JP2015231301A - Power supply unit for vehicle - Google Patents

Power supply unit for vehicle Download PDF

Info

Publication number
JP2015231301A
JP2015231301A JP2014117358A JP2014117358A JP2015231301A JP 2015231301 A JP2015231301 A JP 2015231301A JP 2014117358 A JP2014117358 A JP 2014117358A JP 2014117358 A JP2014117358 A JP 2014117358A JP 2015231301 A JP2015231301 A JP 2015231301A
Authority
JP
Japan
Prior art keywords
battery
charge
vehicle
voltage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014117358A
Other languages
Japanese (ja)
Other versions
JP5818947B1 (en
Inventor
英明 谷
Hideaki Tani
英明 谷
和知 敏
Satoshi Wachi
敏 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014117358A priority Critical patent/JP5818947B1/en
Priority to DE102014222039.4A priority patent/DE102014222039A1/en
Application granted granted Critical
Publication of JP5818947B1 publication Critical patent/JP5818947B1/en
Publication of JP2015231301A publication Critical patent/JP2015231301A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply unit for vehicle, capable of controlling a power supply voltage to be within a predetermined voltage range.SOLUTION: Voltage state detection means 111 includes charging rate detection means 111d for detecting the charging rate of a battery 110. A power supply management apparatus 108 includes charge and discharge threshold calculation means 108c for calculating charge and discharge threshold values based on a maximum operation voltage and a minimum operation voltage of the battery, and charge and discharge suppression means for suppressing charge and discharge of the battery when the charge rate of the battery reaches a charge threshold value and a discharge threshold value.

Description

この発明は車両の電源装置に係り、特に電源電圧を所定の電圧範囲に制御する手段を備えた車両の電源装置に関するものである。   The present invention relates to a vehicle power supply device, and more particularly to a vehicle power supply device including means for controlling a power supply voltage within a predetermined voltage range.

車両には各種電気負荷へ電力を供給するために発電機と二次電池が搭載されており、近年は燃費改善の要求から、二次電池については従来の鉛電池方式に対する電力拡張策として、リチウムイオン電池や電気二重層キャパシタに代表されるエネルギー密度の高い電池の採用が進んでいる。これらの電池については、車両の電源に要求される電圧範囲と電気容量に適合するため、一般に複数の単電池を直列接続した形態を一組の電池モジュール(以下、組電池という)として幾つかの組電池を直列または並列に組み合わせることで構成されている。加えて、内蔵する全ての単電池を安全に使用するため、組電池毎に各単電池の状態を検知する電池状態検知基板(Cell Monitoring Unit)(以下、単にCMUともいう)を備えた電池パックの形態で取り扱われることが多い。この電池パックについては、誤った使用により内部の電池が損傷を受けない様に、CMUで検知した電池の状態に基づき入出力を遮断するフェイルセーフ手段を備えることが望ましい。   Vehicles are equipped with generators and secondary batteries to supply power to various electrical loads. Recently, due to demands for improving fuel efficiency, lithium secondary batteries have been developed as a power expansion measure for conventional lead battery systems. The adoption of batteries with high energy density, represented by ion batteries and electric double layer capacitors, is advancing. As for these batteries, in order to meet the voltage range and electric capacity required for the power source of the vehicle, a plurality of unit cells are generally connected in series as a set of battery modules (hereinafter referred to as assembled batteries). It is configured by combining assembled batteries in series or in parallel. In addition, a battery pack provided with a cell monitoring unit (hereinafter also simply referred to as CMU) that detects the state of each unit cell for each assembled battery in order to use all the unit cells safely. It is often handled in the form of The battery pack preferably includes fail-safe means for interrupting input / output based on the state of the battery detected by the CMU so that the internal battery is not damaged due to incorrect use.

これに対し、電池パックの内部で組電池と出力端子の間に専用リレーを設け、電池の異常を検知すれば前記リレーの接点を開放する手段が提案されている(特許文献1参照)。この従来技術では、電池の異常は、電圧、電流、温度、充電率(State of Charge)(以下、単にSOCともいう)、内部抵抗、等のパラメータにより検知され、前記リレーの接点開放は電池の保護を目的としている。   On the other hand, a means has been proposed in which a dedicated relay is provided between the assembled battery and the output terminal inside the battery pack, and the relay contact is opened when a battery abnormality is detected (see Patent Document 1). In this prior art, battery abnormality is detected by parameters such as voltage, current, temperature, state of charge (hereinafter also simply referred to as SOC), internal resistance, and the like. The purpose is protection.

特開2011−78147JP2011-78147

ところが、上記特許文献1に示される従来技術では、電池パック内部の電池の電圧が異常電圧に達した際に前記リレーの接点を開放することはできるが、一方で、電池パックの出力端子電圧を車両の電源に要求される電圧範囲に制御することはできない。即ち、電池の電圧異常を検知して前記リレーの接点を開放すれば電池パックは出力停止に至り、出力端子電圧は0Vになるという問題点があった。   However, in the prior art disclosed in Patent Document 1, when the voltage of the battery inside the battery pack reaches an abnormal voltage, the relay contact can be opened. The voltage range required for the vehicle power supply cannot be controlled. That is, if a battery voltage abnormality is detected and the relay contact is opened, the battery pack stops output and the output terminal voltage becomes 0V.

この発明は、上記のような従来の問題点を解消するためになされたもので、過充電または過放電による電池パックの電圧異常を生じることなく、電池パックの出力端子電圧を所定の電圧範囲に制御することのできる車両の電源装置を提供することを目的とする。   The present invention has been made to solve the conventional problems as described above. The battery pack output terminal voltage is kept within a predetermined voltage range without causing abnormal battery pack voltage due to overcharge or overdischarge. An object of the present invention is to provide a power supply device for a vehicle that can be controlled.

