JP2015231934A - White zirconia sintered compact, fabricating method thereof, and use thereof - Google Patents

White zirconia sintered compact, fabricating method thereof, and use thereof Download PDF

Info

Publication number
JP2015231934A
JP2015231934A JP2014251839A JP2014251839A JP2015231934A JP 2015231934 A JP2015231934 A JP 2015231934A JP 2014251839 A JP2014251839 A JP 2014251839A JP 2014251839 A JP2014251839 A JP 2014251839A JP 2015231934 A JP2015231934 A JP 2015231934A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia sintered
silica
white
white zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014251839A
Other languages
Japanese (ja)
Other versions
JP6464713B2 (en
Inventor
勲 山下
Isao Yamashita
勲 山下
紘平 今井
Kohei Imai
紘平 今井
山内 正一
Shoichi Yamauchi
正一 山内
津久間 孝次
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014251839A priority Critical patent/JP6464713B2/en
Publication of JP2015231934A publication Critical patent/JP2015231934A/en
Application granted granted Critical
Publication of JP6464713B2 publication Critical patent/JP6464713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Adornments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a white zirconia sintered compact that does not allow light to pass through it even as a thin member, has a stable color tone, and also has excellent designability.SOLUTION: A white zirconia sintered compact comprises a zirconia sintered compact and silica comprising a cristobalite crystal structure of 1-20 wt%, and has a relative density of 97% or more and a total light transmittance of D65 light (1 mm thickness) of 2% or less.

Description

本発明は、母材の厚みによって色調が変化しない白色ジルコニア焼結体及びその製造方法に関する。   The present invention relates to a white zirconia sintered body whose color tone does not change depending on the thickness of a base material and a method for producing the same.

強度や靭性が高いことから、ジルコニア焼結体は粉砕メディアや軸受けなどの工業製品に広く用いられている。さらに、近年では種々に着色されたジルコニア焼結体が開発されている。着色されたジルコニア焼結体は装飾用途や宝飾用途としての用途が広がっている。   Because of its high strength and toughness, zirconia sintered bodies are widely used in industrial products such as grinding media and bearings. Furthermore, in recent years, various colored zirconia sintered bodies have been developed. The colored zirconia sintered body is widely used for decorative purposes and jewelry.

純粋なジルコニア焼結体は、透光性を有した乳白色の色調を呈する焼結体である。一般的に、このような色調を有するジルコニア焼結体を着色するため、熱安定性の高い無機化合物が顔料として用いられる。例えば、ジルコニア焼結体を黒色や青色などに着色する方法として、遷移金属酸化物(特許文献1)又は希土類酸化物(特許文献2)を顔料として加え、顔料由来の光吸収による発色を利用して、ジルコニア焼結体を着色する方法が報告されている。   A pure zirconia sintered body is a sintered body having a translucent milky white color tone. Generally, in order to color a zirconia sintered body having such a color tone, an inorganic compound having high thermal stability is used as a pigment. For example, as a method of coloring a zirconia sintered body to black or blue, a transition metal oxide (Patent Document 1) or a rare earth oxide (Patent Document 2) is added as a pigment, and coloring by light absorption derived from the pigment is used. A method for coloring a zirconia sintered body has been reported.

一方、光透過性を有し、高級感のある白色を呈するジルコニア焼結体として、アルミナを添加された白色ジルコニア焼結体(特許文献3)が報告されている。また、クリストバライトを含むシリカが2〜25wt%添加されたジルコニア焼結体が開示されている(特許文献4)。   On the other hand, a white zirconia sintered body to which alumina has been added (Patent Document 3) has been reported as a zirconia sintered body having optical transparency and a high-grade white color. Moreover, the zirconia sintered compact to which 2-25 wt% of silica containing cristobalite was added is disclosed (patent document 4).

ところで、携帯用電子機器等の外装部材(以下、単に「外装部材」ともいう。)には、強化ガラスや結晶化ガラスなどのガラス素材が使用されている。しかしながら、これらのガラス素材は着色が困難である。そのため、ガラス素材に代わる素材として、顔料による着色が容易なジルコニア焼結体を外装部材として使用することが検討されている。   By the way, glass materials such as tempered glass and crystallized glass are used for exterior members (hereinafter also simply referred to as “exterior members”) for portable electronic devices and the like. However, these glass materials are difficult to color. Therefore, the use of a zirconia sintered body that can be easily colored with a pigment as an exterior member as an alternative to a glass material has been studied.

外装部材に用いられる部材は、出来るだけ軽量であることが好ましい。そのため、ジルコニア焼結体を外装部材とする場合、その厚さを薄くすることが必要である。黒色顔料などを用いたジルコニア焼結体等、濃い色調を呈するジルコニア焼結体は、光吸収を利用して着色されている。そのため、焼結体の厚みが薄くてもその色調は安定する。これに対し、白色ジルコニア焼結体においては、焼結体の厚みを薄くすることによって、光が焼結体を透過する。その結果、下地の部材の色が透け、ジルコニア焼結体の色と、下地の部材の色とが重なった色調を呈するなど、母材のジルコニア焼結体から色調が変化するという問題があり、さらには、母材の色調と、母材と下地とが組み合わさった外装部材の色調とが異なるという問題があった。   The member used for the exterior member is preferably as light as possible. Therefore, when the zirconia sintered body is used as an exterior member, it is necessary to reduce the thickness. A zirconia sintered body exhibiting a dark color tone, such as a zirconia sintered body using a black pigment or the like, is colored using light absorption. Therefore, even if the sintered body is thin, the color tone is stable. On the other hand, in the white zirconia sintered body, light is transmitted through the sintered body by reducing the thickness of the sintered body. As a result, there is a problem that the color of the base member is transparent, the color of the zirconia sintered body and the color of the base member overlap, and the color tone changes from the base material zirconia sintered body, Furthermore, there is a problem that the color tone of the base material is different from the color tone of the exterior member in which the base material and the base are combined.

現在、外装部材として使用されている石英ガラスでは、ガラスに気孔を導入することで透過率を低下させることが検討されている。例えば、発泡剤によって石英ガラス中に気泡を発生させ、これにより石英ガラスの透過率を低下させる方法が報告されている(特許文献5)。しかしながら、発生した気泡により、石英ガラスの強度が低下することに加え、更に、石英ガラス中に生じた開気孔に含水するなどの問題があった。従って、発泡剤を用いた透過率の低下方法は、高強度を必要とする外装部材用途として使用される石英ガラスには適用できなかった。   At present, quartz glass used as an exterior member has been studied to reduce the transmittance by introducing pores into the glass. For example, a method has been reported in which bubbles are generated in quartz glass by a foaming agent, thereby reducing the transmittance of quartz glass (Patent Document 5). However, due to the generated bubbles, there is a problem that the strength of the quartz glass is lowered and further, water is contained in the open pores generated in the quartz glass. Therefore, the transmittance reduction method using a foaming agent cannot be applied to quartz glass used as an exterior member application requiring high strength.

本発明は、携帯電子機器等の外装部材に好適な、高い意匠性を有する高密度でかつ光が透過しない白色ジルコニア焼結体に関する。   The present invention relates to a white zirconia sintered body that is suitable for an exterior member such as a portable electronic device and has high design and high density and does not transmit light.

日本国特開2006−342036号公報Japanese Unexamined Patent Publication No. 2006-342036 日本国特開平06−92638号公報Japanese Unexamined Patent Publication No. 06-92638 日本国特開2000−75053号公報Japanese Unexamined Patent Publication No. 2000-75053 日本国特開平11−278928号公報Japanese Laid-Open Patent Publication No. 11-278928 日本国特開平10−152332号公報Japanese Laid-Open Patent Publication No. 10-152332

従来の白色ジルコニア焼結体は光透過性を有する。そのため、焼結体が薄くなると下地が透けるなどの色調変化、及び変化後の色調が問題であった。小型化傾向にある電子機器等の外装部材に従来のジルコニア焼結体が使用される場合において、外装部材の色調を安定化するためには、下地が透けなくなるまでジルコニア焼結体を厚くすることが必要であった。   A conventional white zirconia sintered body has optical transparency. For this reason, when the sintered body is thin, the color change such as the transparency of the base and the color tone after the change have been problems. When a conventional zirconia sintered body is used for an exterior member of an electronic device or the like that tends to be downsized, in order to stabilize the color tone of the exterior member, the zirconia sintered body should be thickened until the base is not transparent. Was necessary.

本発明は、薄い部材としても光を透過せず、安定した色調を有し、なおかつ、意匠性に優れる白色ジルコニア焼結体を提供することを目的とする。さらに、当該ジルコニア焼結体の製造方法並びにその用途を提供することを別の目的とする。   An object of the present invention is to provide a white zirconia sintered body that does not transmit light as a thin member, has a stable color tone, and is excellent in design. Furthermore, it is another object to provide a method for producing the zirconia sintered body and its use.

本研究者らは、白色ジルコニア焼結体の含有物に対する光透過性の関係について検討した。その結果、白色ジルコニア焼結体の光透過性は、含有物による光散乱によって制御できること、さらには、シリカを含むジルコニア焼結体であって焼結体中のシリカの粒子の構造中に不均一性を増加させることで、光の透過しない白色ジルコニア焼結体が得られることを見出した。   The present investigators examined the light transmission relationship with the inclusions of the white zirconia sintered body. As a result, the light transmittance of the white zirconia sintered body can be controlled by light scattering by the inclusions. Furthermore, the zirconia sintered body containing silica is non-uniform in the structure of the silica particles in the sintered body. It was found that a white zirconia sintered body that does not transmit light can be obtained by increasing the property.

すなわち、本発明は、ジルコニア焼結体と、クリストバライト結晶構造を1〜20wt%有するシリカと、を含み、相対密度が97%以上であり、かつ、D65光線の全光線透過率(1mm厚さ)が2%以下であることを特徴とする白色ジルコニア焼結体である。   That is, the present invention includes a zirconia sintered body and silica having a cristobalite crystal structure of 1 to 20 wt%, a relative density of 97% or more, and a total light transmittance of D65 light (1 mm thickness). Is a white zirconia sintered body characterized by being 2% or less.

以下、本発明のジルコニア焼結体について説明する。   Hereinafter, the zirconia sintered body of the present invention will be described.

本発明のジルコニア焼結体は、シリカを含有し、該シリカの1〜20wt(重量)%がクリストバライト結晶構造であり、かつ、該焼結体の相対密度が97%以上であり、D65光線の全光線透過率(1mm厚さ)が2%以下である。これよって、本発明のジルコニア焼結体は、焼結体の厚さによらず、色調が変化しない。   The zirconia sintered body of the present invention contains silica, 1 to 20 wt (wt)% of the silica has a cristobalite crystal structure, and the relative density of the sintered body is 97% or more. The total light transmittance (1 mm thickness) is 2% or less. Therefore, the color tone of the zirconia sintered body of the present invention does not change regardless of the thickness of the sintered body.

ジルコニアの屈折率nは2.2であり、一方、シリカの屈折率nは1.4である。   The refractive index n of zirconia is 2.2, while the refractive index n of silica is 1.4.

本発明の白色ジルコニア焼結体は、屈折率の差が大きいシリカとジルコニアが含有することで、強い光散乱を有し、ジルコニアの光透過が抑制される。これにより、本発明の白色ジルコニア焼結体は、焼結体厚みの変化による色調変化(以下、単に「色調変化」ともいう。)のないジルコニア焼結体となる。   When the white zirconia sintered body of the present invention contains silica and zirconia having a large difference in refractive index, the white zirconia sintered body has strong light scattering, and light transmission of zirconia is suppressed. Thereby, the white zirconia sintered body of the present invention becomes a zirconia sintered body having no color tone change (hereinafter, also simply referred to as “color tone change”) due to a change in the thickness of the sintered body.

