring member is bonded is further provided, and the refractive index of the adhesive member is equal to or higher than the refractive index of the sealing member. Thereby, reflection of light at the interface between the adhesive member and the sealing member can be suppressed, and light can be efficiently guided under the wiring member.

また、接着部材のヘイズが90%以下であることが好ましい。   Further, the haze of the adhesive member is preferably 90% or less.

また、接着部材に金属粒子が含まれていることが好ましい。これにより、接着部材に接続性、導通性、弾性、耐熱性、耐水性、ガスバリア性及び適度な屈折率を付与できる。   Moreover, it is preferable that the adhesive member contains metal particles. Thereby, connectivity, conductivity, elasticity, heat resistance, water resistance, gas barrier properties, and an appropriate refractive index can be imparted to the adhesive member.

また、配線部材は、外面の少なくとも一部に凹凸形状を有することが好ましい。これにより、配線部材と接着部材との密着性が向上する。   Moreover, it is preferable that a wiring member has an uneven | corrugated shape in at least one part of an outer surface. Thereby, the adhesiveness of a wiring member and an adhesive member improves.

また、配線部材の表面がAgを含むことが好ましい。これにより、配線部材の表面で反射されて太陽電池セルの受光面に入射する光が増加する。   Moreover, it is preferable that the surface of a wiring member contains Ag. Thereby, the light which is reflected by the surface of a wiring member and injects into the light-receiving surface of a photovoltaic cell increases.

本発明に係る太陽電池ユニットの製造方法は、上述した太陽電池ユニットを製造する方法であって、太陽電池セルの表面電極上に、接着部材及び配線部材をこの順に配置する配置工程と、配置工程の後、0.1MPa以上、2.0MPa以下の圧力で太陽電池セル及び配線部材を挟み、表面電極と配線部材とを接続する接続工程と、を含む。   The method for producing a solar cell unit according to the present invention is a method for producing the above-described solar cell unit, and an arrangement step of arranging an adhesive member and a wiring member in this order on the surface electrode of the solar cell, and an arrangement step And a connecting step of sandwiching the solar cell and the wiring member at a pressure of 0.1 MPa or more and 2.0 MPa or less and connecting the surface electrode and the wiring member.

また、配置工程では、フィルム状の接着部材を表面電極上に配置することが好ましい。これにより、バスバー電極を介することなく配線部材と電気的に接続される太陽電池セルにおいて、安定で均一な接続状態が実現する。   Moreover, it is preferable to arrange | position a film-like adhesive member on a surface electrode at an arrangement | positioning process. Thereby, a stable and uniform connection state is realized in the solar battery cell that is electrically connected to the wiring member without passing through the bus bar electrode.

本発明によれば、バスバー電極を介することなく配線部材と電気的に接続される太陽電池セルにおいて、良好な太陽電池特性を有する太陽電池ユニット及び太陽電池ユニットの製造方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the solar cell unit which has a favorable solar cell characteristic, and the manufacturing method of a solar cell unit are obtained in the photovoltaic cell electrically connected with a wiring member, without passing through a bus-bar electrode.

(a)本実施形態に係る太陽電池ユニットの表面側の要部を示す模式図である。(b)本実施形態に係る太陽電池ユニットの裏面側の要部を示す模式図である。(A) It is a schematic diagram which shows the principal part of the surface side of the solar cell unit which concerns on this embodiment. (B) It is a schematic diagram which shows the principal part by the side of the back surface of the solar cell unit which concerns on this embodiment. 本実施形態に係る太陽電池ユニットを側面から見た模式的な断面図である。It is typical sectional drawing which looked at the solar cell unit concerning this embodiment from the side. 本実施形態に係る太陽電池ユニットの要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the solar cell unit which concerns on this embodiment. (a)変形例に係る太陽電池ユニットの表面側の要部を示す模式図である。(b)変形例に係る太陽電池ユニットの裏面側の要部を示す模式図である。(A) It is a schematic diagram which shows the principal part by the side of the surface of the solar cell unit which concerns on a modification. (B) It is a schematic diagram which shows the principal part by the side of the back surface of the solar cell unit which concerns on a modification. 変形例に係る太陽電池ユニットの要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the solar cell unit which concerns on a modification. 変形例に係る太陽電池ユニットの要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the solar cell unit which concerns on a modification. (a)従来の太陽電池ユニットの表面側の要部を示す模式図である。(b)従来の太陽電池ユニットの裏面側の要部を示す模式図である。(A) It is a schematic diagram which shows the principal part by the side of the surface of the conventional solar cell unit. (B) It is a schematic diagram which shows the principal part by the side of the back surface of the conventional solar cell unit. 従来の太陽電池ユニットの要部を模式的に示す断面図である。It is sectional drawing which shows the principal part of the conventional solar cell unit typically.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、数値範囲は、その上下端値を含む。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. The numerical range includes the upper and lower end values.

図1は、本実施形態に係る太陽電池ユニットの要部を示す模式図であり、複数の太陽電池セル2を相互に配線接続する場合の構造の概略を一つの例として示している。図1(a)は太陽電池ユニット1の表面側を示し、図1(b)は裏面側を示す。   FIG. 1 is a schematic diagram showing a main part of a solar cell unit according to the present embodiment, and shows an outline of a structure when a plurality of solar cells 2 are connected to each other as an example. Fig.1 (a) shows the surface side of the solar cell unit 1, and FIG.1 (b) shows the back surface side.

図3は、本実施形態に係る太陽電池ユニットの要部を模式的に示す断面図である。図3は、説明のために誇張して描かれている。例えば、本実施形態に係る太陽電池セル2の受光面2a側には表面電極3が設けられ、裏面2b側には裏面電極4が設けられているが、図3において表面電極3は太陽電池セル2から大きく突出するように図示し、一方、裏面電極4は図示していない。なお、図5〜図8も、説明のために同様に誇張して描かれている。   FIG. 3 is a cross-sectional view schematically showing the main part of the solar cell unit according to the present embodiment. FIG. 3 is exaggerated for purposes of illustration. For example, the surface electrode 3 is provided on the light receiving surface 2a side of the solar battery cell 2 according to this embodiment, and the back electrode 4 is provided on the back surface 2b side. 2, the back electrode 4 is not shown. 5 to 8 are similarly exaggerated for the sake of explanation.

従来の太陽電池ユニット101に含まれる太陽電池セル102では、図7及び図8に示すように、受光面102aに、複数本の細長い直線状の電極で構成される表面電極103が形成されている。そして、表面電極103よりも本数が少なく、表面電極103よりも幅の太い配線部材105が、表面電極103に直交するように、バスバー電極111を介して受光面102aに配置されている。   In the solar battery cell 102 included in the conventional solar battery unit 101, as shown in FIGS. 7 and 8, a surface electrode 103 composed of a plurality of elongated linear electrodes is formed on the light receiving surface 102a. . A wiring member 105 having a smaller number than the surface electrode 103 and a width wider than the surface electrode 103 is arranged on the light receiving surface 102 a via the bus bar electrode 111 so as to be orthogonal to the surface electrode 103.

