JP2015232532A - Gas measuring device - Google Patents

Gas measuring device Download PDF

Info

Publication number
JP2015232532A
JP2015232532A JP2014120124A JP2014120124A JP2015232532A JP 2015232532 A JP2015232532 A JP 2015232532A JP 2014120124 A JP2014120124 A JP 2014120124A JP 2014120124 A JP2014120124 A JP 2014120124A JP 2015232532 A JP2015232532 A JP 2015232532A
Authority
JP
Japan
Prior art keywords
gas
optical density
concentration
reaction
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014120124A
Other languages
Japanese (ja)
Inventor
靖裕 寺内
Yasuhiro Terauchi
靖裕 寺内
絢子 伊藤
Ayako Ito
絢子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2014120124A priority Critical patent/JP2015232532A/en
Publication of JP2015232532A publication Critical patent/JP2015232532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas measuring device capable of determining a plurality of kinds of gases and detecting its concentration by the same detector paper.SOLUTION: A gas measuring device comprises: means for detecting the optical concentration by wavelengths of different reaction marks of detector paper carrying silver salt which generates the reaction mark of silver colloid in reaction to at least a plurality of kinds of measured gases; gas determination means for specifying the kind of gases based on a ratio of the optical concentration of respective wavelengths of the same reaction mark; and concentration computing means for calculating the gas concentration based on the chemical concentration.

Description

本発明は、雰囲気中に含まれている複数種のガスを呈色反応させてガスの種類の判定とその濃度を測定するためのガス測定装置に関する。   The present invention relates to a gas measuring apparatus for performing a color reaction of a plurality of types of gases contained in an atmosphere to determine the type of gas and measure its concentration.

例えば半導体製造所では複数種類の水素化合物のガスが貯蔵されており、環境中での濃度が監視されている。
このようなガスの検出には特許文献1、2に見られるような検知紙が用いられているが、ガスの種類に対応した検知紙の種類を選択する必要がある。
For example, semiconductor manufacturing plants store a plurality of types of hydrogen compound gases, and their concentrations in the environment are monitored.
Although detection paper such as found in Patent Documents 1 and 2 is used for detection of such gas, it is necessary to select the type of detection paper corresponding to the type of gas.

特開2004-163371JP2004-163371

特開2008-20285JP2008-20285

本発明はこのような問題に鑑みてなされたものであってその目的とするところは、同一の検知紙で複数種のガスの判定とその濃度を検出することができるガス測定装置を提供することである。     The present invention has been made in view of such problems, and an object of the present invention is to provide a gas measuring device capable of detecting a plurality of types of gases and detecting their concentrations using the same detection paper. It is.

このような問題を解消するために本発明においては、少なくとも複数種類の被測定ガスに反応して光学濃度が変化する反応痕を生じる試薬を担持した検知紙の前記反応痕の異なる波長による光学濃度を検出する手段と、同一の反応痕の前記各波長による光学濃度の比に基づいてガスの種類を特定するガス種判定手段と、前記光学濃度に基づいてガスの濃度を算出する濃度演算手段とからなる。   In order to solve such a problem, in the present invention, the optical density due to the different wavelengths of the reaction traces of the detection paper carrying a reagent that generates reaction traces that change the optical density in response to at least a plurality of kinds of gases to be measured. Detecting means, gas type determining means for specifying the type of gas based on the optical density ratio of each wavelength of the same reaction trace, concentration calculating means for calculating the gas concentration based on the optical density, Consists of.

一種類の検知紙により複数種のガスの種類とその濃度を測定できる。   One type of detection paper can measure the types and concentrations of multiple gases.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. ガスの種類、及び濃度ごとの複数の波長での光学濃度の比を示す線図である。It is a diagram which shows the ratio of the optical density in the some wavelength for every kind of gas and density | concentration.

そこで以下に本発明の詳細を図示した実施例に基づいて説明する。
図1は本発明の一実施例を示すものであって、カセット1などに収容された検知紙2は、銀塩、例えば硝酸銀、過塩素酸銀、パラトルエンスルホン酸銀の少なくとも1種を反応試薬とし、必要に応じて保湿剤、例えばグリセリン、バッファ薬を通気性の担体に担持させて構成されている。また窓3の領域には検知紙2の表裏を挟むように測定ヘッド4と吸引ヘッド5とが配置されている。
Therefore, details of the present invention will be described below based on the illustrated embodiment.
FIG. 1 shows an embodiment of the present invention, in which a detection paper 2 contained in a cassette 1 or the like reacts with at least one of silver salts such as silver nitrate, silver perchlorate and silver paratoluenesulfonate. As a reagent, a humectant such as glycerin and a buffer drug are supported on a breathable carrier as required. Further, a measurement head 4 and a suction head 5 are arranged in the area of the window 3 so as to sandwich the front and back of the detection paper 2.

