JP2015231303A - Charging system for vehicle - Google Patents

Charging system for vehicle Download PDF

Info

Publication number
JP2015231303A
JP2015231303A JP2014117481A JP2014117481A JP2015231303A JP 2015231303 A JP2015231303 A JP 2015231303A JP 2014117481 A JP2014117481 A JP 2014117481A JP 2014117481 A JP2014117481 A JP 2014117481A JP 2015231303 A JP2015231303 A JP 2015231303A
Authority
JP
Japan
Prior art keywords
charging
power supply
amplitude
vehicle
communication signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014117481A
Other languages
Japanese (ja)
Other versions
JP6172057B2 (en
Inventor
遼 岡田
Ryo Okada
遼 岡田
剛志 萩原
Tsuyoshi Hagiwara
剛志 萩原
和彦 二井
Kazuhiko Futai
和彦 二井
佐竹 宏
Hiroshi Satake
宏 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2014117481A priority Critical patent/JP6172057B2/en
Publication of JP2015231303A publication Critical patent/JP2015231303A/en
Application granted granted Critical
Publication of JP6172057B2 publication Critical patent/JP6172057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging system for a vehicle, which makes it possible to selectively carry out AC charging or DC rapid charging via a common charging cable and makes it possible to carry out stable PLC communication during DC rapid charging.SOLUTION: A charging system for a vehicle comprises: a power supply device having at least a DC power supply part of AC and DC power supply parts; a vehicle in which a battery is mounted, the battery being AC- or DC-charged via a charging cable; a power supply control part that transmits/receives a control signal for exerting charge control via a control wire provided for the charging cable; a charging control part that transmits/receives a control signal between the power supply control part and the charging control part itself via the control wire; and PLC modems provided for the power supply device and the vehicle and configured to carry out PLC communication via the control wire. In the system, the PLC modems 20 are provided with amplitude adjustment parts 31, 32 that makes the amplitude of a communication signal for PLC communication during DC charging than that during AC charging.

Description

本発明は、電気自動車やプラグインハイブリッド車等に搭載されるバッテリーに電力を供給して充電する充電システムに関するものである。   The present invention relates to a charging system that supplies electric power to a battery mounted on an electric vehicle, a plug-in hybrid vehicle, or the like and charges the battery.

近年、バッテリーに蓄えられた電力の供給に基づいて動作するモータを搭載し、そのモータの駆動力により走行可能とした電気自動車やプラグインハイブリッド車が実用化されている。   In recent years, electric vehicles and plug-in hybrid vehicles that are equipped with a motor that operates based on the supply of electric power stored in a battery and that can be driven by the driving force of the motor have been put into practical use.

このような自動車では、充電ステーションあるいは一般家屋に設置される給電装置と、自動車に搭載される充電装置及び充電制御装置を充電ケーブルを介して接続することにより、給電装置からバッテリーに電力を供給してバッテリーを充電可能となっている。   In such a car, a power supply device installed in a charging station or a general house is connected to a charging device and a charge control device mounted in the car via a charging cable, so that power is supplied from the power supply device to the battery. The battery can be charged.

充電ケーブルには、給電線に加えて、接地線、制御用線が内包されている。制御用線は、給電制御に用いられるコントロールパイロット信号等の制御信号の伝送に用いられる配線である。そして、制御用線を介して、給電装置と自動車間で制御信号を送受信することにより、充電ケーブルの接続状態、充電可否の状態、充電の状態等種々の状態が検知され、検知された状態に応じて充電制御が行われる。   The charging cable includes a ground line and a control line in addition to the power supply line. The control line is a wiring used for transmission of a control signal such as a control pilot signal used for power supply control. And, by transmitting and receiving control signals between the power supply device and the vehicle via the control line, various states such as the connection state of the charging cable, the state of chargeability, the state of charge, etc. are detected, and the state is detected. Charge control is performed accordingly.

また、給電装置からの給電を要する自動車では、給電制御のための情報、給電量や課金の管理を行うための通信信号が、給電装置と自動車信号の間でPLC通信機能により送受信されている。   Further, in a vehicle that requires power supply from the power supply device, information for power supply control, and a communication signal for managing power supply amount and billing are transmitted and received between the power supply device and the vehicle signal by the PLC communication function.

これらの通信信号は、前記制御信号より高い周波数帯域の信号として、制御信号に重畳するinband通信で制御用線を介して送受信される。前記制御信号は、1kHzの矩形波を搬送波として送受信され、前記通信信号は例えば30kHz〜450kHzの周波数の搬送波が低速通信用の帯域として使用され、例えば2MHz〜30MHzの周波数の搬送波が高速通信用の帯域として使用される。   These communication signals are transmitted / received via the control line as in-band communication superimposed on the control signal as a signal having a higher frequency band than the control signal. The control signal is transmitted / received using a 1 kHz rectangular wave as a carrier wave. The communication signal uses a carrier wave having a frequency of 30 kHz to 450 kHz, for example, as a low-speed communication band. For example, a carrier wave having a frequency of 2 MHz to 30 MHz is used for high-speed communication. Used as a band.

また、給電装置に供給される商用電源に基づいてバッテリーをAC充電する場合には、制御用線に重畳される通信信号により給電線に発生するクロストークノイズの上限がCISPR22規格で設定されている。従って、制御用線に重畳するPLC通信電圧は、CISPR22規格をクリアするレベルに設定される。   When the battery is AC-charged based on the commercial power supplied to the power supply device, the upper limit of crosstalk noise generated in the power supply line by the communication signal superimposed on the control line is set in the CISPR22 standard. . Therefore, the PLC communication voltage superimposed on the control line is set to a level that clears the CISPR22 standard.