本実施形態に係る太陽電池ユニット1では、図1、図2、及び図3に示すように、太陽電池セル2の表面である受光面2aに、複数本の細長い直線状の電極で構成される表面電極3(細線電極又はフィンガー電極ともいう)が形成されており、太陽電池セル2の裏面2bに、その全面を覆う裏面電極4が形成されている。表面電極3は、例えばAgからなり、裏面電極4は、例えばAlからなる。太陽電池セル2の裏面2b側では、Agを含むバスバー電極11を介して、裏面電極4に、太陽電池セル2を直列及び/又は並列に接続する為の配線部材5(配線ワイヤー又はタブ線ともいう)が接続されている。一方、太陽電池セル2の受光面2a側では、バスバー電極11を介することなく、配線部材5が、表面電極3と直交するように表面電極3に接続されている。   In the solar cell unit 1 according to the present embodiment, as shown in FIGS. 1, 2, and 3, the light receiving surface 2 a that is the surface of the solar cell 2 is configured with a plurality of elongated linear electrodes. A surface electrode 3 (also referred to as a fine wire electrode or a finger electrode) is formed, and a back electrode 4 that covers the entire surface is formed on the back surface 2 b of the solar battery cell 2. The front surface electrode 3 is made of, for example, Ag, and the back surface electrode 4 is made of, for example, Al. On the back surface 2b side of the solar battery cell 2, the wiring member 5 (both the wiring wire or the tab wire) for connecting the solar battery cell 2 in series and / or in parallel to the back electrode 4 through the bus bar electrode 11 containing Ag. Is connected). On the other hand, on the light receiving surface 2 a side of the solar battery cell 2, the wiring member 5 is connected to the surface electrode 3 so as to be orthogonal to the surface electrode 3 without passing through the bus bar electrode 11.

バスバー電極11を介することなく表面電極3と配線部材5とを接続する方法としては、表面電極3を有する太陽電池セル2の受光面2a側にバスバー電極11を配置せずに、表面電極3と配線部材5との導通を得る方法がある。   As a method of connecting the surface electrode 3 and the wiring member 5 without passing through the bus bar electrode 11, the bus bar electrode 11 is not disposed on the light receiving surface 2a side of the solar battery cell 2 having the surface electrode 3, and the surface electrode 3 There is a method of obtaining electrical connection with the wiring member 5.

バスバー電極11を介することなく表面電極3と配線部材5とを接続する方法として、表面電極3と配線部材5とをはんだにより接合することが考えられる。しかしながら、はんだにより接合した場合、表面電極3上でのみ表面電極3と配線部材5とが接合されるため、接合強度が十分でない場合がある。また、表面電極3に対し電気的に安定的な接続状態を維持することが難しい。そこで、本実施形態では、太陽電池セル2の受光面2aと配線部材5とを接着部材6により接合することで、バスバー電極11を介することなく表面電極3と配線部材5とを接続する。接着部材6は、配線部材5と表面電極3の間には、図3において矢印A1で示す導通性を付与し、配線部材5と太陽電池セル2間には、図3において矢印A2で示す接着性を付与するので、安定で均一な接続状態が得られる。なお、「表面電極3と配線部材5とがバスバー電極11を介することなく接続される」とは、配線部材5が、太陽電池セル2の表面電極3に直接接続されることをいう。   As a method of connecting the surface electrode 3 and the wiring member 5 without passing through the bus bar electrode 11, it is conceivable to join the surface electrode 3 and the wiring member 5 with solder. However, when joining with solder, since the surface electrode 3 and the wiring member 5 are joined only on the surface electrode 3, the joining strength may not be sufficient. Further, it is difficult to maintain an electrically stable connection state with respect to the surface electrode 3. Therefore, in the present embodiment, the light receiving surface 2a of the solar battery cell 2 and the wiring member 5 are joined by the adhesive member 6 so that the surface electrode 3 and the wiring member 5 are connected without the bus bar electrode 11 interposed therebetween. The adhesive member 6 provides the electrical conductivity indicated by the arrow A1 in FIG. 3 between the wiring member 5 and the surface electrode 3, and the adhesive indicated by the arrow A2 in FIG. 3 between the wiring member 5 and the solar battery cell 2. As a result, a stable and uniform connection state can be obtained. “The surface electrode 3 and the wiring member 5 are connected without the bus bar electrode 11” means that the wiring member 5 is directly connected to the surface electrode 3 of the solar battery cell 2.

ここで、表面電極3としては、電気的導通を得ることができる公知の材質のものが挙げられ、例えば、一般的な、銀を含有したガラスペースト、接着剤樹脂に各種の導電性粒子を分散した銀ペースト、金ペースト、カーボンペースト、ニッケルペースト、アルミペースト、焼成又は蒸着等によって形成されるITOなどが挙げられる。これらの中でも、耐熱性、導電性、安定性、及びコストの観点から、銀を含有したガラスペースト電極が好適に用いられる。   Here, examples of the surface electrode 3 include known materials capable of obtaining electrical conduction. For example, various conductive particles are dispersed in a general glass paste containing silver or an adhesive resin. Silver paste, gold paste, carbon paste, nickel paste, aluminum paste, ITO formed by firing or vapor deposition, and the like. Among these, a glass paste electrode containing silver is preferably used from the viewpoints of heat resistance, conductivity, stability, and cost.

太陽電池セル2としては、単結晶シリコン、多結晶シリコン等の結晶系太陽電池セル、またはアモルファスシリコン、CIGS、CdTe等の薄膜系太陽電池セルなどが挙げられる。代表的なものとして、Siの単結晶、多結晶及び非結晶のうちの少なくとも一種以上からなる基板上に、スクリーン印刷などによってAg電極とAl電極とが表面電極3としてそれぞれ設けられた太陽電池セル2が挙げられる。なお、太陽電池セル2は、図4、図5、図6に示すように、表裏両面にAgからなる表面電極3を有し、表裏両面ともに反射防止膜及びパッシベーション層が設けられた両面受光タイプの太陽電池ユニット31,41でもよい。なお、太陽電池ユニット31,41の詳細は後述する。   Examples of the solar battery cell 2 include crystal solar battery cells such as single crystal silicon and polycrystalline silicon, and thin film solar battery cells such as amorphous silicon, CIGS, and CdTe. As a typical example, a solar battery cell in which an Ag electrode and an Al electrode are provided as a surface electrode 3 on a substrate made of at least one of Si single crystal, polycrystal, and amorphous by screen printing or the like. 2 is mentioned. As shown in FIGS. 4, 5, and 6, the solar battery cell 2 has a surface electrode 3 made of Ag on both front and back surfaces, and a double-sided light receiving type in which an antireflection film and a passivation layer are provided on both front and back surfaces. The solar cell units 31 and 41 may be used. Details of the solar cell units 31 and 41 will be described later.

接着部材6の材料は、例えば、エポキシ樹脂、アクリル樹脂、フェノキシ樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリイミド樹脂、ポリアミド樹脂、フェノール樹脂、シリコン樹脂などが挙げられ、これらを単体で用いるか、もしくは2種類以上を組み合わせた混合体、共重合体等として用いることができる。これらの中でも、接続信頼性の観点から、エポキシ樹脂、フェノキシ樹脂、ポリエチレン樹脂及びアクリル樹脂のうちの少なくとも1つが接着部材6に含有されることが好ましい。   Examples of the material of the adhesive member 6 include epoxy resin, acrylic resin, phenoxy resin, melamine resin, polyurethane resin, polyester resin, polyethylene resin, polyimide resin, polyamide resin, phenol resin, and silicon resin. It can be used, or it can be used as a mixture, a copolymer, etc. which combined 2 or more types. Among these, it is preferable that at least one of an epoxy resin, a phenoxy resin, a polyethylene resin, and an acrylic resin is contained in the adhesive member 6 from the viewpoint of connection reliability.