この発明に係わる車両の電源装置は、車両の発電機により充電され電気負荷へ給電する電池と、前記電池の状態を検知する電池状態検知手段と、前記電池の状態に基づき電源管理を行う電源管理部と、前記電源管理部からの指令に基づき車両の発電と電力消費を制御し、前記電池の充放電を制御する車両制御部を備えた車両の電源装置であって、前記電池状態検知手段は、前記電池の充電率を検出する充電率演算手段を備え、前記電源管理部は、前記電池の最大作動電圧より充電率の充電閾値を算出し、前記電池の最小作動電圧より充電率の放電閾値を算出する充放電閾値演算手段と、前記電池の充電率が前記充電閾値または前記放電閾値に達すれば前記電池の充放電を抑制する充放電抑制手段を備えたものである。   A power supply device for a vehicle according to the present invention includes a battery that is charged by an electric generator of a vehicle and that supplies power to an electric load, battery state detection means that detects the state of the battery, and power management that performs power management based on the state of the battery. And a vehicle power supply device including a vehicle control unit that controls power generation and power consumption of the vehicle based on a command from the power management unit, and controls charging / discharging of the battery, wherein the battery state detection means Charging rate calculation means for detecting the charging rate of the battery, the power management unit calculates a charging threshold of the charging rate from the maximum operating voltage of the battery, and discharge threshold of the charging rate from the minimum operating voltage of the battery Charging / discharging threshold value calculating means, and charging / discharging suppressing means for suppressing charging / discharging of the battery when the charging rate of the battery reaches the charging threshold value or the discharging threshold value.

この発明の車両の電源装置によれば、電池パックの最大作動電圧および最小作動電圧よりSOCの充放電閾値を算出し、SOCがこの充放電閾値に達すれば充放電電流を制御することで電池パックの充放電を抑制する。これにより、電池パックは過充電または過放電による電圧異常を生じることなく、出力端子電圧を所望の電圧範囲、即ち、車両の電源に要求される電圧範囲に制御することができる。   According to the vehicle power supply device of the present invention, the SOC charge / discharge threshold is calculated from the maximum operating voltage and the minimum operating voltage of the battery pack, and the battery pack is controlled by controlling the charge / discharge current when the SOC reaches the charge / discharge threshold. Suppresses charging / discharging. As a result, the battery pack can control the output terminal voltage within a desired voltage range, that is, a voltage range required for the power source of the vehicle, without causing voltage abnormality due to overcharge or overdischarge.

上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。   The above-described and other objects, features, and effects of the present invention will become more apparent from the detailed description and the drawings in the following embodiments.

この発明の実施の形態1における車両の電源装置を含む車両の電源系全体の概略構成図である。It is a schematic block diagram of the whole vehicle power supply system including the vehicle power supply device in Embodiment 1 of this invention. この発明の実施の形態1における電池パック内部のCMUの制御処理を示すフローチャートである。It is a flowchart which shows the control processing of CMU inside a battery pack in Embodiment 1 of this invention. この発明の実施の形態1における電源管理装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the power management device in Embodiment 1 of this invention. この発明の実施の形態1における車両の電源装置の制御動作を示すタイミングチャートである。It is a timing chart which shows the control action of the power supply device of the vehicle in Embodiment 1 of this invention.

実施の形態1.
以下、この発明の実施の形態1につて、図面を参照して説明する。
図1は、この発明の実施の形態1の車両の電源装置を示すもので、電源管理部と車両制御部、及び高電圧電池パックを備える車両の電源系全体の概略構成図である。
図1において、高電圧電源系は、電池パック101と、図示しない内燃機関と機械的に接続され車両の発電または駆動を担うモータジェネレータ102と、車両の高電圧電気負荷103より構成される。また、低電圧電源系は、鉛電池104と、DCDCコンバータ105と、車両の低電圧電気負荷106と、車両制御部である車両制御装置107と、電源管理部である電源管理装置108より構成される。ここで、電源管理装置108は、電池パック101の異常を検知すれば電池パック101内部のフェイルセーフリレー109の接点を開放し、車両制御装置107へ非常給電指令を送る。また、車両制御装置107は、図示しない内燃機関を制御すると共に、電源管理装置108の指令を受け、モータジェネレータ102と高電圧電気負荷103と低電圧電気負荷106を制御する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 shows a vehicle power supply apparatus according to Embodiment 1 of the present invention, and is a schematic configuration diagram of an entire vehicle power supply system including a power management unit, a vehicle control unit, and a high-voltage battery pack.
In FIG. 1, the high-voltage power supply system includes a battery pack 101, a motor generator 102 that is mechanically connected to an internal combustion engine (not shown) and generates or drives a vehicle, and a high-voltage electric load 103 of the vehicle. The low voltage power supply system includes a lead battery 104, a DCDC converter 105, a low voltage electric load 106 of the vehicle, a vehicle control device 107 as a vehicle control unit, and a power management device 108 as a power management unit. The Here, when the power management device 108 detects an abnormality of the battery pack 101, the power management device 108 opens the contact point of the fail-safe relay 109 inside the battery pack 101 and sends an emergency power supply command to the vehicle control device 107. Further, the vehicle control device 107 controls an internal combustion engine (not shown) and controls the motor generator 102, the high voltage electric load 103, and the low voltage electric load 106 in response to a command from the power management device 108.

電池パック101は、組電池110と、組電池110内部の各単電池の状態を検知するCMU111と、電池パック101の異常時に外部との電気接続を遮断するフェイルセーフリレー109と、フェイルセーフリレー109の駆動を制御する制御基板112より構成される。ここで、CMU111は各単電池の電圧と電流と温度を検出し、これらを基に電池のSOCと内部抵抗をマップ算出する。これらのパラメータの算出方法については後述の図2において説明する。また、制御基板112はフェイルセーフリレー109の駆動状態に加え、電池パック101内部の回路部の温度を検出する。CMU111と制御基板112は、其々において検知した電池パック101内部の状態を電源管理装置108へ送信する。   The battery pack 101 includes an assembled battery 110, a CMU 111 that detects the state of each unit cell inside the assembled battery 110, a fail-safe relay 109 that interrupts electrical connection with the outside when the battery pack 101 is abnormal, and a fail-safe relay 109. It is comprised from the control board 112 which controls the drive of this. Here, the CMU 111 detects the voltage, current, and temperature of each unit cell, and calculates the SOC and internal resistance of the battery based on these. A method for calculating these parameters will be described later with reference to FIG. In addition to the driving state of the fail safe relay 109, the control board 112 detects the temperature of the circuit unit inside the battery pack 101. The CMU 111 and the control board 112 transmit the internal state of the battery pack 101 detected to the power management apparatus 108, respectively.

