JP2015230946A - Mounting device - Google Patents

Mounting device Download PDF

Info

Publication number
JP2015230946A
JP2015230946A JP2014115743A JP2014115743A JP2015230946A JP 2015230946 A JP2015230946 A JP 2015230946A JP 2014115743 A JP2014115743 A JP 2014115743A JP 2014115743 A JP2014115743 A JP 2014115743A JP 2015230946 A JP2015230946 A JP 2015230946A
Authority
JP
Japan
Prior art keywords
light
mounting
component
substrate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014115743A
Other languages
Japanese (ja)
Inventor
毅吏 浦島
Takashi Urashima
毅吏 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014115743A priority Critical patent/JP2015230946A/en
Publication of JP2015230946A publication Critical patent/JP2015230946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mounting device that does not suffer an effect of thermal expansion and can measure the interval dimension between members with high precision in a process having temperature variation under a long-term operation.SOLUTION: A mounting device has an optical interferometer for branching interference light obtained by the interference between light passed through a mount component 9 and reflected from a substrate 10 and light reflected from the mount component 9 and making the branched light interfere, a detector for detecting the light amount of the light interfering in the optical interferometer, a measuring unit 5 for measuring the interval dimension between the mount component 9 and the substrate 10 from the light amount detected by the detector, a Z-axis driving mechanism 1 for moving the mount component 9 or the substrate 10 so that they relatively approach to each other, and a control device 12 for controlling the Z-axis driving mechanism 1 on the basis of the interval dimension measured by the measuring unit 5. An interval dimension D between members which correspond to the distance between a first detection face 6 of the mount component 9 and a second detection face 7 of the substrate 10 is measured by the optical interferometer under mounting, and the mount component 9 is mounted on the basis of the measured interval dimension.

Description

本発明は、実装部品を基板に対し、接合部材を介して実装する実装装置に関する。   The present invention relates to a mounting apparatus for mounting a mounting component on a substrate via a bonding member.

従来、実装機のヘッドの側面に搭載されたレーザ変位計によって、レーザ変位計の検出面から基板の上面までの距離を測定しながら、その測定結果をフィードバックしつつ実装ヘッドを駆動させて部品を実装する実装装置が知られていた。   Conventionally, a laser displacement meter mounted on the side of a mounting machine head measures the distance from the detection surface of the laser displacement meter to the top surface of the substrate, while driving the mounting head while feeding back the measurement results, A mounting device to be mounted was known.

以下に、図8を用いて従来の実装装置について説明する。   Hereinafter, a conventional mounting apparatus will be described with reference to FIG.

実装ヘッド101の先端にある吸着ツール102により、吸着面103に実装部品104を吸着保持できる機構を有し、ステージ105上に固定されている基板106に対して実装ヘッド101を降下させ、接合部材107を介して実装を行う。   The suction tool 102 at the tip of the mounting head 101 has a mechanism capable of sucking and holding the mounting component 104 on the suction surface 103. The mounting head 101 is lowered with respect to the substrate 106 fixed on the stage 105, and a bonding member Implementation is performed via 107.

このとき、下記に示す方法で、部材間間隔寸法を制御している。まず、実装前に図9に示すように、レーザ変位計108の検出面109と吸着ツール102の吸着面103までの距離Bを、基準面110を有する基準治具111を用いて求める。すなわち、吸着ツール102の吸着面103を基準治具111の基準面110に接触させ、吸着ツール102の吸着面103が基準面110に接触した状態で、レーザ変位計108によって検出面109から基準面110までの距離を測定して、検出面109から吸着ツール102の吸着面103までの距離Bを求める。   At this time, the inter-member spacing dimension is controlled by the method described below. First, as shown in FIG. 9, the distance B between the detection surface 109 of the laser displacement meter 108 and the suction surface 103 of the suction tool 102 is obtained using a reference jig 111 having a reference surface 110 before mounting. That is, the suction surface 103 of the suction tool 102 is brought into contact with the reference surface 110 of the reference jig 111, and the suction surface 103 of the suction tool 102 is in contact with the reference surface 110. The distance B to 110 is measured, and the distance B from the detection surface 109 to the suction surface 103 of the suction tool 102 is obtained.

そして、図8に示すように、実装中に、実装ヘッド101の側面に設けられているレーザ変位計108を用い、検出面109から基板106の上面113までの距離Aを求める。   Then, as shown in FIG. 8, during mounting, a distance A from the detection surface 109 to the upper surface 113 of the substrate 106 is obtained using a laser displacement meter 108 provided on the side surface of the mounting head 101.

吸着ツール102の吸着面103と実装部品104の上面112とが一致していると仮定すると、吸着面103で上面112を吸着保持している状態では、検出面109から上面113までの距離Aと、検出面109から吸着面103までの距離Bとから、吸着面103から上面113までの距離、つまり上面112から上面113までの高さCがC=A−Bによって算出できる。そして、実装部品104の厚みEを事前に測定しておけば、実装部品104と基板106との間の部材間間隔寸法Dが、D=C―Eによって求まる。そして、実装部品104を基板106に実装するときに、部材間間隔寸法Dが予め設定された値になるよう、実装ヘッド101を下降方向への駆動を制御する。例えば、特許文献1を参照。   Assuming that the suction surface 103 of the suction tool 102 and the upper surface 112 of the mounting component 104 coincide with each other, the distance A from the detection surface 109 to the upper surface 113 in the state where the upper surface 112 is sucked and held by the suction surface 103. From the distance B from the detection surface 109 to the suction surface 103, the distance from the suction surface 103 to the upper surface 113, that is, the height C from the upper surface 112 to the upper surface 113 can be calculated by C = A−B. If the thickness E of the mounting component 104 is measured in advance, the inter-member spacing dimension D between the mounting component 104 and the substrate 106 can be obtained by D = CE. When the mounting component 104 is mounted on the substrate 106, the driving of the mounting head 101 in the downward direction is controlled so that the inter-member distance dimension D becomes a preset value. See, for example, US Pat.

特開2007−157767号公報JP 2007-157767 A

しかしながら、前記従来の構成では、レーザ変位計108の検出面109から吸着ツール102の吸着面103までの距離Bを事前に測定するので、長時間の稼動での駆動部の温度上昇又は接合部材溶融のための温度上昇に起因する実装装置の熱膨張の影響を受けてしまう。このため、図10の(a)及び(b)に示すように、検出面109から吸着面103までの距離が、距離Bとは異なる距離B’になり、事前測定の結果から変化することになる。そのため、部材間間隔寸法Dが測定結果と実際の値との間に差が生じ、高精度に制御できないという問題を有していた。   However, in the conventional configuration, since the distance B from the detection surface 109 of the laser displacement meter 108 to the suction surface 103 of the suction tool 102 is measured in advance, the temperature rise of the driving unit or the joining member melts during long-time operation. For this reason, the mounting device is affected by the thermal expansion due to the temperature rise. For this reason, as shown in FIGS. 10A and 10B, the distance from the detection surface 109 to the suction surface 103 becomes a distance B ′ different from the distance B, and changes from the result of the preliminary measurement. Become. Therefore, there is a problem that the inter-member distance dimension D is different between the measurement result and the actual value, and cannot be controlled with high accuracy.