これらの接着部材6は、配線部材5下に回りこんだ光が配線部材5下の太陽電池セル2にも入光して発電に寄与するように、全光線透過率が50%以上であることが好ましく、全光線透過率が70%以上であることがより好ましく、全光線透過率が80%以上であることが更に好ましい。   These adhesive members 6 have a total light transmittance of 50% or more so that the light that travels under the wiring member 5 enters the solar cells 2 under the wiring member 5 and contributes to power generation. The total light transmittance is more preferably 70% or more, and the total light transmittance is more preferably 80% or more.

また、接着部材6のヘイズについては、JIS K 7136―1:2000に規定される。配線部材5下に回りこんだ光が、配線部材5下の太陽電池セル2にも入光して発電に寄与するように、ヘイズは90%以下であることが好ましく、70%以下であることがより好ましく、50%以下であることが更に好ましい。   The haze of the adhesive member 6 is defined in JIS K 7136-1: 2000. The haze is preferably 90% or less, and preferably 70% or less so that the light that travels under the wiring member 5 enters the solar cells 2 under the wiring member 5 and contributes to power generation. Is more preferable, and it is still more preferable that it is 50% or less.

全光線透過率はJIS K 7361―1:1997に規定されるが、結晶シリコン太陽電池の波長感度は600nm〜1100nmで高く、アモルファスシリコン太陽電池の波長感度は300nm〜600nmで高いので、太陽電池セル2の材質に合わせて、それぞれの波長感度帯における透過率が高いことが好ましい。   Although the total light transmittance is specified in JIS K 7361-1: 1997, the wavelength sensitivity of the crystalline silicon solar cell is high at 600 nm to 1100 nm, and the wavelength sensitivity of the amorphous silicon solar cell is high at 300 nm to 600 nm. According to the material of 2, it is preferable that the transmittance in each wavelength sensitivity band is high.

また、接着部材6の屈折率については、配線部材5下に回り込む光を効率よく配線部材5下に導くために、1.4以上、3.6以下であることが好ましく、1.48以上であることがより好ましい。特に、接着部材6の屈折率は、後述する封止部材8の屈折率以上であることが更に好ましい。   In addition, the refractive index of the adhesive member 6 is preferably 1.4 or more and 3.6 or less, and is preferably 1.48 or more in order to efficiently guide light that travels under the wiring member 5 to the lower side of the wiring member 5. More preferably. In particular, the refractive index of the adhesive member 6 is more preferably equal to or higher than the refractive index of the sealing member 8 described later.

一般に、樹脂の屈折率については、アクリル樹脂は1.49〜1.53、エポキシ樹脂は1.55〜1.66、ポリエチレン樹脂は1.53〜1.6、ポリスチレン樹脂は1.5〜1.6、ポリエステル樹脂は1.60、MBS樹脂(メタクリル酸メチル、ブタジエン、スチレンの共重合体)は1.54、シリコーン樹脂は1.43、シアノアクリレート樹脂は1.48〜1.49、ブチルゴムは1.51、ポリカーボネート樹脂は1.59である。これらの樹脂を単体で、もしくは2種類以上を組み合わせて使うことができる。   In general, the refractive index of the resin is 1.49 to 1.53 for acrylic resin, 1.55 to 1.66 for epoxy resin, 1.53 to 1.6 for polyethylene resin, and 1.5 to 1 for polystyrene resin. 1.6, polyester resin 1.60, MBS resin (methyl methacrylate, butadiene, styrene copolymer) 1.54, silicone resin 1.43, cyanoacrylate resin 1.48-1.49, butyl rubber Is 1.51 and polycarbonate resin is 1.59. These resins can be used alone or in combination of two or more.

更に、接着部材6には、接続性、導通性、弾性、耐熱性、耐水性、ガスバリア性及び適度な屈折率等を付与するために金属粒子が含まれていてもよい。例えば、太陽電池セル2に、金属粒子を含む接着部材6、配線部材5等を配置し、それらを圧着して、金属粒子が表面電極3及び配線部材5に食い込むことによって、アンカー効果によって接続の導電性、接合の強度等を向上させてもよい。金属粒子としては、酸化金属粒子、金属膜で覆われた粒子、酸化金属膜で覆われた粒子等を用いることができる。それらの粒子としては、金、Ag、Cu、Ni、鉛、スズ、ビスマス、はんだ、金/ニッケルめっきプラスチック粒子、銅めっき粒子、ニッケルめっき粒子、はんだめっき粒子、ZnO、ITO、SiO、アルミナ、酸化チタン、酸化インジウム、酸化スズ、酸化タンタル、酸化アルミニウム、酸化ジルコニウム等が挙げられる。また、これらの金属粒子は、接合時の被着体表面に対する金属粒子の埋め込み性の観点から、例えば毬栗状、球状等の粒子形状を有するものが好ましい。すなわち、このような形状の金属粒子は、太陽電池セル2の表面電極3、配線部材5等の外面5aの複雑な凹凸形状に対しても埋め込み性が高く、接合後の振動、膨張等の変動に対して追随性が高いため、接続信頼性をより向上させることが可能となる。 Furthermore, the adhesive member 6 may contain metal particles for imparting connectivity, electrical conductivity, elasticity, heat resistance, water resistance, gas barrier properties, an appropriate refractive index, and the like. For example, an adhesive member 6 containing metal particles, a wiring member 5, etc. are arranged in the solar battery cell 2, and they are pressure-bonded so that the metal particles bite into the surface electrode 3 and the wiring member 5. You may improve electroconductivity, the intensity | strength of joining, etc. As the metal particles, metal oxide particles, particles covered with a metal film, particles covered with a metal oxide film, and the like can be used. These particles include gold, Ag, Cu, Ni, lead, tin, bismuth, solder, gold / nickel plated plastic particles, copper plated particles, nickel plated particles, solder plated particles, ZnO, ITO, SiO 2 , alumina, Examples thereof include titanium oxide, indium oxide, tin oxide, tantalum oxide, aluminum oxide, and zirconium oxide. In addition, these metal particles preferably have a particle shape such as a chestnut shape or a spherical shape from the viewpoint of the embedding property of the metal particles to the adherend surfaces during bonding. That is, the metal particles having such a shape have high embeddability even with respect to the complicated uneven shape of the outer surface 5a of the surface electrode 3 and the wiring member 5 of the solar battery cell 2, and fluctuations such as vibration and expansion after joining. Therefore, the connection reliability can be further improved.

金属粒子の粒径は、1μm〜50μmの範囲が好ましく、1μm〜30μmの範囲がより好ましい。   The particle size of the metal particles is preferably in the range of 1 μm to 50 μm, and more preferably in the range of 1 μm to 30 μm.

接着部材6における金属粒子の含有量は、接着部材6の全光線透過率、接着性等が著しく低下しない範囲であればよく、例えば、接着部材6の全体積を基準として10体積%以下、好ましくは0.1〜7体積%とすることができる。   The content of the metal particles in the adhesive member 6 may be in a range in which the total light transmittance, adhesiveness, and the like of the adhesive member 6 are not significantly reduced. For example, the volume is preferably 10% by volume or less based on the total volume of the adhesive member 6. May be 0.1-7% by volume.