電源管理装置108は、電池パック101内部の状態に基づき、電池パック101全体の内部抵抗と、SOCの充放電閾値と、充放電許可電流を算出する。これらのパラメータの算出方法については後述の図3において説明する。また、電源管理装置108は、電池パック101の正常時において、電池パック101の充放電電流が充放電許可電流に収まる様にDCDCコンバータ105と車両制御装置107へ指令を送り、車両制御装置107はモータジェネレータ102と高電圧電気負荷103と低電圧電気負荷106を制御する。   Based on the state inside the battery pack 101, the power management device 108 calculates the internal resistance of the entire battery pack 101, the SOC charge / discharge threshold, and the charge / discharge permission current. A method for calculating these parameters will be described later with reference to FIG. Further, the power management device 108 sends a command to the DCDC converter 105 and the vehicle control device 107 so that the charge / discharge current of the battery pack 101 falls within the charge / discharge permission current when the battery pack 101 is normal. The motor generator 102, the high voltage electric load 103, and the low voltage electric load 106 are controlled.

尚、ここでは電池パック101、電源管理装置108、DCDCコンバータ105、モータジェネレータ102、車両制御装置107を個別に備えた形態を示すが、車両搭載に際し其々を統合してもよい。電源管理部である電源管理装置108の機能を車両制御装置107に組み込んで装置の統合をした場合には、統合によるコスト低減と軽量化の効果がある。一方、電源管理装置と車両制御装置を個別に備えた場合には、元の車両制御装置に変更を加えることなく機能追加ができ、また、電源管理装置に異常があれば、元の車両制御装置のみで、車両を作動することができる。
また、電源管理装置108は充放電抑制手段として充放電許可電流を算出する形態を示すが、充放電許可電流に代わり、電池パック101の充放電許可電力や出力端子目標電圧、モータジェネレータ102の作動電力や作動トルク、電気負荷の放電電力のいずれかを車両制御装置107へ送信することで、車両制御装置107は車両の発電と電力消費を制御してもよい。
また、モータジェネレータ102については、発電機能のみを有するオルタネータであってもよい。また、電池パック101の内部構成について、CMU111、制御基板112、フェイルセーフリレー109を個別に備えた形態を示すが、其々を統合してもよい。また、組電池110とCMU111について、一対の形態を示すが、単電池の列数に応じてCMU111を複数備えてもよい。また、CMU111と制御基板112は、其々で検知した電池パック101内部の状態に基づき異常判定を行い、非常時の場合は電源管理装置の指令によらずフェイルセーフリレー109の接点を開放してもよい。
In addition, although the battery pack 101, the power supply management apparatus 108, the DCDC converter 105, the motor generator 102, and the vehicle control apparatus 107 are shown here individually, you may integrate each when mounting in a vehicle. When the functions of the power management device 108 serving as the power management unit are incorporated in the vehicle control device 107 and the devices are integrated, there are effects of cost reduction and weight reduction by the integration. On the other hand, when the power management device and the vehicle control device are provided separately, functions can be added without changing the original vehicle control device, and if there is an abnormality in the power management device, the original vehicle control device Only the vehicle can be operated.
Further, the power management device 108 shows a form of calculating the charge / discharge permission current as the charge / discharge suppression means, but instead of the charge / discharge permission current, the charge / discharge permission power of the battery pack 101, the output terminal target voltage, the operation of the motor generator 102 The vehicle control device 107 may control power generation and power consumption of the vehicle by transmitting any one of electric power, operating torque, and electric load discharge power to the vehicle control device 107.
Further, the motor generator 102 may be an alternator having only a power generation function. Moreover, although the form which provided CMU111, the control board 112, and the fail safe relay 109 separately about the internal structure of the battery pack 101 is shown, you may integrate each. Moreover, although a pair of form is shown about the assembled battery 110 and CMU111, you may provide two or more CMU111 according to the row | line | column number of a cell. In addition, the CMU 111 and the control board 112 make an abnormality determination based on the internal state of the battery pack 101 detected in each case, and in the case of an emergency, the contact of the fail safe relay 109 is opened regardless of the command of the power management device. Also good.

図2は、この発明の実施の形態1における電池パック101内部のCMU111の制御処理を示すフローチャートである。図2において、ステップ201では、図1の電圧検出手段111aで、組電池110内部の各単電池の電圧を検出する。ステップ202では、図1の電流検出手段111bで、組電池110と電池パック101の負極の間に備えた電流センサCSの信号を処理することで、組電池110内部の各単電池に流れる電流を検出する。ステップ203では、図1の温度検出手段111cで、組電池110内部の各単電池の表面に取り付けた図示しないサーミスタの信号を処理することで各単電池の温度を検出する。   FIG. 2 is a flowchart showing a control process of CMU 111 inside battery pack 101 according to Embodiment 1 of the present invention. In FIG. 2, in step 201, the voltage detection unit 111 a in FIG. 1 detects the voltage of each unit cell inside the assembled battery 110. In step 202, the current detection means 111b of FIG. 1 processes the signal of the current sensor CS provided between the assembled battery 110 and the negative electrode of the battery pack 101, whereby the current flowing through each unit cell inside the assembled battery 110 is obtained. To detect. In step 203, the temperature of each unit cell is detected by processing the signal of a thermistor (not shown) attached to the surface of each unit cell inside the assembled battery 110 by the temperature detection means 111c of FIG.

ステップ204では、ステップ202で検出した電流が所定期間中に概ね0(ゼロ)A、即ち、各単電池が充放電のない静止状態にあれば、所定期間の最後にステップ201で検出した電圧を開放端電圧(Open Circuit Voltage)(以下、単にOCVともいう)と見なし、OCVとステップ203で検出した電池温度を基に、図1の充電率演算手段111dで、各単電池のSOCをマップ算出する。それ以外の状態では、ステップ202で検出した電流を積算することで各単電池のSOCを更新する。ステップ205では、図1の内部抵抗演算手段111eで、ステップ204で算出した各単電池のSOCとステップ203で検出した電池温度を基に、各単電池の内部抵抗をマップ算出する。ステップ206では、ステップ201〜205で検知した各単電池の状態を電源管理装置108へ送信する。尚、電池の温度毎のSOCとOCV、および電池の温度毎のSOCと内部抵抗の関係は、電池の劣化度合いに応じてメーカが定める電池特性である。   In step 204, if the current detected in step 202 is approximately 0 (zero) A during a predetermined period, that is, if each unit cell is in a stationary state without charge / discharge, the voltage detected in step 201 at the end of the predetermined period. Considering the open circuit voltage (hereinafter also simply referred to as OCV), the SOC calculation of each cell is calculated by the charging rate calculation means 111d in FIG. 1 based on the OCV and the battery temperature detected in step 203. To do. In other states, the SOC of each unit cell is updated by integrating the current detected in step 202. In step 205, the internal resistance calculation unit 111e in FIG. 1 calculates a map of the internal resistance of each unit cell based on the SOC of each unit cell calculated in step 204 and the battery temperature detected in step 203. In step 206, the state of each single cell detected in steps 201 to 205 is transmitted to the power management apparatus 108. Note that the SOC and OCV for each battery temperature and the relationship between the SOC and the internal resistance for each battery temperature are battery characteristics determined by the manufacturer according to the degree of battery deterioration.