本発明は、長時間の稼動での駆動部の温度上昇又は接合部材の溶融のための温度上昇などに起因する熱膨張の影響を受けることなく、部材間間隔寸法を高精度に制御しながら実装することができる、実装装置を提供することを目的とする。   The present invention is mounted while controlling the inter-member spacing dimension with high accuracy without being affected by thermal expansion caused by a temperature rise of the drive unit or a temperature rise due to melting of the joining member during long-time operation. An object of the present invention is to provide a mounting apparatus that can perform the above-described operation.

上記目的を達成するために、本発明の1つの態様は、実装ヘッドに保持された部品を実装面に実装する実装装置において、
前記部品を透過して前記実装面で反射した光と前記部品で反射した光とが干渉した干渉光を分岐し、分岐した光を干渉させる光干渉計と、
前記光干渉計で干渉した光の光量を検出するディテクタと、
前記ディテクタで検出した光量から、前記部品と前記実装面との間隔寸法を測定する測定部と、
前記部材又は前記実装面を相対的に接近させるように移動させる駆動部と、
前記測定部で測定した前記間隔寸法を基に前記駆動部を制御する制御部を備える、実装装置を提供する。
In order to achieve the above object, one aspect of the present invention provides a mounting apparatus for mounting a component held by a mounting head on a mounting surface.
An optical interferometer that branches the interference light that is transmitted through the component and reflected by the mounting surface and the light reflected by the component interferes, and interferes with the branched light;
A detector for detecting the amount of light interfered with the optical interferometer;
From the amount of light detected by the detector, a measurement unit that measures the distance between the component and the mounting surface,
A drive unit that moves the member or the mounting surface so as to relatively approach each other;
Provided is a mounting apparatus including a control unit that controls the drive unit based on the interval dimension measured by the measurement unit.

以上のように、前記態様の実装装置によれば、長時間の稼動での駆動部の温度上昇又は接合部材(例えばはんだ)の接合における接合部材の溶融のための温度上昇などによる実装装置の熱膨張の影響を受けずに、部材間間隔寸法を高精度に測定して、部材間間隔寸法を高精度に制御しながら実装することができる。   As described above, according to the mounting device of the above aspect, the heat of the mounting device due to the temperature rise of the drive unit during long-time operation or the temperature rise due to melting of the joining member in joining of the joining member (for example, solder) Without being affected by the expansion, the distance between the members can be measured with high accuracy, and mounting can be performed while controlling the distance between the members with high accuracy.

本発明の一実施形態における部品の実装装置の構成図The block diagram of the component mounting apparatus in one Embodiment of this invention 本発明の実施形態における測定部の構成図Configuration diagram of the measurement unit in the embodiment of the present invention 本発明の実施形態における光干渉計の構成図Configuration diagram of an optical interferometer in an embodiment of the present invention エタロンの透過特性を示す図Diagram showing transmission characteristics of etalon 本発明の実施形態における部品実装装置を用いた部品と基板の実装フロー(降下時)を示す説明図Explanatory drawing which shows the mounting flow (at the time of a fall) of a component and a board | substrate using the component mounting apparatus in embodiment of this invention 本発明の実施形態における部品実装装置を用いた部品と基板の実装フロー(接合部材接触及び間隔寸法保持時)を示す説明図Explanatory drawing which shows the mounting flow (at the time of a joining member contact and space | interval dimension maintenance) of the components and the board | substrate using the component mounting apparatus in embodiment of this invention 本発明の実施形態における部品実装装置を用いた部品と基板の実装フロー(引き上げ及び冷却時)を示す説明図Explanatory drawing which shows the mounting flow (at the time of raising and cooling) of a component and a board | substrate using the component mounting apparatus in embodiment of this invention. 本発明の実施形態における測定部により得られる干渉信号の説明図Explanatory drawing of the interference signal obtained by the measurement part in embodiment of this invention 差動ディテクタなしの場合の干渉信号の図Interfering signal diagram without differential detector 差動ディテクタありの場合の干渉信号の図Interfering signal diagram with differential detector 従来例における部品の実装装置を説明する構成図Configuration diagram for explaining a component mounting apparatus in a conventional example 従来例における基準冶具によって吸着ツールの保持面とレーザ変位計の検出面との高さの差を求めるときの説明図Explanatory drawing when obtaining the difference in height between the holding surface of the suction tool and the detection surface of the laser displacement meter with the reference jig in the conventional example (a)は常温時及び、(b)は実装装置熱膨張時における、従来例における部品の実装装置を説明する構成図FIG. 5A is a configuration diagram illustrating a conventional component mounting apparatus when the room temperature is normal and FIG. 5B is a thermal expansion of the mounting apparatus.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態)
図1は、本発明の一実施形態における実装装置の構成図である。
(Embodiment)
FIG. 1 is a configuration diagram of a mounting apparatus according to an embodiment of the present invention.

本発明の本実施形態にかかる部品実装装置は、ステージ8と、ガラス吸着ツール4と、実装ヘッド3と、Z軸駆動機構1と、制御装置12とを備えている。   The component mounting apparatus according to this embodiment of the present invention includes a stage 8, a glass suction tool 4, a mounting head 3, a Z-axis drive mechanism 1, and a control device 12.

ステージ8は、接合部材11が表面(実装面)に形成された基板10を固定している。   The stage 8 is fixing the board | substrate 10 with which the joining member 11 was formed in the surface (mounting surface).

ガラス吸着ツール4は、接合部材11が形成されかつ部品として機能する実装部品9を吸着面13に吸着可能な吸着ツールの一例として機能する。   The glass suction tool 4 functions as an example of a suction tool that can suck the mounting component 9 on which the bonding member 11 is formed and functions as a component to the suction surface 13.

実装ヘッド3は、ガラス吸着ツール4が下端に搭載されている。   As for the mounting head 3, the glass suction tool 4 is mounted in the lower end.

Z軸駆動機構1は、実装ヘッド3の駆動に用いる昇降駆動装置又は駆動部の一例として機能する。   The Z-axis drive mechanism 1 functions as an example of an elevating drive device or a drive unit used for driving the mounting head 3.