接着部材6は、例えば、上述した各種材料を溶剤に溶解又は分散させてなる塗布液をポリエチレンテレフタレートフィルム等の剥離フィルム上に塗布し、溶剤を除去することによってフィルム状として作製してもよい。こうして得られるフィルム状の接着部材6は、ペースト状の接着部材6と比較して、膜厚寸法精度及び圧着時の圧力配分の点で優れている。また、フィルム状とすることで、バスバー電極11を介することなく接続するときに、均一で安定な接続が可能となり、歩留まり、信頼性等の向上に寄与する。   For example, the adhesive member 6 may be formed as a film by applying a coating solution obtained by dissolving or dispersing the above-described various materials in a solvent onto a release film such as a polyethylene terephthalate film and removing the solvent. The film-like adhesive member 6 thus obtained is superior to the paste-like adhesive member 6 in terms of film thickness dimensional accuracy and pressure distribution at the time of pressure bonding. In addition, by using a film shape, uniform and stable connection is possible when connecting without passing through the bus bar electrode 11, which contributes to improvement in yield, reliability, and the like.

上記では、剥離フィルムとしてプラスチックフィルムの例を挙げたが、剥離フィルムとして金属フィルムを使用することで、配線部材5と一体化させた接着フィルムとすることもできる。   In the above, an example of a plastic film is given as the release film, but an adhesive film integrated with the wiring member 5 can also be obtained by using a metal film as the release film.

フィルム状とする場合の接着部材6の厚みは、上記塗布液中の不揮発分の調整およびアプリケータ及びリップコータのギャップ調整によって制御することができる。フィルム状とした接着部材6の厚みは、5μm〜50μmであることが好ましく、10μm〜35μmであることがより好ましい。   The thickness of the adhesive member 6 in the case of forming a film can be controlled by adjusting the non-volatile content in the coating solution and adjusting the gap between the applicator and the lip coater. The thickness of the film-shaped adhesive member 6 is preferably 5 μm to 50 μm, and more preferably 10 μm to 35 μm.

配線部材5は、ワイヤー状の金属であることが好ましい。この金属としては、金、Ag、Cu、Ni、鉛、スズ、ビスマス、はんだ、ZnO、ITO、SiO、Al、アルミナ、酸化チタン、酸化インジウム、酸化スズ、酸化タンタル、酸化アルミニウム、酸化ジルコニウム等が挙げられる。配線部材5は、上記の金属をコア材と被覆材にそれぞれ用いて、2種類以上で構成してもよい。その中でも、入射光を効率良く反射させるために、最表面は、はんだ、Al、Ag等であることが好ましい。 The wiring member 5 is preferably a wire-like metal. Examples of the metal include gold, Ag, Cu, Ni, lead, tin, bismuth, solder, ZnO, ITO, SiO 2 , Al, alumina, titanium oxide, indium oxide, tin oxide, tantalum oxide, aluminum oxide, zirconium oxide, and the like. Is mentioned. The wiring member 5 may be composed of two or more types using the above metals for the core material and the covering material, respectively. Among these, in order to reflect incident light efficiently, the outermost surface is preferably solder, Al, Ag, or the like.

配線部材5の外面5aは、入射光を散乱させて太陽電池セル2の受光面2aに入射する光を増加させるため、及び接着部材6との密着性を向上させるために、凹凸形状が形成されていることが好ましい。凹凸形状の最大段差は0.1μm〜200μmであり、より好ましくは1μm〜150μmであり、さらに好ましくは5μm〜100μmである。表面電極3と配線部材5とが確実に接続するために、凹凸形状は、配線部材5の外面5aに設けられ、配線部材5の長手方向にスジ状の凹凸が形成されていることが好ましい。凹凸形状は配線部材5の外面5aの全面、片面、両面のいずれに形成されていてもよい。   The outer surface 5a of the wiring member 5 is formed with a concavo-convex shape in order to scatter incident light and increase the light incident on the light receiving surface 2a of the solar battery cell 2 and to improve the adhesion to the adhesive member 6. It is preferable. The maximum uneven step is 0.1 μm to 200 μm, more preferably 1 μm to 150 μm, and even more preferably 5 μm to 100 μm. In order to securely connect the surface electrode 3 and the wiring member 5, it is preferable that the concavo-convex shape is provided on the outer surface 5 a of the wiring member 5, and stripe-shaped concavo-convex is formed in the longitudinal direction of the wiring member 5. The uneven shape may be formed on the entire outer surface 5 a of the wiring member 5, on one side, or on both sides.

このように構成される太陽電池ユニット1は、次の方法により製造することができる。まず、太陽電池セル2の表面電極3上に、接着部材6及び配線部材5をこの順に配置する配置工程を行う。次に、配置工程の後、0.1MPa以上、2.0MPa以下の圧力で太陽電池セル2及び配線部材5を挟み、表面電極3と配線部材5とを接続する接続工程を行う。接続工程では、接着部材6は、加熱、紫外線、圧力などによって、配線部材5と接合させることができる。接合をし易くし、確実に樹脂を硬化させ、また配線部材5と表面電極3との接触を確実にするためには、加熱及び加圧して接合(加熱圧着)することが特に好ましい。太陽電池セル2へのダメージを防ぐために、加熱温度については、接続温度は50℃〜200℃が好ましく、80℃〜180℃がより好ましい。また、圧力については、0.05MPa以上、2.5MPa以下が好ましく、0.1MPa以上、2.0MPa以下がより好ましい。または、ラミネートによる封止工程のみで他の封止部材8と一括で接合してもよい。ラミネートによる封止工程の条件としては、通常、封止部材8として一般的に使用されるEVA等の架橋条件で決定されるが、一般的には150℃で10分程度保持するなどの条件が挙げられる。加熱圧着やラミネートによって、配線部材5の表面がバスバー電極11の少なくとも一部に食い込んだ状態にすることで、接続状態をより確実にしてもよい。   The solar cell unit 1 configured as described above can be manufactured by the following method. First, the arrangement | positioning process which arrange | positions the adhesive member 6 and the wiring member 5 in this order on the surface electrode 3 of the photovoltaic cell 2 is performed. Next, after the disposing step, a connecting step of sandwiching the solar battery cell 2 and the wiring member 5 with a pressure of 0.1 MPa or more and 2.0 MPa or less and connecting the surface electrode 3 and the wiring member 5 is performed. In the connecting step, the adhesive member 6 can be bonded to the wiring member 5 by heating, ultraviolet rays, pressure, or the like. In order to facilitate the bonding, to reliably cure the resin, and to ensure the contact between the wiring member 5 and the surface electrode 3, it is particularly preferable to perform bonding (thermocompression bonding) by heating and pressurization. In order to prevent damage to the solar battery cell 2, the connection temperature is preferably 50 ° C. to 200 ° C., and more preferably 80 ° C. to 180 ° C. Moreover, about a pressure, 0.05 MPa or more and 2.5 MPa or less are preferable, and 0.1 MPa or more and 2.0 MPa or less are more preferable. Or you may join to the other sealing member 8 collectively only by the sealing process by a lamination. The conditions for the sealing step by laminating are usually determined by the crosslinking conditions such as EVA generally used as the sealing member 8, but generally the conditions such as holding at 150 ° C. for about 10 minutes. Can be mentioned. By connecting the surface of the wiring member 5 into at least a part of the bus bar electrode 11 by thermocompression bonding or laminating, the connection state may be made more reliable.

太陽電池セル2、接着部材6、配線部材5から構成される太陽電池アレイは、更にEVAなどの封止部材8、ガラス等を積層した状態でラミネータ装置に設置され、封止工程を経て太陽電池ユニット1となる。   The solar cell array composed of the solar cell 2, the adhesive member 6, and the wiring member 5 is further installed in a laminator device in a state where a sealing member 8, such as EVA, and glass are laminated, and the solar cell is subjected to a sealing process. It becomes unit 1.