特許文献1には、自動車のバッテリーにAC充電を行う充電システムにおいて、制御用線に制御信号と通信信号を重畳しながら、制御信号による通信信号への悪影響を抑制する構成が開示されている。   Patent Document 1 discloses a configuration in which a control signal and a communication signal are superimposed on a control line and an adverse effect on the communication signal due to the control signal is suppressed in a charging system that performs AC charging on an automobile battery.

特開2013−115905号公報JP 2013-115905 A

近年、共通のコネクタ及び充電ケーブルを使用して、AC充電と、DC急速充電とを任意に選択して行うことを可能とした自動車用充電システムが提案されている。
しかし、DC急速充電では給電線に載るノイズレベルがAC充電の場合に比して高くなるため、制御用線に載るクロストークノイズレベルが上昇する。従って、CISPR22規格をクリアするレベルに設定されたPLC通信電圧では、安定した通信を行うことができない。
In recent years, there has been proposed an automotive charging system that can arbitrarily select AC charging and DC quick charging using a common connector and a charging cable.
However, since the noise level on the power supply line is higher in DC quick charging than in the case of AC charging, the crosstalk noise level on the control line is increased. Therefore, stable communication cannot be performed with the PLC communication voltage set to a level that clears the CISPR22 standard.

この発明はこのような事情に鑑みてなされたものであり、その目的は共通の充電ケーブルを介して、AC充電及びDC急速充電のいずれかを選択して行うことを可能とし、かつDC急速充電時に安定したPLC通信を可能とする自動車用充電システムを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to select and perform either AC charging or DC rapid charging via a common charging cable, and DC rapid charging. An object of the present invention is to provide a charging system for a vehicle that sometimes enables stable PLC communication.

上記課題を解決する自動車用充電システムは、AC電力供給部とDC電力供給部のうち少なくともDC電力供給部を備えた給電装置と、前記DC電力供給部若しくは前記AC電力供給部及びDC電力供給部にそれぞれ接続された給電線を内包する充電ケーブルと、前記充電ケーブルを介して供給されるAC電力若しくはDC電力に基づいてAC充電あるいはDC充電されるバッテリーを搭載した車両と、前記給電装置に設けられ、前記充電ケーブルに備えられた制御用線を介して充電制御のための制御信号を送受信する給電制御部と、前記車両に設けられ、前記給電制御部との間で前記制御用線を介して制御信号を送受信する充電制御部と、前記給電装置と前記車両にそれぞれ設けられ、前記制御用線を介してPLC通信を行うPLCモデムとを備えた自動車用充電システムにおいて、前記PLCモデムには、前記PLC通信を行うための通信信号の振幅を、前記AC充電時より前記DC充電時で大きくする振幅調整部を備えたことを特徴とする。   A vehicle charging system that solves the above problems includes a power supply device including at least a DC power supply unit among an AC power supply unit and a DC power supply unit, and the DC power supply unit or the AC power supply unit and the DC power supply unit. A charging cable including a power supply line connected to the battery, a vehicle equipped with a battery that is AC-charged or DC-charged based on AC power or DC power supplied via the charging cable, and the power supply device. A power supply control unit that transmits and receives a control signal for charge control via a control line provided in the charging cable, and the vehicle is provided with the power supply control unit via the control line. A charge control unit that transmits and receives control signals, and a PLC modem that is provided in each of the power feeding device and the vehicle and performs PLC communication via the control line The PLC modem includes an amplitude adjustment unit that increases an amplitude of a communication signal for performing the PLC communication at the time of the DC charging than at the time of the AC charging. To do.

この構成により、DC充電時のPLC通信の通信信号の振幅は、AC充電時の振幅より大きく設定されるので、DC充電時のPLC通信の通信信号のS/N比が改善される。
また、上記の自動車用充電システムにおいて、前記振幅調整部は、前記通信信号をデジタル信号で処理する送信制御回路に、前記AC充電時の通信信号の振幅値と前記DC充電時の通信信号の振幅値をあらかじめ格納した記憶装置を備え、格納されている振幅値に基づいて通信信号の振幅値をデジタル値で調整することが好ましい。
With this configuration, the amplitude of the communication signal for PLC communication during DC charging is set to be greater than the amplitude during AC charging, so that the S / N ratio of the communication signal for PLC communication during DC charging is improved.
Further, in the above-described automotive charging system, the amplitude adjustment unit may transmit a transmission control circuit that processes the communication signal with a digital signal to an amplitude value of the communication signal during the AC charging and an amplitude of the communication signal during the DC charging. It is preferable to provide a storage device that stores values in advance and adjust the amplitude value of the communication signal with a digital value based on the stored amplitude value.

この構成により、DC充電時には通信信号の振幅値が記憶装置に格納されているDC充電時の振幅値に調整される。
また、上記の自動車用充電システムにおいて、前記振幅調整部は、前記AC充電時の通信信号の振幅値を初期値として設定し、前記DC充電時には、前記記憶装置に格納されているDC充電時の振幅値に基づいて前記通信信号の振幅を拡大することが好ましい。
With this configuration, during DC charging, the amplitude value of the communication signal is adjusted to the amplitude value during DC charging stored in the storage device.
Further, in the above-described automotive charging system, the amplitude adjustment unit sets an amplitude value of a communication signal during the AC charging as an initial value, and during the DC charging, the amplitude adjustment unit stores a DC charging time stored in the storage device. It is preferable to expand the amplitude of the communication signal based on the amplitude value.

この構成により、前記DC充電時には、通信信号の振幅がAC充電時の振幅からDC充電時の振幅に拡大される。
また、上記の自動車用充電システムにおいて、前記振幅調整部は、前記DC充電時の通信信号の振幅値を初期値として設定し、前記AC充電時には、前記記憶装置に格納されているAC充電時の振幅値に基づいて前記通信信号の振幅を縮小することが好ましい。
With this configuration, during the DC charging, the amplitude of the communication signal is expanded from the amplitude during AC charging to the amplitude during DC charging.
Further, in the above-described automobile charging system, the amplitude adjustment unit sets an amplitude value of a communication signal at the time of DC charging as an initial value, and at the time of AC charging, the amplitude adjustment unit stores the value at the time of AC charging stored in the storage device. It is preferable to reduce the amplitude of the communication signal based on the amplitude value.