本発明の白色ジルコニア焼結体は、1〜20wt%のクリストバライト結晶構造(以下、単に「クリストバライト」ともいう。)を含有するシリカを含む。これにより、本発明のジルコニア焼結体は、色調変化がないだけではなく、外装部材として十分な機械的強度を有するものとなる。   The white zirconia sintered body of the present invention contains silica containing 1 to 20 wt% of cristobalite crystal structure (hereinafter also simply referred to as “cristobalite”). Thereby, the zirconia sintered body of the present invention has not only a change in color tone but also a sufficient mechanical strength as an exterior member.

すなわち、本発明の白色ジルコニア焼結体に含まれるシリカは、非晶質又は結晶質の少なくともいずれかのシリカと、クリストバライトとからなる。非晶質又は結晶質の少なくともいずれかのシリカはクリストバライト以外のシリカである。   That is, the silica contained in the white zirconia sintered body of the present invention comprises at least one of amorphous or crystalline silica and cristobalite. At least one of amorphous or crystalline silica is silica other than cristobalite.

クリストバライト以外のシリカとしては、例えば、トリディマイト、石英、スティショバイト、コーサイト及びアモルファスからなる群から選ばれる少なくとも1種のシリカであることを挙げることができ、さらに、石英又はアモルファスの少なくともいずれかのシリカ、又は特に石英であればよい。   Examples of the silica other than cristobalite include at least one silica selected from the group consisting of tridymite, quartz, stishovite, cosite, and amorphous, and at least one of quartz and amorphous. Any silica or especially quartz may be used.

熱安定性が高いこと、及び相転移による不均一性を有する構造とすることが容易である点から、本発明の白色ジルコニア焼結体が含有するシリカは、クリストバライトと石英を含むことが好ましい。   The silica contained in the white zirconia sintered body of the present invention preferably contains cristobalite and quartz from the viewpoint of high thermal stability and easy structure having nonuniformity due to phase transition.

クリストバライトを有するシリカ(以下、「クリストバライト型シリカ」ともいう。)は、200℃付近でα(低温相)−β(高温相)相転移により、体積変化が生じる。この体積変化により、白色ジルコニア焼結体に含まれるシリカの結晶粒子にマイクロクラックなどが生じる。このようなマイクロクラックなどの不均一性が、焼結体中のシリカの結晶粒子に導入され、シリカの粒子による光散乱効果を向上させることができる。   Silica having cristobalite (hereinafter, also referred to as “cristobalite type silica”) undergoes a volume change by an α (low temperature phase) -β (high temperature phase) phase transition at around 200 ° C. Due to this volume change, microcracks or the like are generated in the silica crystal particles contained in the white zirconia sintered body. Such inhomogeneities such as microcracks are introduced into the silica crystal particles in the sintered body, and the light scattering effect by the silica particles can be improved.

本発明の白色ジルコニア焼結体は、クリストバライトを含むシリカを焼結体表面のみに含有するジルコニア焼結体ではなく、少なくとも焼結体内部にクリストバライトを含有するシリカを含むものである。そのため、本発明の白色ジルコニア焼結体は、焼結体表面のみならず、焼結体の研磨面や、焼結体の断面においてもクリストバライトを含むシリカを確認することができる。   The white zirconia sintered body of the present invention is not a zirconia sintered body containing silica containing cristobalite only on the surface of the sintered body, but contains at least silica containing cristobalite inside the sintered body. Therefore, the white zirconia sintered body of the present invention can confirm silica containing cristobalite not only on the surface of the sintered body but also on the polished surface of the sintered body and the cross section of the sintered body.

本発明の白色ジルコニア焼結体のシリカの含有量は、光の透過性及び強度を兼備するという観点から、5〜30wt%であり、さらには5〜20wt%が好ましく、5〜15wt%がより好ましい。ここで、本発明におけるシリカの含有量は、本発明の白色ジルコニア焼結体の全重量に対するシリカの重量割合である。本発明において、シリカの含有量は組成分析により求めることができる。   The content of silica in the white zirconia sintered body of the present invention is 5 to 30 wt%, more preferably 5 to 20 wt%, and more preferably 5 to 15 wt% from the viewpoint of combining light transmission and strength. preferable. Here, the content of silica in the present invention is the weight ratio of silica to the total weight of the white zirconia sintered body of the present invention. In the present invention, the silica content can be determined by composition analysis.

本発明の白色ジルコニア焼結体中のシリカが含有するクリストバライトは1〜20wt%であり、1〜15wt%であることが好ましい。クリストバライトの含有量が1wt%未満では、光散乱の効果が小さくなるため、色調変化が大きくなる。クリストバライトの含有量が1.5wt%以上、更には1.9wt%以上であることで、色調変化がより抑制される。   The cristobalite contained in the silica in the white zirconia sintered body of the present invention is 1 to 20 wt%, preferably 1 to 15 wt%. When the content of cristobalite is less than 1 wt%, the effect of light scattering is reduced, and the color tone change is increased. When the content of cristobalite is 1.5 wt% or more, and further 1.9 wt% or more, the color tone change is further suppressed.

一方、クリストバライトの含有量が20wt%を超えると、シリカの相転移による体積膨張が大きくなりすぎるため、焼結体自体にクラックなどの欠陥が生じる。このような欠陥を含む焼結体は割れやすい。クリストバライトの含有量が15wt%以下、更には13.5wt%以下であることで、焼結体がより割れにくくなる。焼結体の厚みに依存した色調の変化がない色調、すなわち、安定した色調を有し、なおかつ、焼結体が割れにくくなるため、クリストバライトの含有量は1〜15wt%、更には1〜13.5wt%、また更には1〜11wt%、また更には1.5〜15wt%、また更には1.5〜13.5wt%であることが好ましく、1.9〜13.3wt%、更には1.9〜10.6wt%、また更には1.9〜9.2wt%であることがより好ましい。   On the other hand, when the content of cristobalite exceeds 20 wt%, the volume expansion due to the phase transition of silica becomes too large, so that defects such as cracks occur in the sintered body itself. A sintered body containing such defects is easily broken. When the content of cristobalite is 15 wt% or less, and further 13.5 wt% or less, the sintered body is more difficult to break. Since the color tone does not change depending on the thickness of the sintered body, that is, it has a stable color tone and the sintered body is difficult to break, the content of cristobalite is 1 to 15 wt%, and further 1 to 13 0.5 wt%, or more preferably 1 to 11 wt%, even more preferably 1.5 to 15 wt%, and even more preferably 1.5 to 13.5 wt%, and even more preferably 1.9 to 13.3 wt%, More preferably, it is 1.9 to 10.6 wt%, and even more preferably 1.9 to 9.2 wt%.

本発明において、クリストバライトの含有量は、粉末X線回折(以下、「XRD」とする。)測定により求めることができる。すなわち、本発明の白色ジルコニア焼結体のXRDパターンにおける、ジルコニアのXRDピーク面積、及び、クリストバライトのXRDピーク面積から、以下の式から得られるクリストバライト相分率から求めることができる。   In the present invention, the content of cristobalite can be determined by powder X-ray diffraction (hereinafter referred to as “XRD”) measurement. That is, it can be determined from the cristobalite phase fraction obtained from the following equation from the XRD peak area of zirconia and the XRD peak area of cristobalite in the XRD pattern of the white zirconia sintered body of the present invention.

クリストバライト含有量(wt%)
=クリストバライト相分率(wt%)
=Is(101)/(Is(101)+Ic(111)+IT(111)
Cristobalite content (wt%)
= Cristobalite phase fraction (wt%)
= I s (101) / (I s (101) + I c (111) + IT (111) )

上記式において、Is(101)はクリストバライトの(101)面のXRDピーク面積、Ic(111)はジルコニアの立方晶(111)面のXRDピーク面積、及び、IT(111)はジルコニアの正方晶(111)面のXRDピーク面積である。通常、Is(101)及びIc(111)は、線源にCuKα線(λ=1.5405Å)を用いたXRD測定において、2θ=30.2±2°の単一のXRDピークとして確認することができる。 In the above formula, Is (101) is the XRD peak area of the (101) plane of cristobalite, I c (111) is the XRD peak area of the cubic (111) plane of zirconia, and IT (111) is the zirconia This is the XRD peak area of the tetragonal (111) plane. Usually, Is (101) and Ic (111) are confirmed as a single XRD peak of 2θ = 30.2 ± 2 ° in an XRD measurement using a CuKα ray (λ = 1.5405Å) as a source. can do.

また、トリディマイト、石英、スティショバイト又はコーサイトのいずれかのXRDピーク面積を、上記式におけるIs(101)の代わりに使用することで、これらの結晶構造を有するシリカの含有量を求めることができる。各結晶構造のXRDピークは、線源にCuKα線(λ=1.5405Å)を用いたXRD測定において、以下の2θのXRDピークとして確認することができる。 In addition, by using the XRD peak area of any one of tridymite, quartz, stishovite, and cosite instead of Is (101) in the above formula, the content of silica having these crystal structures is obtained. Can do. The XRD peak of each crystal structure can be confirmed as the following 2θ XRD peak in XRD measurement using a CuKα ray (λ = 1.5405Å) as a radiation source.

クリストバライト :2θ=21.9±2°
トリディマイト :2θ=20.5±2°
石英 :2θ=26.6±2°
スティショバイト :2θ=30.2±2°
コーサイト :2θ=28.7±2°
Cristobalite: 2θ = 21.9 ± 2 °
Tridymite: 2θ = 20.5 ± 2 °
Quartz: 2θ = 26.6 ± 2 °
Stishovite: 2θ = 30.2 ± 2 °
Cosite: 2θ = 28.7 ± 2 °

なお、シリカがアモルファスの場合、最も回折強度の高いブロードピークの回折強度をIs(101)の代わりに使用することで、上記式からアモルファスシリカの含有量を求めることができる。 When the silica is amorphous, the content of amorphous silica can be obtained from the above formula by using the diffraction intensity of the broad peak having the highest diffraction intensity instead of Is (101) .

本発明の白色ジルコニア焼結体は、結晶質又は非晶質の少なくともいずれかのシリカとクリストバライトとを含むシリカの粒子を含有する。光散乱を増やす観点から、本発明の白色ジルコニア焼結体に含まれるシリカ粒子の平均結晶粒径は、0.1〜1μmであることが好ましく、0.3〜0.7μmであることがより好ましい。シリカ粒子の平均結晶粒径をこの範囲とすることで、白色ジルコニア焼結体中のシリカの粒子(以下、「シリカ相」ともいう。)の数を増やすことができる。シリカの粒子数が増えることで、より十分な光散乱を生じさせることが可能となる。また光の散乱源となるシリカの粒子の平均結晶粒径を光の波長と同程度、すなわち、0.1μm以上1μm以下とすることで、効率的に光を散乱させることができる。これにより、本発明の白色ジルコニア焼結体の色調が、より明確な白色を呈する。   The white zirconia sintered body of the present invention contains particles of silica containing at least either crystalline or amorphous silica and cristobalite. From the viewpoint of increasing light scattering, the average crystal grain size of the silica particles contained in the white zirconia sintered body of the present invention is preferably 0.1 to 1 μm, more preferably 0.3 to 0.7 μm. preferable. By setting the average crystal grain size of the silica particles within this range, the number of silica particles (hereinafter also referred to as “silica phase”) in the white zirconia sintered body can be increased. Increasing the number of silica particles enables more sufficient light scattering. Moreover, light can be efficiently scattered by setting the average crystal grain size of silica particles, which serve as a light scattering source, to approximately the same as the wavelength of light, that is, 0.1 μm to 1 μm. Thereby, the color tone of the white zirconia sintered body of the present invention exhibits a clearer white.