このようにして作製された本実施形態に係る太陽電池ユニット1は、バスバー電極11を介することなく太陽電池セル2と配線部材5とが接合される太陽電池において、良好な太陽電池特性を提供することができる。   The solar cell unit 1 according to this embodiment thus manufactured provides good solar cell characteristics in a solar cell in which the solar cells 2 and the wiring member 5 are joined without the bus bar electrode 11 interposed therebetween. be able to.

図1(a)、図1(b)、及び図4に示すように、太陽電池ユニット1は、受光面2a側に表面電極3(細線電極)、裏面2b側に裏面電極4をそれぞれ有する太陽電池セル2が、配線部材5により複数相互に接続されている。そして、配線部材5の一端側は、太陽電池セル2の受光面2aにおいて、接着部材6により接合されて表面電極3としての細線電極と接続されている。また、配線部材5の他端側は、太陽電池セル2の裏面2bにおいて、バスバー電極11と接続されている。   As shown in FIG. 1 (a), FIG. 1 (b), and FIG. 4, the solar cell unit 1 includes a surface electrode 3 (thin wire electrode) on the light receiving surface 2a side and a back electrode 4 on the back surface 2b side. A plurality of battery cells 2 are connected to each other by a wiring member 5. Then, one end side of the wiring member 5 is joined to the thin wire electrode as the surface electrode 3 by being joined by the adhesive member 6 on the light receiving surface 2 a of the solar battery cell 2. The other end side of the wiring member 5 is connected to the bus bar electrode 11 on the back surface 2 b of the solar battery cell 2.

かかる構成を有する太陽電池ユニット1は、上述したように表面電極3と配線部材5とが接続されているため、良好な太陽電池特性を得ることができる。   Since the surface electrode 3 and the wiring member 5 are connected as described above, the solar cell unit 1 having such a configuration can obtain good solar cell characteristics.

太陽電池セル2と配線部材5とが適切に接合されているかを評価する方法として、ソーラーシミュレータによる電流−電圧(I−V)曲線測定が挙げられる。このとき得られる短絡電流(Isc)と開放電圧(Voc)の積を、最大電流値(Pmax)で除して得られる曲線因子(F.F.)の値で評価できる。   As a method for evaluating whether the solar battery cell 2 and the wiring member 5 are appropriately joined, a current-voltage (IV) curve measurement using a solar simulator can be given. The product of the short-circuit current (Isc) and the open circuit voltage (Voc) obtained at this time can be evaluated by the value of the curve factor (FF) obtained by dividing the product by the maximum current value (Pmax).

図3には、上述した封止工程を経て太陽電池ユニット1が作製されるときのラミネータ装置に設置される積層体の模式的な断面図を示す。この積層体は、表面側からガラス9、封止部材8、配線部材5、接着部材6、太陽電池セル2、バスバー電極11、配線部材5、封止部材8、及びバックシート10がこの順に配置されている。太陽電池セル2は、受光面2a側に表面電極3が設けられると共に裏面2b側に裏面電極(不図示)が設けられている。配線部材5は、太陽電池セル2の表面電極3に直交する位置に配置されている。   In FIG. 3, typical sectional drawing of the laminated body installed in the laminator apparatus when the solar cell unit 1 is produced through the sealing process mentioned above is shown. In this laminate, glass 9, sealing member 8, wiring member 5, adhesive member 6, solar battery cell 2, bus bar electrode 11, wiring member 5, sealing member 8, and backsheet 10 are arranged in this order from the surface side. Has been. The solar cell 2 is provided with a surface electrode 3 on the light receiving surface 2a side and a back electrode (not shown) on the back surface 2b side. The wiring member 5 is disposed at a position orthogonal to the surface electrode 3 of the solar battery cell 2.

ガラス9としては、太陽電池用ディンプル付き白板強化ガラスなどが挙げられる。封止部材8としては、EVAからなるEVAシートが挙げられる。配線部材5としては、Cu線にはんだをディップ又はめっきしたタブ線等が挙げられる。バックシート10としては、PET系又はテドラ−PET積層材料、金属箔−PET積層材料などが挙げられる。   Examples of the glass 9 include white plate tempered glass with dimples for solar cells. An example of the sealing member 8 is an EVA sheet made of EVA. Examples of the wiring member 5 include a tab wire obtained by dipping or plating a solder on a Cu wire. Examples of the backsheet 10 include PET-based or tedla-PET laminate materials, metal foil-PET laminate materials, and the like.

本発明は上記実施形態に限られるものではない。例えば、上記実施形態では片面受光タイプの太陽電池ユニット1を例示したが、本発明は、図4に示すように、両面受光タイプの太陽電池ユニット31,41について適用することも可能である。両面受光タイプの太陽電池ユニット31では、図5に示すように、太陽電池セル2は、裏面2b側にも表面電極3(細線電極)を有している。そして、太陽電池セル2の裏面2b側の表面電極3に、接着部材6及び配線部材5が配置され、加熱、紫外線の照射、圧力の付与等の手段によって太陽電池セル2の裏面2bと配線部材5とが接合される。これにより、太陽電池セル2の裏面2b側の表面電極3と、配線部材5との間で電気的に接続され、良好な導通性が得られる。また、太陽電池ユニット31では、太陽電池セル2の裏面2b側に配置された配線部材5に対し、更に封止部材8、及びバックシート10が積層するように配置されている。これにより、受光面2a側から入射した光が太陽電池セル2に入光せず裏面2b側に通過してしまった場合でも、バックシート10によって反射され、太陽電池セル2の裏面2bに入光することで効率的な発電が可能となる。   The present invention is not limited to the above embodiment. For example, although the single-sided light receiving type solar cell unit 1 has been exemplified in the above embodiment, the present invention can also be applied to the double-sided light receiving type solar cell units 31 and 41 as shown in FIG. In the double-sided light receiving type solar battery unit 31, as shown in FIG. 5, the solar battery cell 2 has a front surface electrode 3 (thin wire electrode) also on the back surface 2b side. And the adhesive member 6 and the wiring member 5 are arrange | positioned at the surface electrode 3 by the side of the back surface 2b of the photovoltaic cell 2, and the back surface 2b and wiring member of the photovoltaic cell 2 are provided by means, such as a heating, irradiation of an ultraviolet-ray, provision of a pressure. 5 are joined. Thereby, it electrically connects between the surface electrode 3 by the side of the back surface 2b of the photovoltaic cell 2, and the wiring member 5, and favorable electroconductivity is obtained. Moreover, in the solar cell unit 31, the sealing member 8 and the back sheet 10 are further laminated | stacked with respect to the wiring member 5 arrange | positioned at the back surface 2b side of the photovoltaic cell 2. FIG. Thereby, even when the light incident from the light receiving surface 2 a side does not enter the solar battery cell 2 and passes through the back surface 2 b side, it is reflected by the back sheet 10 and enters the back surface 2 b of the solar battery cell 2. By doing so, efficient power generation becomes possible.