制御装置12は、Z軸駆動機構1の駆動を制御する制御部の一例として機能する動作制御部12bと、間隔寸法算出部12aとを有している。ステージ8上に固定されている基板10に対して実装ヘッド3を降下させ、接合部材11を介して実装を行う。ここで、実装部品9の下面と基板10の上面との間の部材間間隔寸法(隙間の距離)をDとする。   The control device 12 includes an operation control unit 12b that functions as an example of a control unit that controls driving of the Z-axis drive mechanism 1, and an interval size calculation unit 12a. The mounting head 3 is lowered with respect to the substrate 10 fixed on the stage 8 and mounting is performed via the joining member 11. Here, the inter-member spacing dimension (gap distance) between the lower surface of the mounting component 9 and the upper surface of the substrate 10 is D.

実装ヘッド3には、実装ヘッド3のZ軸方向(上下方向)の変位を測定する変位計測機構2を備えている。変位計測機構2は、例えば光学式レーザエンコーダ又はリニアセンサなどで構成され、後述するように、ピークを検出した時点の位置Xとその後に移動した(ピークを過ぎた時点の)位置Yとの差の変位を計測する。   The mounting head 3 includes a displacement measuring mechanism 2 that measures the displacement of the mounting head 3 in the Z-axis direction (vertical direction). The displacement measuring mechanism 2 is composed of, for example, an optical laser encoder or a linear sensor, and as will be described later, the difference between the position X at the time when the peak is detected and the position Y after that (when the peak is passed). Measure the displacement.

実装ヘッド3の下端に搭載されたガラス吸着ツール4は、実装部品9の上面を、実装ヘッド3の下端面である吸着面13で吸着保持可能としている。ガラス吸着ツール4での吸着及び吸着解除動作、すなわち、図示しない真空吸引装置のオン及びオフ、又は、真空吸引装置と吸着面13の吸着孔との間の管路の弁による開閉は、制御装置12での制御により行われている。   The glass suction tool 4 mounted on the lower end of the mounting head 3 can hold the upper surface of the mounting component 9 by suction with the suction surface 13 that is the lower end surface of the mounting head 3. Adsorption and adsorption release operations in the glass adsorption tool 4, that is, on / off of a vacuum suction device (not shown), or opening and closing of a pipe line between the vacuum suction device and the suction hole of the suction surface 13 by a control device This is performed under the control of No. 12.

なお、本実施形態では、吸着ツールの一例として、測定部5のレーザ光(測定光)を透過可能なガラス吸着ツール4により説明しているが、これに限られるものではない。例えば、レーザ光を透過しない吸着ツールを適用し、かつ、吸着ツールの吸着穴、もしくは、別途加工した穴を通して実装部品9に測定部5からのレーザ光が当たるようにしてもよい。   In the present embodiment, the glass suction tool 4 capable of transmitting the laser beam (measurement light) of the measurement unit 5 is described as an example of the suction tool, but is not limited thereto. For example, a suction tool that does not transmit laser light may be applied, and the mounting part 9 may be irradiated with the laser light from the measurement unit 5 through a suction hole of the suction tool or a separately processed hole.

続いて、部材間間隔寸法Dを測定する測定部5について、図2を用いて説明する。測定部5において、測定光は低コヒーレンス光源14から出射される。低コヒーレンス光源14から出射された測定光は、光ファイバ15に入射し、光サーキュレータ16で光ファイバ17に導かれる。光ファイバ17を透過した測定光は、集光光学系18により収束光となり、ガラス吸着ツール4を透過して、実装部品9に照射される。測定光は、透明な実装部品9を透過し、実装部品9の裏面(図2の上面)である第一検出面6で一部は反射し、残りは透過する。第一検出面6を透過した測定光は、基板10の表面(実装面)である第二検出面7で反射し、再び、実装部品9を透過する。第一検出面6で反射した測定光、及び、第二検出面7で反射した測定光は、再び、集光光学系18により光ファイバ17に入射する。このとき、第一検出面6で反射した測定光、及び、第二検出面7で反射した測定光は、第一検出面6と第二検出面7との距離(間隔寸法D)に応じて干渉する。光ファイバ17を透過した測定光は、光サーキュレータ16により別の光ファイバ19へ導かれる。光ファイバ19を透過した測定光は、光ファイバカプラ20で2つに分岐される。光ファイバカプラ20で分岐された測定光のうち、一方の測定光は、光ファイバ21へ入射され、減衰器22を透過し、透過した光の光量を検出するディテクタの一例としての差動ディテクタ23へ入射される。このように、光ファイバカプラ20で干渉光(第一検出面6で反射した測定光、及び、第二検出面7で反射した測定光)を分岐して、光干渉計25と差動ディテクタ23とに入射させることにより、伝送光学系50を構成している。差動ディテクタ23は、伝送光学系50から直接入射した光と、光干渉計25で干渉した光との差分をとる光学素子である。光ファイバカプラ20で分岐された測定光のうち、もう一方の測定光は、光ファイバ24で光干渉計25に入射し、光干渉計25を透過した測定光は、光ファイバ26を透過し、差動ディテクタ23へ入射される。差動ディテクタ23で入射されたそれぞれの測定光は、入射されたそれぞれの測定光の光量が電圧に変換され、AD変換ボード27で電圧のアナログデータからデジタルデータに変換され、図1の制御装置12へ入力される。   Next, the measurement unit 5 that measures the inter-member distance dimension D will be described with reference to FIG. In the measurement unit 5, the measurement light is emitted from the low coherence light source 14. The measurement light emitted from the low coherence light source 14 enters the optical fiber 15 and is guided to the optical fiber 17 by the optical circulator 16. The measurement light transmitted through the optical fiber 17 becomes convergent light by the condensing optical system 18, passes through the glass suction tool 4, and is irradiated onto the mounting component 9. The measurement light is transmitted through the transparent mounting component 9, partially reflected by the first detection surface 6, which is the back surface (the upper surface in FIG. 2) of the mounting component 9, and the rest is transmitted. The measurement light that has passed through the first detection surface 6 is reflected by the second detection surface 7 that is the surface (mounting surface) of the substrate 10 and passes through the mounting component 9 again. The measurement light reflected by the first detection surface 6 and the measurement light reflected by the second detection surface 7 are incident on the optical fiber 17 again by the condensing optical system 18. At this time, the measurement light reflected by the first detection surface 6 and the measurement light reflected by the second detection surface 7 are in accordance with the distance (distance dimension D) between the first detection surface 6 and the second detection surface 7. have a finger in the pie. The measurement light transmitted through the optical fiber 17 is guided to another optical fiber 19 by the optical circulator 16. The measurement light transmitted through the optical fiber 19 is branched into two by the optical fiber coupler 20. Of the measurement light branched by the optical fiber coupler 20, one measurement light is incident on the optical fiber 21, passes through the attenuator 22, and is a differential detector 23 as an example of a detector that detects the amount of transmitted light. Is incident on. In this manner, the optical fiber coupler 20 branches the interference light (measurement light reflected by the first detection surface 6 and measurement light reflected by the second detection surface 7), and the optical interferometer 25 and the differential detector 23 are branched. The transmission optical system 50 is configured by making it incident on. The differential detector 23 is an optical element that takes a difference between the light directly incident from the transmission optical system 50 and the light interfered by the optical interferometer 25. Of the measurement light branched by the optical fiber coupler 20, the other measurement light enters the optical interferometer 25 through the optical fiber 24, and the measurement light transmitted through the optical interferometer 25 passes through the optical fiber 26. The light enters the differential detector 23. Each of the measurement lights incident on the differential detector 23 is converted into a voltage from the amount of the incident measurement light, and is converted from voltage analog data to digital data by the AD conversion board 27. 12 is input.