この構成により、前記AC充電時には、通信信号の振幅がDC充電時の振幅からAC充電時の振幅に縮小される。
また、上記の自動車用充電システムにおいて、前記振幅調整部は、前記AC充電時の通信信号の振幅値と、前記DC充電時の通信信号の振幅値をアナログ値であらかじめ格納した記憶装置を備え、格納されている振幅値に基づいて前記PLCモデムの出力回路の利得を調整することが好ましい。
With this configuration, during the AC charging, the amplitude of the communication signal is reduced from the amplitude during DC charging to the amplitude during AC charging.
Further, in the above-described automobile charging system, the amplitude adjustment unit includes a storage device that stores in advance, as analog values, the amplitude value of the communication signal during the AC charging and the amplitude value of the communication signal during the DC charging, It is preferable to adjust the gain of the output circuit of the PLC modem based on the stored amplitude value.

この構成により、DC充電時には通信信号の振幅値が記憶装置に格納されている振幅値となるようにPLCモデムの出力回路の利得が調整される。   With this configuration, the gain of the output circuit of the PLC modem is adjusted so that the amplitude value of the communication signal becomes the amplitude value stored in the storage device during DC charging.

本発明の自動車用充電システムによれば、共通の充電ケーブルを介して、AC充電及びDC急速充電のいずれかを選択して行い得るとともに、DC急速充電時に安定したPLC通信を可能とすることができる。   According to the vehicle charging system of the present invention, it is possible to select either AC charging or DC rapid charging via a common charging cable, and to enable stable PLC communication during DC rapid charging. it can.

一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment. PLCモデムを示すブロック図である。It is a block diagram which shows a PLC modem. PLCモデムの別例を示すブロック図である。It is a block diagram which shows another example of a PLC modem.

以下、自動車の充電システムの一実施形態を図1及び図2に従って説明する。図1に示す自動車の充電システムは、給電装置1とバッテリー2を搭載した車両3を充電ケーブル4で接続して、AC充電あるいはDC急速充電でバッテリー2を充電するものである。   Hereinafter, an embodiment of an automobile charging system will be described with reference to FIGS. 1 and 2. The vehicle charging system shown in FIG. 1 connects a vehicle 3 equipped with a power feeding device 1 and a battery 2 with a charging cable 4 and charges the battery 2 by AC charging or DC rapid charging.

給電装置1内には、AC電力供給部5と、DC電力供給部6と、給電制御部7が配設される。AC電力供給部5は、例えば交流100Vの商用電源ACVが供給され、AC充電開始時に給電制御部7から出力されるAC充電開始信号as1の供給に基づいて、前記充電ケーブル4内の給電線8a,8bにAC電力を供給する。   An AC power supply unit 5, a DC power supply unit 6, and a power supply control unit 7 are disposed in the power supply apparatus 1. The AC power supply unit 5 is supplied with, for example, an AC 100V commercial power supply ACV, and based on the supply of the AC charging start signal as1 output from the power supply control unit 7 at the start of AC charging, the power supply line 8a in the charging cable 4 , 8b is supplied with AC power.

DC電力供給部6は、例えば交流100Vの商用電源ACVの供給に基づいて直流電圧を生成し、且つDC/DCコンバータ等の電圧変換部により所定の直流電圧DCVを生成して、リレー9に出力する。そして、DC急速充電開始時に給電制御部7から出力されるDC充電開始信号ds1の供給に基づいてリレー9が導通状態となり、前記充電ケーブル4内の給電線10a,10bにDC電力が供給される。   The DC power supply unit 6 generates a DC voltage based on, for example, supply of a commercial power supply ACV of 100 V AC, and generates a predetermined DC voltage DCV by a voltage conversion unit such as a DC / DC converter, and outputs it to the relay 9 To do. Then, the relay 9 is turned on based on the supply of the DC charging start signal ds1 output from the power supply control unit 7 at the start of DC rapid charging, and DC power is supplied to the power supply lines 10a and 10b in the charging cable 4. .

前記給電制御部7には、コントロールパイロット信号等の制御信号cpを送受信する制御用線11a,11bが接続され、その制御用線11a,11bは前記充電ケーブル4内に延設されている。前記制御信号cpは、例えば1kHzの矩形波を搬送信号として送信される。また、制御用線11a,11bの一方は、接地線である。   Control lines 11 a and 11 b for transmitting and receiving a control signal cp such as a control pilot signal are connected to the power supply control unit 7, and the control lines 11 a and 11 b are extended in the charging cable 4. The control signal cp is transmitted using, for example, a 1 kHz rectangular wave as a carrier signal. One of the control lines 11a and 11b is a ground line.

前記給電線8a,8b,10a,10b及び前記制御用線11a,11bは、充電ケーブル4の先端部に取着されるプラグ12にそれぞれ接続され、そのプラグ12は前記車両3に設けられる受電コネクタ13に接続可能である。   The feeder lines 8a, 8b, 10a, 10b and the control lines 11a, 11b are respectively connected to a plug 12 attached to the front end of the charging cable 4, and the plug 12 is a power receiving connector provided in the vehicle 3. 13 can be connected.