また、両面受光タイプの太陽電池ユニット41では、図6に示すように、太陽電池セル2の裏面2b側にも表面電極3(細線電極)を有し、更に接着部材6及び配線部材5が配置されている点では太陽電池ユニット31と共通する。しかし、太陽電池ユニット41では、太陽電池セル2の裏面2b側のバックシート10に代えてガラス9が配置されている。これにより、裏面2b側から入射した光が、裏面2b側のガラス9、封止部材8、接着部材6を透過して太陽電池セル2の裏面2bに入光することで、効率的な発電が可能となる。
[実施例]
Further, in the double-sided light receiving type solar cell unit 41, as shown in FIG. 6, the solar cell 2 also has a surface electrode 3 (fine wire electrode) on the back surface 2b side, and further an adhesive member 6 and a wiring member 5 are arranged. It is common to the solar cell unit 31 in that it is. However, in the solar cell unit 41, the glass 9 is arranged instead of the back sheet 10 on the back surface 2 b side of the solar cell 2. Thereby, the light incident from the back surface 2b side passes through the glass 9, the sealing member 8, and the adhesive member 6 on the back surface 2b side, and enters the back surface 2b of the solar battery cell 2, thereby generating efficient power generation. It becomes possible.
[Example]

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<接着フィルム(接着部材6)の作製及び太陽電池ユニット1の作製>
(実施例1)
(ポリエチレン樹脂フィルム(接着部材6)の作製)
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
<Production of Adhesive Film (Adhesive Member 6) and Production of Solar Cell Unit 1>
(Example 1)
(Production of polyethylene resin film (adhesive member 6))

透明分散媒樹脂として東ソー株式会社製のエチレン−酢酸ビニル樹脂(EVA):ウルトラセン634(紫外線吸収剤を含有しない)を100g用い、アルケマ吉富株式会社製の過酸化物熱ラジカル重合開始剤:ルペロックス101を1.5g、東レ・ダウコーニング株式会社製のシランカップリング剤:SZ6030を0.5gをロールミルで混練して、波長変換用樹脂組成物を得た。   100 g of ethylene-vinyl acetate resin (EVA) manufactured by Tosoh Corporation as a transparent dispersion medium resin: Ultrasen 634 (not containing an ultraviolet absorber), a peroxide thermal radical polymerization initiator manufactured by Arkema Yoshitomi Corporation: Luperox A wavelength conversion resin composition was obtained by kneading 1.5 g of 101 and 0.5 g of silane coupling agent: SZ6030 manufactured by Toray Dow Corning Co., Ltd. with a roll mill.

上記で得られた波長変換用樹脂組成物の約30gを離型シートに挟み、0.030mm厚ステンレス製スペーサーを用い、熱板を80℃に調整したプレスを用い、シート状にした。これを幅1.5mmにスリットし、膜厚は25μmのポリエチレン樹脂フィルムを得た。このポリエチレン樹脂フィルムの全光線透過率は89.20%であった。なお、ポリエチレン樹脂フィルムの全光線透過率は、硬化した状態のフィルムを用いて、濁度計(日本電色工業株式会社製、NDH5000)で測定した。
(太陽電池ユニット1の作製)
About 30 g of the resin composition for wavelength conversion obtained above was sandwiched between release sheets, and 0.030 mm thick stainless steel spacers were used, and a hot plate was adjusted to 80 ° C. to form a sheet. This was slit to a width of 1.5 mm to obtain a polyethylene resin film having a film thickness of 25 μm. The total light transmittance of this polyethylene resin film was 89.20%. In addition, the total light transmittance of the polyethylene resin film was measured with a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH5000) using the cured film.
(Production of solar cell unit 1)

バスバー電極11が形成されておらず、表面電極3である細線電極のみが形成された太陽電池セル2(156mm×156mm、多結晶シリコン)の受光面2aに、前記のポリエチレン樹脂フィルムを用いて、配線部材5としてのタブ線(日立電線株式会社製、SSA−TPS)を接続した。   Using the polyethylene resin film on the light receiving surface 2a of the solar battery cell 2 (156 mm × 156 mm, polycrystalline silicon) in which the bus bar electrode 11 is not formed and only the thin wire electrode as the surface electrode 3 is formed, A tab wire (Hitachi Cable Co., Ltd., SSA-TPS) as the wiring member 5 was connected.

配線部材5(タブ線)を置いた太陽電池セル2の配線部材5(タブ線)上から圧着するための圧着ヘッドとその圧着ヘッドに加熱機構を備えた専用の加熱圧着機(芝浦メカトロニクス株式会社製)でポリエチレン樹脂フィルムの温度が180℃、接合部分にかかる圧力が2MPaとなるように配線部材5(タブ線)と太陽電池セル2を30秒かけて加熱圧着して接合した。   A crimping head for crimping from above the wiring member 5 (tab wire) of the solar battery cell 2 on which the wiring member 5 (tab wire) is placed, and a dedicated thermocompression bonding machine equipped with a heating mechanism (Shibaura Mechatronics Co., Ltd.) The wiring member 5 (tab wire) and the solar battery cell 2 were bonded by thermocompression over 30 seconds so that the temperature of the polyethylene resin film was 180 ° C. and the pressure applied to the bonded portion was 2 MPa.

次に、配線部材5(タブ線)を接合した太陽電池セル2を、強化ガラス(旭硝子株式会社製)、封止部材8としてエチレン−酢酸ビニル樹脂(EVA、屈折率1.54)、バックシート10を用いて、ガラス9/EVA/太陽電池セル2/EVA/バックシート10の順に積層し、この積層体を真空ラミネータに設置し、150℃で、5分間真空引き、5分間温度保持する条件でラミネートを行い、太陽電池ユニット1を作製した。   Next, the solar cell 2 to which the wiring member 5 (tab wire) is joined is reinforced glass (manufactured by Asahi Glass Co., Ltd.), the sealing member 8 is ethylene-vinyl acetate resin (EVA, refractive index 1.54), back sheet 10 is laminated in the order of glass 9 / EVA / solar cell 2 / EVA / backsheet 10, and this laminate is placed in a vacuum laminator, evacuated at 150 ° C. for 5 minutes, and maintained for 5 minutes. Was laminated to prepare a solar cell unit 1.

得られた太陽電池ユニット1について、株式会社ワコム電創製のソーラーシミュレータ(WXS−155S−10、AM1.5G)を用いてIVカーブを測定し、このI−V曲線から短絡電流Iscを求めた。   About the obtained solar cell unit 1, IV curve was measured using the solar simulator (WXS-155S-10, AM1.5G) by Wacom Denso Co., Ltd., and the short circuit current Isc was calculated | required from this IV curve.

短絡電流Iscは9360mAであり、太陽電池として十分な特性が得られていることが確認された。
(実施例2)
(エポキシ樹脂フィルム(接着部材6)の作製)
The short-circuit current Isc was 9360 mA, and it was confirmed that sufficient characteristics as a solar cell were obtained.
(Example 2)
(Production of epoxy resin film (adhesive member 6))

フェノキシ樹脂(高分子量エポキシ樹脂)(ユニオンカーバイド製、商品名「PKHC」)50gとエポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名「YL−980」)20g及びイミダゾール5gを酢酸エチル中に添加し、30質量%の酢酸エチル溶液を調製した。得られた混合組成物を、ポリエチレンテレフタレートフィルム上にアプリケータ(YOSHIMISU製)を用いて塗布し、ホットプレート上で70℃、10分間乾燥し、膜厚が25μmのエポキシ樹脂フィルムを作製した。このエポキシ樹脂フィルムの全光線透過率について、実施例1と同様に測定したところ、74.46%であった。
(太陽電池ユニット1の作製)
50 g of phenoxy resin (high molecular weight epoxy resin) (product name “PKHC” manufactured by Union Carbide), 20 g of epoxy resin (product name “YL-980” manufactured by Japan Epoxy Resin Co., Ltd.) and 5 g of imidazole were added to ethyl acetate. A 30% by mass ethyl acetate solution was prepared. The obtained mixed composition was applied onto a polyethylene terephthalate film using an applicator (manufactured by YOSHIMISU), and dried on a hot plate at 70 ° C. for 10 minutes to produce an epoxy resin film having a thickness of 25 μm. The total light transmittance of this epoxy resin film was measured in the same manner as in Example 1. As a result, it was 74.46%.
(Production of solar cell unit 1)