図1の制御装置12の間隔寸法算出部12aは、図2の差動ディテクタ23で検出された光量(具体的には、AD変換ボード27で変換されたデジタルデータ)を基に、部材間間隔寸法Dを測定する。測定した部材間間隔寸法Dを基に、動作制御部12bでZ軸駆動機構1を介して実装ヘッド3の動作を制御している。なお、ここでは、間隔寸法算出部12aを制御装置12に設けたが、測定部5に設けても良い。   The interval size calculation unit 12a of the control device 12 of FIG. 1 is based on the light amount (specifically, digital data converted by the AD conversion board 27) detected by the differential detector 23 of FIG. Measure dimension D. Based on the measured inter-member spacing dimension D, the operation controller 12b controls the operation of the mounting head 3 via the Z-axis drive mechanism 1. Here, the interval size calculation unit 12 a is provided in the control device 12, but may be provided in the measurement unit 5.

ここで、低コヒーレンス光源14は、例えば、スーパールミネッセンスダイオード(SLD)などであり、実装部品9を透過する波長を選択する。例えば、MEMSセンサなどに使用する測定光としては、シリコン基板の透過率が高い1.1μm以上の波長が望ましい。また、カメラ又はビデオカメラ向けのレンズ又はガラス基板などに使用する測定光としては、反射防止膜又はIRカットフィルタを透過し、かつ、ある程度の反射率の確保ができる波長が望ましく、一般的には1.2μm以上の波長が望ましい。   Here, the low coherence light source 14 is, for example, a super luminescence diode (SLD) or the like, and selects a wavelength that transmits the mounting component 9. For example, as the measurement light used for the MEMS sensor or the like, a wavelength of 1.1 μm or more, which has a high transmittance of the silicon substrate, is desirable. In addition, the measurement light used for a lens or glass substrate for a camera or video camera is preferably a wavelength that transmits an antireflection film or an IR cut filter and can ensure a certain degree of reflectance. A wavelength of 1.2 μm or more is desirable.

また、差動ディテクタ23へ入力される2つの測定光は、平均的にほぼ同じ光量とし、光干渉計25の透過率を基に光ファイバカプラ20の分岐比を選択し、減衰器22で微調整を行う。   In addition, the two measurement lights input to the differential detector 23 are set to have almost the same amount of light on average, the branching ratio of the optical fiber coupler 20 is selected based on the transmittance of the optical interferometer 25, and the attenuator 22 finely selects it. Make adjustments.

次に、光干渉計25の構成を図3に示す。光干渉計25では、光ファイバ24から出射された測定光が、レンズ28で略平行光にされ、エタロン29を透過し、レンズ30で光ファイバ26へ入射する。エタロン29は、切り替え機構31により、2つの反射面間の間隔寸法(エア間隔寸法)Fの異なるエタロン29に切り替え可能である。切り替え機構31による切替は、図1の実装部品9又は基板10に基づき、手動で、又は、制御装置12により自動的に行うことが可能である。   Next, the configuration of the optical interferometer 25 is shown in FIG. In the optical interferometer 25, the measurement light emitted from the optical fiber 24 is converted into substantially parallel light by the lens 28, passes through the etalon 29, and enters the optical fiber 26 through the lens 30. The etalon 29 can be switched to the etalon 29 having a different distance dimension (air distance dimension) F between the two reflecting surfaces by the switching mechanism 31. Switching by the switching mechanism 31 can be performed manually or automatically by the control device 12 based on the mounting component 9 or the substrate 10 of FIG.

ここで、各エタロン29は、第一反射面32と第二反射面33とを一定距離(エア間隔寸法F)だけ離して固定した光学素子である。通常、エタロンは、波長選択に利用され、図4のように高いフィネス(=FSR(自由スペクトル領域)/FWHM(半値全幅))で用いられることが多いが、ここでは、低いフィネスのエタロンを用いる。低いフィネスは、図3の第一反射面32、及び、第二反射面33の反射率を低く設定すること、または、面精度の低いミラーを使うことで実現できる。また、エア間隔寸法Fは、目標とする部材間間隔寸法(目標値)Gと等しく設定する。目標値Gとは、部品を基板上に固定する際の部品と基板間の距離である。これにより、熱の影響を受けずに、かつ、部材間間隔寸法Dを測定する領域以外の場所からの反射光の影響を抑制して、部材間間隔寸法Dを高精度に測定できる。すなわち、本光干渉計25は、分岐した光の光路長差が、実装部品9と第二検出面7との目標とする部材間間隔寸法と同じ距離(目標値G)となるように構成される。   Here, each etalon 29 is an optical element in which the first reflecting surface 32 and the second reflecting surface 33 are fixed apart by a certain distance (air interval dimension F). Usually, an etalon is used for wavelength selection and is often used with a high finesse (= FSR (free spectral region) / FWHM (full width at half maximum)) as shown in FIG. 4, but here, an etalon with a low finesse is used. . Low finesse can be realized by setting the reflectivity of the first reflecting surface 32 and the second reflecting surface 33 in FIG. 3 to be low, or by using a mirror having low surface accuracy. The air gap dimension F is set equal to the target inter-member gap dimension (target value) G. The target value G is a distance between the component and the substrate when the component is fixed on the substrate. Thereby, the influence of the reflected light from places other than the area | region which measures the space | interval dimension D between members is suppressed, without being influenced by heat, and the space | interval dimension D between members can be measured with high precision. That is, the optical interferometer 25 is configured so that the optical path length difference of the branched light is the same distance (target value G) as the target inter-member distance dimension between the mounting component 9 and the second detection surface 7. The