そして、プラグ12が受電コネクタ13に接続されると、給電線8a,8bは受電コネクタ13及び車両3内の給電線14a,14bを介して充電装置15に接続される。
また、プラグ12が受電コネクタ13に接続されると、給電線10a,10bは受電コネクタ13及び車両3内の給電線16a,16b及びリレー17を介して前記バッテリー2に接続可能である。
When the plug 12 is connected to the power receiving connector 13, the power supply lines 8 a and 8 b are connected to the charging device 15 via the power receiving connector 13 and the power supply lines 14 a and 14 b in the vehicle 3.
When the plug 12 is connected to the power receiving connector 13, the power feeding lines 10 a and 10 b can be connected to the battery 2 via the power receiving connector 13, the power feeding lines 16 a and 16 b in the vehicle 3 and the relay 17.

また、プラグ12が受電コネクタ13に接続されると、制御用線11a,11bは受電コネクタ13及び車両3内の制御用線18a,18bを介して充電制御部19に接続される。   When the plug 12 is connected to the power receiving connector 13, the control lines 11 a and 11 b are connected to the charge control unit 19 via the power receiving connector 13 and the control lines 18 a and 18 b in the vehicle 3.

従って、給電制御部7と充電制御部19とは制御用線11a,11b,18a,18bを介して制御信号cpを送受信可能となっている。
前記充電制御部19は、DC充電開始時に前記リレー17にDC充電開始信号ds2を出力し、リレー17はDC充電開始信号ds2の入力に基づいて接点が導通状態となる。この結果、DC電力供給部6からリレー9、給電線10a,10b,16a,16b及びリレー17を介してバッテリー2にDC電力が供給される。
Therefore, the power supply control unit 7 and the charge control unit 19 can transmit and receive the control signal cp through the control lines 11a, 11b, 18a, and 18b.
The charging control unit 19 outputs a DC charging start signal ds2 to the relay 17 at the start of DC charging, and the contact of the relay 17 becomes conductive based on the input of the DC charging start signal ds2. As a result, DC power is supplied from the DC power supply unit 6 to the battery 2 via the relay 9, the feeder lines 10 a, 10 b, 16 a, 16 b and the relay 17.

また、前記充電制御部19は、AC充電開始時に前記充電装置15にAC充電開始信号as2を出力する。充電装置15は、AC充電開始信号as2の入力に基づいて、給電線14a,14bを介して供給されるAC電力でバッテリー2を充電する。   Further, the charging control unit 19 outputs an AC charging start signal as2 to the charging device 15 at the start of AC charging. The charging device 15 charges the battery 2 with AC power supplied via the feeder lines 14a and 14b based on the input of the AC charging start signal as2.

前記給電装置1と車両3には、給電制御部7と充電制御部19との間で前記制御用線11a,11b,18a,18bを介したPLC通信を行うためのPLCモデム20,21が配設されている。給電制御のための情報、給電量や課金の管理を行うための通信信号が、給電装置1と車両3との間でPLC通信機能により送受信される。   The power supply device 1 and the vehicle 3 are provided with PLC modems 20 and 21 for performing PLC communication between the power supply control unit 7 and the charge control unit 19 via the control lines 11a, 11b, 18a, and 18b. It is installed. Information for power supply control, and a communication signal for managing power supply amount and billing are transmitted and received between the power supply apparatus 1 and the vehicle 3 by the PLC communication function.

前記PLCモデム20,21の変調方式は、耐ノイズ性に優れたOFDM(orthogonal frequency division multiplex:直交周波数分割多重)方式が採用されている。
給電装置1側のPLCモデム20と制御用線11a,11bとの間には重畳分離部22が介在され、さらに重畳分離部22と制御用線11a,11bとの間にコンデンサ24a,24bが介在されている。そして、制御用線11aと給電制御部7との間にローパスフィルタ23が介在されている。
As a modulation method of the PLC modems 20 and 21, an OFDM (orthogonal frequency division multiplex) method having excellent noise resistance is adopted.
A superposition / separation unit 22 is interposed between the PLC modem 20 on the power feeding device 1 side and the control lines 11a and 11b, and capacitors 24a and 24b are interposed between the superposition / separation unit 22 and the control lines 11a and 11b. Has been. A low-pass filter 23 is interposed between the control line 11 a and the power supply control unit 7.

同様に、車両3側のPLCモデム21と制御用線18a,18bとの間には重畳分離部25が介在され、さらに重畳分離部25と制御用線18a,18bとの間にコンデンサ27a,27bが介在されている。そして、制御用線18aと充電制御部19との間にローパスフィルタ26が介在されている。   Similarly, a superposition / separation unit 25 is interposed between the PLC modem 21 on the vehicle 3 side and the control lines 18a and 18b, and capacitors 27a and 27b are further interposed between the superposition / separation unit 25 and the control lines 18a and 18b. Is intervened. A low-pass filter 26 is interposed between the control line 18 a and the charging control unit 19.

前記給電制御部7とPLCモデム20との間では、給電制御部7から送信される通信信号ts1と、PLCモデム20から給電制御部7に送信される通信信号ts2を相互に送受信可能である。また、前記充電制御部19とPLCモデム21との間では、充電制御部から送信される通信信号ts2と、PLCモデム21から充電制御部19に送信される通信信号ts1を相互に送受信可能である。   Between the power supply control unit 7 and the PLC modem 20, a communication signal ts1 transmitted from the power supply control unit 7 and a communication signal ts2 transmitted from the PLC modem 20 to the power supply control unit 7 can be transmitted and received. Further, between the charge control unit 19 and the PLC modem 21, a communication signal ts2 transmitted from the charge control unit and a communication signal ts1 transmitted from the PLC modem 21 to the charge control unit 19 can be transmitted and received with each other. .

通信信号ts1,ts2は、PLCモデム20,21の動作により、例えば30kHz〜450kHzの周波数の搬送波が低速通信用の帯域として使用され、例えば2MHz〜30MHzの周波数の搬送波が高速通信用の帯域として使用される。   As for the communication signals ts1 and ts2, for example, a carrier wave with a frequency of 30 kHz to 450 kHz is used as a low-speed communication band, for example, a carrier wave with a frequency of 2 MHz to 30 MHz is used as a high-speed communication band. Is done.