測定ヘッド4は、被検出ガスの導入口6を備えた遮光容器として構成されていて、内部に複数の発光スペクトル、例えば第一の波長555nmと第二の波長475nmとを選択的に発光する発光手段7、例えばダイオードと、上記複数の発光スペクトルを検出できる受光手段8、例えばフォトダイオードとが、検知紙2に形成された反応痕を介して入反射関係を持つように収容して構成されていて、導入口6をパイプ9により被測定環境に連通されている。   The measuring head 4 is configured as a light-shielding container having a gas inlet 6 for detection gas, and emits light that selectively emits a plurality of emission spectra, for example, a first wavelength of 555 nm and a second wavelength of 475 nm. The means 7, for example, a diode, and the light receiving means 8, for example, a photodiode capable of detecting the plurality of emission spectra, are configured to be accommodated so as to have an incident / reflection relationship through reaction marks formed on the detection paper 2. The inlet 6 is communicated with the environment to be measured by a pipe 9.

吸引ヘッド5には導入口6と対向するように流出口10が設けられ、パイプ11を介して図示しない吸引ポンプの負圧を受けている。   The suction head 5 is provided with an outlet 10 so as to face the inlet 6 and receives a negative pressure of a suction pump (not shown) via a pipe 11.

図中符号12は、信号処理装置で、発光手段7の一方の波長を選択もしくは受光手段8の受光波長の一方を選択する波長選択手段13、選択された各波長での反応痕の光学濃度を検出する光学濃度検出手段14、同一反応痕のそれぞれの波長での光学濃度の比を算出してガスの種類を判定するガス種判定手段15と、いずれかの波長での反応痕の光学濃度に基づいてガスの濃度を算出する濃度演算手段16とから構成されている。   Reference numeral 12 in the figure is a signal processing device, which selects one wavelength of the light emitting means 7 or wavelength selecting means 13 for selecting one of the light receiving wavelengths of the light receiving means 8, and indicates the optical density of the reaction mark at each selected wavelength. Optical density detection means 14 to detect, gas type determination means 15 for determining the type of gas by calculating the optical density ratio at each wavelength of the same reaction trace, and the optical density of the reaction trace at any wavelength Concentration calculation means 16 for calculating the concentration of gas based on this is constituted.

なお、発光手段7の各波長毎の強度、及び受光手段の各波長毎の感度が波長ごとに異なる場合には適宜の手段で補正して各波長での反応痕の光学濃度を正規化することが可能である。   In addition, when the intensity | strength for each wavelength of the light emission means 7 and the sensitivity for each wavelength of a light-receiving means differ for every wavelength, it correct | amends with an appropriate means and normalizes the optical density of the reaction trace in each wavelength. Is possible.

この実施例において、カセット1の窓3から露出している領域の検知紙2を測定ヘッド4と吸引ヘッド5とで挟持させ、測定を開始すると、図示しない吸引ポンプが作動する。   In this embodiment, when the detection paper 2 in the area exposed from the window 3 of the cassette 1 is sandwiched between the measurement head 4 and the suction head 5 and measurement is started, a suction pump (not shown) is activated.

被検ガスは、パイプ9を経由して測定ヘッド4に吸い込まれ、測定ヘッド4から検知紙2を通過して吸引ヘッド5に移動する過程で検知紙2に含浸されている銀塩からなる試薬と反応してこれの表面に被検知ガスの濃度と時間との積に対応した光学濃度で反応痕を生じさせる。   The test gas is sucked into the measurement head 4 through the pipe 9 and is made of a silver salt impregnated in the detection paper 2 in the process of passing from the measurement head 4 through the detection paper 2 to the suction head 5. Reaction traces are generated on the surface of the gas with an optical density corresponding to the product of the concentration of the gas to be detected and time.

この反応痕は、被検知ガスである水素化物と銀塩との反応による銀コロイドの析出により生じるものであるが、この銀コロイドの粒子径は被検知ガスとの反応強度に左右され、また銀コロイドの粒子径は各波長毎の吸光度に影響を与える。   This reaction mark is caused by the precipitation of silver colloid due to the reaction between the hydride to be detected and the silver salt. The particle size of the silver colloid depends on the reaction intensity with the gas to be detected. The particle size of the colloid affects the absorbance at each wavelength.

