JP2015230555A - Self-excited reactive power controller - Google Patents

Self-excited reactive power controller Download PDF

Info

Publication number
JP2015230555A
JP2015230555A JP2014116114A JP2014116114A JP2015230555A JP 2015230555 A JP2015230555 A JP 2015230555A JP 2014116114 A JP2014116114 A JP 2014116114A JP 2014116114 A JP2014116114 A JP 2014116114A JP 2015230555 A JP2015230555 A JP 2015230555A
Authority
JP
Japan
Prior art keywords
voltage
phase
power
capacitor
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014116114A
Other languages
Japanese (ja)
Inventor
竹下 隆晴
Takaharu Takeshita
隆晴 竹下
佑 菅原
Yu Sugawara
佑 菅原
義明 亀嶋
Yoshiaki Kameshima
義明 亀嶋
靖臣 豊田
Yasuomi Toyoda
靖臣 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Energy Support Corp
Original Assignee
Nagoya Institute of Technology NUC
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, Energy Support Corp filed Critical Nagoya Institute of Technology NUC
Priority to JP2014116114A priority Critical patent/JP2015230555A/en
Publication of JP2015230555A publication Critical patent/JP2015230555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-excited reactive power controller capable of suppressing the voltage pulsation of a capacitor of a single phase power converter.SOLUTION: In a self-excited reactive power controller, AC sides of a plurality of single phase power converters are connected in cascade to each other, a capacitor connected to a DC side of the single phase power converter generates reactive power as a DC voltage source, and the single phase power converter whose AC sides are connected in cascade to each other is made to be equipped with for three phases is connected to a three phase AC system. In the self-excited reactive power controller, in each phase, a harmonic voltage having a multiple number of three is superimposed in the output voltage of each single phase power converter in the same phase. Accordingly, the voltage pulsation of the capacitor of the single phase power converter can be suppressed.

Description

本発明は、自励式無効電力制御装置に関する。   The present invention relates to a self-excited reactive power control apparatus.

近年、太陽光発電などの分散型電源の導入量が増加している。これらの分散型電源は天候の変化によって発電量が変化するため、配電系統の電圧の急激な変化を引き起こし、配電系統の電圧変化幅が大きくなってきている。このため、これらの電圧変化に対して配電系統の電圧を適切な範囲内に制御する必要がある。そこで、配電系統の無効電流を制御して電圧を適正範囲になるように高速に制御する無効電力制御装置が提案されている(例えば、特許文献1参照)。無効電力制御装置は、交流側に接続されるリアクトルと、単相電力変換器とを備えている。トランスレスで高圧配電系統に対応できるようにモジュールをカスケード接続したカスケード電力変換器がある。各モジュールの単相電力変換器の直流側には、コンデンサが接続されている。無効電力制御装置は、このコンデンサを直流電圧源として無効電力を発生する。   In recent years, the amount of distributed power sources such as photovoltaic power generation has increased. Since the amount of power generated by these distributed power sources changes due to changes in weather, the voltage of the distribution system is rapidly changed, causing a rapid change in the voltage of the distribution system. For this reason, it is necessary to control the voltage of the power distribution system within an appropriate range with respect to these voltage changes. Therefore, a reactive power control device that controls the reactive current of the distribution system and controls the voltage at high speed so as to be within an appropriate range has been proposed (see, for example, Patent Document 1). The reactive power control device includes a reactor connected to the AC side and a single-phase power converter. There is a cascade power converter in which modules are cascaded so that it can be used in a high-voltage power distribution system without a transformer. A capacitor is connected to the DC side of the single-phase power converter of each module. The reactive power control device generates reactive power using this capacitor as a DC voltage source.

特開2007−280358号公報JP 2007-280358 A

ところで、上記の自励式無効電力制御装置では、無効電流を流すので、各相には2倍の電源周波数の瞬時電力脈動が生じ、コンデンサの電圧が2倍の電源周波数で脈動する。そして、電圧脈動が大きくなりコンデンサ電圧の最小値が低くなりすぎると、無効電流の制御ができなくなる。   By the way, in the above self-excited reactive power control device, since reactive current flows, instantaneous power pulsation of twice the power frequency occurs in each phase, and the voltage of the capacitor pulsates at twice the power frequency. If the voltage pulsation increases and the minimum value of the capacitor voltage becomes too low, the reactive current cannot be controlled.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、単相電力変換器のコンデンサの電圧脈動を抑制することができる自励式無効電力制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a self-excited reactive power control device capable of suppressing voltage pulsation of a capacitor of a single-phase power converter.

以下、上記課題を解決するための手段及びその作用効果について説明する。
上記課題を解決する自励式無効電力制御装置は、単相電力変換器の直流側に接続されたコンデンサが直流電圧源として無効電力を生成し、前記単相電力変換器を三相分備えて三相交流系統に直結される自励式無効電力制御装置において、各前記単相電力変換器の出力電圧に3の倍数の高調波電圧を各相同相で重畳することをその要旨としている。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
In a self-excited reactive power control device that solves the above problem, a capacitor connected to the DC side of a single-phase power converter generates reactive power as a DC voltage source, and the single-phase power converter includes three phases. The gist of the self-excited reactive power control apparatus directly connected to the phase AC system is to superimpose a harmonic voltage of a multiple of 3 in each homologous phase on the output voltage of each single-phase power converter.

上記構成によれば、単相電力変換器が三相分備えられ、各単相電力変換器が三相交流系統に直結される。そして、各単相電力変換器の直流側に設けられるコンデンサを直流電圧源として用いて無効電力を生成し、各単相電力変換器の出力電圧に3の倍数の高調波電圧を各相同相で重畳する。すなわち、コンデンサ電圧が電源周波数の2倍で脈動していたとしても、3の倍数の高調波電圧が重畳されることで、コンデンサ電圧の脈動が抑制される。よって、コンデンサ電圧の平均値を低くすることができ、スイッチング素子の耐圧に余裕ができるとともに、スイッチング損失も低減できる。また、コンデンサ電圧の平均値を同じとすれば、コンデンサの容量を低減することができる。さらに、各相同相に重畳するので、線間電圧の波形には、各相の高調波電圧が互いに打ち消しあうことで現れず、入力電流制御に影響を与えることがない。   According to the above configuration, the single-phase power converter is provided for three phases, and each single-phase power converter is directly connected to the three-phase AC system. Then, reactive power is generated using a capacitor provided on the DC side of each single-phase power converter as a DC voltage source, and a harmonic voltage that is a multiple of 3 is output to the output voltage of each single-phase power converter in each homologous phase. Superimpose. That is, even if the capacitor voltage pulsates at twice the power supply frequency, the pulsation of the capacitor voltage is suppressed by superimposing the harmonic voltage that is a multiple of three. Therefore, the average value of the capacitor voltage can be lowered, the switching element can have a sufficient breakdown voltage, and the switching loss can be reduced. Further, if the average value of the capacitor voltage is the same, the capacitance of the capacitor can be reduced. Furthermore, since it is superimposed on each homologous phase, the harmonic voltage of each phase does not appear in the waveform of the line voltage, and the input current control is not affected.