図3は、この発明の実施の形態1における電源管理装置108の制御処理を示すフローチャートである。図3において、ステップ301では、電池パック101内部の各単電池の状態をCMU111より受信する。以降のステップにおいて参照する電池の状態パラメータについては、全ての単電池の平均値を基本に、安全性を考慮して充電時は最大値を放電時は最小値を用いてもよい。ステップ302では、電池パック101内部の回路部の温度を制御基板112のパック内部温度検出手段112bより受信する。ステップ303では、図1のパック内部抵抗演算手段108bによって、CMU111の内部抵抗演算手段111eにてマップ算出した電池の内部抵抗に、ステップ302にて検出した電池パック101内部の回路部の温度に基づきテーブル算出した電気抵抗を加算して、電池パック101全体の内部抵抗を算出する。ステップ304では、図1の電池パック異常検知手段108aによって、ステップ301〜303にて検知した電池パック101の状態に基づき、電池パック101が異常状態にあるかを判定する。尚、電池パック101内部の回路部の温度と電気抵抗の関係は、電池パック101の正極負極出力端子間の電池を除く電流経路の構成部品の温度特性に応じて定めることができる。   FIG. 3 is a flowchart showing a control process of the power management apparatus 108 in the first embodiment of the present invention. In FIG. 3, in step 301, the state of each unit cell inside the battery pack 101 is received from the CMU 111. Regarding the battery state parameters to be referred to in the subsequent steps, the maximum value may be used during charging and the minimum value during discharging may be used in consideration of safety based on the average value of all single cells. In step 302, the temperature of the circuit unit inside the battery pack 101 is received from the pack internal temperature detection means 112 b of the control board 112. In step 303, the internal resistance of the battery calculated by the internal resistance calculation unit 111e of the CMU 111 by the pack internal resistance calculation unit 108b of FIG. 1 is calculated based on the temperature of the circuit unit inside the battery pack 101 detected in step 302. The internal resistance of the entire battery pack 101 is calculated by adding the electric resistances calculated in the table. In step 304, the battery pack abnormality detection means 108a in FIG. 1 determines whether the battery pack 101 is in an abnormal state based on the state of the battery pack 101 detected in steps 301 to 303. The relationship between the temperature of the circuit portion inside the battery pack 101 and the electrical resistance can be determined according to the temperature characteristics of the components of the current path excluding the battery between the positive and negative output terminals of the battery pack 101.

ステップ304にて電池パック101の異常成立の場合はステップ305へ進み、ステップ305では、電池パック101内部の制御基板112のリレー制御手段112aにフェイルセーフリレー109の接点開放を指令する。続くステップ306では、図1の充放電抑制手段である充放電許可電流演算手段108dによって、電池パック101の充放電許可電流を0Aに初期化し、ステップ307では、車両制御装置107へ充放電許可電流の初期値を送信することで、車両制御装置107は発電機による非常給電モードに移り、車両制御装置107は高電圧電気負荷103および低電圧電気負荷106への給電を継続すべく内燃機関の動力を受けてモータジェネレータ102を発電稼働する。   If it is determined in step 304 that the battery pack 101 is abnormal, the process proceeds to step 305. In step 305, the relay control means 112a of the control board 112 in the battery pack 101 is instructed to open the contact of the failsafe relay 109. In the subsequent step 306, the charge / discharge permission current calculation means 108d, which is the charge / discharge suppression means in FIG. 1, is initialized to 0A by the charge / discharge permission current calculation means 108d. , The vehicle control device 107 shifts to the emergency power supply mode by the generator, and the vehicle control device 107 powers the internal combustion engine to continue power supply to the high voltage electric load 103 and the low voltage electric load 106. In response, the motor generator 102 is operated to generate electricity.

ステップ304にて電池パック101の異常不成立の場合はステップ308へ進み、ステップ308では、図1の充放電許可電流演算手段108dによって、充電と放電其々について、電池パック101内部の電池の出力制限値とモータジェネレータ102の出力制限値の小さい方を電池の電圧で除算し、充放電許可電流Aとして設定する。尚、電池の出力制限値は電池を損傷しない制限値として電池の温度に基づきメーカが定める電池特性であり、モータジェネレータ102の出力制限値は発電トルクまたは駆動トルクが車両に及ぼす影響から決定される値である。ステップ309では、電池パック101の最大作動電圧および最小作動電圧に対し、ステップ308で算出した充放電許可電流Aとステップ303で算出した内部抵抗の積を差し引くことでOCVの充放電閾値を算出する。ステップ310では、充放電閾値演算手段108cによって、ステップ309で算出したOCVの充放電閾値と電池の温度より、SOCの充放電閾値をマップ算出する。尚、電池の温度毎のSOCとOCVの関係は前述の通りである。ステップ311では、ステップ301で受信した電池のSOCがステップ310で算出したSOCの充放電閾値の範囲にあるか、即ち充電閾値以下放電閾値以上にあるかを判定する。   If the abnormality of the battery pack 101 is not established in step 304, the process proceeds to step 308. In step 308, the charge / discharge permission current calculation means 108d in FIG. The smaller of the value and the output limit value of the motor generator 102 is divided by the battery voltage and set as the charge / discharge permission current A. The battery output limit value is a battery characteristic determined by the manufacturer based on the battery temperature as a limit value that does not damage the battery, and the output limit value of the motor generator 102 is determined from the influence of the power generation torque or the drive torque on the vehicle. Value. In step 309, the OCV charge / discharge threshold is calculated by subtracting the product of the charge / discharge permission current A calculated in step 308 and the internal resistance calculated in step 303 from the maximum operating voltage and the minimum operating voltage of the battery pack 101. . In step 310, the charge / discharge threshold value calculation means 108c calculates a map of the SOC charge / discharge threshold value from the OCV charge / discharge threshold value calculated in step 309 and the battery temperature. The relationship between the SOC and the OCV for each battery temperature is as described above. In step 311, it is determined whether the SOC of the battery received in step 301 is within the range of the SOC charge / discharge threshold calculated in step 310, that is, whether it is below the charge threshold and above the discharge threshold.