この過程で発光手段7から放射された第一の波長の光は、検知紙2の表面に形成された反応痕の光学的濃度に応じて吸収を受けて反射され、受光手段8に入射して電気信号に変換される。光学濃度検出手段13は、受光手段8からの信号に基づいて第一の波長での光学濃度を算出する。   In this process, the light of the first wavelength emitted from the light emitting means 7 is absorbed and reflected according to the optical density of the reaction mark formed on the surface of the detection paper 2 and is incident on the light receiving means 8. It is converted into an electrical signal. The optical density detector 13 calculates the optical density at the first wavelength based on the signal from the light receiver 8.

引き続いて発光手段7から第二の波長の光を照射して検知紙2の同一の反応痕の光学的濃度を測定する。
ガス種判定手段16は、これら2種類の波長による光学濃度の比からガスの種類を判定し、またガス濃度演算手段17が何れかの波長での光学濃度に基いてガス濃度を算出する。
このようにして測定動作が終了した時点で、検知紙を1コマ分だけ紙送りして次の測定に備える。
Subsequently, light of the second wavelength is emitted from the light emitting means 7 to measure the optical density of the same reaction trace on the detection paper 2.
The gas type determination unit 16 determines the type of gas from the ratio of the optical densities at these two wavelengths, and the gas concentration calculation unit 17 calculates the gas concentration based on the optical density at any wavelength.
When the measurement operation is completed in this way, the detection paper is fed by one frame to prepare for the next measurement.

すなわち、被検ガス、たとえばモノシラン(SiH4 符号(1))、セレン化水素(H2Se 符号(2))、ホスフィン(PH3 符号(3))、アルシン(AsH3 符号(4))を用いて、ガスに対する曝露時間を一定に維持し、ガス濃度の濃度を変更して反応痕を発生させ、その緑色発光ダイオードと青色発光ダイオードとの反射率をプロットしたところ図2のようになった。   That is, using a test gas such as monosilane (SiH4 code (1)), hydrogen selenide (H2Se code (2)), phosphine (PH3 code (3)), arsine (AsH3 code (4)) The exposure time was kept constant, the gas concentration was changed to generate reaction traces, and the reflectance of the green light emitting diode and the blue light emitting diode was plotted as shown in FIG.

すなわち、少なくともアルシン(AsH3)、ホスフィン(PH3)、セレン化水素(H2Se)、モノシラン(SiH4)は、青、及び緑の発光ダイオードによる反射率の比は濃度に関わり無くガスの種類により一定で、かつ反射率の比はガス間では相違している。   That is, at least for arsine (AsH3), phosphine (PH3), hydrogen selenide (H2Se), and monosilane (SiH4), the reflectance ratio of blue and green light emitting diodes is constant depending on the type of gas regardless of the concentration. And the ratio of reflectivity is different between gases.

したがって、発光スペクトルが異なり、入手しやすい発光手段、たとえば緑色発光ダイオードと青色発光ダイオードとにより同一の反応痕の光学濃度(反射率)を測定し、その比からガスの種類を、そして光学濃度自体からガス濃度を算出することが可能となる。   Therefore, the optical density (reflectance) of the same reaction trace is measured by light emitting means having different emission spectra and easily available, for example, green light emitting diode and blue light emitting diode, and the gas type and optical density itself are determined from the ratio. From this, the gas concentration can be calculated.

なお、上述の実施例においては発光手段7から照射する光の波長を切り替えているが、発光手段7からは第一、第二の波長の光を同時に照射して受光手段8で第一波長の光と第二波長の光とを選択的に個別に受光するようにしても同様の作用を奏することは明らかである。
また上述の実施例においては試薬として被測定ガスと反応して銀コロイドの反応痕を生じる銀塩を用いた場合について説明したが、波長により反射率のことなる反応痕を生じる他の試薬を用いても同様の作用を奏することは明らかである。
In the above-described embodiment, the wavelength of light emitted from the light emitting means 7 is switched. However, the light emitting means 7 simultaneously emits light of the first and second wavelengths, and the light receiving means 8 changes the wavelength of the first wavelength. Obviously, the same effect can be obtained even if the light and the light of the second wavelength are selectively received separately.
In the above-described embodiments, the case where a silver salt that reacts with a gas to be measured to produce a reaction trace of silver colloid is used as a reagent has been described. However, it is clear that the same effect is achieved.