上記自励式無効電力制御装置について、前記高調波電圧は、3次高調波電圧であることが好ましい。
上記構成によれば、各単相電力変換器の出力電圧に重畳する高調波電圧を3次高調波電圧とするので、3以外の3の倍数の高調波電圧に比べてコンデンサ電圧の脈動を最も抑制することができる。
In the self-excited reactive power control device, the harmonic voltage is preferably a third harmonic voltage.
According to the above configuration, since the harmonic voltage superimposed on the output voltage of each single-phase power converter is the third harmonic voltage, the pulsation of the capacitor voltage is the highest compared to the harmonic voltage of a multiple of 3 other than 3. Can be suppressed.

上記自励式無効電力制御装置について、前記三相交流系統の電源相電圧と前記高調波電圧を共に余弦波としたとき、前記電源相電圧に対する前記高調波電圧の位相角は、−π/2より大きくπ/2より小さい値であることが好ましい。   In the self-excited reactive power control device, when both the power phase voltage and the harmonic voltage of the three-phase AC system are cosine waves, the phase angle of the harmonic voltage with respect to the power phase voltage is −π / 2. It is preferably a value that is larger than π / 2.

上記構成によれば、高調波電圧の位相角を−π/2より大きくπ/2より小さい値とすることで、各単相電力変換器の出力電圧に高調波電圧を重畳することによるコンデンサ電圧の脈動抑制を効果的に行うことができる。   According to the above configuration, the capacitor voltage is obtained by superimposing the harmonic voltage on the output voltage of each single-phase power converter by setting the phase angle of the harmonic voltage to a value larger than −π / 2 and smaller than π / 2. It is possible to effectively suppress pulsation.

上記自励式無効電力制御装置について、前記電源相電圧と前記高調波電圧との位相角は、0であることが好ましい。
上記構成によれば、高調波電圧の位相角を0とすることで、各単相電力変換器の出力電圧に高調波電圧を重畳することによるコンデンサ電圧の脈動抑制を最も効果的に行うことができる。
In the self-excited reactive power control device, the phase angle between the power supply phase voltage and the harmonic voltage is preferably zero.
According to the above configuration, the pulsation of the capacitor voltage can be most effectively suppressed by superimposing the harmonic voltage on the output voltage of each single-phase power converter by setting the phase angle of the harmonic voltage to 0. it can.

本発明によれば、単相電力変換器のコンデンサの電圧脈動を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the voltage pulsation of the capacitor | condenser of a single phase power converter can be suppressed.

(a)は自励式無効電力制御装置の一実施形態の概略構成を示す回路図、(b)は自励式無効電力制御装置の単相電力変換器の構成を示す回路図。(A) is a circuit diagram which shows schematic structure of one Embodiment of a self-excited reactive power control apparatus, (b) is a circuit diagram which shows the structure of the single phase power converter of a self-excited reactive power control apparatus. 自励式無効電力制御装置による無効電力の制御原理を示すu相の等価回路図。The u phase equivalent circuit diagram which shows the control principle of the reactive power by a self-excited reactive power control apparatus. 自励式無効電力制御装置による無効電力の制御原理を示すu相の等価回路における進み無効電流のベクトル図。The vector diagram of the advance reactive current in the equivalent circuit of u phase which shows the control principle of the reactive power by a self-excited reactive power control apparatus. 自励式無効電力制御装置による無効電力の制御原理を示すu相の等価回路における遅れ無効電流のベクトル図。The vector diagram of the delay reactive current in the equivalent circuit of u phase which shows the control principle of the reactive power by a self-excited reactive power control apparatus. 自励式無効電力制御装置の解析モデルを示す図。The figure which shows the analysis model of a self-excited reactive power control apparatus. 自励式無効電力制御装置のd−q軸モデルに基づく電流制御系の構成を示す図。The figure which shows the structure of the current control system based on the dq axis | shaft model of a self-excited reactive power control apparatus. (a)は自励式無効電力制御装置によって3次高調波を重畳したときのモジュール出力相電圧波形を示す図、(b)は自励式無効電力制御装置によって3次高調波を重畳したときのモジュール出力線間電圧波形を示す図。(A) is a figure which shows a module output phase voltage waveform when a 3rd harmonic is superimposed by a self-excited reactive power control device, (b) is a module when a 3rd harmonic is superimposed by a self-excited reactive power control device. The figure which shows an output line voltage waveform. 自励式無効電力制御装置によって3次高調波を重畳したときの高調波位相角が0における、電源位相角と、モジュール瞬時電力の積分値との関係を示す図。The figure which shows the relationship between a power supply phase angle and the integral value of module instantaneous power in case the harmonic phase angle is 0 when a 3rd harmonic is superimposed by the self-excited reactive power control device. 自励式無効電力制御装置によって3次高調波を重畳したときの電源位相角と、高調波位相角と、モジュール瞬時電力の積分値との関係、及びモジュール瞬時電力の積分値の最大値と最小値とを示す図。The relationship between the power supply phase angle when the third harmonic is superimposed by the self-excited reactive power controller, the relationship between the harmonic phase angle and the integrated value of the module instantaneous power, and the maximum and minimum values of the integrated value of the module instantaneous power FIG. 実験に用いた自励式無効電力制御装置の回路を示す図。The figure which shows the circuit of the self-excited reactive power control apparatus used for experiment. (a)は自励式無効電力制御装置の実験において遅れ電流を流したときのコンデンサ電圧の脈動抑制前の電源相電圧の波形を示す図、(b)は電源電流の波形を示す図、(c)は変換器入力電流の波形を示す図、(d)は負荷電流の波形を示す図、(e)は1段目のコンデンサ電圧の波形を示す図、(f)は2段目のコンデンサ電圧の波形を示す図、(g)は3段目のコンデンサ電圧の波形を示す図、(h)はモジュール出力相電圧の波形を示す図、(i)はモジュール出力線間電圧の波形を示す図。(A) is a figure which shows the waveform of the power supply phase voltage before pulsation suppression of a capacitor voltage when a delay current is sent in the experiment of the self-excited reactive power control device, (b) is a figure which shows the waveform of the power supply current, ) Is a diagram showing the waveform of the converter input current, (d) is a diagram showing the waveform of the load current, (e) is a diagram showing the waveform of the capacitor voltage at the first stage, and (f) is a capacitor voltage at the second stage. (G) is a diagram showing the waveform of the capacitor voltage at the third stage, (h) is a diagram showing the waveform of the module output phase voltage, and (i) is a diagram showing the waveform of the module output line voltage. . (a)は自励式無効電力制御装置の実験において進み電流を流したときのコンデンサ電圧の脈動抑制前の電源相電圧の波形を示す図、(b)は電源電流の波形を示す図、(c)は変換器入力電流の波形を示す図、(d)は負荷電流の波形を示す図、(e)は1段目のコンデンサ電圧の波形を示す図、(f)は2段目のコンデンサ電圧の波形を示す図、(g)は3段目のコンデンサ電圧の波形を示す図、(h)はモジュール出力相電圧の波形を示す図、(i)はモジュール出力線間電圧の波形を示す図。(A) is a figure which shows the waveform of the power supply phase voltage before the pulsation suppression of a capacitor voltage when an advance electric current is sent in the experiment of a self-excited reactive power control apparatus, (b) is a figure which shows the waveform of a power supply current, ) Is a diagram showing the waveform of the converter input current, (d) is a diagram showing the waveform of the load current, (e) is a diagram showing the waveform of the capacitor voltage at the first stage, and (f) is a capacitor voltage at the second stage. (G) is a diagram showing the waveform of the capacitor voltage at the third stage, (h) is a diagram showing the waveform of the module output phase voltage, and (i) is a diagram showing the waveform of the module output line voltage. . (a)は自励式無効電力制御装置の実験において遅れ電流を流したときのコンデンサ電圧の脈動抑制後の電源相電圧の波形を示す図、(b)は電源電流の波形を示す図、(c)は変換器入力電流の波形を示す図、(d)は負荷電流の波形を示す図、(e)は1段目のコンデンサ電圧の波形を示す図、(f)は2段目のコンデンサ電圧の波形を示す図、(g)は3段目のコンデンサ電圧の波形を示す図、(h)はモジュール出力相電圧の波形を示す図、(i)はモジュール出力線間電圧の波形を示す図。(A) is a figure which shows the waveform of the power supply phase voltage after suppressing the pulsation of a capacitor voltage when a lagging current is passed in the experiment of the self-excited reactive power control device, (b) is a figure which shows the waveform of the power supply current, ) Is a diagram showing the waveform of the converter input current, (d) is a diagram showing the waveform of the load current, (e) is a diagram showing the waveform of the capacitor voltage at the first stage, and (f) is a capacitor voltage at the second stage. (G) is a diagram showing the waveform of the capacitor voltage at the third stage, (h) is a diagram showing the waveform of the module output phase voltage, and (i) is a diagram showing the waveform of the module output line voltage. . (a)は自励式無効電力制御装置の実験において進み電流を流したときのコンデンサ電圧の脈動抑制後の電源相電圧の波形を示す図、(b)は電源電流の波形を示す図、(c)は変換器入力電流の波形を示す図、(d)は負荷電流の波形を示す図、(e)は1段目のコンデンサ電圧の波形を示す図、(f)は2段目のコンデンサ電圧の波形を示す図、(g)は3段目のコンデンサ電圧の波形を示す図、(h)はモジュール出力相電圧の波形を示す図、(i)はモジュール出力線間電圧の波形を示す図。(A) is a figure which shows the waveform of the power supply phase voltage after suppression of the pulsation of the capacitor voltage when conducting a forward current in the self-excited reactive power control device experiment, (b) is a figure showing the waveform of the power supply current, (c) ) Is a diagram showing the waveform of the converter input current, (d) is a diagram showing the waveform of the load current, (e) is a diagram showing the waveform of the capacitor voltage at the first stage, and (f) is a capacitor voltage at the second stage. (G) is a diagram showing the waveform of the capacitor voltage at the third stage, (h) is a diagram showing the waveform of the module output phase voltage, and (i) is a diagram showing the waveform of the module output line voltage. .