ただし、エア間隔寸法Fを、目標とする部材間間隔寸法(目標値G)より少し大きく設定してもよい。例えば、図6(測定部5により得られる干渉信号の説明図)の位置Xだと、干渉信号の左半分しか干渉信号が得られず、位置Xが干渉信号のピークなのか判定できない。一方、位置Xを過ぎて、干渉信号の強度が落ちてくると、位置Xが干渉信号のピークだったと分かる。この場合、部材間間隔寸法Dに余裕が無いと部品と基板が必要以上に接近してしまうため、エア間隔寸法Fを、目標値Gより少し大きく設定する。具体的には、干渉信号の全値幅±(2ln2/π)×(λc/Δλ)以下の値だけ、エア間隔寸法Fを、目標値Gよりも大きくすればよいことが、発明者らにより見出されている。ただし、λcは低コヒーレンス光源14の中心波長、Δλは半値幅である。より具体的には、大きくする値として、干渉信号の半値幅(後述の例では7.5μm)とする。 However, the air gap dimension F may be set slightly larger than the target inter-member gap dimension (target value G). For example, at the position X in FIG. 6 (an explanatory diagram of the interference signal obtained by the measurement unit 5), only the left half of the interference signal can be obtained, and it cannot be determined whether the position X is the peak of the interference signal. On the other hand, when the intensity of the interference signal decreases past the position X, it can be understood that the position X is the peak of the interference signal. In this case, if there is no allowance for the inter-member spacing dimension D, the components and the board will approach more than necessary, so the air spacing dimension F is set slightly larger than the target value G. Specifically, the inventors have determined that the air interval dimension F should be made larger than the target value G by a value equal to or less than the total value width ± (2ln2 / π) × (λc 2 / Δλ) of the interference signal. Has been found. However, λc is the center wavelength of the low-coherence light source 14, and Δλ is a half-value width. More specifically, the half value width of the interference signal (7.5 μm in the example described later) is set as the value to be increased.

ここで、一例として、低いフィネスのエタロンは、フィネスが7以下のエタロンのことを言る。低フィネスのエタロンは、第一反射面32、及び、第二反射面33の反射率を、ミラーと比べて低く設定することで実現できる。フィネスをfnとし、第一反射面32及び第二反射面33のそれぞれの反射率をRとすると、

Figure 2015230946
と表されるため、反射率Rは65%以下となる。 Here, as an example, a low finesse etalon refers to an etalon with a finesse of 7 or less. The low finesse etalon can be realized by setting the reflectance of the first reflecting surface 32 and the second reflecting surface 33 to be lower than that of the mirror. If finesse is fn, and the reflectance of each of the first reflecting surface 32 and the second reflecting surface 33 is R,
Figure 2015230946
Therefore, the reflectance R is 65% or less.

次に、図5A〜図5Cを用いて、実装部品9と基板10とを、接合部材11の一例としてのはんだバンプを介して実装する場合の実装フローについて説明する。ただし、実装部品9は、ICチップといった一般的な半導体チップ又はMEMSセンサであってもよい。また、基板10は、ICチップ又はセラミック及び有機材料からなる基板に配線パターンを形成した配線基板であってもよい。以下の実装動作は、制御装置12での制御の下に行われる。   Next, a mounting flow in the case where the mounting component 9 and the substrate 10 are mounted via solder bumps as an example of the bonding member 11 will be described with reference to FIGS. 5A to 5C. However, the mounting component 9 may be a general semiconductor chip such as an IC chip or a MEMS sensor. The substrate 10 may be a wiring substrate in which a wiring pattern is formed on a substrate made of an IC chip or a ceramic and an organic material. The following mounting operation is performed under the control of the control device 12.

まず、接合部材11が形成された基板10を、例えば120〜160℃で保持されたステージ8に固定する。一方、接合部材11が形成された実装部品9を、例えば250〜350℃で保持された実装ヘッド3に設けられたガラス吸着ツール4で吸着保持する。   First, the board | substrate 10 with which the joining member 11 was formed is fixed to the stage 8 hold | maintained at 120-160 degreeC, for example. On the other hand, the mounting component 9 on which the bonding member 11 is formed is suction-held by the glass suction tool 4 provided on the mounting head 3 held at 250 to 350 ° C.

次いで、ステージ8上に固定された基板10に対して、実装部品9を吸着保持した実装ヘッド3を位置合わせする。   Next, the mounting head 3 holding the mounting component 9 by suction is aligned with the substrate 10 fixed on the stage 8.

次いで、制御装置12での制御の下に、基板10に実装部品9を実装するため、最初に、実装ヘッド3は、Z軸駆動機構1により、ステージ8上に固定された基板10に対して降下する(図5A参照)。このとき、制御装置12での制御の下に、同時に、測定部5も部材間間隔寸法Dの測定を行う。そして、部材間間隔寸法Dとエタロン29のエア間隔寸法F(図3)とが近い場合に、制御装置12の動作制御部12bでZ軸駆動機構1を一定速度で駆動させることで、図6のような干渉信号が得られる。   Next, in order to mount the mounting component 9 on the substrate 10 under the control of the control device 12, first, the mounting head 3 is attached to the substrate 10 fixed on the stage 8 by the Z-axis drive mechanism 1. Descent (see FIG. 5A). At this time, under the control of the control device 12, the measuring unit 5 also measures the inter-member distance dimension D. Then, when the inter-member spacing dimension D and the air spacing dimension F (FIG. 3) of the etalon 29 are close, the Z-axis drive mechanism 1 is driven at a constant speed by the operation control unit 12b of the control device 12, thereby FIG. An interference signal such as