ステップ311にてSOCが充放電閾値の範囲にない場合はステップ312に進み、SOCと電池の温度より、ステップ310と逆の手順でOCVをマップ算出する。ステップ313では、ステップ312で算出したOCVとステップ303で算出した電池パック101の内部抵抗より、電池パック101の充放電許可電流Bを算出する。即ち、電池パック101の最大作動電圧よりOCVを差し引いて内部抵抗で除算した値が充電許可電流となり、OCVより電池パック101の最小作動電圧を差し引いて内部抵抗で除算した値が放電許可電流となる。ステップ314では、SOCが充放電閾値の範囲にない場合の充放電許可電流として、ステップ308の算出値Aとステップ313の算出値Bを比較し、充電放電其々に値の小さい方を選択してステップ307へ進む。   If the SOC is not in the charge / discharge threshold range in step 311, the process proceeds to step 312, and the OCV is calculated from the SOC and battery temperature in the reverse order of step 310. In step 313, the charge / discharge permission current B of the battery pack 101 is calculated from the OCV calculated in step 312 and the internal resistance of the battery pack 101 calculated in step 303. That is, the value obtained by subtracting the OCV from the maximum operating voltage of the battery pack 101 and dividing by the internal resistance is the charge permission current, and the value obtained by subtracting the minimum operating voltage of the battery pack 101 from the OCV and dividing by the internal resistance is the discharge permission current. . In step 314, as the charge / discharge permission current when the SOC is not within the range of the charge / discharge threshold, the calculated value A in step 308 is compared with the calculated value B in step 313, and the smaller one is selected for each charge / discharge. To step 307.

ステップ311にてSOCが充放電閾値の範囲にある場合はステップ307に進み、充放電許可電流はステップ308の算出値Aとなる。ステップ307では、車両制御装置107へステップ314にて選択した充放電許可電流を送信することで、電源管理装置108は電池パック101の充放電電流が充放電許可電流に収まる様に、DCDCコンバータ105と車両制御装置107へ指令を送り、車両制御装置107は、発電制御手段107a、電装機器制御手段107bによって、モータジェネレータ102と高電圧電気負荷103と低電圧電気負荷106を制御する。
即ち、ステップ311がYESの場合はステップ308の算出値Aが、またステップ311がNOの場合はステップ314の選択値(算出値Aと算出値Bのミニマム値)が充放電許可電流として車両制御装置107へ送信される。
If the SOC is within the charge / discharge threshold range in step 311, the process proceeds to step 307, and the charge / discharge permission current becomes the calculated value A in step 308. In step 307, the power management device 108 transmits the charge / discharge permission current selected in step 314 to the vehicle control device 107, so that the power management device 108 can maintain the charge / discharge current of the battery pack 101 within the charge / discharge permission current. The vehicle control device 107 controls the motor generator 102, the high voltage electric load 103, and the low voltage electric load 106 by the power generation control means 107a and the electrical equipment control means 107b.
That is, when step 311 is YES, the calculated value A of step 308 is vehicle control, and when step 311 is NO, the selected value of step 314 (minimum value of calculated value A and calculated value B) is used as the charge / discharge permission current. Transmitted to the device 107.

図4は、この発明の実施の形態1における車両の電源装置の制御動作を示すタイミングチャートであり、図3のステップ304〜314の制御処理に該当する。
図4において、実線401はこの発明における電池パック101の出力端子電圧を示し、実線402は充電時の電池パック101のSOCを、実線403は放電時の電池パック101のSOCを示す。破線404と405は従来技術と同様に、電源管理装置108がSOCの充放電閾値に基づく制御を適用しない場合、即ち、図3のステップ309〜314の制御処理がない場合における電池パック101の出力端子電圧を示し、破線404は充電時の出力端子電圧を、破線405は放電時の出力端子電圧を示す。
FIG. 4 is a timing chart showing the control operation of the power supply device for a vehicle in the first embodiment of the present invention, and corresponds to the control processing of steps 304 to 314 in FIG.
In FIG. 4, a solid line 401 indicates the output terminal voltage of the battery pack 101 in the present invention, a solid line 402 indicates the SOC of the battery pack 101 during charging, and a solid line 403 indicates the SOC of the battery pack 101 during discharging. Broken lines 404 and 405 indicate the output of the battery pack 101 when the power management apparatus 108 does not apply the control based on the SOC charge / discharge threshold, that is, when there is no control processing in steps 309 to 314 in FIG. The broken line 404 indicates the output terminal voltage during charging, and the broken line 405 indicates the output terminal voltage during discharging.

点線406と407は電池パック101の電圧異常を判定する閾値を示し、点線408と409は電池パック101の最大作動電圧と最小作動電圧を示す。点線410と411は電池パック101のSOCの充放電閾値を示す。   Dotted lines 406 and 407 indicate threshold values for determining a voltage abnormality of the battery pack 101, and dotted lines 408 and 409 indicate the maximum operating voltage and the minimum operating voltage of the battery pack 101. Dotted lines 410 and 411 indicate the SOC charge / discharge threshold of the battery pack 101.

実線412はこの発明における電池パック101の充放電許可電流を示し、破線413と414は従来技術と同様に、電源管理装置108がSOCの充放電閾値に基づく制御を適用しない場合、即ち、図3のステップ309〜314の制御処理がない場合における電池パック101の充放電許可電流を示し、破線413は充電許可電流を、破線414は放電許可電流を示す。尚、説明を簡単化するために、期間中の電池パック101の充放電電流はDCDCコンバータ105と車両制御装置107により充放電許可電流に一致する様制御され、電池パック101内部の温度は一定であるものとする。また、電池パック101の充放電電流が0(ゼロ)Aの期間については、車両制御装置107はモータジェネレータ102を発電稼働することで、車両の高電圧電気負荷103および低電圧電気負荷106へ継続給電を行うものとする。   The solid line 412 indicates the charging / discharging permission current of the battery pack 101 in the present invention, and the broken lines 413 and 414 indicate the case where the power management device 108 does not apply the control based on the SOC charging / discharging threshold as in the prior art, that is, FIG. The charging / discharging permission current of the battery pack 101 when there is no control processing of steps 309 to 314 is shown, the broken line 413 indicates the charging permission current, and the broken line 414 indicates the discharging permission current. In order to simplify the explanation, the charge / discharge current of the battery pack 101 during the period is controlled by the DCDC converter 105 and the vehicle control device 107 so as to match the charge / discharge permission current, and the temperature inside the battery pack 101 is constant. It shall be. Further, during the period in which the charging / discharging current of the battery pack 101 is 0 (zero) A, the vehicle control device 107 continues the power generation operation of the motor generator 102 to the high voltage electric load 103 and the low voltage electric load 106 of the vehicle. Power supply shall be performed.