このような構成により、給電制御部7から送信される通信信号ts1は、PLCモデム20及び重畳分離部22を介して制御用線11a,11bに出力されるとともに、制御用線18a,18bから重畳分離部25を介してPLCモデム21で読み取られ、充電制御部19に出力される。   With such a configuration, the communication signal ts1 transmitted from the power supply control unit 7 is output to the control lines 11a and 11b via the PLC modem 20 and the superposition / separation unit 22, and is superimposed on the control lines 18a and 18b. The data is read by the PLC modem 21 via the separation unit 25 and output to the charge control unit 19.

また、充電制御部19から送信される通信信号ts2は、PLCモデム21及び重畳分離部25を介して制御用線18a,18bに出力されるとともに、制御用線11a,11bから重畳分離部22を介してPLCモデム20で読み取られ、給電制御部7に出力される。   The communication signal ts2 transmitted from the charging control unit 19 is output to the control lines 18a and 18b via the PLC modem 21 and the superposition / separation unit 25, and the superposition / separation unit 22 is transmitted from the control lines 11a and 11b. Via the PLC modem 20 and output to the power supply controller 7.

次に、前記PLCモデム20,21の具体的構成を説明する。図2に示すように、PLCモデム20は送信部28と受信部29を備えている。送信部28では、給電制御部7から送信される通信信号ts1がMAC/PHYインターフェース30を介して送信制御回路31に入力される。   Next, a specific configuration of the PLC modems 20 and 21 will be described. As shown in FIG. 2, the PLC modem 20 includes a transmission unit 28 and a reception unit 29. In the transmission unit 28, the communication signal ts 1 transmitted from the power supply control unit 7 is input to the transmission control circuit 31 through the MAC / PHY interface 30.

送信制御回路31は、デジタルデータとして受信した通信信号ts1を暗号化し、その暗号化データに誤り訂正処理を施す。誤り訂正処理は、受信部29側でビット誤り等の誤りに対する検出及び訂正処理を可能とするための処理であり、例えばパリティチェック等の処理に用いるパリティビット等の符号を付加する処理である。   The transmission control circuit 31 encrypts the communication signal ts1 received as digital data, and performs error correction processing on the encrypted data. The error correction processing is processing for enabling detection and correction processing for errors such as bit errors on the receiving unit 29 side. For example, the error correction processing is processing for adding a code such as a parity bit used for processing such as parity check.

次いで、AC充電あるいはDC高速充電に対応して重畳分離部22から制御用線11a,11bに出力する通信信号の電圧振幅を調整するためのマッピング処理を行う。AC充電時あるいはDC高速充電時に対応した電圧振幅値がメモリ32にあらかじめ格納されていて、誤り訂正処理された通信信号に対しAC充電あるいはDC高速充電に対応する電圧振幅値が設定された後、逆フーリエ変換(IFFT)処理が施される。   Next, mapping processing for adjusting the voltage amplitude of the communication signal output from the superposition / separation unit 22 to the control lines 11a and 11b corresponding to AC charging or DC high-speed charging is performed. After the voltage amplitude value corresponding to AC charging or DC fast charging is stored in the memory 32 in advance, and the voltage amplitude value corresponding to AC charging or DC fast charging is set for the error corrected communication signal, Inverse Fourier transform (IFFT) processing is performed.

このようにして、送信制御回路31ではメモリ32にあらかじめデジタル値で格納されている電圧振幅値に基づいて、AC充電あるいはDC高速充電に対応する通信信号の電圧振幅値を設定する。   In this way, the transmission control circuit 31 sets the voltage amplitude value of the communication signal corresponding to AC charging or DC fast charging based on the voltage amplitude value stored in advance in the memory 32 as a digital value.

ここで、AC充電に対応する電圧振幅として0.4Vが設定され、DC高速充電に対応する電圧振幅として1.3Vが設定される。
送信制御回路31の出力信号は、D/A変換回路33でアナログ信号に変換され、AFE34を介してアナログ電圧信号として重畳分離部22に出力する。重畳分離部22は、入力された通信信号を制御用線11a,11bに重畳して出力する。
Here, 0.4 V is set as the voltage amplitude corresponding to AC charging, and 1.3 V is set as the voltage amplitude corresponding to DC fast charging.
The output signal of the transmission control circuit 31 is converted into an analog signal by the D / A conversion circuit 33 and is output to the superposition / separation unit 22 as an analog voltage signal via the AFE 34. The superimposing / separating unit 22 superimposes the input communication signal on the control lines 11a and 11b and outputs it.

PLCモデム20の受信部29では、前記送信部28の処理の逆の処理を行う。すなわち、制御用線11a,11bに重畳されて送信されている通信信号ts2が重畳分離部で分離されてAFE35を介してA/D変換回路36に入力される。A/D変換回路36は、入力されたアナログ電圧信号をデジタルデータに変換して、受信制御回路37に出力する。   The receiving unit 29 of the PLC modem 20 performs processing reverse to the processing of the transmitting unit 28. That is, the communication signal ts <b> 2 that is transmitted while being superimposed on the control lines 11 a and 11 b is separated by the superposition separation unit and input to the A / D conversion circuit 36 via the AFE 35. The A / D conversion circuit 36 converts the input analog voltage signal into digital data and outputs the digital data to the reception control circuit 37.

受信制御回路37は、A/D変換回路36から出力されるデジタル信号にフーリエ変換(FFT)処理を施し、次いで誤り訂正処理を行った後、複合処理を行う。すると、充電制御部19から出力された通信信号ts2が再生され、その通信信号ts2がMAC/PHYインターフェース38を介して給電制御部7に出力される。   The reception control circuit 37 performs a Fourier transform (FFT) process on the digital signal output from the A / D conversion circuit 36, performs an error correction process, and then performs a composite process. Then, the communication signal ts2 output from the charging control unit 19 is reproduced, and the communication signal ts2 is output to the power supply control unit 7 via the MAC / PHY interface 38.