図1の制御装置12の間隔寸法算出部12aは、測定部5から入力された測定結果情報(具体的には、AD変換ボード27で変換されたデジタルデータ)に基づき、干渉信号のエンベロープ(図6参照)のピークを検出し、ピークを検出した時点の変位計測機構2の位置Xを記憶する。この位置Xが、部材間間隔寸法Dとエア間隔寸法Fとが一致する位置であり、エア間隔寸法Fは目標値Gとして予め設定されていることから、部材間間隔寸法Dが高精度に測定される。例えば、目標値Gを220μmとし、エタロン29のエア間隔寸法Fを220μmとすると、Z軸駆動機構1により実装ヘッド3を降下することで部材間間隔寸法Dは小さくなってゆき、いずれ、位置Xで干渉信号はピークを示し、この位置が、部材間間隔寸法Dが220μmの位置であると検知される。ただし、位置Xに到達した時点では、検出された干渉信号がピークかどうかは分からないため、さらに実装ヘッド3を降下した位置、例えば部材間間隔寸法Dが210μmとなった位置Yで、位置Xで検出した干渉信号がピークだったことが、間隔寸法算出部12aで分かる。位置Xと位置Yとの差は変位計測機構2からの測定情報に基づき10μmと間隔寸法算出部12aで算出できるため、10μm戻した位置Xで実装ヘッド3を制御装置12の動作制御部12bの制御により停止することで、部材間間隔寸法Dを目標値G=220μmとできる。   1 is based on the measurement result information (specifically, digital data converted by the AD conversion board 27) input from the measurement unit 5, the envelope of the interference signal (see FIG. 1). 6) and the position X of the displacement measuring mechanism 2 at the time when the peak is detected is stored. This position X is a position where the inter-member spacing dimension D and the air spacing dimension F coincide, and the air spacing dimension F is preset as the target value G. Therefore, the inter-member spacing dimension D is measured with high accuracy. Is done. For example, if the target value G is 220 μm and the air gap dimension F of the etalon 29 is 220 μm, the distance D between the members is reduced by lowering the mounting head 3 by the Z-axis drive mechanism 1, and eventually the position X The interference signal shows a peak, and this position is detected as a position where the inter-member spacing dimension D is 220 μm. However, when the position X is reached, it is not known whether or not the detected interference signal is a peak. Therefore, at the position Y where the mounting head 3 is further lowered, for example, the position Y where the inter-member distance dimension D is 210 μm, the position X It can be seen from the interval size calculation unit 12a that the interference signal detected in step 1 is a peak. Since the difference between the position X and the position Y can be calculated by 10 μm and the interval size calculation unit 12 a based on the measurement information from the displacement measurement mechanism 2, the mounting head 3 is moved to the position X of 10 μm back from the operation control unit 12 b of the control device 12. By stopping by control, the inter-member distance dimension D can be set to the target value G = 220 μm.

次いで、実装ヘッド3とステージ8との間で実装部品9を基板10に対して加熱しつつ例えば3〜5秒保持して、接合部材11を溶融し、その後、実装ヘッド3を例えば120〜160℃まで冷却する(図5B参照)。   Next, the mounting component 9 is heated with respect to the substrate 10 between the mounting head 3 and the stage 8 and held for 3 to 5 seconds, for example, to melt the joining member 11, and then the mounting head 3 is moved to 120 to 160, for example. Cool to 0 ° C. (see FIG. 5B).

次いで、制御装置12の動作制御部12bの制御により、ガラス吸着ツール4での吸着を解除してガラス吸着ツール4から実装部品9を離したのち、Z軸駆動機構1を駆動制御して実装ヘッド3を上昇させる(図5C参照)。   Next, under the control of the operation control unit 12b of the control device 12, the suction by the glass suction tool 4 is released and the mounting component 9 is separated from the glass suction tool 4, and then the Z-axis drive mechanism 1 is driven and controlled by the mounting head. 3 is raised (see FIG. 5C).

また、部材間間隔寸法Dの目標値Gが異なる対象(部品又は基板)を実装するときには、各々の目標値に合わせたエタロン29を搭載しておき、切り替え機構31(図3)により、エタロン29を切り替える。   Further, when mounting an object (part or board) having a different target value G of the inter-member spacing dimension D, an etalon 29 according to each target value is mounted, and the etalon 29 is switched by the switching mechanism 31 (FIG. 3). Switch.

次に、測定部5による部材間間隔寸法Dの測定動作について、図2と図3とを用いて説明する。集光光学系18から出射された測定光は、実装部品9に照射され、第一検出面6で反射した光路(I)と第二検出面7で反射した光路(II)とで、部材間間隔寸法Dの2倍の光路長差が発生する。また、光干渉計25を透過する際の光路として、光干渉計25の第一反射面32と第二反射面33とを直接透過して光ファイバ26に入射する光路(III)と、第一反射面32を一度透過し、第二反射面33で反射し、第一反射面32で再び反射した後、第二反射面を透過して光ファイバ26に入射する光路(IV)とがあり、これら2つの光路(III)と(IV)との間には、エタロン29のエア間隔寸法Fの2倍の光路長差が存在する。光路(I)と光路(II)とで干渉し、更に、光路(III)と光路(IV)との間で干渉するような二重干渉が生じ得る。部材間間隔寸法Dとエタロン29のエア間隔寸法Fとが十分近いとき、光路(I)と光路(IV)を通った光と、光路(II)と光路(III)とを通った光との光路長差がほぼ同じになるため、これら2つの光が干渉し、その干渉信号の強度がピークとなる。干渉信号が得られる範囲は、低コヒーレンス光源14の波長と波長幅とで決まり、波長分布がガウス分布であり、中心波長をλcとし、波長の半値幅をΔλとすると、干渉信号の半値幅Δlは(2ln2/π)×(λc/Δλ)となる。例えば、中心波長λc=1.3μmでかつ半値幅Δλ=0.1μmの低コヒーレンス光源14を使うと、干渉信号におけるエンベロープの半値幅Δlは約7.5μmとなる。このため、例えば、実装部品9の内部構造により反射する光があっても、また、第一検出面6の表面数μm〜十数μm以外に反射面があっても、干渉信号は得られず、その影響を除去できる。このため、部材間間隔寸法Dを高精度に測定できる。 Next, the measurement operation of the inter-member distance dimension D by the measurement unit 5 will be described with reference to FIGS. The measurement light emitted from the condensing optical system 18 is irradiated between the optical path (I) reflected by the first detection surface 6 and the optical path (II) reflected by the second detection surface 7 between the members. An optical path length difference twice as large as the interval dimension D occurs. In addition, as an optical path when passing through the optical interferometer 25, an optical path (III) that directly passes through the first reflecting surface 32 and the second reflecting surface 33 of the optical interferometer 25 and enters the optical fiber 26, and the first There is an optical path (IV) that is transmitted through the reflecting surface 32 once, reflected by the second reflecting surface 33, reflected again by the first reflecting surface 32, then transmitted through the second reflecting surface and incident on the optical fiber 26, Between these two optical paths (III) and (IV), there is an optical path length difference twice as large as the air gap dimension F of the etalon 29. Double interference may occur such that interference occurs between the optical path (I) and the optical path (II), and further, interference occurs between the optical path (III) and the optical path (IV). When the inter-member spacing dimension D and the air spacing dimension F of the etalon 29 are sufficiently close, the light passing through the optical path (I) and the optical path (IV) and the light passing through the optical path (II) and the optical path (III) Since the optical path length differences are almost the same, these two lights interfere with each other, and the intensity of the interference signal reaches a peak. The range in which the interference signal can be obtained is determined by the wavelength and wavelength width of the low-coherence light source 14, the wavelength distribution is a Gaussian distribution, the center wavelength is λc, and the half-value width of the wavelength is Δλ. Is (2ln2 / π) × (λc 2 / Δλ). For example, when the low-coherence light source 14 having the center wavelength λc = 1.3 μm and the half width Δλ = 0.1 μm is used, the half width Δl of the envelope in the interference signal is about 7.5 μm. For this reason, for example, even if there is light reflected by the internal structure of the mounting component 9, and there is a reflective surface other than the surface number of several μm to ten and several μm of the first detection surface 6, no interference signal can be obtained. The effect can be removed. For this reason, the inter-member spacing dimension D can be measured with high accuracy.