前記のエポキシ樹脂フィルムを用いて配線部材5(タブ線)を太陽電池セル2に接続し、接合の温度が180℃、接合部分にかかる圧力が2MPaとなるように配線部材5(タブ線)と太陽電池セル2を10秒かけて加熱圧着して接合した以外は実施例1と同様にして、太陽電池ユニット1を作製した。得られた太陽電池ユニット1について、実施例1と同様にして短絡電流Iscを求めた。   The wiring member 5 (tab wire) is connected to the solar battery cell 2 using the epoxy resin film, and the wiring member 5 (tab wire) is connected so that the joining temperature is 180 ° C. and the pressure applied to the joining portion is 2 MPa. A solar cell unit 1 was produced in the same manner as in Example 1 except that the solar cells 2 were joined by thermocompression bonding over 10 seconds. About the obtained solar cell unit 1, it carried out similarly to Example 1, and calculated | required the short circuit current Isc.

短絡電流Iscは9096mAであり、太陽電池として十分な特性が得られていることが確認された。
(実施例3)
The short-circuit current Isc was 9096 mA, and it was confirmed that sufficient characteristics as a solar cell were obtained.
(Example 3)

実施例2の酢酸エチル溶液を調製し、これに平均粒径5μmのNi粒子を、固形成分全体の体積に対して5体積%添加し、全光線透過率55.21%のエポキシ樹脂フィルムを用いて配線部材5(タブ線)を太陽電池セル2に接合した以外は実施例2と同様にして、太陽電池ユニット1を作製した。得られた太陽電池ユニット1について、上記と同様にして短絡電流Iscを求めた。   An ethyl acetate solution of Example 2 was prepared, and Ni particles having an average particle diameter of 5 μm were added thereto in an amount of 5% by volume based on the total volume of the solid component, and an epoxy resin film having a total light transmittance of 55.21% was used. The solar cell unit 1 was produced in the same manner as in Example 2 except that the wiring member 5 (tab wire) was joined to the solar cell 2. About the obtained solar cell unit 1, the short circuit current Isc was calculated | required like the above.

短絡電流Iscは9090mAであり、太陽電池として十分な特性が得られていることが確認された。
(実施例4)
The short-circuit current Isc was 9090 mA, and it was confirmed that sufficient characteristics as a solar cell were obtained.
Example 4

実施例1の樹脂を全光線透過率100%のシアノアクリレート樹脂(東亞合成株式会社製、商品名「アロンアルファ」)を用いて配線部材5(タブ線)を太陽電池セル2に接続し、接合の温度が100℃、接合部分にかかる圧力が2MPaとなるようにタブ線と太陽電池セル2を30秒かけて加熱圧着後、室温で30分放置して接合した以外は実施例1と同様にして、太陽電池ユニット1を作製した。また、樹脂はガラス基板上に塗布し、硬化の膜厚が25μmにした状態で測定した。得られた太陽電池ユニット1について、上記と同様にして短絡電流Iscを求めた。   The wiring member 5 (tab wire) was connected to the solar battery cell 2 using the cyanoacrylate resin (trade name “Aron Alpha” manufactured by Toagosei Co., Ltd.) having a total light transmittance of 100%, and the resin of Example 1 was joined. The same as in Example 1 except that the tab wire and the solar battery cell 2 were subjected to thermocompression bonding over 30 seconds so that the temperature was 100 ° C. and the pressure applied to the joining portion was 2 MPa, and then left to stand for 30 minutes at room temperature. A solar cell unit 1 was produced. Moreover, resin was apply | coated on the glass substrate and it measured in the state which set the film thickness of hardening to 25 micrometers. About the obtained solar cell unit 1, the short circuit current Isc was calculated | required like the above.

短絡電流Iscは9069mAであり、太陽電池として十分な特性が得られていることが確認された。
(比較例1)
The short-circuit current Isc was 9069 mA, and it was confirmed that sufficient characteristics as a solar cell were obtained.
(Comparative Example 1)

ブチルゴムフィルム(日東シンコー株式会社製、ブチルゴムテープNo.11)を、ガラス棒を用いて延伸し25μm厚のシート状にした。これを幅1.5mmにスリットし、ブチルゴムフィルムを得た。このブチルゴムフィルムの全光線透過率を測定したところ6.42%であった。この実施例1の樹脂を用いて配線部材5(タブ線)を太陽電池セル2に接続し、接合の温度が120℃、接合部分にかかる圧力が2MPaとなるように配線部材5(タブ線)と太陽電池セル2を50秒かけて加熱圧着して接合した以外は実施例1と同様にして、太陽電池ユニット1を作製した。得られた太陽電池ユニット1について、上記と同様にして短絡電流Iscを求めた。   A butyl rubber film (manufactured by Nitto Shinko Co., Ltd., butyl rubber tape No. 11) was stretched using a glass rod to form a sheet having a thickness of 25 μm. This was slit to a width of 1.5 mm to obtain a butyl rubber film. The total light transmittance of this butyl rubber film was measured and found to be 6.42%. The wiring member 5 (tab wire) is connected to the solar battery cell 2 using the resin of Example 1 so that the joining temperature is 120 ° C. and the pressure applied to the joining portion is 2 MPa. A solar battery unit 1 was produced in the same manner as in Example 1 except that the solar battery cell 2 was joined by thermocompression bonding over 50 seconds. About the obtained solar cell unit 1, the short circuit current Isc was calculated | required like the above.

短絡電流Iscは8843mAであった。   The short circuit current Isc was 8843 mA.

以上の結果を表1に示す。

Figure 2015233095
The results are shown in Table 1.
Figure 2015233095

1,31,41…太陽電池ユニット、2…太陽電池セル、2a…受光面、3…表面電極、5…配線部材、5a…外面、6…接着部材、8…封止部材、11…バスバー電極。   DESCRIPTION OF SYMBOLS 1,31,41 ... Solar cell unit, 2 ... Solar cell, 2a ... Light-receiving surface, 3 ... Surface electrode, 5 ... Wiring member, 5a ... Outer surface, 6 ... Adhesive member, 8 ... Sealing member, 11 ... Busbar electrode .

Claims (9)