車両3側のPLCモデム21は、送信部及び受信部に充電制御部19が接続される点を除いて、前記PLCモデム20と同様な構成であるので、詳細な説明を省略する。
次に、上記のように構成された給電システムの作用を説明する。
Since the PLC modem 21 on the vehicle 3 side has the same configuration as the PLC modem 20 except that the charging control unit 19 is connected to the transmission unit and the reception unit, detailed description thereof is omitted.
Next, the operation of the power feeding system configured as described above will be described.

充電ケーブル4のプラグ12を車両3の受電コネクタ13に接続すると、給電制御部7と充電制御部19間のコントロールパイロット信号は、給電制御部7と充電制御部19内で制御用線11a,11bと制御用線18a,18bとに接続される終端抵抗により、12Vから9Vに移行する。   When the plug 12 of the charging cable 4 is connected to the power receiving connector 13 of the vehicle 3, a control pilot signal between the power feeding control unit 7 and the charging control unit 19 is transmitted to the control lines 11 a and 11 b in the power feeding control unit 7 and the charging control unit 19. And 12V to 9V due to the termination resistance connected to the control lines 18a and 18b.

すると、給電制御部7と充電制御部19との間で各PLCモデム20,21を介したPLC通信が開始され、給電装置1及び車両3がともにDC急速充電に対応しているか否かを判定する。   Then, PLC communication via the PLC modems 20 and 21 is started between the power supply control unit 7 and the charge control unit 19, and it is determined whether or not both the power supply device 1 and the vehicle 3 are compatible with DC quick charging. To do.

詳しくは、充電制御部19が給電制御部7に対しAC充電かDC急速充電かを見極めるメッセージを要求する。そして、給電制御部7から充電制御部19にDC急速充電が可能である旨のメッセージが送信されると、コントロールパイロット信号は9Vから6Vに移行する。   Specifically, the charge control unit 19 requests the power supply control unit 7 for a message for determining whether AC charging or DC rapid charging. When a message indicating that DC quick charging is possible is transmitted from the power supply control unit 7 to the charge control unit 19, the control pilot signal shifts from 9V to 6V.

すると、DC急速充電が開始されるが、これに先立って充電制御部19から給電制御部7に出力される通信信号に基づいて、給電制御部7ではメモリ32からDC急速充電を行う場合の通信信号の振幅値が読み出される。そして、初期値として設定されているAC充電時の通信信号の振幅値をDC急速充電を行う場合の通信信号の振幅値に書き換える。すると、PLC通信の通信信号の振幅が拡大される。   Then, the DC quick charge is started. Prior to this, based on the communication signal output from the charge control unit 19 to the power supply control unit 7, the power supply control unit 7 performs communication when the DC quick charge is performed from the memory 32. The amplitude value of the signal is read out. Then, the amplitude value of the communication signal at the time of AC charging set as the initial value is rewritten to the amplitude value of the communication signal in the case of performing DC quick charging. Then, the amplitude of the communication signal of PLC communication is expanded.

次いで、給電制御部7から出力されるDC充電開始信号ds1によりリレー9が導通状態となる。そして、充電制御部19から出力されるDC充電開始信号ds2によりリレー17が導通状態となって、DC電力供給部6からバッテリー2に直流電力が供給されて、バッテリー2のDC急速充電が開始される。   Next, the relay 9 is turned on by the DC charge start signal ds1 output from the power supply control unit 7. Then, the relay 17 is turned on by the DC charge start signal ds2 output from the charge control unit 19, DC power is supplied from the DC power supply unit 6 to the battery 2, and DC quick charging of the battery 2 is started. The

充電制御部19によりバッテリー2の満充電が検出されると、充電制御部19によりリレー17が不導通状態に切り替えられる。さらに、通信信号により充電制御部19から給電制御部7にバッテリー2の満充電が通知されると、リレー9が不導通状態に切り替えられて、DC急速充電が終了する。   When the charging control unit 19 detects that the battery 2 is fully charged, the charging control unit 19 switches the relay 17 to the non-conducting state. Further, when the charging control unit 19 notifies the power supply control unit 7 of the full charge of the battery 2 by the communication signal, the relay 9 is switched to the non-conductive state, and the DC quick charging is finished.

DC急速充電が終了すると、コントロールパイロット信号は6Vから9Vに移行するとともに、通信信号の振幅値は初期値に書き換えられる。そして、プラグ12を受電コネクタ13から取り外すと、コントロールパイロット信号は12Vに復帰する。   When the DC quick charge ends, the control pilot signal shifts from 6V to 9V, and the amplitude value of the communication signal is rewritten to the initial value. When the plug 12 is removed from the power receiving connector 13, the control pilot signal returns to 12V.

給電装置1がDC急速充電に対応していない時には、通信信号の振幅値の書き換えは行われない。そして、初期値として設定されているAC充電時の通信信号の振幅値でPLC通信が行われるとともに,AC充電が開始される。   When the power supply device 1 does not support DC quick charge, the amplitude value of the communication signal is not rewritten. Then, PLC communication is performed with the amplitude value of the communication signal at the time of AC charging set as an initial value, and AC charging is started.