低コヒーレンス光源14は、数十〜百数十μm程度のコヒーレンス長を持つ光源であり、例えば、スーパールミネッセンスダイオード(SLD)、ASE光源、又は、発光ダイオード(LED)などである。   The low coherence light source 14 is a light source having a coherence length of about several tens to one hundred and several tens of μm, and is, for example, a super luminescence diode (SLD), an ASE light source, or a light emitting diode (LED).

また、光路(I)と光路(II)とで干渉し、更に、光路(III)と光路(IV)との間で干渉するような二重干渉の生じる状況においては、干渉に寄与しない光、例えば光路(I)と光路(III)とを通った光、又は、光路(II)と光路(IV)とを通った光、及び、多重反射光又は他の表面からの反射光などにより、図7Aのように、干渉信号以外の光に含まれる弱い干渉信号を検出する必要がある。これをそのまま検出しようとしても、AD変換ボード27でAD変換する際に十分な分解能の信号を得られない。これに対して、本実施形態の構成のように、光ファイバカプラ20により分岐された非干渉成分の強度を差動ディテクタ23で差し引いて干渉信号だけを得るようにした方がよい。これにより、図7Bのように、干渉信号だけを得ることができるため、AD変換ボード27でAD変換する際に、高い分解能で干渉信号を検出できる。   In a situation where double interference occurs such that interference occurs between the optical path (I) and the optical path (II) and further interference occurs between the optical path (III) and the optical path (IV), light that does not contribute to interference, For example, the light passes through the optical path (I) and the optical path (III), or the light passes through the optical path (II) and the optical path (IV), and the reflected light from the multiple reflected light or other surfaces. As in 7A, it is necessary to detect a weak interference signal included in light other than the interference signal. Even if this is detected as it is, a signal with sufficient resolution cannot be obtained when AD conversion is performed by the AD conversion board 27. On the other hand, it is better to obtain only the interference signal by subtracting the intensity of the non-interference component branched by the optical fiber coupler 20 by the differential detector 23 as in the configuration of the present embodiment. As a result, only the interference signal can be obtained as shown in FIG. 7B, and therefore, when the AD conversion is performed by the AD conversion board 27, the interference signal can be detected with high resolution.

また、光干渉計25としては、エタロン29を透過で利用する以外に、マイケルソン干渉計、段差ミラー、エタロンを反射で利用することなどが可能である。しかし、これらは、反射で使用するために、切り替え機構31で干渉計を切り替えたときの位置決め又は固定を非常に高精度に行わなければならない。これに対して、低フィネスのエタロン29を透過で利用することで、エタロン29の傾き及び位置決めの影響を受けずに、高精度で測定可能である。そして、低フィネスであることにより、エタロン29を透過し、差動ディテクタ23に入射する光量を大きくできる。   Further, as the optical interferometer 25, besides using the etalon 29 for transmission, it is possible to use a Michelson interferometer, a step mirror, and an etalon for reflection. However, since they are used for reflection, positioning or fixing when the interferometer is switched by the switching mechanism 31 must be performed with very high accuracy. On the other hand, by using the low-finesse etalon 29 for transmission, measurement can be performed with high accuracy without being affected by the inclination and positioning of the etalon 29. Since the finesse is low, the amount of light transmitted through the etalon 29 and incident on the differential detector 23 can be increased.

前述のように、制御装置12の制御の下に、実装装置のZ軸駆動機構1の駆動動作と測定部5による干渉信号の検出動作とを組み合わせて、実装中に部材間間隔寸法Dを直接測定することで、実装部品9の厚み及び長時間駆動でのZ軸駆動機構1などの駆動部分の温度上昇などに起因する実装装置の熱膨張の影響を受けることなく、実装することが可能となる。   As described above, under the control of the control device 12, the driving operation of the Z-axis drive mechanism 1 of the mounting device and the detection operation of the interference signal by the measuring unit 5 are combined to directly set the inter-member distance dimension D during mounting. By measuring, it is possible to mount without being affected by the thermal expansion of the mounting device due to the thickness of the mounting component 9 and the temperature rise of the driving part such as the Z-axis driving mechanism 1 in the long-time driving. Become.

また、測定部5に低フィネスのエタロン29を利用した干渉計を採用し、実装部品9と基板10との間で干渉した光を二重干渉させることで、実装部品9の内部からの反射光の影響及び切り替え機構31の位置決め誤差の影響を受けずに、高精度で測定が可能となる。   In addition, an interferometer using a low finesse etalon 29 is employed in the measurement unit 5, and light reflected between the mounting component 9 and the substrate 10 is caused to interfere with the reflected light from the inside of the mounting component 9. The measurement can be performed with high accuracy without being affected by the positioning error of the switching mechanism 31.

なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。   In addition, this invention is not limited to the said embodiment, It can implement in another various aspect.

例えば、実装部品9又は基板10の第二検出面7を相対的に接近させるように移動させればよいので、Z軸駆動機構1に代えて、ステージ8にZ軸駆動機構を備え、実装ヘッド3を固定としてもよい。   For example, since the mounting component 9 or the second detection surface 7 of the substrate 10 may be moved so as to approach relatively, the stage 8 is provided with a Z-axis driving mechanism instead of the Z-axis driving mechanism 1, and the mounting head 3 may be fixed.

なお、実装とは、例えば、MEMS素子を基板に接合部材(例えばはんだバンプ)を介して取り付ける行為又は光学ガラスをイメージセンサチップに接着樹脂を介して取り付ける行為を示す。   Note that mounting means, for example, an action of attaching the MEMS element to the substrate via a bonding member (for example, a solder bump) or an action of attaching optical glass to the image sensor chip via an adhesive resin.

なお、前記実施形態又は変形例のうちの実施形態又は任意の変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   In addition, the effect which each has can be show | played by combining embodiment or arbitrary modifications of the said embodiment or modification suitably.