時刻t0では、電池パック101のSOC402と出力端子電圧401は充電に伴い増加する。時刻t1では、電池パック101のSOC402はSOCの充電閾値410を超えることで充電許可電流が変更される。時刻t2では、電池パック101の出力端子電圧401は最大作動電圧408に達し、以降は放電により電圧低下するまで電池パック101の充電は行われない。一方で、従来技術と同様に、SOCの充放電閾値に基づく制御を適用しない場合の出力端子電圧404は、充電許可電流413に変更ないことから最大作動電圧408を超えて増加する。そのため、時刻t3では、出力端子電圧404は電圧異常閾値に達し、電池パック異常成立によりフェイルセーフリレー109の接点が開放され、電池パック101は出力停止に至る。尚、時刻t3以降は、前述のモータジェネレータ102の発電により電池パック101の充放電電流は0Aになるが、この発明により電池パック101はフェイルセーフリレーの接点が接続状態にあることで、車両の電源電圧の脈動を抑制し安定化することができる。即ち、フェイルセーフリレーがオン(接続)/オフ(解放)いずれの場合であってもモータジェネレータの発電により充放電電流は平均して0(ゼロ)Aに制御されるが、モータジェネレータの発電電流には細かなリップル(脈動)が重畳している。また、電気負荷に変動があればモータジェネレータはこの変動を打ち消すべく発電を行うが、瞬間的な変動に対しては遅れが生じる場合がある。
これに対し、フェイルセーフリレーが接続状態にあることで、モータジェネレータと電気負荷の電気経路に電池が存在し、前記のリップルの重畳または電気負荷変動が生じた場合においても電池が平滑要素となって電源電圧を安定化することができる。
At time t0, the SOC 402 and the output terminal voltage 401 of the battery pack 101 increase with charging. At time t1, the SOC 402 of the battery pack 101 exceeds the SOC charging threshold 410, so that the charge permission current is changed. At time t2, the output terminal voltage 401 of the battery pack 101 reaches the maximum operating voltage 408, and thereafter, the battery pack 101 is not charged until the voltage drops due to discharge. On the other hand, the output terminal voltage 404 when the control based on the SOC charge / discharge threshold is not applied is increased beyond the maximum operating voltage 408 because the charge permission current 413 is not changed, as in the conventional technique. Therefore, at time t3, the output terminal voltage 404 reaches the voltage abnormality threshold, the contact of the fail safe relay 109 is opened due to the battery pack abnormality being established, and the battery pack 101 stops outputting. After time t3, the charging / discharging current of the battery pack 101 becomes 0 A due to the power generation of the motor generator 102 described above. However, according to the present invention, the battery pack 101 is connected to the fail-safe relay contact, The pulsation of the power supply voltage can be suppressed and stabilized. That is, even if the fail-safe relay is on (connected) / off (released), the charge / discharge current is controlled to 0 (zero) A on average by the power generation of the motor generator. A fine ripple (pulsation) is superimposed on. Further, if there is a fluctuation in the electric load, the motor generator generates power to cancel the fluctuation, but there may be a delay with respect to the instantaneous fluctuation.
In contrast, when the fail-safe relay is in a connected state, a battery exists in the electric path between the motor generator and the electric load, and the battery becomes a smoothing element even when the ripple is superimposed or the electric load fluctuates. Power supply voltage can be stabilized.

時刻t4以降、電池パック101の放電時について述べる。時刻t4では、電池パック101のSOC403と出力端子電圧401は放電に伴い低下する。時刻t5では、電池パック101のSOC403はSOCの放電閾値411を下回ることで放電許可電流が変更される。時刻t7では、電池パック101の出力端子電圧401は最小作動電圧409に達し、以降は充電により電圧増加するまで電池パック101の放電は行われない。
一方で、従来技術と同様に、SOCの充放電閾値に基づく制御を適用しない場合の出力端子電圧405は、時刻t5以降も放電許可電流414に変更ないことから、時刻t6において電圧異常閾値に達し、電池パック異常成立によりフェイルセーフリレー109の接点が開放され、電池パック101は出力停止に至る。尚、時刻t7以降のこの発明による車両の電源電圧の安定化については前述の通りである。
After time t4, the battery pack 101 will be discharged. At time t4, the SOC 403 and the output terminal voltage 401 of the battery pack 101 decrease with discharge. At time t5, the SOC 403 of the battery pack 101 falls below the SOC discharge threshold 411, so that the discharge permission current is changed. At time t7, the output terminal voltage 401 of the battery pack 101 reaches the minimum operating voltage 409, and thereafter the battery pack 101 is not discharged until the voltage increases due to charging.
On the other hand, the output terminal voltage 405 in the case where the control based on the SOC charge / discharge threshold is not applied is not changed to the discharge permission current 414 after time t5, as in the conventional technique, and thus reaches the voltage abnormality threshold at time t6. When the battery pack abnormality is established, the contact of the fail safe relay 109 is opened, and the battery pack 101 stops outputting. The stabilization of the power supply voltage of the vehicle according to the present invention after time t7 is as described above.

以上のように、この発明の実施の形態1の車両の電源装置によれば、電池パックの最大作動電圧および最小作動電圧よりSOCの充放電閾値を算出し、SOCがこの充放電閾値に達すれば充放電電流を制御することで電池パックの充放電を抑制する。これにより、電池パック101は過充電または過放電による電圧異常を生じることなく、出力端子電圧を所望の電圧範囲に制御でき、車両の電源に要求される所定の電圧範囲で作動することができる。
また、電池パック101の異常時、即ち、電池パック内部の配線短絡やSOCの誤検出等により電池パックが過充電または過放電に至った場合においても、電池パック101の出力を停止し、モータジェネレータ102を発電稼働することで、車両の高電圧電気負荷103と低電圧電気負荷106へ継続給電することができる。
As described above, according to the vehicle power supply device of the first embodiment of the present invention, the SOC charge / discharge threshold is calculated from the maximum operating voltage and the minimum operating voltage of the battery pack, and the SOC reaches this charge / discharge threshold. The charging / discharging of the battery pack is suppressed by controlling the charging / discharging current. Thereby, the battery pack 101 can control the output terminal voltage within a desired voltage range without causing voltage abnormality due to overcharge or overdischarge, and can operate within a predetermined voltage range required for the power source of the vehicle.
Also, when the battery pack 101 is abnormal, that is, when the battery pack is overcharged or overdischarged due to a short circuit inside the battery pack or erroneous detection of the SOC, the output of the battery pack 101 is stopped, and the motor generator By performing power generation operation of 102, it is possible to continuously supply power to the high-voltage electric load 103 and the low-voltage electric load 106 of the vehicle.

101 電池パック、102 モータジェネレータ、103 高電圧電気負荷、
104 鉛電池、105 DCDCコンバータ、106 低電圧電気負荷、
107 車両制御装置、107a 発電制御手段、107b 電装機器制御手段、
108 電源管理装置、108a 電池パック異常検知手段、
108b パック内部抵抗演算手段、108c 充放電SOC閾値演算手段、
108d 充放電許可電流演算手段、109 フェイルセーフリレー、
110 組電池、111 CMU、111a 電圧検出手段、
111b 電流検出手段、 111c 温度検出手段、111d 充電率演算手段、
111e 内部抵抗演算手段、112 制御基板、112a リレー制御手段、
112b パック内部温度検出手段。
101 battery pack, 102 motor generator, 103 high voltage electric load,
104 lead battery, 105 DCDC converter, 106 low voltage electrical load,
107 vehicle control device, 107a power generation control means, 107b electrical equipment control means,
108 power management device, 108a battery pack abnormality detection means,
108b pack internal resistance calculation means, 108c charge / discharge SOC threshold value calculation means,
108d charge / discharge permission current calculation means, 109 fail-safe relay,
110 battery pack, 111 CMU, 111a voltage detection means,
111b current detection means, 111c temperature detection means, 111d charge rate calculation means,
111e internal resistance calculation means, 112 control board, 112a relay control means,
112b Pack internal temperature detection means.

この発明に係る車両の制御装置は、車両の発電機により充電され電気負荷へ給電する電池と、前記電池の状態を検知する電池状態検知手段と、前記電池の状態に基づき電源管理を行う電源管理部と、前記電源管理部からの指令に基づき車両の発電と電力消費を制御し、前記電池の充放電を制御する車両制御部を備えた車両の電源装置であって、前記電池状態検知手段は、前記電池の充電率を検出する充電率演算手段を備え、前記電源管理部は、前記電池の最大作動電圧より充電率の充電閾値を算出し、前記電池の最小作動電圧より充電率の放電閾値を算出する充放電閾値演算手段と、前記電池の充電率が前記充電閾値または前記放電閾値に達すれば前記電池の充放電を抑制する充放電抑制手段を備え、前記車両制御部は、前記電池の充放電許可電力を算出する前記電源管理部の充放電抑制手段からの指令に基づき、前記電池の充放電電力を制御する発電制御手段および電装機器制御手段を備えたものである。
The vehicle control apparatus according to the present invention includes a battery charged by a generator of the vehicle to supply power to an electric load, battery state detection means for detecting the state of the battery, and power management for performing power management based on the state of the battery. And a vehicle power supply device including a vehicle control unit that controls power generation and power consumption of the vehicle based on a command from the power management unit, and controls charging / discharging of the battery, wherein the battery state detection means Charging rate calculation means for detecting the charging rate of the battery, the power management unit calculates a charging threshold of the charging rate from the maximum operating voltage of the battery, and discharge threshold of the charging rate from the minimum operating voltage of the battery Charging / discharging threshold value calculating means for calculating the charging / discharging of the battery when the charging rate of the battery reaches the charging threshold value or the discharging threshold value, the vehicle control unit Charge / discharge permit Based on a command from the charging and discharging means for suppressing the power management unit for calculating a power, but with a power control unit and the electrical equipment control means for controlling the charging and discharging power of the battery.

Claims (6)