以下、図1〜図14を参照して、自励式無効電力制御装置の一実施形態について説明する。本実施形態の自励式無効電力制御装置は、単相電力変換器のモジュールを3段カスケード接続したカスケード電力変換器である。   Hereinafter, an embodiment of a self-excited reactive power control device will be described with reference to FIGS. The self-excited reactive power control device of this embodiment is a cascade power converter in which modules of single-phase power converters are cascade-connected in three stages.

[カスケード電力変換器の構成]
図1(a)に示されるように、カスケード電力変換器は、三相交流電源(電源相電圧e,e,e)に、入力リアクトルLを介して3直列のモジュール(単相電力変換器)をスター結線している。図1(b)に示されるように、カスケード電力変換器の各モジュールは、直流コンデンサCと4個の絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)をHブリッジ接続して構成している。各モジュールのコンデンサ電圧vcjkとモジュール出力電圧vmjkとは、相と直列段数との添字をつけて区別している(j=u,v,w、k=1,2,3)。例えば、u相の1段目モジュールについては、コンデンサ電圧vcu1、モジュール出力相電圧vmu1と表現する。図1(a)に示されるように、モジュール部分は、コンデンサ電圧vを制御により一定に保つ。また、u相の直列モジュールの出力電圧をモジュール出力相電圧vmuと表す。モジュール出力相電圧vmuによりカスケード電力変換器の入力電流i,i,iを制御する。
[Configuration of cascade power converter]
As shown in FIG. 1 (a), the cascade power converter is connected to a three-phase AC power source (power supply phase voltages e u , e v , e w ) through a three-series module (single phase) via an input reactor L f. The power converter is star-connected. As shown in FIG. 1B, each module of the cascade power converter is configured by connecting a DC capacitor C and four insulated gate bipolar transistors (IGBTs) in an H-bridge connection. The capacitor voltage v cjk and the module output voltage v mjk of each module are distinguished from each other by adding a suffix of the phase and the number of series stages (j = u, v, w, k = 1, 2, 3). For example, the u-phase first-stage module is expressed as a capacitor voltage v cu1 and a module output phase voltage v mu1 . As shown in FIG. 1 (a), the module portion is kept constant by controlling the capacitor voltage v c. Further, the output voltage of the u-phase series module is represented as a module output phase voltage v mu . The input current i u , i v , i w of the cascade power converter is controlled by the module output phase voltage v mu .

[カスケード電力変換器の無効電力制御原理]
カスケード電力変換器は、有効電力を変換器損失に相当した分だけ供給し、モジュールのコンデンサ電圧vを一定値に保つように制御される。また、カスケード電力変換器は、無効電力を任意の値に制御できる。
[Reactive power control principle of cascade power converter]
Cascade power converter supplies by an amount equivalent to the transducer loss active power is controlled to maintain the capacitor voltage v c of the module to a constant value. Further, the cascade power converter can control the reactive power to an arbitrary value.

図2は、u相等価回路であって、モジュール出力相電圧vmuを電圧源で表している。電源角周波数ωを用いて等価回路より定常状態のu相電圧方程式が次式(1)で得られる。 FIG. 2 is a u-phase equivalent circuit, in which the module output phase voltage v mu is represented by a voltage source. A steady-state u-phase voltage equation is obtained by the following equation (1) from the equivalent circuit using the power supply angular frequency ω.

図3は、入力電流iを進み無効電流としたときのベクトル図である。図3に示されるように、カスケード電力変換器は、モジュール出力相電圧vmuを電源相電圧eと同相で、電源相電圧eよりも大きい電圧を与えることで、進み入力電流iを制御できる。 FIG. 3 is a vector diagram when the input current i u is set as a reactive current. As shown in FIG. 3, the cascade power converter module output phase voltage v mu power supply phase voltage e u and phase, by providing a voltage greater than the power supply phase voltage e u, the processing proceeds input current i u Can be controlled.

図4は、入力電流iを遅れ無効電流としたときのベクトル図である。図4に示されるように、カスケード電力変換器は、モジュール出力相電圧vmuを電源相電圧eと同相で、電源相電圧eよりも小さい電圧を与えることで、遅れ入力電流iを制御できる。 FIG. 4 is a vector diagram when the input current i u is a delayed reactive current. As shown in FIG. 4, the cascade power converter module output phase voltage v mu power supply phase voltage e u and phase, by providing a voltage less than the power supply phase voltage e u, delays the input current i u Can be controlled.

モジュール出力相電圧vmuとして出力できる最大電圧は、3段のu相モジュール直流電圧の和であり、これが進み無効電流制御時のモジュール出力相電圧波高値よりも高くなければならない。すなわち、電源の線間電圧実効値E、電源角周波数ω、定格無効電流Iを用いて、各モジュールのコンデンサ電圧(直流電圧)vcu1,vcu2,vcu3に対して次式(2)を満たす必要がある。 The maximum voltage that can be output as the module output phase voltage v mu is the sum of the three-stage u-phase module DC voltages, which must be higher than the module output phase voltage peak value during reactive current control. That is, the line voltage effective value E of the power source, the power source angular frequency omega, with the rated reactive current I n, the capacitor voltage of each module (DC voltage) v cu1, v cu2, v following expression for cu3 (2) It is necessary to satisfy.

[カスケード電力変換器の制御]
図5に示されるように、各相の直列接続されたモジュール出力相電圧vmu,vmv,vmwを電圧源として表している。入力リアクトルLの抵抗Rを考慮し、瞬時値に対する三相電圧方程式が次式(3)で得られる。ここで、pは微分演算子である。
[Control of cascade power converter]
As shown in FIG. 5, the module output phase voltages v mu , v mv , and v mw connected in series for each phase are represented as voltage sources. Considering the resistance R f of the input reactor L f, the three-phase voltage equation for the instantaneous value is obtained by the following equation (3). Here, p is a differential operator.

電源相電圧e,e,eは、線間電圧実効値E、電源角周波数ωの対称三相交流電圧として次式(4)で与えられる。 The power supply phase voltages e u , e v , and e w are given by the following equation (4) as a symmetric three-phase AC voltage having a line voltage effective value E and a power supply angular frequency ω.

三相交流量を直流量として表し、制御を簡単にするために、電源位相角θに同期した回転座標(d−q座標)へ変換する。d−q座標への変換行列Cdqは次式(6)で得られる。 The three-phase alternating current amount is expressed as a direct current amount, and is converted into rotational coordinates (dq coordinates) synchronized with the power supply phase angle θ in order to simplify the control. A transformation matrix C dq to dq coordinates is obtained by the following equation (6).

そして、式(6)を用いて、式(3),(4)をそれぞれ座標変換すると次式(7)が得られる。 Then, when the equations (3) and (4) are coordinate-transformed using the equation (6), the following equation (7) is obtained.

式(7)に式(8)を代入し、i,iについて解くと次式(9)が得られる。 Substituting equation (8) into equation (7) and solving for i d and i q yields equation (9) below.

図6の破線で囲んだカスケード電力変換器のブロックは、式(9)に基づいたd−q軸モデルである。カスケード電力変換器のブロックは、d−q軸のモジュール出力電圧vmd,vmqから入力電流i,iまでのブロック線図として表している。カスケード電力変換器のブロックには、交流量を直流に変換することに伴うd−q軸間の干渉項および電源電圧Eの外乱が存在している。 The block of the cascade power converter surrounded by a broken line in FIG. 6 is a dq axis model based on Expression (9). The block of the cascade power converter is represented as a block diagram from the module output voltages v md and v mq on the dq axis to the input currents i d and i q . In the block of the cascade power converter, there are interference terms between dq axes and disturbance of the power supply voltage E due to conversion of the AC amount to DC.

有効電流のd軸の制御系は、モジュールのコンデンサの平均電圧vcavの制御に用いられ、直流電圧指令値v と検出値vとの偏差に対してPI制御を行い、d軸電流指令値i を与えている。無効電流のq軸の制御系では、無効電力指令値Qを電源の線間電圧実効値Eで除し、無効電流指令値i を得ている。d−q軸間の干渉項および電源電圧Eの外乱を非干渉化するために、それぞれ干渉項および外乱項を補償し、PI制御により電流制御系を構成している。 The d-axis control system for the effective current is used to control the average voltage v cav of the module capacitor, performs PI control on the deviation between the DC voltage command value v c * and the detected value v c, and d-axis current The command value i d * is given. In the reactive current q-axis control system, the reactive power command value Q * is divided by the line voltage effective value E of the power source to obtain the reactive current command value i q * . In order to make the interference term between the dq axes and the disturbance of the power supply voltage E incoherent, the interference term and the disturbance term are compensated, respectively, and a current control system is configured by PI control.

[モジュール瞬時電力と直流電圧脈動]
カスケード電力変換器は、無効電力を制御する。このため、入力電流実効値Iの遅れ電流の変換器入力電流i,i,iは次式(10)で得られる。
[Module instantaneous power and DC voltage pulsation]
The cascade power converter controls the reactive power. For this reason, the converter input currents i u , i v , i w of the lag current of the input current effective value I are obtained by the following equation (10).

式(10)は遅れ電流としているが、進みの場合は入力電流実効値Iを負とすればよい。入力リアクトルLによる電圧降下は小さいので無視する。また、各モジュールが同じ動作を行うとして、u相のモジュール出力相電圧vmuは実効値V、電源位相角θの次式(11)で得られる。 Equation (10) is a lagging current, but in the case of advancing, the input current effective value I may be negative. Ignoring the voltage drop is small due to input reactor L f. Further, assuming that each module performs the same operation, the u-phase module output phase voltage v mu is obtained by the following equation (11) of the effective value V 1 and the power supply phase angle θ.

コンデンサ電圧vは、モジュールが吸収する瞬時電力pにより脈動する。式(10),(11)を用いて、u相モジュールの瞬時電力pは次式(13)で得られる。 Capacitor voltage v c is the module pulsates by the instantaneous power p to absorb. Using the equations (10) and (11), the instantaneous power p of the u-phase module is obtained by the following equation (13).

脈動するコンデンサ電圧vは、直流平均値Vcoを用いて,次式(14)の近似式で表される。 Capacitor voltage v c pulsating, using a DC average value V co, represented by an approximate equation of equation (14).

したがって、コンデンサ電圧vの脈動幅は、瞬時電力pの積分値に比例する。式(13)の瞬時電力pの積分値Wは次式(15)で得られる。 Therefore, the pulsation width of the capacitor voltage v c is proportional to the integral value of the instantaneous power p. The integral value W of the instantaneous power p in the equation (13) is obtained by the following equation (15).

コンデンサ電圧vの電圧脈動は、基本波実効値Vと入力電流実効値Iとの積VIに比例し、電源の2倍の電源周波数で脈動する。式(15)の積分値Wの最大値VI/2と最小値−VI/2との差ΔWは次式(16)で得られる。 Voltage ripple of the capacitor voltage v c is proportional to the product V 1 I of the fundamental wave RMS value V 1 and the input current effective value I, pulsates at twice the power supply frequency of the power supply. The difference ΔW between the maximum value V 1 I / 2 and the minimum value −V 1 I / 2 of the integral value W in the equation (15) is obtained by the following equation (16).

[直流電圧脈動の抑制法]
本実施形態では、コンデンサ電圧脈動を抑制するために、モジュール出力相電圧vmuに、実効値V、位相角φの次式(17)の3次高調波電圧vを重畳する。3次高調波電圧vは、電源相電圧e,e,eと共に余弦波とする。
[Method of suppressing DC voltage pulsation]
In the present embodiment, in order to suppress the capacitor voltage pulsation, the third harmonic voltage v 3 of the following equation (17) of the effective value V 3 and the phase angle φ is superimposed on the module output phase voltage v mu . The third harmonic voltage v 3 is a cosine wave together with the power supply phase voltages e u , e v and e w .

モジュール出力相電圧vmuは、式(11),(17)の和となり、次式(18)で得られる。 The module output phase voltage v mu is the sum of the equations (11) and (17), and is obtained by the following equation (18).

図7(a)は3次高調波電圧を重畳したときのモジュール出力相電圧vmu,vmvの波形である。図7(b)は3次高調波電圧を重畳したときのモジュール出力線間電圧vmuvの波形である。3次高調波電圧は、各相同相になるので、モジュール出力線間電圧vmuvの波形には現れず、入力電流制御系に影響を与えない。 FIG. 7A shows the waveforms of the module output phase voltages v mu and v mv when the third harmonic voltage is superimposed. FIG. 7B shows the waveform of the module output line voltage v muv when the third harmonic voltage is superimposed. Since the third harmonic voltage is in each homologous phase, it does not appear in the waveform of the module output line voltage v muv and does not affect the input current control system.

式(10),(18)より3次高調波電圧を重畳したときのu相モジュールの瞬時電力pは次式(19)で得られる。 Equation (10), the instantaneous power p 3 u-phase module when superimposed third harmonic voltage from (18) is obtained by the following equation (19).

瞬時電力pの積分値Wは、次式(20)で得られる。 Integral value W 3 of the instantaneous power p 3 is obtained by the following equation (20).

瞬時電力pの積分値Wの変化を小さくすることで、コンデンサ電圧脈動を抑制できる。式(20)の瞬時電力pの積分値Wの変化幅が最小になるように、3次高調波電圧vの位相角φを求めることで、コンデンサ電圧vの脈動を最小にできる。式(20)より瞬時電力pの積分値Wは、2θの関数であるから0≦θ≦πの範囲で考える。3次高調波電圧vの実効値Vは、式(18)のモジュール出力相電圧vmuが高くなると、コンデンサ電圧vも高い電圧を必要とするので、基本波実効値Vの3割以下とする。なお、3次高調波電圧vの実効値Vの基本波実効値Vに対する割合は、任意に設定可能である。例えば、3次高調波電圧vの実効値Vを基本波実効値Vの10割以下とすることも可能である。 By reducing the change in the integrated value W 3 of the instantaneous power p 3, it can be suppressed capacitor voltage ripple. As the variation range of the integrated value W 3 of the instantaneous power p 3 of the formula (20) is minimized, by obtaining the phase angle φ of the third harmonic voltage v 3, you can minimize the pulsation of the capacitor voltage v c . From the equation (20), the integral value W 3 of the instantaneous power p 3 is a function of 2θ, so it is considered in the range of 0 ≦ θ ≦ π. The effective value V 3 of the third harmonic voltage v 3 is the module output phase voltage v mu of formula (18) becomes high, since it requires a voltage higher capacitor voltage v c, 3 of the fundamental wave RMS value V 1 Less than 10%. The ratio of the fundamental wave RMS value V 1 of the effective value V 3 of the third harmonic voltage v 3 can be arbitrarily set. For example, the effective value V 3 of the third harmonic voltage v 3 can be made equal to or less than 100% of the fundamental wave effective value V 1 .

[瞬時電力pの積分値Wの最小値、最大値]
式(20)の瞬時電力pの積分値Wについて、電源位相角θと3次高調波電圧vの位相角φの関数W(θ,φ)として、変化幅が最小になるときの最小値と最大値とを導出する。式(20)に、3次高調波電圧vの位相角φ=0を代入したときの瞬時電力pの積分値W(θ,0)は次式(22)で得られる。
[Minimum value and maximum value of integral value W of instantaneous power p]
The integral value W 3 of the instantaneous power p 3 of the formula (20), as a function W 3 of the phase angle phi of the power supply phase angle theta and the third harmonic voltage v 3 (theta, phi), when the change width is minimized The minimum and maximum values of are derived. The integral value W 3 (θ, 0) of the instantaneous power p 3 when the phase angle φ = 0 of the third harmonic voltage v 3 is substituted into the equation (20) is obtained by the following equation (22).

図8は、式(15)の瞬時電力pの積分値Wと、式(22)の位相角φ=0の3次高調波電圧vを重畳した瞬時電力pの積分値W(θ,0)の波形である。瞬時電力pの積分値W(θ,0)の最小値W3minは、電源位相角θ=0,πのときで、次式(23)で得られる。 FIG. 8 shows the integrated value W 3 (θ of the instantaneous power p 3 in which the integrated value W of the instantaneous power p in Expression (15) and the third harmonic voltage v 3 with the phase angle φ = 0 in Expression (22) are superimposed. , 0). The minimum value W 3min of the integral value W 3 (θ, 0) of the instantaneous power p 3 is obtained by the following equation (23) when the power supply phase angle θ = 0, π.

式(15)の3次高調波電圧の重畳前と比較して最小値W3minは、VI/4だけ高くなる。瞬時電力pの積分値W(θ,0)の最大値W3maxは、電源位相角θ=π/2のときで、次式(24)と得られる。 The minimum value W 3min is higher by V 3 I / 4 than before the superposition of the third harmonic voltage in the equation (15). The maximum value W 3max of the integral value W 3 (θ, 0) of the instantaneous power p 3 is obtained by the following equation (24) when the power supply phase angle θ = π / 2.

式(15)の3次高調波電圧の重畳前と比較して最大値W3maxは、3VI/4だけ低くなる。したがって,3次高調波電圧の重畳時の瞬時電力pの積分値W(θ,0)の最大値と最小値との差ΔWは,次式(25)で得られる。 The maximum value W 3max is lower by 3V 3 I / 4 than before the superposition of the third harmonic voltage in Expression (15). Therefore, the difference ΔW 3 between the maximum value and the minimum value of the integral value W 3 (θ, 0) of the instantaneous power p 3 when the third harmonic voltage is superimposed is obtained by the following equation (25).

3次高調波電圧を重畳したときの脈動電圧の低減割合εは,次式(26)で得られる。 The reduction rate ε of the pulsation voltage when the third harmonic voltage is superimposed is obtained by the following equation (26).

式(22)の瞬時電力pの積分値W(θ,0)が、最もコンデンサ電圧脈動を抑制できることを示す。式(23)の最小値W3min近傍の瞬時電力pの積分値Wを確認するために、式(20)に電源位相角θ=0を代入した瞬時電力pの積分値W(0,φ)は,次式(27)で得られる。 The integral value W 3 (θ, 0) of the instantaneous power p 3 in the equation (22) indicates that the capacitor voltage pulsation can be most suppressed. The minimum value W 3min to confirm the integral value W 3 of the instantaneous power p 3 in the vicinity of the integral value W 3 of the instantaneous power p 3 obtained by substituting the power phase angle theta = 0 in equation (20) in equation (23) ( 0, φ) is obtained by the following equation (27).

図9では、式(22)の瞬時電力pの積分値W(θ,0)と、式(27)の最小値W3min近傍の瞬時電力pの積分値W(0,φ)の関係を3次元的に示している。瞬時電力pの積分値W(0,φ)において、3次高調波電圧vの位相角φ=0における瞬時電力pの積分値W3min=W(0,0)が最小値の中では最も高く、3次高調波電圧vの位相角φ=0の瞬時電力pの積分値W(θ,0)がコンデンサ電圧脈動の最小値を最も高くできる。 In FIG. 9, the integral value W 3 (θ, 0) of the instantaneous power p 3 in the equation (22) and the integral value W 3 (0, φ) of the instantaneous power p 3 in the vicinity of the minimum value W 3min in the equation (27). Is shown in a three-dimensional manner. Integral value W 3 of the instantaneous power p 3 (0, phi) in, the third harmonic integration value of the instantaneous power p 3 in the phase angle phi = 0 of the voltage v 3 W 3min = W 3 ( 0,0) is the minimum value , The integral value W 3 (θ, 0) of the instantaneous power p 3 at the phase angle φ = 0 of the third harmonic voltage v 3 can be set to the highest value of the capacitor voltage pulsation.

式(24)の最大値W3max近傍の瞬時電力pの積分値W(θ,0)を確認するために、式(20)に電源位相角θ=π/2を代入した瞬時電力pの積分値W(π/2,φ)は、次式(28)で得られる。 In order to confirm the integral value W 3 (θ, 0) of the instantaneous power p 3 in the vicinity of the maximum value W 3max of the equation (24), the instantaneous power p obtained by substituting the power supply phase angle θ = π / 2 into the equation (20). integral value of 3 W 3 (π / 2, φ) is obtained by the following equation (28).

図9は、式(22)の瞬時電力pの積分値W(θ,0)と、式(28)の最大値W3max近傍の瞬時電力pの積分値W(π/2,φ)の関係を3次元的に示している。瞬時電力pの積分値W(π/2,φ)において、3次高調波電圧vの位相角φ=0における瞬時電力pの積分値W3max=W(π/2,0)が最大値の中では最も低く、3次高調波電圧vの位相角φ=0の瞬時電力pの積分値W(θ,0)がコンデンサ電圧脈動の最大値を最も低くできる。 FIG. 9 shows the integral value W 3 (θ, 0) of the instantaneous power p 3 in equation (22) and the integral value W 3 (π / 2) of the instantaneous power p 3 in the vicinity of the maximum value W 3max in equation (28). The relationship of φ) is shown three-dimensionally. Integral value W 3 (π / 2, φ ) of the instantaneous power p 3 in the integral value of the instantaneous power p 3 in the phase angle phi = 0 of the third harmonic voltage v 3 W 3max = W 3 ( π / 2,0 ) Is the lowest among the maximum values, and the integrated value W 3 (θ, 0) of the instantaneous power p 3 of the phase angle φ = 0 of the third harmonic voltage v 3 can make the maximum value of the capacitor voltage pulsation the lowest.

したがって、3次高調波電圧vの位相角φ=0とした式(22)の瞬時電力pの積分値W(θ,0)が最もコンデンサ電圧脈動を抑制できる。
[実験]
上述したカスケード電力変換器によるコンデンサ電圧の脈動抑制の効果を実験にて確認する。すなわち、カスケード電力変換器によって、無効電力制御を行い、脈動抑制制御の有無による違いを確認する。
Therefore, the integral value W 3 (θ, 0) of the instantaneous power p 3 in the equation (22) in which the phase angle φ = 0 of the third harmonic voltage v 3 can suppress the capacitor voltage pulsation most.
[Experiment]
The effect of suppressing the pulsation of the capacitor voltage by the cascade power converter described above will be confirmed by experiments. That is, reactive power control is performed by a cascade power converter, and a difference due to the presence or absence of pulsation suppression control is confirmed.

[実験条件]
図10にカスケード電力変換器の実験回路構成を示し、表1に実験条件を示している。入力線間電圧実効値は200V、周波数は60Hzとする。入力リアクトルLの値は3mH、モジュールコンデンサの容量は470μFとしている。また、モジュールのコンデンサ電圧指令値v は71Vとしている。線電流実効値が7.5Aとなるようにq軸電流指令値i を±13Aとしている。また、負荷容量が1.8kVAであり、制御無効電力が2.6kvarである。
[Experimental conditions]
FIG. 10 shows the experimental circuit configuration of the cascade power converter, and Table 1 shows the experimental conditions. The input line voltage effective value is 200 V, and the frequency is 60 Hz. The value of the input reactor L f is 3mH, the capacity of the module capacitors is a 470 .mu.F. Further, the capacitor voltage command value v c * of the module is 71V. The q-axis current command value i q * is set to ± 13 A so that the effective line current value is 7.5 A. Further, the load capacity is 1.8 kVA and the control reactive power is 2.6 kvar.

[実験結果]
3次高調波電圧vを重畳することで、コンデンサ電圧の脈動を3割低減させる。モジュール出力相電圧に重畳する3次高調波電圧vは、実効値Vを電源線間電圧実効値Eの0.3として以下の式(29)で与える。
[Experimental result]
By superimposing the third harmonic voltage v3, the pulsation of the capacitor voltage is reduced by 30%. Third harmonic voltage v superimposed on the module output phase voltage 3 is given by the following equation the effective value V 3 as 0.3 of the power supply line voltage effective value E (29).

[コンデンサ電圧の脈動抑制制御なし]
図11及び図12にコンデンサ電圧の脈動抑制制御を行っていないときの波形を示す。図11及び図12の波形は、上から電源相電圧e、電源電流isu、変換器入力電流i、負荷電流ilu、コンデンサ電圧vcu1〜vcw3、モジュール出力相電圧vmu、モジュール出力線間電圧vmuvである。コンデンサ電圧vcu1〜vcw3以外はU相のみを表示している。
[No capacitor voltage pulsation suppression control]
11 and 12 show waveforms when the capacitor voltage pulsation suppression control is not performed. 11 and 12 show the power supply phase voltage e u , power supply current i su , converter input current i u , load current i lu , capacitor voltages v cu1 to v cw3 , module output phase voltage v mu , module from the top. The output line voltage is v muv . Except capacitor voltage v cu1 to v CW3 is displayed only U-phase.

図11は、モジュール電力変換器にq軸で−13Aを流したときの波形である。図11(d)に示す変換器入力電流iは、図11(a)に示す電源相電圧eに対し位相がπ/2遅れとなっている。また、図11(h)に示すモジュール出力相電圧vmuは、モジュールを3段直列接続していることから、マルチレベル化されている。図11(e)(f)(g)に示すコンデンサ電圧vcu1〜vcw3は、各段で71Vとなっており、脈動幅は25Vである。 FIG. 11 shows a waveform when −13 A is passed through the module power converter along the q axis. Converter input current i u shown in FIG. 11 (d), the phase has become a [pi / 2 delayed with respect to the power supply phase voltage e u shown in FIG. 11 (a). Further, the module output phase voltage v mu shown in FIG. 11 (h) is multi-level because the modules are connected in series in three stages. Capacitor voltages v cu1 to v cw3 shown in FIGS. 11 (e), 11 (f), and 11 (g) are 71 V at each stage, and the pulsation width is 25 V.

図12は、モジュール電力変換器にq軸で+13Aを流したときの波形である。図12(d)に示す変換器入力電流iは、図12(a)に示す電源相電圧eに対し位相がπ/2進みとなっている。また、図12(h)に示すモジュール出力相電圧vmuは、モジュールを3段直列接続していることからマルチレベル化されている。図12(e)(f)(g)に示すコンデンサ電圧vcu1〜vcw3は、各段で71Vとなっており、脈動幅は32Vである。 FIG. 12 shows a waveform when +13 A is passed through the module power converter along the q axis. Figure 12 (d) to the transducer input current i u indicating the phase has become a [pi / 2 proceeds to the power supply phase voltage e u shown in Figure 12 (a). Further, the module output phase voltage v mu shown in FIG. 12 (h) is multilevel because the modules are connected in series in three stages. The capacitor voltages v cu1 to v cw3 shown in FIGS. 12E , 12F , and 12G are 71V in each stage, and the pulsation width is 32V.

[コンデンサ電圧の脈動抑制制御あり]
図13及び図14にコンデンサ電圧の脈動抑制制御を行ったときの波形を示す。図11は、モジュール電力変換器にq軸で−13Aを流したときの波形である。図13(d)に示す変換器入力電流iは、図13(a)に示す電源相電圧eに対し位相がπ/2遅れとなっている。また、図13(h)に示すモジュール出力相電圧vmuは、モジュールを3段直列接続していることからマルチレベル化されている。
[With capacitor voltage pulsation suppression control]
13 and 14 show waveforms when the capacitor voltage pulsation suppression control is performed. FIG. 11 shows a waveform when −13 A is passed through the module power converter along the q axis. Converter input current i u shown in FIG. 13 (d), the phase has a [pi / 2 delayed with respect to the power supply phase voltage e u shown in FIG. 13 (a). Further, the module output phase voltage v mu shown in FIG. 13 (h) is multilevel because the modules are connected in three stages in series.

図13(e)(f)(g)に示すコンデンサ電圧vcu1〜vcw3は、各段で71Vとなっており、脈動幅は18Vである。図11(e)(f)(g)に示した脈動抑制制御を行っていないときの脈動幅25Vを0.7倍すると17.5Vになるため、理論通りの抑制効果が得られたといえる。また、図13(i)に示すモジュール出力線間電圧vmuv1に3次高調波電圧が現れず、図13(b)に示す電源電流isuにも影響を与えていない。 Capacitor voltages v cu1 to v cw3 shown in FIGS. 13E , 13F , and 13G are 71V at each stage, and the pulsation width is 18V. Since the pulsation width 25V when the pulsation suppression control shown in FIGS. 11 (e), 11 (f), and 11 (g) is not performed is 0.7 times 17.5V, it can be said that the theoretical suppression effect is obtained. Further , the third harmonic voltage does not appear in the module output line voltage v muv1 shown in FIG. 13 (i), and the power supply current i su shown in FIG. 13 (b) is not affected.

図14は、モジュール電力変換器にq軸で+13Aを流したときの波形である。図14(d)に示す変換器入力電流iは、図14(a)に示す電源相電圧eに対し位相がπ/2進みとなっている。また、図14(h)に示すモジュール出力相電圧vmuは、モジュールを3段直列接続していることからマルチレベル化されている。 FIG. 14 shows a waveform when +13 A is passed through the module power converter along the q axis. Converter input current i u shown in FIG. 14 (d), the phase has become a [pi / 2 proceeds to the power supply phase voltage e u shown in FIG. 14 (a). Further, the module output phase voltage v mu shown in FIG. 14 (h) is multilevel because the modules are connected in three stages in series.

図14(e)(f)(g)に示すコンデンサ電圧vcu1〜vcw3は、各段で71Vとなっており、脈動幅は22Vである。図12(e)(f)(g)に示した脈動抑制制御を行っていないときの脈動幅32Vを0.7倍すると22.4Vになるため、理論通りの抑制効果が得られたといえる。また、図14(i)に示すモジュール出力線間電圧vmuvに3次高調波電圧が現れず、図14(b)に示す電源電流isuにも影響を与えていない。 Capacitor voltages v cu1 to v cw3 shown in FIGS. 14E , 14F , and 14G are 71V at each stage, and the pulsation width is 22V. When the pulsation width 32V when the pulsation suppression control shown in FIGS. 12 (e), 12 (f), and 12 (g) is not performed is 0.7 times 22.4V, it can be said that the theoretical suppression effect is obtained. Further , the third harmonic voltage does not appear in the module output line voltage v muv shown in FIG. 14 (i), and the power supply current i su shown in FIG. 14 (b) is not affected.

このように、カスケード電力変換器の脈動抑制制御により、コンデンサ電圧の平均値を低くできるので、スイッチング素子耐圧に余裕ができると共に、スイッチング損失も低減できる。また、コンデンサ電圧の平均値が同じであれば、脈動抑制制御によりコンデンサ容量を低減できる。   Thus, since the average value of the capacitor voltage can be lowered by the pulsation suppression control of the cascade power converter, the switching element withstand voltage can be afforded and the switching loss can be reduced. If the average value of the capacitor voltage is the same, the capacitor capacity can be reduced by pulsation suppression control.

以上説明したように、本実施形態によれば、以下の効果を奏することができる。
(1)複数の単相電力変換器の交流側が互いにカスケード接続される単相電力変換器が三相分備えられ、各単相電力変換器が三相交流系統に直結される。そして、各単相電力変換器の直流側に設けられるコンデンサを直流電圧源として用いて無効電力を生成し、各単相電力変換器のモジュール出力相電圧vmu,vmv,vmwに3次高調波電圧を各相同相で重畳する。すなわち、コンデンサ電圧vが電源周波数の2倍で脈動していたとしても、3次高調波電圧が重畳されることで、コンデンサ電圧vの脈動が抑制される。よって、コンデンサ電圧vの平均値を低くすることができ、スイッチング素子の耐圧に余裕ができるとともに、スイッチング損失も低減できる。また、コンデンサ電圧vの平均値を同じとすれば、コンデンサの容量を低減することができる。さらに、各相同相に3次高調波電圧を重畳するので、モジュール出力線間電圧vmuv,vmvw,vmuwの波形には、重畳した各相の3次高調波電圧が互いに打ち消しあうことで現れず、入力電流制御に影響を与えることがない。
As described above, according to this embodiment, the following effects can be obtained.
(1) Three-phase single-phase power converters in which AC sides of a plurality of single-phase power converters are cascade-connected to each other are provided, and each single-phase power converter is directly connected to a three-phase AC system. Then, reactive power is generated by using a capacitor provided on the DC side of each single-phase power converter as a DC voltage source, and third order is applied to the module output phase voltages v mu , v mv , and v mw of each single-phase power converter. Harmonic voltages are superimposed on each homologous phase. That is, even the capacitor voltage v c was pulsates at twice the power frequency, that is the third harmonic voltage is superimposed, the pulsation of the capacitor voltage v c is suppressed. Therefore, it is possible to lower the average value of the capacitor voltage v c, it is enough to withstand the switching element can be reduced switching loss. Further, if the same average value of the capacitor voltage v c, it is possible to reduce the capacitance of the capacitor. Further, since the third harmonic voltage is superimposed on each homologous phase, the third harmonic voltage of each superimposed phase cancels each other in the waveforms of the module output line voltages v muv , v mvw , v muw. It does not appear and does not affect the input current control.

(2)高調波電圧の位相角φを−π/2より大きくπ/2より小さい値とすることで、各単相電力変換器のモジュール出力相電圧vmu,vmv,vmwに高調波電圧を重畳することによるコンデンサ電圧vの脈動抑制を効果的に行うことができる。 (2) By setting the phase angle φ of the harmonic voltage to a value larger than −π / 2 and smaller than π / 2, harmonics are generated in the module output phase voltages v mu , v mv , and v mw of each single-phase power converter. it is possible to perform pulsation suppression capacitor voltage v c by superimposing the voltage effectively.

(3)高調波電圧の位相角φを0とすることで、各単相電力変換器のモジュール出力相電圧vmu,vmv,vmwに高調波電圧を重畳することによるコンデンサ電圧vの脈動抑制を最も効果的に行うことができる。 (3) the phase angle φ of the harmonic voltage by zero, of each single-phase power converter module output phase voltage v mu, v mv, v mw capacitor voltage v c by superimposing harmonic voltage Pulsation suppression can be most effectively performed.

(4)各相には複数の単相電力変換器がそれぞれ備えられ、各相の複数の単相電力変換器の交流側が互いにカスケード接続され、各単相電力変換器の組を三相交流系統の各相に直結されている。よって、各相に複数の単相電力変換器をカスケード接続することで多段階化(マルチレベル化)することができ、電流・電圧波形の改善、大容量化が可能である。   (4) Each phase is provided with a plurality of single-phase power converters, and the AC sides of the plurality of single-phase power converters in each phase are cascade-connected to each other. It is directly connected to each phase. Therefore, by connecting a plurality of single-phase power converters in each phase in cascade, it can be multi-staged (multi-level), and the current / voltage waveform can be improved and the capacity can be increased.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。
・上記実施形態では、3次高調波電圧の位相角φを0としたが、0を除く−π/2より大きくπ/2よりも小さい値を採用してもよい。
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
In the above embodiment, the phase angle φ of the third harmonic voltage is set to 0, but a value larger than −π / 2 excluding 0 and smaller than π / 2 may be adopted.

・上記実施形態では、コンデンサ電圧vcの脈動を最も抑制することができる3次高調波電圧を重畳したが、3を除く3の倍数の高調波電圧を重畳してもよい。このようにしても、3次高調波電圧を重畳した場合と同様にコンデンサ電圧vの脈動を抑制することができる。 In the above embodiment, the third harmonic voltage that can suppress the pulsation of the capacitor voltage vc is superimposed, but a harmonic voltage that is a multiple of 3 except 3 may be superimposed. Also in this manner, it is possible to suppress the pulsation of similarly capacitor voltage v c in the case of superimposed third harmonic voltage.

・上記実施形態において、各モジュール(単相電力変換器)のコンデンサの容量は、制御したい無効電力の大きさに応じて任意に選択可能であって、異なる容量の組み合わせも可能である。   In the above embodiment, the capacity of the capacitor of each module (single phase power converter) can be arbitrarily selected according to the magnitude of reactive power to be controlled, and combinations of different capacities are also possible.

・上記実施形態では、各相の単相電力変換器を複数備えた構成として多段階化したが、コンデンサの容量が十分であれば、各相に各1個の単相電力変換器を備えた構成としてもよい。   -In the said embodiment, although it was multistaged as the structure provided with two or more single-phase power converters of each phase, if the capacity | capacitance of the capacitor | condenser was sufficient, each single-phase power converter was provided for each phase. It is good also as a structure.

・上記実施形態において、高調波として矩形波(方形波)や三角波を採用してもよい。   -In the said embodiment, you may employ | adopt a rectangular wave (square wave) and a triangular wave as a harmonic.

C…直流コンデンサ。   C: DC capacitor.

Claims (4)

単相電力変換器の直流側に接続されたコンデンサが直流電圧源として無効電力を生成し、前記単相電力変換器を三相分備えて三相交流系統に直結される自励式無効電力制御装置において、
各前記単相電力変換器の出力電圧に3の倍数の高調波電圧を各相同相で重畳する
ことを特徴とする自励式無効電力制御装置。
Self-excited reactive power control device in which a capacitor connected to the DC side of a single-phase power converter generates reactive power as a DC voltage source, and the single-phase power converter includes three phases and is directly connected to a three-phase AC system In
A self-excited reactive power control device, wherein a harmonic voltage of a multiple of 3 is superimposed on each homologous phase on the output voltage of each single-phase power converter.
前記高調波電圧は、3次高調波電圧である
請求項1に記載の自励式無効電力制御装置。
The self-excited reactive power control device according to claim 1, wherein the harmonic voltage is a third-order harmonic voltage.
請求項1又は2に記載の自励式無効電力制御装置において、
前記三相交流系統の電源相電圧と前記高調波電圧を共に余弦波としたとき、前記電源相電圧に対する前記高調波電圧の位相角は、−π/2より大きくπ/2より小さい値である
ことを特徴とする自励式無効電力制御装置。
In the self-excited reactive power control device according to claim 1 or 2,
When both the power phase voltage and the harmonic voltage of the three-phase AC system are cosine waves, the phase angle of the harmonic voltage with respect to the power phase voltage is greater than −π / 2 and smaller than π / 2. A self-excited reactive power control device.
前記電源相電圧と前記高調波電圧との位相角は、0である
請求項3に記載の自励式無効電力制御装置。
The self-excited reactive power control device according to claim 3, wherein a phase angle between the power supply phase voltage and the harmonic voltage is zero.
JP2014116114A 2014-06-04 2014-06-04 Self-excited reactive power controller Pending JP2015230555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116114A JP2015230555A (en) 2014-06-04 2014-06-04 Self-excited reactive power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116114A JP2015230555A (en) 2014-06-04 2014-06-04 Self-excited reactive power controller

Publications (1)

Publication Number Publication Date
JP2015230555A true JP2015230555A (en) 2015-12-21

Family

ID=54887303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116114A Pending JP2015230555A (en) 2014-06-04 2014-06-04 Self-excited reactive power controller

Country Status (1)

Country Link
JP (1) JP2015230555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163185A1 (en) * 2018-02-23 2019-08-29 株式会社日立製作所 Power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163185A1 (en) * 2018-02-23 2019-08-29 株式会社日立製作所 Power conversion device
JP2019146433A (en) * 2018-02-23 2019-08-29 株式会社日立製作所 Power conversion apparatus
US11152870B2 (en) 2018-02-23 2021-10-19 Hitachi Industrial Products, Ltd. Power conversion device

Similar Documents

Publication Publication Date Title
Akagi et al. Control and performance of a transformerless cascade PWM STATCOM with star configuration
JP4512117B2 (en) Multiple power conversion device and multiple transformer
JP6180641B2 (en) Power converter
US6594164B2 (en) PWM controlled power conversion device
Rahmani et al. A DSP-based implementation of an instantaneous current control for a three-phase shunt hybrid power filter
JP5593253B2 (en) Reactive power compensator
US10122165B2 (en) Apparatus and method for reducing harmonics
WO2017008245A1 (en) Transformer-less static synchronous series compensator and method therefor
JP6538542B2 (en) Self-excited reactive power compensator
CN111030131B (en) MMC-STATCOM circulating current suppression device based on negative sequence virtual impedance
Wodyk et al. Active power filter control with vibrating coordinates transformation
Mohebbi et al. Nonlinear control of standalone inverter with unbalanced, nonlinear load
JP2015230555A (en) Self-excited reactive power controller
Gonzatti et al. Hybrid active power filter applied to harmonic compensation of current-source type and voltage-source type nonlinear loads
JP2017103973A (en) Voltage compensation device
KR20160025070A (en) Apparatus for eliminating harmonics of hvdc system and method thereof
Jena et al. Comparative study between different control strategies for shunt active power filter
Al-Nimma et al. Voltage profile improvements of Mosul city ring system by STATCOM reactive power control
Xiao et al. Active power filter design for improving power quality
Tsai et al. Control techniques for the back-to-back neutral-point clamped converter in asynchronous operation
JP5527054B2 (en) Converter control device
Kumar Comparative power quality analysis of conventional and modified DSTATCOM topology
CN111865098A (en) Regenerative cascade H-bridge power supply device
Kumar et al. A Zig-Zag Transformer and Three-leg VSC Based DSTATCOM for a Diesel Generator Based Microgrid
Furtado et al. A comparison of two-phase three-wire shunt compensation strategies