本発明の白色ジルコニア焼結体に含まれるシリカの結晶粒子の形状は、特に限定されず、不定形状であってもよい。結晶粒子形状が不定形状であることで、より光を散乱しやすくなる。さらに、シリカの結晶粒子は、互いに異なる形状であることが好ましい。すなわち、本発明の白色ジルコニア焼結体が含むシリカの結晶粒子の形状は、球状、多面体状、及び不定形状のうちの少なくとも2種の形状であることが好ましい。シリカの結晶粒子の形状が不均一になるほど、本発明の白色ジルコニア焼結体の光透過が抑制されやすくなる。   The shape of the silica crystal particles contained in the white zirconia sintered body of the present invention is not particularly limited, and may be an indefinite shape. When the crystal particle shape is indefinite, light is more easily scattered. Further, the silica crystal particles preferably have different shapes. That is, the shape of the silica crystal particles included in the white zirconia sintered body of the present invention is preferably at least two of a spherical shape, a polyhedral shape, and an indefinite shape. The non-uniform shape of the silica crystal particles tends to suppress the light transmission of the white zirconia sintered body of the present invention.

本発明の白色ジルコニア焼結体は、ジルコニア焼結体がイットリアを含むジルコニアからなること、すなわち、白色ジルコニア焼結体中のジルコニアがイットリア含有ジルコニアであることが好ましい。イットリアを安定化剤として含むことで、本発明の白色ジルコニア焼結体は、外装部材として十分高い強度を有する。   In the white zirconia sintered body of the present invention, the zirconia sintered body is preferably made of zirconia containing yttria, that is, the zirconia in the white zirconia sintered body is preferably yttria-containing zirconia. By including yttria as a stabilizer, the white zirconia sintered body of the present invention has sufficiently high strength as an exterior member.

本発明の白色ジルコニア焼結体中のジルコニアは、イットリア以外の安定化剤を含んでいてもよい。イットリア以外の安定化剤としては、カルシア、マグネシア、及びセリアからなる群から選ばれる少なくとも1種が例示できる。中でも、強度、工業的な観点からは、本発明の白色ジルコニア焼結体中のジルコニア焼結体は、イットリア含有ジルコニア焼結体、すなわち、ジルコニアがイットリア含有ジルコニアであることが好ましい。   The zirconia in the white zirconia sintered body of the present invention may contain a stabilizer other than yttria. Examples of the stabilizer other than yttria include at least one selected from the group consisting of calcia, magnesia, and ceria. Among these, from the viewpoint of strength and industrial, the zirconia sintered body in the white zirconia sintered body of the present invention is preferably an yttria-containing zirconia sintered body, that is, the zirconia is yttria-containing zirconia.

本発明の白色ジルコニア焼結体に含まれるジルコニアのイットリア濃度(イットリア含有量ともいう)は、ジルコニアに対して2〜4mol%であること、すなわち、白色ジルコニア焼結体中のジルコニアのイットリア濃度が2〜4mol%であることが好ましい。これにより、本発明の白色ジルコニア焼結体は、優れた強度を有する。イットリア濃度は2.5〜3.5mol%、さらには2.8〜3.2mol%、また更には3mol%が好ましい。   The yttria concentration (also referred to as yttria content) of zirconia contained in the white zirconia sintered body of the present invention is 2 to 4 mol% with respect to zirconia, that is, the yttria concentration of zirconia in the white zirconia sintered body is It is preferable that it is 2-4 mol%. Thereby, the white zirconia sintered body of the present invention has excellent strength. The yttria concentration is preferably 2.5 to 3.5 mol%, more preferably 2.8 to 3.2 mol%, and even more preferably 3 mol%.

本発明の白色ジルコニア焼結体は、相対密度が97%以上である。相対密度が97%以上であることで、本発明の白色ジルコニア焼結体は、外装部材として十分な強度を有する。一方、相対密度が97%未満であると、焼結体の強度が十分でなくなる傾向となる。そのため、本発明の白色ジルコニア焼結体の相対密度は、好ましくは98%以上、更に好ましくは99%以上である。これにより、例えば、本発明の白色ジルコニア焼結体の3点曲げ強度が500MPa以上、好ましくは900MPa以上、さらに好ましくは1200MPa以上となる。   The white zirconia sintered body of the present invention has a relative density of 97% or more. When the relative density is 97% or more, the white zirconia sintered body of the present invention has sufficient strength as an exterior member. On the other hand, if the relative density is less than 97%, the strength of the sintered body tends to be insufficient. Therefore, the relative density of the white zirconia sintered body of the present invention is preferably 98% or more, more preferably 99% or more. Thereby, for example, the three-point bending strength of the white zirconia sintered body of the present invention is 500 MPa or more, preferably 900 MPa or more, and more preferably 1200 MPa or more.

本発明の白色ジルコニア焼結体は、上記の様な高い相対密度を有しながら、従来のジルコニア焼結体やジルコニア質焼結体が有する光透過性を有さない。そのため、本発明の白色ジルコニア焼結体は、焼結体の厚みを1mmとし、D65を光源として測定したときの全光線透過率(以下、「D65光線の全光線透過率(1mm厚さ)」、「全光線透過率(1mm厚さ)」、又は単に「全光線透過率」ともいう。)が2%以下である。全光線透過率が2%以下であれば、色調変化は少ない。全光線透過率が低くなるほど、焼結体厚みに依存した色調変化のない色調、すなわち、安定した色調となる。より安定した色調となるため、全光線透過率は1.5%以下、更には1%以下、また更には0.5%以下、また更には0.1%以下であることが好ましい。全光線透過率が0%以上、更には0%超、また更には0.005%以上であれば、色調変化がほとんど生じない。従って、本発明の白色ジルコニア焼結体は、全光線透過率が0%以上2%以下、更には0%超2%以下、また更には0.005%以上2%以下、また更には0.005%以上1.5%以下、また更には0.005%以上1%以下、また更には0.005%以上0.5%以下、また更には0.005%以上0.1%以下が好ましい。   The white zirconia sintered body of the present invention does not have the light transmittance of the conventional zirconia sintered body and zirconia sintered body while having the high relative density as described above. Therefore, the white zirconia sintered body of the present invention has a total light transmittance (hereinafter referred to as “total light transmittance of D65 light (1 mm thickness)” when the thickness of the sintered body is 1 mm and D65 is used as a light source. , “Total light transmittance (1 mm thickness)” or simply “total light transmittance”) is 2% or less. If the total light transmittance is 2% or less, the change in color tone is small. As the total light transmittance decreases, the color tone does not change depending on the thickness of the sintered body, that is, the color tone becomes stable. In order to obtain a more stable color tone, the total light transmittance is preferably 1.5% or less, more preferably 1% or less, still more preferably 0.5% or less, and even more preferably 0.1% or less. If the total light transmittance is 0% or more, further more than 0%, or even 0.005% or more, the color tone hardly changes. Therefore, the white zirconia sintered body of the present invention has a total light transmittance of 0% or more and 2% or less, more than 0% and 2% or less, further 0.005% or more and 2% or less, and further 0.000. 005% to 1.5%, further 0.005% to 1%, further 0.005% to 0.5%, and further 0.005% to 0.1% are preferable. .

本発明の白色ジルコニア焼結体の色調(L*、a*及びb*)は、L*=90〜96、a*=−1〜+1及びb*=−1〜+2であることが好ましい。ここで、L*は明度指数、a*及びb*は、クロマティクネス指数である。L*,a*及びb*がこの範囲を満たす色調であることで、本発明の白色ジルコニア焼結体は、着色のない鮮やかな白色を呈する。より透明感を伴わない白色を呈するため、L*=90〜96、a*=−0.4〜0及びb*=0.3〜1.5であること、さらにはL*=91.21〜95.53、a*=−0.37〜−0.16及びb*=0.29〜1.42であることが好ましい。   The color tone (L *, a * and b *) of the white zirconia sintered body of the present invention is preferably L * = 90 to 96, a * = − 1 to +1 and b * = − 1 to +2. Here, L * is a lightness index, and a * and b * are chromaticness indices. When L *, a *, and b * are in a color tone satisfying this range, the white zirconia sintered body of the present invention exhibits a bright white color. L * = 90 to 96, a * = − 0.4 to 0, and b * = 0.3 to 1.5, and further L * = 91.21 in order to exhibit a white color without more transparency. -95.53, a * =-0.37 to -0.16 and b * = 0.29 to 1.42.

次に、本発明のジルコニア焼結体の製造方法について説明する。   Next, the manufacturing method of the zirconia sintered compact of this invention is demonstrated.

本発明のジルコニア焼結体の製造方法は、ジルコニア粉末と平均粒径1μm以下のシリカ粉末を混合して混合粉末を得る混合工程、該混合粉末を成形して成形体を得る成形工程、及び該成形体を焼結させる成形工程、を有することを特徴とする。   The method for producing a zirconia sintered body of the present invention includes a mixing step of mixing a zirconia powder and a silica powder having an average particle size of 1 μm or less to obtain a mixed powder, a forming step of forming the mixed powder to obtain a formed body, and the A molding step of sintering the molded body.

本発明の製造方法で使用するジルコニア粉末は、イットリアを所定量含有していれば特に制限はない。ジルコニア粉末が含有するイットリア量としては、2.5〜3.5mol%、さらには2.8〜3.2mol%、また更には3mol%であることが好ましい。   The zirconia powder used in the production method of the present invention is not particularly limited as long as it contains a predetermined amount of yttria. The amount of yttria contained in the zirconia powder is preferably 2.5 to 3.5 mol%, more preferably 2.8 to 3.2 mol%, and even more preferably 3 mol%.

工業的な観点からは、ジルコニア粉末は上記の量のイットリアを含有した、イットリア固溶ジルコニア粉末であることが好ましい。このようなジルコニア粉末として、TZ−3YS(東ソー社製)が例示できる。   From an industrial viewpoint, the zirconia powder is preferably a yttria solid solution zirconia powder containing the above amount of yttria. An example of such zirconia powder is TZ-3YS (manufactured by Tosoh Corporation).

本発明の製造方法で使用するシリカ粉末は、平均粒径が1μm以下であれば、任意のシリカ粉末を使用することができる。シリカ粉末としては、クリストバライト、トリディマイト、石英、スティショバイト、コーサイト、及びアモルファスの群から選ばれる少なくとも1種のシリカ粉末が好ましく、更にはクリストバライト、石英及びアモルファスの群から選ばれる少なくとも1種のシリカ粉末が好ましく、アモルファスのシリカがより好ましいい。工業的に利用できるシリカ粉末としては、1−FX(龍森社製)が例示できる。   As the silica powder used in the production method of the present invention, any silica powder can be used as long as the average particle diameter is 1 μm or less. The silica powder is preferably at least one silica powder selected from the group of cristobalite, tridymite, quartz, stishovite, cosite, and amorphous, and more preferably at least one selected from the group of cristobalite, quartz, and amorphous. Silica powder is preferred, and amorphous silica is more preferred. Examples of the silica powder that can be used industrially include 1-FX (manufactured by Tatsumori).

また、平均粒径が1μmを超える大きいシリカ粉末であっても、ボールミルや、ビーズミル、ジェットミル等の任意の粉砕方法によりこれを粉砕し、平均粒径を1μm以下にしたシリカ粉末も利用できる。なお、本発明において、シリカ粉末の平均粒径は、体積分布測定における中央値(D50)として測定される値である。   Moreover, even if it is a large silica powder whose average particle diameter exceeds 1 micrometer, the silica powder which grind | pulverized this by arbitrary grinding | pulverization methods, such as a ball mill, a bead mill, and a jet mill, and made the average particle diameter 1 micrometer or less can also be utilized. In the present invention, the average particle diameter of the silica powder is a value measured as a median value (D50) in volume distribution measurement.

混合工程ではジルコニア粉末及びシリカ粉末を混合し混合粉末を得る。なお、混合粉末には、ジルコニア及びシリカ以外の他の成分の粉末を混合することもできる。他の成分としては、ジルコンなどが挙げられる。   In the mixing step, zirconia powder and silica powder are mixed to obtain a mixed powder. In addition, powder of components other than zirconia and silica can also be mixed with mixed powder. Examples of other components include zircon.

これらの粉末を混合する場合は、両者が均一に分散すれば特に方法に制限はない。より均一に混合できるため、混合方法は、例えば、湿式ボールミル及び湿式攪拌ミルの少なくともいずれかであるが、湿式混合であることが好ましい。   When these powders are mixed, the method is not particularly limited as long as both are uniformly dispersed. Since mixing can be performed more uniformly, the mixing method is, for example, at least one of a wet ball mill and a wet stirring mill, but is preferably wet mixing.

成形工程において、混合粉末から成形体を得る。任意の形状の成形体が得られれば成形方法は一般的な方法を使用することができる。成形方法は、例えば、プレス成形、射出成形、シート成型、押し出し成形及び鋳込み成形からなる群のいずれか1種を挙げることができる。簡便な成形方法としては、プレス成形を挙げることができる。   In the molding step, a molded body is obtained from the mixed powder. If a molded body having an arbitrary shape is obtained, a general method can be used as the molding method. Examples of the molding method include any one of the group consisting of press molding, injection molding, sheet molding, extrusion molding, and cast molding. An example of a simple molding method is press molding.

焼成工程においては、成形体を焼成し、本発明の白色ジルコニア焼結体を得る。焼成工程は、上述のジルコニア粉末とシリカ粉末の混合粉末を成形して得られた成形体を、1400℃以上で焼成することが好ましく、1400〜1600℃で焼結することがより好ましい。1400℃以上で焼結することで、シリカの結晶粒子中にクリストバライト型シリカが析出する。これにより、白色ジルコニア焼結体は、光透過性が抑制され、焼結体厚みに依存した色調変化のない安定した白色を呈する焼結体となる。   In the firing step, the molded body is fired to obtain the white zirconia sintered body of the present invention. In the firing step, a molded body obtained by molding the above-mentioned mixed powder of zirconia powder and silica powder is preferably fired at 1400 ° C. or higher, and more preferably sintered at 1400-1600 ° C. By sintering at 1400 ° C. or higher, cristobalite-type silica is precipitated in the silica crystal particles. As a result, the white zirconia sintered body is a sintered body that exhibits a stable white color with suppressed light transmission and no change in color tone depending on the thickness of the sintered body.

焼成工程は無加圧下、1400℃以上で焼結することが好ましい。シリカ粉末としては、アモルファス、クリストバライト、トリディマイト、スティショバイト、コーサイト、及び石英の群から選ばれる少なくとも2種以上などの様々な多型の相を含むシリカ粉末を用いた場合であっても、1400℃以上、さらに好ましくは1450℃以上、より好ましくは1500℃以上で焼結することで、得られる白色ジルコニア焼結体中のシリカにクリストバライト相を析出させることができる。   The firing step is preferably performed at 1400 ° C. or higher under no pressure. As the silica powder, even when using silica powder containing various polymorphic phases such as at least two or more selected from the group of amorphous, cristobalite, tridymite, stishovite, cosite, and quartz, By sintering at 1400 ° C. or higher, more preferably 1450 ° C. or higher, more preferably 1500 ° C. or higher, the cristobalite phase can be precipitated on the silica in the obtained white zirconia sintered body.

焼成工程における焼成雰囲気は、酸化雰囲気、還元雰囲気、及び不活性雰囲気のいずれの雰囲気であってもよい。酸化雰囲気として、大気雰囲気下で焼成することができ、簡便であり、好ましい。   The firing atmosphere in the firing step may be any of an oxidizing atmosphere, a reducing atmosphere, and an inert atmosphere. As the oxidizing atmosphere, baking can be performed in an air atmosphere, which is convenient and preferable.

無加圧下での焼結は、1400℃以上で、大気中、1〜10時間で焼結することが挙げられる。なお、「無加圧下」とは、加圧状態としない圧力であり、より好ましくは大気圧である。より好ましい無加圧下の焼成としては、大気中、大気圧下で焼成することが挙げられる。   Sintering under no pressure includes sintering at 1400 ° C. or higher in the air for 1 to 10 hours. Note that “under no pressure” is a pressure that does not result in a pressurized state, more preferably atmospheric pressure. More preferable non-pressurized firing includes firing in the air at atmospheric pressure.

好ましい焼成工程としては、成形体を無加圧下で焼結した後、熱間静水圧プレス(以下、「HIP」という。)処理をすることが挙げられる。   As a preferable firing step, a sintered body is sintered under no pressure, and then subjected to a hot isostatic pressing (hereinafter referred to as “HIP”) treatment.

好ましい焼成工程では、無加圧下で焼結(以下、「一次焼結」ともいう。)して得られた焼結体(以下、「一次焼結体」ともいう。)をHIP処理してHIP処理体を得る。HIP処理により、シリカが高温かつ高圧で処理される。これにより、シリカ相に更なる不均一性が導入され、本発明の白色ジルコニア焼結体の光透過性を更に低下させることができる。   In a preferred firing step, a sintered body (hereinafter also referred to as “primary sintered body”) obtained by sintering without pressure (hereinafter also referred to as “primary sintered body”) is subjected to HIP treatment and HIP. Get a treatment. By HIP treatment, silica is treated at high temperature and high pressure. Thereby, the further nonuniformity is introduce | transduced into a silica phase and the light transmittance of the white zirconia sintered compact of this invention can further be reduced.

一次焼結の温度が1400℃以上であれば、HIP処理の温度(以下、「HIP温度」ともいう。)は1400℃以下であってもよく、例えば、1250℃以上、更には1300℃以上が好ましい。また、HIP温度は1400℃以上であってもよく、不均一性の導入及び強度の観点からは、HIP温度は好ましくは1400〜1600℃、更に好ましくは1450〜1550℃である。   If the primary sintering temperature is 1400 ° C. or higher, the HIP treatment temperature (hereinafter also referred to as “HIP temperature”) may be 1400 ° C. or lower, for example, 1250 ° C. or higher, further 1300 ° C. or higher. preferable. Moreover, 1400 degreeC or more may be sufficient as HIP temperature, and it is 1400-1600 degreeC from a viewpoint of introduction | transduction of nonuniformity and intensity | strength, More preferably, it is 1450-1550 degreeC.

HIP処理の圧力(以下、「HIP圧力」ともいう。)は、50MPa以上であることが好ましく、100〜200MPaであることがより好ましい。HIP圧力を50MPa以上とすることで、シリカの結晶粒子中にクラック等がより発生しやすくなるため、シリカ相への不均一性がより導入されやすくなる。   The pressure of the HIP treatment (hereinafter also referred to as “HIP pressure”) is preferably 50 MPa or more, and more preferably 100 to 200 MPa. By setting the HIP pressure to 50 MPa or more, cracks and the like are more likely to occur in the silica crystal particles, so that non-uniformity in the silica phase is more easily introduced.

HIP処理の時間(以下、「HIP時間」ともいう。)は、少なくとも1時間であることが好ましい。HIP処理が少なくとも1時間であれば、HIP処理中においても不均一性を導入することができる。HIP処理は必要以上にする必要はないため、HIP時間は10時間以下、更には5時間以下であることが好ましい。   The HIP treatment time (hereinafter also referred to as “HIP time”) is preferably at least 1 hour. If the HIP process is at least 1 hour, non-uniformity can be introduced even during the HIP process. Since the HIP treatment does not need to be more than necessary, the HIP time is preferably 10 hours or less, more preferably 5 hours or less.

HIP処理の圧力媒体(以下、単に「圧力媒体」という。)は、非酸化雰囲気であればよい。圧力媒体は、不活性ガスであればよく、窒素ガス及びアルゴンガスの少なくともいずれかが例示できる。圧力媒体はアルゴンガスであることが好ましい。   The pressure medium for HIP processing (hereinafter simply referred to as “pressure medium”) may be a non-oxidizing atmosphere. The pressure medium may be an inert gas, and can be exemplified by at least one of nitrogen gas and argon gas. The pressure medium is preferably argon gas.

HIP処理における容器は、アルミナ容器、その他、非還元性の容器を用いることが好ましい。これによりHIP処理における被処理試料である焼結体の還元が抑制される。HIP処理においては、一般に、カーボン容器に被処理試料が配置される。カーボン容器等の還元性容器を用いると、カーボンによる還元によって被処理試料が着色しやすくなる。更には、シリカがカーボンと反応して揮発する場合がある。半密閉の非還元性の容器を用いることで、それらの問題を回避することができる。また、半密閉の非還元性容器を用いることで、HIP処理後の再焼成(焼き戻し)処理が不要となる。ここで、半密閉の非還元性容器とは、アルミナ等の非還元性の材質からなる容器が、密閉されていない状態を指す。より具体的な半密閉の還元容器としては、非還元性材質でできたルツボ形状の容器を密閉することなく、非還元性材質の蓋がされている容器を指す。   As a container in the HIP process, an alumina container or other non-reducing container is preferably used. Thereby, the reduction | restoration of the sintered compact which is a to-be-processed sample in HIP processing is suppressed. In the HIP process, generally, a sample to be processed is placed in a carbon container. When a reducing container such as a carbon container is used, the sample to be treated is likely to be colored by the reduction with carbon. Furthermore, silica may react with carbon and volatilize. These problems can be avoided by using a semi-sealed non-reducing container. Further, by using a semi-sealed non-reducing container, re-firing (tempering) treatment after the HIP treatment becomes unnecessary. Here, the semi-sealed non-reducing container refers to a state where a container made of a non-reducing material such as alumina is not sealed. As a more specific semi-sealed reducing container, a crucible-shaped container made of a non-reducing material is sealed, and the container is covered with a non-reducing material.

より好ましい焼成工程としては、無加圧下、1400℃以上で焼結して一次焼結体を得た後、非還元性容器を用いて該一次焼結体をHIP処理する焼結方法において、圧力(HIP圧力)が好ましくは50MPa以上、より好ましくは、50〜150MPa、温度(HIP温度)が好ましくは1400〜1600℃、より好ましくは、1450〜1550℃でHIP処理をすること、を挙げることができる。これにより、特に全光線透過率が低く、なおかつ、高い強度を有する白色ジルコニア焼結体を得ることができる。   As a more preferable firing step, after sintering at 1400 ° C. or higher under no pressure to obtain a primary sintered body, a sintering method in which the primary sintered body is subjected to HIP treatment using a non-reducing container, pressure is applied. (HIP pressure) is preferably 50 MPa or more, more preferably 50 to 150 MPa, temperature (HIP temperature) is preferably 1400 to 1600 ° C., and more preferably 1450 to 1550 ° C. it can. Thereby, a white zirconia sintered body having a particularly low total light transmittance and a high strength can be obtained.

本発明の白色ジルコニア焼結体は、光透過性を有さない。そのため、焼結体厚みが薄くても、焼結体の下地として使用される部材の色調の影響を受けず、安定した色調を供することが出来る。これにより、本発明の白色ジルコニア焼結体は、携帯型電子機器等の外装部材として好適に使用することができる。さらに、本発明の白色ジルコニア焼結体は、時計や宝飾品などの装飾品、及び歯科材料としても好適に使用することができる。   The white zirconia sintered body of the present invention does not have optical transparency. Therefore, even if the sintered body is thin, it is possible to provide a stable color tone without being affected by the color tone of the member used as the base of the sintered body. Thereby, the white zirconia sintered compact of this invention can be used conveniently as exterior members, such as a portable electronic device. Furthermore, the white zirconia sintered body of the present invention can be suitably used as a decorative product such as a watch or a jewelry, and a dental material.

本発明の白色ジルコニア焼結体は、薄い部材としても光を透過せず、安定した色調を有し、意匠性に優れ、高い強度を有するなど、携帯外装部材などの薄い部材、装飾品、歯科材料として優れている。   The white zirconia sintered body of the present invention does not transmit light even as a thin member, has a stable color tone, has excellent design properties, and has high strength, such as a thin member such as a portable exterior member, a decorative article, and a dental It is excellent as a material.

実施例3及び実施例9の白色ジルコニア焼結体のXRDパターン。The XRD pattern of the white zirconia sintered compact of Example 3 and Example 9. FIG. 実施例14、16、及び18の白色ジルコニア焼結体のXRDパターン。The XRD pattern of the white zirconia sintered compact of Examples 14, 16, and 18. 実施例1の白色ジルコニア焼結体のSEM像。3 is an SEM image of the white zirconia sintered body of Example 1. FIG. 実施例18の白色ジルコニア焼結体のSEM像。20 is an SEM image of a white zirconia sintered body of Example 18. FIG. 実施例1の白色ジルコニア焼結体の熱エッチング品のSEM像。2 is an SEM image of a thermally etched product of the white zirconia sintered body of Example 1. FIG. 実施例1の白色ジルコニア焼結体のTEM像。4 is a TEM image of the white zirconia sintered body of Example 1. FIG.

以下、実施例及び比較例により本発明を具体的に説明する。しかしながら、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

(クリストバライト相分率の定量)
焼結体試料のシリカ中のクリストバライトの含有量は、XRD測定によりクリストバライト相分率を求めることによって定量した。ジルコニアの立方晶(Ic(111))及び正方晶(IT(111))、並びにクリストバライト(Is(101))のXRDピーク面積を用いて、以下の式からクリストバライト相分率を求めた。なお、XRD測定は、焼結体試料を鏡面研磨した後の鏡面研磨面について行った。
(Quantitative determination of cristobalite phase fraction)
The content of cristobalite in the silica of the sintered body sample was quantified by determining the cristobalite phase fraction by XRD measurement. Using the XRD peak areas of zirconia cubic (I c (111) ) and tetragonal (IT ( 111) ), and cristobalite (I s (101 )), the cristobalite phase fraction was determined from the following equation. . In addition, XRD measurement was performed about the mirror polishing surface after carrying out mirror polishing of the sintered compact sample.

クリストバライト含有量(wt%)
=クリストバライト相分率(wt%)
=Is(101)/(Is(101)+Ic(111)+IT(111))×100
Cristobalite content (wt%)
= Cristobalite phase fraction (wt%)
= I s (101) / (I s (101) + I c (111) + IT (111) ) × 100

(相対密度)
ジルコニア焼結体の密度(実測密度)は、アルキメデス法による水中重量の測定から求めた。ジルコニア(東ソー社製、TZ−3YS)、シリカ、及びアルミナの真密度は、それぞれ6.0956g/cm、2.3g/cm、及び3.99g/cmとして、真密度に対する実測密度の値として相対密度を計算した。なお、上記のシリカの真密度は、クリストバライト型シリカの理論密度を用いた。
(Relative density)
The density (measured density) of the zirconia sintered body was determined by measuring the weight in water by the Archimedes method. Zirconia (manufactured by Tosoh Corporation, TZ-3YS), silica, and the true density of alumina, as respectively 6.0956g / cm 3, 2.3g / cm 3, and 3.99 g / cm 3, the measured density to the true density The relative density was calculated as a value. In addition, the theoretical density of cristobalite type | mold silica was used for the true density of said silica.

(全光線透過率)
実施例又は比較例のジルコニア焼結体を、試料厚み1mmに加工した後、表面粗さRa=0.02μm以下に両面鏡面研磨したものを測定試料として用いた。なお、表面粗さRaは、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し平均した値であり、いわゆる算術平均高さである。
(Total light transmittance)
After processing the zirconia sintered body of an Example or a comparative example to sample thickness 1mm, what carried out double-sided mirror surface polishing to surface roughness Ra = 0.02 micrometer or less was used as a measurement sample. The surface roughness Ra is a value obtained by extracting a reference length from the roughness curve in the direction of the average line, and summing and averaging the absolute values of deviations from the average line of the extracted portion to the measurement curve. Arithmetic mean height.

ヘーズメーター(装置名:NDH5000、日本電色社製)を用いて、JIS K7105「プラスチックの光学的特性試験方法」に準じた方法によって、測定試料の全光線透過率及を測定した。光源はD65光線とした。   Using a haze meter (device name: NDH5000, manufactured by Nippon Denshoku Co., Ltd.), the total light transmittance of the measurement sample was measured by a method according to JIS K7105 “Testing method for optical properties of plastic”. The light source was D65 light.

(走査型電子顕微鏡)
ジルコニア焼結体試料中のシリカの平均結晶粒径を調べるために、走査型電子顕微鏡(以下、「SEM」とする。)による観測を行った。測定試料は平面研削した後、ダイヤモンド砥粒(平均粒径:9μm、6μm及び1μm)を用いて鏡面研磨した。鏡面研磨後の測定試料に金蒸着して、これを観測した。ジルコニア焼結体試料を熱エッチングした試料についても、同様な方法でSEM観察を行い、ジルコニア結晶粒子の平均結晶粒径を求めた。SEMは、日本電子社製の装置(JEM−2000FX)を用いた。
(Scanning electron microscope)
In order to examine the average crystal grain size of silica in the zirconia sintered body sample, observation was performed with a scanning electron microscope (hereinafter referred to as “SEM”). The measurement sample was subjected to surface grinding, and then mirror polished using diamond abrasive grains (average particle diameters: 9 μm, 6 μm, and 1 μm). Gold was deposited on the measurement sample after mirror polishing, and this was observed. A sample obtained by thermally etching the zirconia sintered body sample was also subjected to SEM observation in the same manner, and the average crystal grain size of the zirconia crystal particles was obtained. For SEM, an apparatus (JEM-2000FX) manufactured by JEOL Ltd. was used.

(透過型電子顕微鏡)
ジルコニア焼結体中のシリカの不均一性を調べるために、透過型電子顕微鏡(以下、「TEM」とする。)による観測を行った。試料をFIB(集束イオンビーム、Focused Ion Beam)により薄片化加工した後、アルゴンイオンミリング仕上げ、カーボン蒸着をして測定した。TEMは、日本電子社製の装置(JEM−2000FX)を用いた。測定条件は、加速電圧200kVとしてTEM観測を行った。
(Transmission electron microscope)
In order to investigate the non-uniformity of silica in the zirconia sintered body, observation with a transmission electron microscope (hereinafter referred to as “TEM”) was performed. The sample was thinned by FIB (Focused Ion Beam, Focused Ion Beam), then measured by argon ion milling and carbon deposition. For TEM, an apparatus (JEM-2000FX) manufactured by JEOL Ltd. was used. The measurement conditions were TEM observation with an acceleration voltage of 200 kV.

(明度及び色相の測定)
試料厚みを1mmに加工し、表面粗さRa=0.02μm以下に両面鏡面研磨した焼結体を測定試料として用いた。
(Measurement of brightness and hue)
A sintered body that was processed to a thickness of 1 mm and mirror-polished to a surface roughness Ra = 0.02 μm or less was used as a measurement sample.

JIS K7105「プラスチックの光学的特性試験方法」の5.3項及び5.4項に準じた方法によって、精密型分光光度色彩計(装置名:TC−1500SX、東京電色社製)を用いて、明度及び色相の測定を行った。   Using a precision spectrophotometric colorimeter (device name: TC-1500SX, manufactured by Tokyo Denshoku Co., Ltd.) according to the method according to Sections 5.3 and 5.4 of JIS K7105 “Plastic Optical Properties Test Method”. The brightness and hue were measured.

測定は、裏面に黒色板を置いた測定試料にD65光線を当て、測定試料を透過した光を当該黒色板で反射させ、再度測定試料を透過した光を測定して、明度指数L*、クロマティクネス指数a*及びb*を求めた。なお、測定にはD65光線を使用し、視野角を2度とした。   In the measurement, the D65 light beam is applied to a measurement sample with a black plate on the back surface, the light transmitted through the measurement sample is reflected by the black plate, the light transmitted through the measurement sample is measured again, and the lightness index L *, chromaty The Knes index a * and b * were determined. In addition, D65 light ray was used for the measurement and the viewing angle was set to 2 degrees.

(曲げ強度)
曲げ強度は、JISR1601「ファインセラミックスの曲げ強さ試験方法」に基づき3点曲げ試験により測定した。1つの試料について測定試料を10本とし、10本の3点曲げ強度の平均値を測定試料の曲げ強度とした。
(Bending strength)
The bending strength was measured by a three-point bending test based on JIS R1601 “Fine ceramic bending strength test method”. Ten samples were measured for one sample, and the average value of the three three-point bending strengths was taken as the bending strength of the measuring sample.

(水熱劣化試験)
ステンレス製の耐圧容器に純水と測定試料(ジルコニア焼結体)を入れ、これを140℃に保持した。保持時間10時間、18時間、36時間、及び72時間後に測定試料を当該容器から取り出し、XRD測定を行ない、測定試料の単斜晶の体積分率(以下、「単斜晶率」ともいう。)を定量した。単斜晶率は、式(1)を用いて算出した。
X=(Im(111)+Im(11−1))/(Im(111)+Im(11−1)
+It(111)+Ic(111)) ・・・(1)
(Hydrothermal degradation test)
Pure water and a measurement sample (zirconia sintered body) were placed in a stainless steel pressure-resistant container, and this was maintained at 140 ° C. After 10 hours, 18 hours, 36 hours, and 72 hours of holding time, the measurement sample is taken out from the container, XRD measurement is performed, and the monoclinic volume fraction of the measurement sample (hereinafter also referred to as “monoclinic rate”). ) Was quantified. The monoclinic rate was calculated using the formula (1).
X = (Im (111) + Im (11-1)) / (Im (111) + Im (11-1)
+ It (111) + Ic (111)) (1)

ここで、Xは単斜晶率であり、Im、It及びIcは、それぞれジルコニアの単斜晶、正方晶及び立方晶の粉末X線回折ピークである。また、式(1)のIm、It及びIcのカッコ内は反射指数を示す。   Here, X is a monoclinic crystal ratio, and Im, It, and Ic are monoclinic, tetragonal, and cubic powder X-ray diffraction peaks of zirconia, respectively. Further, the parentheses in Im, It and Ic in the formula (1) indicate the reflection index.

実施例1乃至3
(原料粉末の調製)
原料粉末として、ジルコニア粉末及びシリカ粉末の混合粉末を調製した。まず、3mol%イットリア安定化ジルコニア粉末に対して、10wt%のシリカ粉末を添加した。3mol%イットリア安定化ジルコニア粉末には、加水分解法で製造されたもの(商品名;TZ−3YS,東ソー社製、平均粒径0.3μm、表面積7m/g)を使用した。また、シリカ粉末には、溶融法で合成された高純度シリカ粉末(アモルファスシリカ、商品名;1−FX、龍森社製、平均粒径0.38μm、表面積30m/g、純度99%以上)を使用した。
Examples 1 to 3
(Preparation of raw material powder)
A mixed powder of zirconia powder and silica powder was prepared as a raw material powder. First, 10 wt% silica powder was added to 3 mol% yttria stabilized zirconia powder. As the 3 mol% yttria-stabilized zirconia powder, one produced by a hydrolysis method (trade name: TZ-3YS, manufactured by Tosoh Corporation, average particle size 0.3 μm, surface area 7 m 2 / g) was used. In addition, the silica powder includes a high-purity silica powder synthesized by a melting method (amorphous silica, trade name: 1-FX, manufactured by Tatsumori, average particle size 0.38 μm, surface area 30 m 2 / g, purity 99% or more. )It was used.

これらの粉末は、エタノール溶媒中、ジルコニア製の直径10mmボールを使用して、72時間ボールミルで混合し、これを乾燥して原料粉末とした。   These powders were mixed in a ball mill for 72 hours using 10 mm diameter balls made of zirconia in an ethanol solvent, and dried to obtain raw material powders.