複数の太陽電池セルと、前記太陽電池セル同士を電気的に接続する配線部材とを備える太陽電池ユニットであって、
少なくとも前記太陽電池セルの受光面側において、前記太陽電池セルと前記配線部材とが接着部材により接合されて、バスバー電極を介することなく前記太陽電池セルの表面電極と配線部材とが接続されており、
前記接着部材の全光線透過率が50%以上である、太陽電池ユニット。
A solar cell unit comprising a plurality of solar cells and a wiring member that electrically connects the solar cells,
At least on the light receiving surface side of the solar battery cell, the solar battery cell and the wiring member are joined by an adhesive member, and the surface electrode of the solar battery cell and the wiring member are connected without interposing a bus bar electrode. ,
The solar cell unit whose total light transmittance of the said adhesive member is 50% or more.
前記接着部材の屈折率が1.4以上、3.6以下である、請求項1記載の太陽電池ユニット。   The solar cell unit according to claim 1, wherein a refractive index of the adhesive member is 1.4 or more and 3.6 or less. 前記配線部材が接合された前記太陽電池セルを封止する封止部材を更に備え、
前記接着部材の屈折率が前記封止部材の屈折率以上である、請求項1又は2記載の太陽電池ユニット。
A sealing member for sealing the solar battery cell to which the wiring member is bonded;
The solar cell unit of Claim 1 or 2 whose refractive index of the said adhesive member is more than the refractive index of the said sealing member.
前記接着部材のヘイズが90%以下である、請求項1〜3のいずれか一項記載の太陽電池ユニット。   The solar cell unit according to claim 1, wherein the adhesive member has a haze of 90% or less. 前記接着部材に金属粒子が含まれている、請求項1〜4のいずれか一項記載の太陽電池ユニット。   The solar cell unit according to claim 1, wherein metal particles are included in the adhesive member. 前記配線部材は、外面の少なくとも一部に凹凸形状を有する、請求項1〜5のいずれか一項記載の太陽電池ユニット。   The said wiring member is a solar cell unit as described in any one of Claims 1-5 which has uneven | corrugated shape in at least one part of an outer surface. 前記配線部材の表面がAgを含む、請求項1〜6のいずれか一項記載の太陽電池ユニット。   The solar cell unit according to any one of claims 1 to 6, wherein a surface of the wiring member contains Ag. 請求項1〜7のいずれか一項記載の太陽電池ユニットを製造する方法であって、
太陽電池セルの表面電極上に、接着部材及び配線部材をこの順に配置する配置工程と、
前記配置工程の後、0.1MPa以上、2.0MPa以下の圧力で前記太陽電池セル及び前記配線部材を挟み、前記表面電極と前記配線部材とを接続する接続工程と、を含む、太陽電池ユニットの製造方法。
A method for producing the solar cell unit according to claim 1,
An arrangement step of arranging the adhesive member and the wiring member in this order on the surface electrode of the solar battery cell,
A solar cell unit including, after the placing step, a connecting step of sandwiching the solar battery cell and the wiring member at a pressure of 0.1 MPa or more and 2.0 MPa or less and connecting the surface electrode and the wiring member. Manufacturing method.
前記配置工程では、フィルム状の前記接着部材を前記表面電極上に配置する、請求項8に記載の太陽電池ユニットの製造方法。   The manufacturing method of the solar cell unit according to claim 8, wherein in the arranging step, the film-like adhesive member is arranged on the surface electrode.
JP2014119791A 2014-06-10 2014-06-10 Solar battery unit and method for manufacturing solar battery unit Pending JP2015233095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119791A JP2015233095A (en) 2014-06-10 2014-06-10 Solar battery unit and method for manufacturing solar battery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119791A JP2015233095A (en) 2014-06-10 2014-06-10 Solar battery unit and method for manufacturing solar battery unit

Publications (1)

Publication Number Publication Date
JP2015233095A true JP2015233095A (en) 2015-12-24

Family

ID=54934387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119791A Pending JP2015233095A (en) 2014-06-10 2014-06-10 Solar battery unit and method for manufacturing solar battery unit

Country Status (1)

Country Link
JP (1) JP2015233095A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117741A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Solar cell and manufacturing method thereof
JP2009117731A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Method for manufacturing solar cell
US20110174354A1 (en) * 2010-01-19 2011-07-21 Solarworld Innovations Gmbh Photovoltaic cell electrode and method for electrically connecting a photovoltaic cell
JP2012074602A (en) * 2010-09-29 2012-04-12 Sony Chemical & Information Device Corp Solar cell module and manufacturing method thereof
JP2012134393A (en) * 2010-12-22 2012-07-12 Sony Chemical & Information Device Corp Method for manufacturing solar cell module and solar cell module
JP2012142452A (en) * 2010-12-29 2012-07-26 Sanyo Electric Co Ltd Solar cell and solar cell module
JP2013033819A (en) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp Solar cell module and method for manufacturing the same
JP2013048201A (en) * 2011-07-22 2013-03-07 Dexerials Corp Solar cell module, and method for manufacturing solar cell module
JP2013051446A (en) * 2003-09-05 2013-03-14 Hitachi Chemical Co Ltd Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage of conduction material for solar cell connection
JP2013123009A (en) * 2011-12-12 2013-06-20 Dexerials Corp Solar cell, output measurement method and manufacturing method for solar cell, and manufacturing method for solar cell module
JP2014063978A (en) * 2013-04-26 2014-04-10 Noritake Co Ltd Solar cell module and manufacturing method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051446A (en) * 2003-09-05 2013-03-14 Hitachi Chemical Co Ltd Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage of conduction material for solar cell connection
JP2009117741A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Solar cell and manufacturing method thereof
JP2009117731A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Method for manufacturing solar cell
US20110174354A1 (en) * 2010-01-19 2011-07-21 Solarworld Innovations Gmbh Photovoltaic cell electrode and method for electrically connecting a photovoltaic cell
JP2012074602A (en) * 2010-09-29 2012-04-12 Sony Chemical & Information Device Corp Solar cell module and manufacturing method thereof
JP2012134393A (en) * 2010-12-22 2012-07-12 Sony Chemical & Information Device Corp Method for manufacturing solar cell module and solar cell module
JP2012142452A (en) * 2010-12-29 2012-07-26 Sanyo Electric Co Ltd Solar cell and solar cell module
JP2013048201A (en) * 2011-07-22 2013-03-07 Dexerials Corp Solar cell module, and method for manufacturing solar cell module
JP2013033819A (en) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp Solar cell module and method for manufacturing the same
JP2013123009A (en) * 2011-12-12 2013-06-20 Dexerials Corp Solar cell, output measurement method and manufacturing method for solar cell, and manufacturing method for solar cell module
JP2014063978A (en) * 2013-04-26 2014-04-10 Noritake Co Ltd Solar cell module and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5604236B2 (en) Solar cell module manufacturing method, solar cell connection device, solar cell module
JP5415396B2 (en) Solar cell module manufacturing method and solar cell module
JP2008135654A (en) Solar battery module
JP6360076B2 (en) Conductive adhesive comprising blended elastomer
JP2013225712A (en) Manufacturing method of thin film solar cell
KR101441264B1 (en) Solar cell module, method for producing solar cell module, solar cell, and method for connecting tab wire
JP5676944B2 (en) Solar cell module and method for manufacturing solar cell module
US20090250109A1 (en) Acrylic pressure sensitive adhesive composition, double coated adhesive sheet, and photovoltaic device
JP5892584B2 (en) Solar cell module and method for manufacturing solar cell module
US20140144482A1 (en) Photovoltaic module and method for manufacturing same
CN113851550A (en) Solar cell string and preparation method and application thereof
CN113851549A (en) Solar cell string and preparation method and application thereof
WO2012073675A1 (en) Thin-film solar cell module and method for manufacturing thin-film solar cell module
WO2023103260A1 (en) Photovoltaic cell assembly and manufacturing method therefor
CN215418200U (en) Solar cell string and photovoltaic module comprising same
EP2816612A1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
JP5889738B2 (en) Solar cell module and manufacturing method thereof
JP2011222744A (en) Tab wire for connecting solar battery, connection method and solar battery module
JP2015233096A (en) Solar battery unit and method for manufacturing solar battery unit
WO2008041486A1 (en) Solar battery module
JP2013197343A (en) Solar cell module and method for manufacturing the same
CN111403498A (en) Double-sided solar cell interconnection structure
JP2015185695A (en) Solar battery module and manufacturing method thereof
JP2015233095A (en) Solar battery unit and method for manufacturing solar battery unit
JP2017055112A (en) Manufacturing method for solar cell module, solar cell module, and connection method for solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106