2 検知紙 4 測定ヘッド 5 吸引ヘッド 7 発光手段 8 受光手段 2 Detecting paper 4 Measuring head 5 Suction head 7 Light emitting means 8 Light receiving means

Claims (4)

少なくとも複数種類の被測定ガスに反応して光学濃度が変化する反応痕を生じる試薬を担持した検知紙の前記反応痕の異なる波長による光学濃度を検出する手段と、同一の反応痕の前記各波長による光学濃度の比に基づいてガスの種類を特定するガス種判定手段と、前記光学濃度に基づいてガスの濃度を算出する濃度演算手段とからなるガス測定装置。 Means for detecting an optical density at a different wavelength of the reaction trace of a detection paper carrying a reagent that generates a reaction trace in which the optical density changes in response to at least a plurality of types of gases to be measured, and each wavelength of the same reaction trace A gas measuring device comprising: a gas type determining unit that specifies a gas type based on an optical density ratio; and a concentration calculating unit that calculates a gas concentration based on the optical density. 前記試薬は、被測定ガスと反応して銀コロイドの反応痕を生じる銀塩である請求項1に記載のガス測定装置。 The gas measuring apparatus according to claim 1, wherein the reagent is a silver salt that reacts with a gas to be measured to generate reaction traces of silver colloid. 前記光学濃度を検出する手段は、波長の異なる光を選択的に照射する発光手段を有する請求項1に記載のガス測定装置。 The gas measuring apparatus according to claim 1, wherein the means for detecting the optical density includes light emitting means for selectively irradiating light having different wavelengths. 前記光学濃度を検出する手段は、波長の異なる光を選択的に検出する受光手段を有する請求項1に記載のガス測定装置。 The gas measuring device according to claim 1, wherein the means for detecting the optical density has a light receiving means for selectively detecting light having different wavelengths.
JP2014120124A 2014-06-11 2014-06-11 Gas measuring device Pending JP2015232532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014120124A JP2015232532A (en) 2014-06-11 2014-06-11 Gas measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120124A JP2015232532A (en) 2014-06-11 2014-06-11 Gas measuring device

Publications (1)

Publication Number Publication Date
JP2015232532A true JP2015232532A (en) 2015-12-24

Family

ID=54934055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120124A Pending JP2015232532A (en) 2014-06-11 2014-06-11 Gas measuring device

Country Status (1)

Country Link
JP (1) JP2015232532A (en)

Similar Documents

Publication Publication Date Title
US8902428B2 (en) Process and apparatus for measuring the crystal fraction of crystalline silicon casted mono wafers
TWI434036B (en) Apparatus and method for measuring a constituent of a fluid
US10209189B2 (en) Spectrum measuring device, spectrum measuring method, and specimen container
TWI653443B (en) Light measuring device and light measuring method
WO2013147038A1 (en) Substance properties measuring device
de Vargas-Sansalvador et al. A new light emitting diode–light emitting diode portable carbon dioxide gas sensor based on an interchangeable membrane system for industrial applications
KR102656459B1 (en) Gas identification by measuring stain production in multiple specific wavelength ranges using narrowband optical sensors
US9383317B2 (en) Optical sensor, especially for determining substance concentrations in aqueous solutions by means of a fluorescence measurement
JP5973969B2 (en) Inline densitometer and concentration detection method
JP2013096883A5 (en)
CN104981687A (en) Spectrum measuring device and spectrum measuring method
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
JP2023552883A (en) Systems and methods for measuring component concentrations
JPH0347450B2 (en)
JP2021067634A (en) Device for measuring gas concentration in packaging bag
CN107064119A (en) For the device for the light source for monitoring optical sensor
WO2013054118A1 (en) Fluorescence gas and liquid sensor
US20110206830A1 (en) Reverse interferometric method and apparatus for measuring layer thickness
JP2015232532A (en) Gas measuring device
JP5370286B2 (en) Fluorescence detection device
JP2021067632A (en) Device for measuring gas concentration in packaging bag
JP7249031B2 (en) Anomaly detection method
JP2004170088A (en) Gas component measuring method and device for the same
JP2012215467A (en) Biological substance analyzer and biological substance analysis method
JP6704384B2 (en) Gaseous impurity concentration detection unit and gaseous impurity concentration detection method