本発明にかかる実装装置は、実装装置の長時間駆動の温度変化があるプロセスでの実装装置の熱膨張の影響及び部材の厚みばらつきの影響を受けず部材間間隔寸法を高精度に測定して実装制御できて、例えば、カメラレンズのレンズ間の間隔寸法を高精度に位置決めする場合、又は、静電容量式MEMS加速度センサとASICとの間の部材間間隔寸法を数ミクロンオーダーの誤差で実装する場合にも適用できる。   The mounting device according to the present invention measures the inter-member spacing dimension with high accuracy without being affected by the thermal expansion of the mounting device and the thickness variation of the member in a process in which the temperature of the mounting device is driven for a long time. Mounting control is possible. For example, when positioning the distance between the lenses of the camera lens with high accuracy, or the distance between the members between the capacitive MEMS acceleration sensor and the ASIC is mounted with an error of several microns. It can also be applied to

1 Z軸駆動機構
2 変位計測機構
3 実装ヘッド
4 ガラス吸着ツール
5 測定部
6 第一検出面
7 第二検出面
8 ステージ
9 実装部品
10 基板
11 接合部材
12 制御装置
12a 間隔寸法算出部
12b 動作制御部
13 吸着面
14 低コヒーレンス光源
15 光ファイバ
16 光サーキュレータ
17 光ファイバ
18 集光光学系
19 光ファイバ
20 光ファイバカプラ
21 光ファイバ
22 減衰器
23 差動ディテクタ
24 光ファイバ
25 光干渉計
26 光ファイバ
27 AD変換ボード
28 レンズ
29 エタロン
30 レンズ
31 切り替え機構
32 第一反射面
33 第二反射面
50 伝送光学系
D 間隔寸法
F エア間隔寸法
G 目標値
DESCRIPTION OF SYMBOLS 1 Z-axis drive mechanism 2 Displacement measurement mechanism 3 Mounting head 4 Glass suction tool 5 Measuring part 6 First detection surface 7 Second detection surface 8 Stage 9 Mounting component 10 Board | substrate 11 Joining member 12 Control apparatus 12a Space | interval dimension calculation part 12b Operation control Part 13 Suction surface 14 Low coherence light source 15 Optical fiber 16 Optical circulator 17 Optical fiber 18 Condensing optical system 19 Optical fiber 20 Optical fiber coupler 21 Optical fiber 22 Attenuator 23 Differential detector 24 Optical fiber 25 Optical interferometer 26 Optical fiber 27 AD conversion board 28 Lens 29 Etalon 30 Lens 31 Switching mechanism 32 First reflecting surface 33 Second reflecting surface 50 Transmission optical system D Spacing dimension F Air spacing dimension G Target value

Claims (4)

実装ヘッドに保持された部品を実装面に実装する実装装置において、
前記部品を透過して前記実装面で反射した光と前記部品で反射した光とが干渉した干渉光を分岐し、分岐した光を干渉させる光干渉計と、
前記光干渉計で干渉した光の光量を検出するディテクタと、
前記ディテクタで検出した光量から、前記部品と前記実装面との間隔寸法を測定する測定部と、
前記部品又は前記実装面を相対的に接近させるように移動させる駆動部と、
前記測定部で測定した前記間隔寸法を基に前記駆動部を制御する制御部を備える、実装装置。
In a mounting device that mounts the components held by the mounting head on the mounting surface,
An optical interferometer that branches the interference light that is transmitted through the component and reflected by the mounting surface and the light reflected by the component interferes, and interferes with the branched light;
A detector for detecting the amount of light interfered with the optical interferometer;
From the amount of light detected by the detector, a measurement unit that measures the distance between the component and the mounting surface,
A drive unit for moving the component or the mounting surface relatively close to each other;
A mounting apparatus, comprising: a control unit that controls the drive unit based on the interval dimension measured by the measurement unit.
前記光干渉計は、前記分岐した光の光路長差が、前記部品と前記実装面との目標とする間隔寸法と同じ距離となるように構成される請求項1の実装装置。   The mounting apparatus according to claim 1, wherein the optical interferometer is configured such that an optical path length difference of the branched light is equal to a target distance between the component and the mounting surface. 前記光干渉計は、第一反射面と第二反射面とを、前記目標とする間隔寸法と等しい間隔寸法だけ離して固定したエタロンである請求項2の実装装置。   The mounting apparatus according to claim 2, wherein the optical interferometer is an etalon in which the first reflecting surface and the second reflecting surface are fixed apart by a distance equal to the target distance. 前記干渉光を分岐して前記光干渉計と前記ディテクタとに入射させる伝送光学系をさらに備え、
前記ディテクタは、前記伝送光学系から直接入射した光と、前記光干渉計で干渉した光との差分をとる差動ディテクタである請求項1〜3のいずれか1つの実装装置。
A transmission optical system for branching the interference light and making it incident on the optical interferometer and the detector;
The mounting device according to claim 1, wherein the detector is a differential detector that takes a difference between light directly incident from the transmission optical system and light interfered by the optical interferometer.
JP2014115743A 2014-06-04 2014-06-04 Mounting device Pending JP2015230946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115743A JP2015230946A (en) 2014-06-04 2014-06-04 Mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115743A JP2015230946A (en) 2014-06-04 2014-06-04 Mounting device

Publications (1)

Publication Number Publication Date
JP2015230946A true JP2015230946A (en) 2015-12-21

Family

ID=54887597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115743A Pending JP2015230946A (en) 2014-06-04 2014-06-04 Mounting device

Country Status (1)

Country Link
JP (1) JP2015230946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077599A (en) 2019-12-17 2021-06-25 시바우라 메카트로닉스 가부시끼가이샤 Device mounting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077599A (en) 2019-12-17 2021-06-25 시바우라 메카트로닉스 가부시끼가이샤 Device mounting apparatus

Similar Documents

Publication Publication Date Title
US10374395B2 (en) Three-color light source
US20170148759A1 (en) Bonding apparatus and bonding method
TWI480501B (en) Displacement measurement method and displacement measuring device
US8168920B2 (en) Bonding device
US9500537B2 (en) Temperature measurement apparatus and method
JP2011517428A (en) Autofocus method and apparatus for wafer scribe
US10262968B2 (en) Wire bonding apparatus and wire bonding method
KR102491721B1 (en) Apparatus for mounting components on a substrate
KR20110107753A (en) Substrate mounting table
JP5657444B2 (en) Temperature measuring apparatus and temperature measuring method
US20140320866A1 (en) Shape Measuring Apparatus
KR100598572B1 (en) Apparatus for measurement of surface profile and control method thereof
JP5914868B2 (en) Component mounting equipment
JP2015230946A (en) Mounting device
CN107076540B (en) Multi-functional light-dividing device
JP2012202693A (en) Plasma processing apparatus and temperature measuring method
JP2006210785A (en) Semiconductor positioning device and positioning method
US9594230B2 (en) On-axis focus sensor and method
JP2006267032A (en) Angle measurement method for holding head, and angle measuring instrument for holding head
JP2004266191A (en) Joining method and device
JP2000018912A (en) Oblique incidence interferometer
KR20240004558A (en) Temperature measurement of optical elements within an optical device
JP2019110152A (en) Chuck plate, annealing apparatus, and annealing method
JP3230989B2 (en) Object positioning device for light wave interference device
JPH0394106A (en) Shape measuring device and shape measuring method