上記のような自動車の充電システムでは、次に示す効果を得ることができる。
(1)DC急速充電を行う場合には、PLC通信信号の振幅を拡大することができる。従って、充電ケーブル4内で給電線10a,10bで発生するノイズレベルの増大にともなって制御用線11a,11bのノイズレベルが上昇しても、S/N比の低下を防止して安定したPLC通信を行うことができる。
(2)AC充電を行うときには、通信信号の振幅をあらかじめ設定されている初期値としてPLC通信を行うことができる。
(3)DC急速充電を行う場合にはAC充電のための給電線8a,8bを使用しない。従って、規格を満足させる必要はないので振幅を拡大することができる。
(4)PLCモデム20,21の変調方式は、耐ノイズ性に優れたOFDM方式が採用されているので、PLCモデム20,21に近接して、ノイズ発生源となる電子デバイスが搭載されていても、PLC通信信号を安定して送受信することができる。
The following effects can be obtained in the above-described automobile charging system.
(1) When performing DC quick charging, the amplitude of the PLC communication signal can be increased. Therefore, even if the noise level of the control lines 11a and 11b increases as the noise level generated in the power supply lines 10a and 10b in the charging cable 4 increases, the S / N ratio is prevented from decreasing and the PLC is stable. Communication can be performed.
(2) When performing AC charging, PLC communication can be performed with the amplitude of the communication signal as an initial value set in advance.
(3) When performing DC rapid charging, the feeding lines 8a and 8b for AC charging are not used. Therefore, it is not necessary to satisfy the standard, so that the amplitude can be expanded.
(4) Since the modulation method of the PLC modems 20 and 21 employs an OFDM method having excellent noise resistance, an electronic device that is a noise generation source is mounted in the vicinity of the PLC modems 20 and 21. In addition, the PLC communication signal can be stably transmitted and received.

なお、上記実施形態は以下のように変更してもよい。
・図3に示すように、DC急速充電時に、メモリ40に格納されているDC充電時の通信信号の振幅に基づいて、PLCモデム20,21の出力回路であるAFE34の利得を引き上げて通信信号の振幅を拡大するようにしてもよい。
・DC急速充電のための通信信号の振幅値を初期値として設定し、AC充電の開始時に振幅値を縮小するように書き換え処理を行ってもよい。
・給電装置の外部から、例えば車両の運転手等により、PLC通信信号の振幅値を書き換える設定信号を入力するようにしてもよい。
In addition, you may change the said embodiment as follows.
As shown in FIG. 3, at the time of DC quick charge, based on the amplitude of the communication signal at the time of DC charging stored in the memory 40, the gain of the AFE 34 which is the output circuit of the PLC modems 20 and 21 is increased to increase the communication signal. The amplitude may be increased.
The amplitude value of the communication signal for DC quick charging may be set as an initial value, and the rewriting process may be performed so as to reduce the amplitude value at the start of AC charging.
-You may make it input the setting signal which rewrites the amplitude value of a PLC communication signal from the exterior of an electric power feeder, for example by the driver of a vehicle.

1…給電装置、2…バッテリー、3…車両、4…充電ケーブル、5…AC電力供給部、6…DC電力供給部、7…給電制御部、20,21…PLCモデム、31…振幅調整部(送信制御回路)、32…振幅調整部(記憶装置、メモリ)、40…振幅調整部(記憶装置、メモリ)。   DESCRIPTION OF SYMBOLS 1 ... Power feeding apparatus, 2 ... Battery, 3 ... Vehicle, 4 ... Charging cable, 5 ... AC power supply part, 6 ... DC power supply part, 7 ... Power feeding control part, 20, 21 ... PLC modem, 31 ... Amplitude adjustment part (Transmission control circuit), 32... Amplitude adjustment unit (storage device, memory), 40... Amplitude adjustment unit (storage device, memory).

Claims (6)