車両の発電機により充電され電気負荷へ給電する電池と、前記電池の状態を検知する電池状態検知手段と、前記電池の状態に基づき電源管理を行う電源管理部と、前記電源管理部からの指令に基づき車両の発電と電力消費を制御し、前記電池の充放電を制御する車両制御部を備えた車両の電源装置であって、
前記電池状態検知手段は、前記電池の充電率を検出する充電率演算手段を備え、
前記電源管理部は、前記電池の最大作動電圧より充電率の充電閾値を算出し、前記電池の最小作動電圧より充電率の放電閾値を算出する充放電閾値演算手段と、
前記電池の充電率が前記充電閾値または前記放電閾値に達すれば前記電池の充放電を抑制する充放電抑制手段を備えることを特徴とする車両の電源装置。
A battery that is charged by an electric generator of a vehicle and that supplies power to an electric load, a battery state detection unit that detects the state of the battery, a power management unit that performs power management based on the state of the battery, and a command from the power management unit A vehicle power supply device comprising a vehicle control unit for controlling power generation and power consumption of the vehicle based on the above, and controlling charging and discharging of the battery,
The battery state detection means includes a charge rate calculation means for detecting a charge rate of the battery,
The power management unit calculates a charging threshold of the charging rate from the maximum operating voltage of the battery, and a charging / discharging threshold value calculating means for calculating a discharging threshold of the charging rate from the minimum operating voltage of the battery;
A power supply device for a vehicle comprising: charge / discharge suppression means for suppressing charge / discharge of the battery when a charge rate of the battery reaches the charge threshold or the discharge threshold.
前記電池状態検知手段は、前記電池の電流を検出する電流検出手段を備え、
前記車両制御部は、前記電池の充放電許可電流を算出する前記電源管理部の充放電抑制手段からの指令に基づき、前記電池の充放電電流を制御する発電制御手段および電装機器制御手段を備えることを特徴とする請求項1に記載の車両の電源装置。
The battery state detection means includes current detection means for detecting the current of the battery,
The vehicle control unit includes a power generation control unit and an electrical equipment control unit that control a charge / discharge current of the battery based on a command from a charge / discharge suppression unit of the power management unit that calculates a charge / discharge permission current of the battery. The power supply device for a vehicle according to claim 1.
前記電池状態検知手段は、前記電池の温度を検出する温度検出手段と、前記電池の温度と充電率より前記電池の内部抵抗を算出する内部抵抗演算手段を備え、前記充放電抑制手段は、前記電池の最大作動電圧および最小作動電圧と前記内部抵抗より充放電許可電流を算出することを特徴とする請求項2に記載の車両の電源装置。   The battery state detection means includes temperature detection means for detecting the temperature of the battery, and internal resistance calculation means for calculating the internal resistance of the battery from the temperature and charge rate of the battery, and the charge / discharge suppression means includes the The power supply device for a vehicle according to claim 2, wherein a charge / discharge permission current is calculated from a maximum operating voltage and a minimum operating voltage of the battery and the internal resistance. 前記電池状態検知手段は、前記電池の電圧を検出する電圧検出手段を備え、
前記電源管理部は、前記電池の電圧が最大作動電圧を超えて高電圧異常閾値に達するか、または前記電池の電圧が最小作動電圧を下回り低電圧異常閾値に達すれば前記電池の異常を検知する電池異常検知手段を備えることを特徴とする請求項1から請求項3のいずれか1項に記載の車両の電源装置。
The battery state detection means includes voltage detection means for detecting the voltage of the battery,
The power management unit detects an abnormality of the battery when the voltage of the battery exceeds a maximum operating voltage and reaches a high voltage abnormality threshold or when the voltage of the battery falls below a minimum operating voltage and reaches a low voltage abnormality threshold. The power supply device for a vehicle according to any one of claims 1 to 3, further comprising battery abnormality detection means.
前記電池異常検知手段からの指令に基づき、前記電池の異常を検知すれば前記電池の出力を停止するための電池出力停止手段を備え、前記車両制御部は、前記電池の出力停止時に前記電源管理部からの指令に基づき前記発電機を駆動して前記電気負荷への非常給電を行うことを特徴とする請求項4に記載の車両の電源装置。   When the battery abnormality is detected based on a command from the battery abnormality detection unit, the battery control unit includes a battery output stop unit for stopping the output of the battery, and the vehicle control unit performs the power management when the battery output is stopped. The vehicle power supply device according to claim 4, wherein the generator is driven based on a command from a section to perform emergency power feeding to the electric load. 前記電源管理部と前記車両制御部を統合して車両制御装置としたことを特徴とする請求項1から請求項5のいずれか1項に記載の車両の電源装置。   The vehicle power supply device according to any one of claims 1 to 5, wherein the power supply management unit and the vehicle control unit are integrated into a vehicle control device.
JP2014117358A 2014-06-06 2014-06-06 Vehicle power supply Active JP5818947B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014117358A JP5818947B1 (en) 2014-06-06 2014-06-06 Vehicle power supply
DE102014222039.4A DE102014222039A1 (en) 2014-06-06 2014-10-29 Device of a vehicle power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117358A JP5818947B1 (en) 2014-06-06 2014-06-06 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP5818947B1 JP5818947B1 (en) 2015-11-18
JP2015231301A true JP2015231301A (en) 2015-12-21

Family

ID=54602176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117358A Active JP5818947B1 (en) 2014-06-06 2014-06-06 Vehicle power supply

Country Status (2)

Country Link
JP (1) JP5818947B1 (en)
DE (1) DE102014222039A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447878A1 (en) 2017-08-22 2019-02-27 Toyota Jidosha Kabushiki Kaisha Power supply system
RU2742315C1 (en) * 2020-10-29 2021-02-04 Акционерное общество «АВТОВАЗ» Method of supplying electrical power to electrical loads and vehicle battery
US20220281349A1 (en) * 2020-04-22 2022-09-08 Lg Energy Solution, Ltd. Method for Detecting Low Voltage Cell and Battery Management System for Providing the Method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065352A (en) * 2003-08-11 2005-03-10 Nissan Motor Co Ltd Battery charge/discharge controller
JP5428708B2 (en) 2009-09-29 2014-02-26 株式会社デンソー In-vehicle power supply
CN102985279B (en) * 2010-07-13 2015-06-03 本田技研工业株式会社 Battery-capacity management device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447878A1 (en) 2017-08-22 2019-02-27 Toyota Jidosha Kabushiki Kaisha Power supply system
US11050267B2 (en) 2017-08-22 2021-06-29 Toyota Jidosha Kabushiki Kaisha Power supply system
US20220281349A1 (en) * 2020-04-22 2022-09-08 Lg Energy Solution, Ltd. Method for Detecting Low Voltage Cell and Battery Management System for Providing the Method
US12024052B2 (en) * 2020-04-22 2024-07-02 Lg Energy Solution, Ltd. Method for detecting low voltage cell and battery management system for providing the method
RU2742315C1 (en) * 2020-10-29 2021-02-04 Акционерное общество «АВТОВАЗ» Method of supplying electrical power to electrical loads and vehicle battery

Also Published As

Publication number Publication date
JP5818947B1 (en) 2015-11-18
DE102014222039A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
US10840722B2 (en) Battery control device
JP6208213B2 (en) Secondary battery charging system and method, and battery pack
US9557388B2 (en) Battery control device
US10090683B2 (en) Battery management system for controlling an energy storage assembly and method for charging and discharging an energy storage assembly
JP4311363B2 (en) Power storage system and storage system abnormality processing method
US9373973B2 (en) Apparatus, system, and method of preventing battery rack damage by measuring current
US8125187B2 (en) Method of controlling battery charging and discharging in a hybrid car power source
JPWO2016166833A1 (en) Vehicle power supply
WO2015199178A1 (en) Balance correction control device, balance correction system, and power storage system
JP2012531884A (en) On-board electric system for vehicle and control device for on-board electric system
US11299057B2 (en) Method for charging an electrical energy store by means of voltage pulses
JP2011155774A (en) Control device of power storage element
JP5818947B1 (en) Vehicle power supply
US10576835B2 (en) Energy storage device, transport apparatus, and control method
WO2017191818A1 (en) Power supply device
US20200139821A1 (en) Power supply device
JP2013146159A (en) Charge control system and charge control method of battery pack
JP2017192272A (en) Power supply controller
JP5678915B2 (en) Battery charge control device
US10283980B2 (en) Electrical storage system
JP5978142B2 (en) Battery system
JP2017011944A (en) Power generation control device of alternator
US10424944B2 (en) Dynamic regulation of an electric output
JP6727908B2 (en) Power supply and vehicle
JP5978145B2 (en) Battery system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R151 Written notification of patent or utility model registration

Ref document number: 5818947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250