(一次焼結体の作製)
原料粉末を金型プレスによって圧力50MPaで成形した後、冷間静水圧プレス(以下、「CIP」という。)装置を用いて、圧力200MPaでさらにCIP成形し、直径20mm、厚さ2mmの円柱状成形体を得た。
(Preparation of primary sintered body)
The raw material powder is molded at a pressure of 50 MPa by a die press and then further CIP-molded at a pressure of 200 MPa using a cold isostatic press (hereinafter referred to as “CIP”) apparatus, and a cylindrical shape having a diameter of 20 mm and a thickness of 2 mm. A molded body was obtained.

得られた円柱状成形体をアルミナ容器の中に配置して焼成(一次焼結)することにより、ジルコニア焼結体(一次焼結体)を得た。   The obtained cylindrical molded body was placed in an alumina container and fired (primary sintering) to obtain a zirconia sintered body (primary sintered body).

一次焼結の焼結条件は、大気中、昇温速度100℃/時間、焼結温度1400℃(実施例1及び2)及び1500℃(実施例3)のいずれかの温度とした。焼結時間はいずれも2時間とした。   The sintering conditions for the primary sintering were, in air, a temperature increase rate of 100 ° C./hour, and a sintering temperature of 1400 ° C. (Examples 1 and 2) and 1500 ° C. (Example 3). The sintering time was 2 hours.

(HIP処理体の作製)
大気中で焼結して得られたジルコニア焼結体(一次焼結体)をHIP処理してHIP処理体を得た。得られた処理体は、本実施例の白色ジルコニア焼結体とした。
(Preparation of HIP processing body)
A zirconia sintered body (primary sintered body) obtained by sintering in air was subjected to HIP treatment to obtain a HIP-treated body. The obtained processed body was the white zirconia sintered body of this example.

HIP処理条件は、温度1450℃(実施例3)及び1500℃(実施例1及び2)とした。HIP圧力は150MPaとし、HIP処理の保持時間は1時間とした。なお、圧力媒体には純度99.9%のアルゴンガスを用い、試料はアルミナ製の半密閉容器を用いて処理した。   The HIP treatment conditions were a temperature of 1450 ° C. (Example 3) and 1500 ° C. (Examples 1 and 2). The HIP pressure was 150 MPa, and the holding time for the HIP treatment was 1 hour. Note that argon gas having a purity of 99.9% was used as the pressure medium, and the sample was processed using a semi-sealed container made of alumina.

得られたHIP処理体(本実施例の白色ジルコニア焼結体)は、白色を呈していた。相対密度は、いずれの白色ジルコニア焼結体も99%以上であった。   The obtained HIP-treated body (white zirconia sintered body of this example) was white. The relative density of each white zirconia sintered body was 99% or more.

得られた白色ジルコニア焼結体の全光線透過率を表1に示す。いずれの白色ジルコニア焼結体の全光線透過率も0.5%以下であった。これらの実施例において、極めて透過率の低い白色ジルコニア焼結体が得られた。裏板として黒色板を用いた場合の、色調を併せて表1に示す。   Table 1 shows the total light transmittance of the obtained white zirconia sintered body. The total light transmittance of any white zirconia sintered body was 0.5% or less. In these examples, white zirconia sintered bodies having extremely low transmittance were obtained. Table 1 also shows the color tone when a black plate is used as the back plate.

実施例の白色ジルコニア焼結体は、裏が黒色であっても高い明度L*(90以上)を示すことがわかった。これにより、実施例の白色ジルコニア焼結体は、下地の色が透過していないことが確認できた。   It turned out that the white zirconia sintered compact of an Example shows high brightness L * (90 or more), even if the back is black. This confirmed that the white zirconia sintered body of the example did not transmit the base color.

実施例4
シリカ添加量を20wt%としたこと以外は、実施例1と同様な方法によってHIP処理体を得た。得られた処理体は、本実施例の白色ジルコニア焼結体とした。大気焼結温度は1400℃とし、HIP処理におけるHIP温度は1500℃とした。
Example 4
A HIP-treated body was obtained by the same method as in Example 1 except that the amount of silica added was 20 wt%. The obtained processed body was the white zirconia sintered body of this example. The atmospheric sintering temperature was 1400 ° C., and the HIP temperature in the HIP treatment was 1500 ° C.

得られた白色ジルコニア焼結体の全光線透過率を表1に示す。白色ジルコニア焼結体の相対密度は99%以上であり、なおかつ、全光線透過率は0.01%であった。本実施例において、極めて透過率の低い白色ジルコニア焼結体が得られた。裏板として黒色板を用いた場合の、色調を併せて表1に示す。得られた白色ジルコニア焼結体は裏が黒色であっても高い明度L*(90以上)を示ことがわかった。   Table 1 shows the total light transmittance of the obtained white zirconia sintered body. The relative density of the white zirconia sintered body was 99% or more, and the total light transmittance was 0.01%. In this example, a white zirconia sintered body with extremely low transmittance was obtained. Table 1 also shows the color tone when a black plate is used as the back plate. It was found that the obtained white zirconia sintered body showed high brightness L * (90 or more) even when the back was black.

実施例5乃至7
5wt%シリカを添加したこと、大気焼結温度を1400℃(実施例5)及び1500℃(実施例6及び7)としたこと、並びに、HIP温度を1400℃(実施例5)及び1500℃(実施例6及び7)としたこと以外は、実施例1と同様な条件で白色ジルコニア焼結体を作製した。結果を表1に示す。いずれの実施例においても、相対密度99%以上、全光線透過率2%以下、及び、明度L*が90以上の白色ジルコニア焼結体が得られた。
Examples 5 to 7
5 wt% silica was added, the atmospheric sintering temperature was 1400 ° C. (Example 5) and 1500 ° C. (Examples 6 and 7), and the HIP temperature was 1400 ° C. (Example 5) and 1500 ° C. ( A white zirconia sintered body was produced under the same conditions as in Example 1 except that Examples 6 and 7) were used. The results are shown in Table 1. In any of the examples, a white zirconia sintered body having a relative density of 99% or more, a total light transmittance of 2% or less, and a lightness L * of 90 or more was obtained.

実施例8乃至13
実施例1と同様に10wt%シリカを添加した白色ジルコニア焼結体を作製した。すなわち、大気焼結温度を1500℃(実施例8及び9)又は1400℃(実施例10乃至13)としたこと、及び、HIP温度を1300℃(実施例8、10乃至12)又は1400℃(実施例9及び13)としたこと以外は、実施例1と同様な方法でHIP処理体を得た。得られた処理体は、これらの実施例の白色ジルコニア焼結体とした。得られた結果を、まとめて表1に示す。これらの実施例では、相対密度が99%以上、全光線透過率が2%以下、明度L*が90以上の白色ジルコニア焼結体が得られた。
Examples 8 to 13
A white zirconia sintered body to which 10 wt% silica was added was prepared in the same manner as in Example 1. That is, the atmospheric sintering temperature was set to 1500 ° C. (Examples 8 and 9) or 1400 ° C. (Examples 10 to 13), and the HIP temperature was set to 1300 ° C. (Examples 8 and 10 to 12) or 1400 ° C. A HIP-treated body was obtained in the same manner as in Example 1 except that Example 9 and 13) were used. The obtained processed body was the white zirconia sintered body of these examples. The obtained results are summarized in Table 1. In these examples, a white zirconia sintered body having a relative density of 99% or more, a total light transmittance of 2% or less, and a lightness L * of 90 or more was obtained.

実施例14乃至18
実施例1と同様な方法で10wt%シリカ添加ジルコニア粉末を作製した。当該粉末を成形して成形体を得た。得られた成形体は、1400℃(実施例14及び15)、1450℃(実施例16)、又は1500℃(実施例17及び19)のいずれかの温度で焼結した。焼結は大気中で行い、保持温度は2時間、昇温速度は100℃/hとした。得られた焼結体を、これらの実施例の白色ジルコニア焼結体とした。結果を表1に示す。いずれの実施例においても、相対密度が99%以上、全光線透過率が2%以下、及び明度L*が90以上である白色ジルコニア焼結体が得られた。
Examples 14 to 18
A 10 wt% silica-added zirconia powder was produced in the same manner as in Example 1. The powder was molded to obtain a molded body. The obtained molded body was sintered at a temperature of 1400 ° C. (Examples 14 and 15), 1450 ° C. (Example 16), or 1500 ° C. (Examples 17 and 19). Sintering was performed in the atmosphere, the holding temperature was 2 hours, and the heating rate was 100 ° C./h. The obtained sintered body was used as the white zirconia sintered body of these examples. The results are shown in Table 1. In each example, a white zirconia sintered body having a relative density of 99% or more, a total light transmittance of 2% or less, and a lightness L * of 90 or more was obtained.

実施例19
実施例1と同様な方法で20wt%シリカ添加ジルコニア粉末を作製した。当該粉末を成形して成形体を得た。得られた成形体は、大気中1500℃にて焼結した。焼結の保持温度は2時間、昇温速度は100℃/hとした。得られた焼結体を本実施例の白色ジルコニア焼結体とした。結果を表1に示す。表1に示されるように、本発明の白色ジルコニア焼結体の相対密度は99%以上、全光線透過率は2%以下、及び明度L*は90以上であった。
Example 19
A 20 wt% silica-added zirconia powder was produced in the same manner as in Example 1. The powder was molded to obtain a molded body. The obtained molded body was sintered at 1500 ° C. in the atmosphere. The holding temperature for sintering was 2 hours, and the heating rate was 100 ° C./h. The obtained sintered body was used as the white zirconia sintered body of this example. The results are shown in Table 1. As shown in Table 1, the relative density of the white zirconia sintered body of the present invention was 99% or more, the total light transmittance was 2% or less, and the lightness L * was 90 or more.

Figure 2015231934
Figure 2015231934

実施例20(結晶相の同定)
実施例3,実施例9、実施例14、実施例16、及び実施例18の白色ジルコニア焼結体のXRD測定を行った。結果を図1及び2に示す。いずれの焼結体においても正方晶ジルコニアとクリストバライトに起因するXRDピークが観測された。なお、いずれの焼結体においても、単斜晶ジルコニアに起因するXRDピークは確認されなかった。
Example 20 (Identification of Crystal Phase)
XRD measurement was performed on the white zirconia sintered bodies of Example 3, Example 9, Example 14, Example 16, and Example 18. The results are shown in FIGS. XRD peaks attributed to tetragonal zirconia and cristobalite were observed in all the sintered bodies. In any of the sintered bodies, no XRD peak due to monoclinic zirconia was confirmed.

なお、HIP処理した実施例3及び9の白色ジルコニア焼結体のXRDパターンにおいては、2θ=27°付近に微弱なピークが確認された。これは石英など、クリストバライト型シリカ以外のシリカ、すなわち、シリカの多型に起因すると考えられる。   In addition, in the XRD pattern of the white zirconia sintered bodies of Examples 3 and 9 subjected to the HIP treatment, a weak peak was confirmed in the vicinity of 2θ = 27 °. This is considered to be caused by silica other than cristobalite type silica such as quartz, that is, polymorphism of silica.

実施例21(シリカ結晶粒子の観察)
シリカの分散性を調べるために、実施例1及び実施例18で得られた白色ジルコニア焼結体についてSEM観察を行った。いずれの焼結体も、白色ジルコニア焼結体中に含まれるシリカの結晶粒子の平均結晶粒径は1μm以下であった。また、実施例1及び18のSEM写真を、それぞれ図3及び図4に示す。図3及び図4において、白色部分がジルコニアの結晶粒子及び、黒色部分がシリカの粒子である。これにより、実施例1及び図18の白色ジルコニア焼結体中のシリカの結晶粒子の形状は主に不定形状であり、なおかつ、多面体状又は不定形の形状の粒子であることが確認できた。
Example 21 (Observation of Silica Crystal Particles)
In order to investigate the dispersibility of silica, SEM observation was performed on the white zirconia sintered body obtained in Example 1 and Example 18. In any of the sintered bodies, the average crystal grain size of the silica crystal particles contained in the white zirconia sintered body was 1 μm or less. Moreover, the SEM photograph of Example 1 and 18 is shown in FIG.3 and FIG.4, respectively. 3 and 4, the white portion is zirconia crystal particles and the black portion is silica particles. Accordingly, it was confirmed that the shape of the silica crystal particles in the white zirconia sintered body of Example 1 and FIG. 18 was mainly an irregular shape, and was a polyhedral or irregular shape particle.

実施例22(結晶粒子の平均結晶粒径の測定)
白色ジルコニア焼結体のジルコニア結晶粒子の平均結晶粒径を調べるために、実施例1で得られた白色ジルコニア焼結体を1400℃、1時間の条件で熱エッチングを行ない、熱エッチング後の焼結体のSEM観察を行った。SEM観察図を図5に示す。プラニメトリック法によって求めた当該白色ジルコニア焼結体のジルコニア結晶粒子の平均結晶粒径は、0.5μmであった。
Example 22 (Measurement of average crystal grain size of crystal grains)
In order to investigate the average crystal grain size of the zirconia crystal particles of the white zirconia sintered body, the white zirconia sintered body obtained in Example 1 was subjected to thermal etching at 1400 ° C. for 1 hour, and after the thermal etching, The SEM observation of the joint was performed. An SEM observation diagram is shown in FIG. The average crystal grain size of the zirconia crystal particles of the white zirconia sintered body determined by the planimetric method was 0.5 μm.

実施例23(シリカ分散性の観察)
シリカの不均一性を調べるために、実施例1で得られた白色ジルコニア焼結体についてTEM観察を行った。得られたTEM観察図を図6に示す。HIP処理をした白色ジルコニア焼結体中のシリカの結晶粒子には、異相界面に由来するコントラストの濃淡が見られた。また電子線回折を行った結果、当該シリカの結晶粒子には、α−クリストバライトの他にα−石英に帰属されるピークが観測された。これにより、当該シリカの結晶粒子は、クリストバライト及び石英を含むことが確認できた。
Example 23 (observation of silica dispersibility)
In order to investigate the non-uniformity of the silica, the white zirconia sintered body obtained in Example 1 was observed with a TEM. The obtained TEM observation figure is shown in FIG. In the silica crystal particles in the white zirconia sintered body subjected to the HIP treatment, contrast shades derived from the heterogeneous interface were observed. As a result of electron beam diffraction, a peak attributed to α-quartz was observed in addition to α-cristobalite in the silica crystal particles. This confirmed that the silica crystal particles contained cristobalite and quartz.

実施例24乃至26
シリカ添加量を5wt%(実施例24)、10wt%(実施例25)、及び20wt%(実施例26)としたこと以外は、実施例1と同様にHIP処理体を得た。得られた処理体は、本実施例の白色ジルコニア焼結体とした。大気焼結温度は1400℃とし、HIP温度は1500℃とした。
Examples 24-26
A HIP-treated body was obtained in the same manner as in Example 1 except that the amount of silica added was 5 wt% (Example 24), 10 wt% (Example 25), and 20 wt% (Example 26). The obtained processed body was the white zirconia sintered body of this example. The atmospheric sintering temperature was 1400 ° C., and the HIP temperature was 1500 ° C.

得られた白色ジルコニア焼結体について3点曲げ試験を行った。結果を表2に示す。   A three-point bending test was performed on the obtained white zirconia sintered body. The results are shown in Table 2.

Figure 2015231934
Figure 2015231934

実施例27
実施例1と同様の方法で白色ジルコニア焼結体を作製した。大気焼結温度は1400℃とし、HIP焼結温度は1500℃とした。得られた白色ジルコニア焼結体は、両面研削した後に両面研磨し、1mm程度の厚みのジルコニア板を得た。得られたジルコニア板の密度は5.230g/cmであり、相対密度は99.4%であった。
Example 27
A white zirconia sintered body was produced in the same manner as in Example 1. The atmospheric sintering temperature was 1400 ° C., and the HIP sintering temperature was 1500 ° C. The obtained white zirconia sintered body was subjected to double-side grinding and then double-side polished to obtain a zirconia plate having a thickness of about 1 mm. The density of the obtained zirconia plate was 5.230 g / cm 3 and the relative density was 99.4%.

得られたジルコニア板とガラス繊維強化プラスチック(商品名:エポキシ/ガラスクロス積層成型品SL−EC、日東シンコー社製)の各表面をアセトンにより洗浄した。次いで、エポキシ系熱硬化性樹脂(商品名:XN1245SR、ナガセケムテックス社製)を接着面に均一に塗布し、複合プレートの上下面に均等に荷重が懸かる状態とした後、これを120℃で、30分の条件で接着して複合プレートを得た。   Each surface of the obtained zirconia plate and glass fiber reinforced plastic (trade name: epoxy / glass cloth laminate molded product SL-EC, manufactured by Nitto Shinko) was washed with acetone. Next, an epoxy-based thermosetting resin (trade name: XN1245SR, manufactured by Nagase ChemteX Corporation) is uniformly applied to the adhesive surface, and the load is uniformly applied to the upper and lower surfaces of the composite plate. And a composite plate was obtained by bonding under conditions of 30 minutes.

得られた複合プレートを32mm×25mmとなるよう切断加工した。切断した複合プレートのジルコニア板側を研削・研磨することで、最終的に厚さ0.8mm程度の複合プレートとした。研削・研磨は残留応力ができるだけ発生しない条件を選んで行った。加工による接着剤の剥がれやジルコニア板のチッピングなどは見られず、複合プレートは高い加工性を有していた。見かけ密度の計算には、強化プラチック密度として2.0g/cmを用いた。 The obtained composite plate was cut to a size of 32 mm × 25 mm. The composite plate having a thickness of about 0.8 mm was finally obtained by grinding and polishing the zirconia plate side of the cut composite plate. Grinding and polishing were carried out under conditions that produce as little residual stress as possible. There was no peeling of the adhesive or chipping of the zirconia plate due to processing, and the composite plate had high workability. For the calculation of the apparent density, 2.0 g / cm 3 was used as the reinforced plastic density.

作製した複合プレートの厚みは0.750mmであった。また、複合プレートの各層の厚みは、ジルコニア板が0.221mm、接着層が18μm、及び繊維強化プラスチックスが0.511mmであった。ジルコニア板の厚み/繊維強化プラスチックスの厚みは0.43であった。複合プレートは、見かけ密度が2.9g/cm、及びビッカース硬度が1200であった。また、複合プレートの色調は、L*、a*、及びb*は、92.0、−0.33、及び0.04であり、明度L*は90以上であった。 The thickness of the produced composite plate was 0.750 mm. The thickness of each layer of the composite plate was 0.221 mm for the zirconia plate, 18 μm for the adhesive layer, and 0.511 mm for fiber reinforced plastics. The thickness of the zirconia plate / fiber reinforced plastics was 0.43. The composite plate had an apparent density of 2.9 g / cm 3 and a Vickers hardness of 1200. The color tone of the composite plate was L *, a *, and b * were 92.0, −0.33, and 0.04, and the lightness L * was 90 or more.

5cm刻みで鋼球落下試験を行った。試験結果は25cmであり、当該複合プレートは、25cmから剛球を落下させた場合であっても割れることがなく、高い耐衝撃性を示すことが分かった。   A steel ball drop test was performed in 5 cm increments. The test result was 25 cm, and it was found that the composite plate did not crack even when a hard sphere was dropped from 25 cm and exhibited high impact resistance.

更に、試験済みテストピースの健全な部分を狙い、鋼球落下高さ30cmから一回落下させる鋼球落下試験を行った。割れはなく耐衝撃性は5cm刻みで評価したものより高くなった。繰り返しの衝撃試験に起因する接着層の界面剥がれがなかったために高い値を示したと考えられる。   Further, a steel ball drop test was performed in which a healthy portion of the tested test piece was aimed at and dropped once from a steel ball drop height of 30 cm. There was no crack and the impact resistance was higher than that evaluated in 5 cm increments. It is considered that a high value was exhibited because there was no interface peeling of the adhesive layer due to repeated impact tests.

比較例1
シリカを含有しない原料粉末として、ジルコニア粉末(TZ−3YS、東ソー社製)のみ使用して、実施例1と同様な方法で成形体を得た。得られた成形体を、大気焼結温度1500℃で2h、大気中で焼結することにより一次焼結体を得た。得られた一次焼結体を、HIP焼結温度1500℃、HIP処理時間1時間、及びHIP処理圧力150MPaとしてHIP処理を行い、本比較例の焼結体を作製した。結果を表3に示す。得られた焼結体は透光感を示し、明度L*も90未満であった。
Comparative Example 1
By using only zirconia powder (TZ-3YS, manufactured by Tosoh Corporation) as a raw material powder not containing silica, a molded body was obtained in the same manner as in Example 1. The obtained molded body was sintered in the atmosphere at an atmospheric sintering temperature of 1500 ° C. for 2 hours to obtain a primary sintered body. The obtained primary sintered body was subjected to HIP treatment at an HIP sintering temperature of 1500 ° C., an HIP treatment time of 1 hour, and an HIP treatment pressure of 150 MPa to produce a sintered body of this comparative example. The results are shown in Table 3. The obtained sintered body showed translucency, and the lightness L * was less than 90.

比較例2
シリカを含有しない原料粉末として、ジルコニア粉末(TZ−3YS、東ソー社製)のみ使用して、実施例1と同様な方法で成形体を得た。得られた成形体を、大気焼結温度1500℃で2h、大気中で焼結することにより焼結体を得た。結果を表3に示す。得られた焼結体は透光感を示し、明度L*も90未満であった。
Comparative Example 2
By using only zirconia powder (TZ-3YS, manufactured by Tosoh Corporation) as a raw material powder not containing silica, a molded body was obtained in the same manner as in Example 1. The obtained molded body was sintered in the atmosphere at an atmospheric sintering temperature of 1500 ° C. for 2 hours to obtain a sintered body. The results are shown in Table 3. The obtained sintered body showed translucency, and the lightness L * was less than 90.

比較例3
アモルファスシリカを5wt%添加したジルコニア(TZ−3YS、東ソー社製)を1350℃で、2時間で大気焼結させ、焼結体を得た。XRD測定の結果、クリストバライト、及び他のシリカ多型に起因するピークは観測されなかった。結果を表3に示す。当該焼結体のシリカの粒子は、アモルファスシリカのみで構成され、クリストバライト型シリカを含まないものであった。焼結体は、全光線透過率が2%を超えており、なおかつ、明度L*も90未満であった。
Comparative Example 3
Zirconia (TZ-3YS, manufactured by Tosoh Corporation) to which 5 wt% of amorphous silica was added was sintered at 1350 ° C. for 2 hours to obtain a sintered body. As a result of XRD measurement, no peaks due to cristobalite and other silica polymorphs were observed. The results are shown in Table 3. The silica particles of the sintered body were composed only of amorphous silica and did not contain cristobalite type silica. The sintered body had a total light transmittance of over 2% and a lightness L * of less than 90.

Figure 2015231934
Figure 2015231934

比較例4
50wt%シリカを添加したこと以外は、実施例1と同様な方法でジルコニア焼結体を作製した。大気焼結温度は1400℃とし、HIP温度は1500℃とした。得られた焼結体の相対密度は99.5%であった。当該焼結体は、シリカ粒子中のマイクロクラック以外に、ジルコニア結晶粒子にもクラックの入った焼結体であった。XRD測定の結果、クリストバライト相分率は32wt%であった。
Comparative Example 4
A zirconia sintered body was produced in the same manner as in Example 1 except that 50 wt% silica was added. The atmospheric sintering temperature was 1400 ° C., and the HIP temperature was 1500 ° C. The relative density of the obtained sintered body was 99.5%. The sintered body was a sintered body having cracks in zirconia crystal particles in addition to the microcracks in the silica particles. As a result of XRD measurement, the cristobalite phase fraction was 32 wt%.

参考例1
実施例24、実施例25、実施例26及び比較例1の焼結体を用いて、水熱劣化試験を行った。結果を表4に示す。シリカを含有する実施例の焼結体は、同じ焼結温度で焼結されたシリカ無添加の焼結体よりも、単斜晶の出現が抑制されることが分かった。これにより、本発明の白色ジルコニア焼結体は水熱劣化しにくいことが確認できた。
Reference example 1
Using the sintered bodies of Example 24, Example 25, Example 26, and Comparative Example 1, a hydrothermal deterioration test was performed. The results are shown in Table 4. It was found that in the sintered body of the example containing silica, the appearance of monoclinic crystals was suppressed as compared with the sintered body without addition of silica that was sintered at the same sintering temperature. Thereby, it has confirmed that the white zirconia sintered compact of this invention was hard to hydrothermally deteriorate.

Figure 2015231934
Figure 2015231934

本発明の白色ジルコニア焼結体は、薄い部材としても光を透過せず、安定した色調を有し、意匠性に優れ、高い強度を有する。そのため、小型化傾向にある電子機器等の外装部材に好適であり、時計や宝飾品などの装飾品、さらには歯科材料としても利用可能である。   The white zirconia sintered body of the present invention does not transmit light as a thin member, has a stable color tone, is excellent in design, and has high strength. Therefore, it is suitable for exterior members of electronic devices and the like that tend to be miniaturized, and can also be used as ornaments such as watches and jewelry, and also as dental materials.

*.クリストバライトに起因するXRDピーク
+.ジルコニアに起因するXRDピーク
*. XRD peak due to cristobalite +. XRD peak due to zirconia

Claims (12)

ジルコニア焼結体と、クリストバライト結晶構造を1〜20wt%有するシリカと、を含み、相対密度が97%以上であり、かつ、D65光線の全光線透過率(1mm厚さ)が2%以下であることを特徴とする白色ジルコニア焼結体。   A zirconia sintered body and silica having a cristobalite crystal structure of 1 to 20 wt%, a relative density of 97% or more, and a total light transmittance (1 mm thickness) of D65 light of 2% or less A white zirconia sintered body characterized by that. D65光線の全光線透過率(1mm厚さ)が、0.5%以下であることを特徴とする請求項1に記載の白色ジルコニア焼結体。   The white zirconia sintered body according to claim 1, wherein the total light transmittance (1 mm thickness) of D65 light is 0.5% or less. 焼結体の色調(L*、a*、b*)がL*=90〜96、a*=−1〜+1、b*=−1〜+2の範囲の白色を呈することを特徴とする請求項1又は2に記載の白色ジルコニア焼結体。   The color tone (L *, a *, b *) of the sintered body exhibits a white color in the range of L * = 90 to 96, a * = − 1 to +1, and b * = − 1 to +2. Item 3. A white zirconia sintered body according to item 1 or 2. ジルコニア焼結体がイットリアを含むジルコニアからなることを特徴とする請求項1乃至3のいずれか一項に記載の白色ジルコニア焼結体。   The white zirconia sintered body according to any one of claims 1 to 3, wherein the zirconia sintered body is made of zirconia containing yttria. イットリア濃度がジルコニアに対して2〜4mol%であることを特徴とする請求項1乃至4のいずれか一項に記載の白色ジルコニア焼結体。   The white zirconia sintered body according to any one of claims 1 to 4, wherein the yttria concentration is 2 to 4 mol% with respect to zirconia. シリカの含有量が5〜30wt%であることを特徴とする請求項1乃至5のいずれか一項に記載の白色ジルコニア焼結体。   The white zirconia sintered body according to any one of claims 1 to 5, wherein the content of silica is 5 to 30 wt%. 焼結体中のシリカの粒子の平均結晶粒径が0.1〜1μmであることを特徴とする請求項1乃至6のいずれか一項に記載の白色ジルコニア焼結体。   The white zirconia sintered body according to any one of claims 1 to 6, wherein an average crystal grain size of silica particles in the sintered body is 0.1 to 1 µm. ジルコニア粉末と平均粒径1μm以下のシリカ粉末を混合して混合粉末を得る混合工程、該混合粉末を成形して成形体を得る成形工程、及び該成形体を焼結させる焼結工程、を有することを特徴とする請求項1乃至7のいずれか一項に記載の白色ジルコニア焼結体の製造方法。   It has a mixing step of mixing a zirconia powder and a silica powder having an average particle size of 1 μm or less to obtain a mixed powder, a forming step of forming the mixed powder to obtain a formed body, and a sintering step of sintering the formed body. The manufacturing method of the white zirconia sintered compact as described in any one of Claims 1 thru | or 7 characterized by the above-mentioned. 前記焼結工程において、無加圧下、1400℃以上で焼結することを特徴とする請求項8に記載の白色ジルコニア焼結体の製造方法。   In the said sintering process, it sinters at 1400 degreeC or more under no pressure, The manufacturing method of the white zirconia sintered compact of Claim 8 characterized by the above-mentioned. 前記焼結工程が、無加圧下、1400℃以上で焼結して一次焼結体を得た後、該一次焼結体を、非酸化性雰囲気中、圧力が50MPa以上、温度が1400〜1600℃で熱間静水圧プレス処理をすることを特徴とする請求項8又は9に記載の白色ジルコニア焼結体の製造方法。   After the sintering step is performed at 1400 ° C. or higher under no pressure to obtain a primary sintered body, the primary sintered body is subjected to a pressure of 50 MPa or more and a temperature of 1400 to 1600 in a non-oxidizing atmosphere. The method for producing a white zirconia sintered body according to claim 8 or 9, wherein hot isostatic pressing is performed at a temperature of 10 ° C. 請求項1乃至7のいずれか一項に記載の白色ジルコニア焼結体を含むことを特徴とする部材。   A member comprising the white zirconia sintered body according to any one of claims 1 to 7. 電子機器の外装、装飾品、又は歯科材料に用いることを特徴とする請求項11に記載の部材。   The member according to claim 11, wherein the member is used for an exterior of an electronic device, a decorative article, or a dental material.
JP2014251839A 2013-12-19 2014-12-12 White zirconia sintered body, method for producing the same, and use thereof Active JP6464713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251839A JP6464713B2 (en) 2013-12-19 2014-12-12 White zirconia sintered body, method for producing the same, and use thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013262188 2013-12-19
JP2013262188 2013-12-19
JP2014100972 2014-05-14
JP2014100972 2014-05-14
JP2014251839A JP6464713B2 (en) 2013-12-19 2014-12-12 White zirconia sintered body, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2015231934A true JP2015231934A (en) 2015-12-24
JP6464713B2 JP6464713B2 (en) 2019-02-06

Family

ID=53402893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251839A Active JP6464713B2 (en) 2013-12-19 2014-12-12 White zirconia sintered body, method for producing the same, and use thereof

Country Status (3)

Country Link
JP (1) JP6464713B2 (en)
TW (1) TW201524936A (en)
WO (1) WO2015093549A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210403387A1 (en) * 2018-08-20 2021-12-30 Tosoh Corporation Zirconia sintered body and method for producing the same
JP7434993B2 (en) * 2019-02-15 2024-02-21 東ソー株式会社 Pink zirconia sintered body and its manufacturing method
KR20220002300A (en) * 2019-04-25 2022-01-06 도소 가부시키가이샤 Sintered compact, powder and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278928A (en) * 1998-03-31 1999-10-12 Tosoh Corp Composite-based ceramic material
JP2000075053A (en) * 1998-08-31 2000-03-14 Kyocera Corp Dial for watch
JP2004143031A (en) * 2002-05-20 2004-05-20 Tosoh Corp Ceramics and its manufacturing method
JP2005170719A (en) * 2003-12-10 2005-06-30 Nippon Denko Kk Zirconium oxide powder with high lightness and whiteness and sintered compact and manufacturing method thereof
JP2008050247A (en) * 2006-07-25 2008-03-06 Tosoh Corp Sintered zirconia having high strength and process for production thereof
WO2009096478A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation White ceramic
JP2013155074A (en) * 2012-01-30 2013-08-15 Sumitomo Electric Ind Ltd Method for manufacturing composite oxide sintered body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371399B2 (en) * 1995-02-28 2003-01-27 信越石英株式会社 Cristobalite crystalline phase-containing silica glass and method for producing the same
JP5158298B2 (en) * 2005-06-10 2013-03-06 東ソー株式会社 Black zirconia sintered body, raw material powder thereof, and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278928A (en) * 1998-03-31 1999-10-12 Tosoh Corp Composite-based ceramic material
JP2000075053A (en) * 1998-08-31 2000-03-14 Kyocera Corp Dial for watch
JP2004143031A (en) * 2002-05-20 2004-05-20 Tosoh Corp Ceramics and its manufacturing method
JP2005170719A (en) * 2003-12-10 2005-06-30 Nippon Denko Kk Zirconium oxide powder with high lightness and whiteness and sintered compact and manufacturing method thereof
JP2008050247A (en) * 2006-07-25 2008-03-06 Tosoh Corp Sintered zirconia having high strength and process for production thereof
WO2009096478A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation White ceramic
JP2013155074A (en) * 2012-01-30 2013-08-15 Sumitomo Electric Ind Ltd Method for manufacturing composite oxide sintered body

Also Published As

Publication number Publication date
JP6464713B2 (en) 2019-02-06
TW201524936A (en) 2015-07-01
WO2015093549A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
EP2610232B1 (en) Zirconia sintered bodies with high total light transmission
JP5861397B2 (en) Colored translucent zirconia sintered body, method for producing the same, and use thereof
CN107922272B (en) Red zirconia sintered body and method for producing same
JP5125065B2 (en) Transparent zirconia sintered body
WO2010140644A1 (en) High-strength transparent zirconia sintered body, process for production thereof, and use thereof
EP2674408A1 (en) Translucent zirconia sintered body, process for producing the same, and use of the same
JP2010150063A (en) Light-transmitting zirconia sintered compact, method for producing the same and use thereof
JP6464713B2 (en) White zirconia sintered body, method for producing the same, and use thereof
JP5655512B2 (en) Colored translucent zirconia sintered body, method for producing the same, and use thereof
EP2808313B1 (en) Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
JP2019535630A (en) Translucent nanocrystalline glass ceramic
JP7434993B2 (en) Pink zirconia sintered body and its manufacturing method
JP5770431B2 (en) High strength transparent zirconia sintered body
JP2023016927A (en) Purple zirconia sintered body and manufacturing method thereof
JP2015054801A (en) Zirconia sintered compact and application of the same
JP5505063B2 (en) Highly transparent zirconia sintered body
JP7432816B2 (en) Pink zirconia sintered body and its manufacturing method
JP2019182740A (en) Zirconia sintered body and manufacturing method therefor
JP6885021B2 (en) Orange zirconia sintered body and its manufacturing method
JP4707591B2 (en) Black ceramic sintered body, optical analysis cell using the same, and semiconductor / liquid crystal manufacturing apparatus member
JP7168026B2 (en) Orange zirconia sintered body and method for producing the same
JP7432817B2 (en) Pink zirconia sintered body and its manufacturing method
JP7279545B2 (en) dark gray sintered body
KR101308887B1 (en) Manufacturing method of translucent alumina composite
Parish et al. Transparent ceramics for sensor applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R151 Written notification of patent or utility model registration

Ref document number: 6464713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151