AC電力供給部とDC電力供給部のうち少なくともDC電力供給部を備えた給電装置と、
前記DC電力供給部若しくは前記AC電力供給部及びDC電力供給部にそれぞれ接続された給電線を内包する充電ケーブルと、
前記充電ケーブルを介して供給されるAC電力若しくはDC電力に基づいてAC充電あるいはDC充電されるバッテリーを搭載した車両と、
前記給電装置に設けられ、前記充電ケーブルに備えられた制御用線を介して充電制御のための制御信号を送受信する給電制御部と、
前記車両に設けられ、前記給電制御部との間で前記制御用線を介して制御信号を送受信する充電制御部と、
前記給電装置と前記車両にそれぞれ設けられ、前記制御用線を介してPLC通信を行うPLCモデムと
を備えた自動車用充電システムにおいて、
前記PLCモデムには、前記PLC通信を行うための通信信号の振幅を、AC充電時よりDC充電時で大きくする振幅調整部を備えたことを特徴とする自動車用充電システム。
A power supply apparatus including at least a DC power supply unit among an AC power supply unit and a DC power supply unit;
A charging cable including a power supply line connected to the DC power supply unit or the AC power supply unit and the DC power supply unit, and
A vehicle equipped with a battery that is AC charged or DC charged based on AC power or DC power supplied via the charging cable;
A power supply control unit that is provided in the power supply device and transmits and receives a control signal for charge control via a control line provided in the charging cable;
A charge control unit that is provided in the vehicle and transmits / receives a control signal to / from the power supply control unit via the control line;
In an automotive charging system provided with a PLC modem that is provided in the power feeding device and the vehicle and performs PLC communication via the control line,
The vehicle charging system according to claim 1, wherein the PLC modem includes an amplitude adjustment unit that increases an amplitude of a communication signal for performing the PLC communication during DC charging than during AC charging.
請求項1に記載の自動車用充電システムにおいて、
前記振幅調整部は、
前記通信信号をデジタル信号で処理する送信制御回路に、前記AC充電時の通信信号の振幅値と前記DC充電時の通信信号の振幅値をあらかじめ格納した記憶装置を備え、格納されている振幅値に基づいて通信信号の振幅値をデジタル値で調整することを特徴とする自動車用充電システム。
The vehicle charging system according to claim 1,
The amplitude adjuster is
The transmission control circuit that processes the communication signal with a digital signal includes a storage device that stores in advance the amplitude value of the communication signal during the AC charging and the amplitude value of the communication signal during the DC charging, and the stored amplitude value The vehicle charging system is characterized in that the amplitude value of the communication signal is adjusted with a digital value based on the above.
請求項2に記載の自動車用充電システムにおいて、
前記振幅調整部は、前記AC充電時の通信信号の振幅値を初期値として設定し、前記DC充電時には、前記記憶装置に格納されているDC充電時の振幅値に基づいて前記通信信号の振幅を拡大することを特徴とする自動車用充電システム。
The vehicle charging system according to claim 2,
The amplitude adjustment unit sets an amplitude value of a communication signal at the time of AC charging as an initial value, and at the time of DC charging, the amplitude of the communication signal is based on an amplitude value at the time of DC charging stored in the storage device. A charging system for automobiles characterized by expanding the range.
請求項2に記載の自動車用充電システムにおいて、
前記振幅調整部は、前記DC充電時の通信信号の振幅値を初期値として設定し、前記AC充電時には、前記記憶装置に格納されているAC充電時の振幅値に基づいて前記通信信号の振幅を縮小することを特徴とする自動車用充電システム。
The vehicle charging system according to claim 2,
The amplitude adjustment unit sets an amplitude value of a communication signal at the time of DC charging as an initial value, and at the time of the AC charging, the amplitude of the communication signal is based on an amplitude value at the time of AC charging stored in the storage device. An automobile charging system characterized by reducing the size of the vehicle.
請求項1に記載の自動車用充電システムにおいて、
前記振幅調整部は、前記AC充電時の通信信号の振幅値と、前記DC充電時の通信信号の振幅値をアナログ値であらかじめ格納した記憶装置を備え、格納されている振幅値に基づいて前記PLCモデムの出力回路の利得を調整することを特徴とする自動車用充電システム。
The vehicle charging system according to claim 1,
The amplitude adjustment unit includes a storage device that stores in advance an amplitude value of the communication signal at the time of AC charging and an amplitude value of the communication signal at the time of DC charging as an analog value, and based on the stored amplitude value A charging system for an automobile characterized by adjusting a gain of an output circuit of a PLC modem.
請求項1乃至5のいずれか1項に記載の自動車用充電システムにおいて、
前記PLCモデムの変調方式は、OFDM方式としたことを特徴とする自動車用充電システム。
The vehicle charging system according to any one of claims 1 to 5,
An automotive charging system, wherein the modulation method of the PLC modem is an OFDM method.
JP2014117481A 2014-06-06 2014-06-06 Car charging system Expired - Fee Related JP6172057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014117481A JP6172057B2 (en) 2014-06-06 2014-06-06 Car charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117481A JP6172057B2 (en) 2014-06-06 2014-06-06 Car charging system

Publications (2)

Publication Number Publication Date
JP2015231303A true JP2015231303A (en) 2015-12-21
JP6172057B2 JP6172057B2 (en) 2017-08-02

Family

ID=54887844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117481A Expired - Fee Related JP6172057B2 (en) 2014-06-06 2014-06-06 Car charging system

Country Status (1)

Country Link
JP (1) JP6172057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105807A1 (en) * 2019-09-09 2022-04-07 Thermo King Corporation Transport climate control system with an accessory power distribution unit for managing transport climate control loads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018204565A1 (en) * 2018-03-26 2019-09-26 Siemens Aktiengesellschaft Setting a communication parameter of a communication module of a charging station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026953A (en) * 2011-07-25 2013-02-04 Toyota Industries Corp Vehicle charging system
WO2013129038A1 (en) * 2012-02-28 2013-09-06 住友電気工業株式会社 Communication system, communication device, power-supply device and vehicle
JP2013247688A (en) * 2012-05-23 2013-12-09 Toyota Industries Corp Communication system, charging stand, and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026953A (en) * 2011-07-25 2013-02-04 Toyota Industries Corp Vehicle charging system
WO2013129038A1 (en) * 2012-02-28 2013-09-06 住友電気工業株式会社 Communication system, communication device, power-supply device and vehicle
JP2013247688A (en) * 2012-05-23 2013-12-09 Toyota Industries Corp Communication system, charging stand, and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105807A1 (en) * 2019-09-09 2022-04-07 Thermo King Corporation Transport climate control system with an accessory power distribution unit for managing transport climate control loads
US11827106B2 (en) * 2019-09-09 2023-11-28 Thermo King Llc Transport climate control system with an accessory power distribution unit for managing transport climate control loads

Also Published As

Publication number Publication date
JP6172057B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5900603B2 (en) Communication system, communication device, power supply device, and vehicle
EP2800284A1 (en) Electric automobile charging/discharging carrier apparatus and communication method and system
JP5868976B2 (en) Communication system and communication apparatus
JP6047907B2 (en) Communication apparatus and communication system
JP5876483B2 (en) Communication system and communication apparatus
JP6172057B2 (en) Car charging system
JP6052228B2 (en) In-vehicle control system
CN108349402B (en) Vehicle charging system
JP2013026953A (en) Vehicle charging system
US11677441B2 (en) Power line communication system
JP5881572B2 (en) On-vehicle charger, control system, and pilot signal voltage acquisition method
JP5440598B2 (en) Power supply apparatus and communication method
CN103303154B (en) There is the battery-driven car of high speed data transmission function, battery charger and data transmission method
CN210174958U (en) Control system and automobile
KR20190056082A (en) Electric vehicle capable of both wired and wireless charging
WO2013094721A1 (en) Feeding apparatus and communication method
JP2013219432A (en) Communication device and communication system
KR20150066167A (en) Synchronizing signal transmitting device and receiving device for vehicle and mehtod for transmitting/receiving synchrnizing signal
JP2021031016A (en) Electronic control device
JP2013183472A (en) Power supply device and communication method
JP2013183473A (en) Power supply device and communication method
JP2015005830A (en) Communication system and communication device
JP2017079541A (en) Conversion adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees