JP2015228406A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2015228406A
JP2015228406A JP2014113079A JP2014113079A JP2015228406A JP 2015228406 A JP2015228406 A JP 2015228406A JP 2014113079 A JP2014113079 A JP 2014113079A JP 2014113079 A JP2014113079 A JP 2014113079A JP 2015228406 A JP2015228406 A JP 2015228406A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
sintered body
ceramic sintered
wafer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014113079A
Other languages
Japanese (ja)
Other versions
JP6370115B2 (en
Inventor
俊哉 梅木
Toshiya Umeki
俊哉 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2014113079A priority Critical patent/JP6370115B2/en
Publication of JP2015228406A publication Critical patent/JP2015228406A/en
Application granted granted Critical
Publication of JP6370115B2 publication Critical patent/JP6370115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin electrostatic chuck capable of electrostatically attracting a wafer, that is made thin enough to cause deflection or warpage, while maintaining the flatness.SOLUTION: An electrostatic chuck includes a planar ceramics sintered compact 1 having an attraction surface 10 for attracting a wafer W, and bipolar electrostatic chuck electrodes 2-1, 2-2 embedded in the ceramics sintered compact 1, where an electrode 3 is provided on the surface opposite from the attraction surface 10. Electric resistance value R1 of the ceramics sintered compact 1 between the electrostatic chuck electrodes 2-1, 2-2, is larger than the electric resistance value R2 of the ceramics sintered compact 1 between the attraction surface 10 and the electrostatic chuck electrode 2-1, and between the attraction surface 10 and the electrostatic chuck electrode 2-2. Surface roughness Ra of the attraction surface 10 is 0.1-1.0 (μm).

Description

本発明は、ウエハ等の薄板状の対象物を静電吸着により保持する技術に関する。   The present invention relates to a technique for holding a thin plate-like object such as a wafer by electrostatic adsorption.

半導体ウエハの製造・検査工程において、当該ウエハは搬送アームを介してウエハカセットに挿入され、複数のプロセス間で搬送される。平面状の静電チャック電極に対して並列接続されたコンデンサーを設けた静電チャックが提案されている(特許文献1参照)。静電吸着性能をもたせたアームによりウエハを搬送する手法が提案されている(特許文献2参照)。   In a semiconductor wafer manufacturing / inspection process, the wafer is inserted into a wafer cassette via a transfer arm and transferred between a plurality of processes. There has been proposed an electrostatic chuck provided with a capacitor connected in parallel to a planar electrostatic chuck electrode (see Patent Document 1). There has been proposed a method of transporting a wafer by an arm having electrostatic attraction performance (see Patent Document 2).

特開2002−299426号公報JP 2002-299426 A 特開2013−151035号公報JP 2013-151035 A

しかし、複数半導体チップを積層することにより3次元高集積化回路を作製する3DI技術の要請などのため、ウエハの薄型化が進むとウエハが撓みまたは反りやすくなる。このため、ウエハがその撓みまたは反りのためにウエハカセットに収納され損ない、さらにはウエハが損傷する可能性がある。   However, because of the demand for 3DI technology for producing a three-dimensional highly integrated circuit by stacking a plurality of semiconductor chips, the wafer is likely to be bent or warped as the wafer becomes thinner. For this reason, the wafer may not be stored in the wafer cassette due to the bending or warping, and the wafer may be damaged.

そこで、本発明は、撓みまたは反りが生じうる程度に薄型化されたウエハを、その平坦性を維持しながら静電吸着しうる静電チャックを提供することを目的とする。   Therefore, an object of the present invention is to provide an electrostatic chuck capable of electrostatically adsorbing a wafer thinned to such an extent that bending or warping can occur while maintaining the flatness of the wafer.

(1)本発明の静電チャックは、ウエハを吸着するための吸着面を有する平板状のセラミックス焼結体と、前記セラミックス焼結体に埋設されている双極の静電チャック電極と、前記セラミックス焼結体において吸着面の反対側の面に形成された電極とを備え、前記セラミックス焼結体厚さが0.6〜2[mm]であり、双極の静電チャック電極の間における前記セラミックス焼結体の電気抵抗値が、吸着面と各静電チャック電極との間における前記セラミックス焼結体の電気抵抗値よりも高いことを特徴とする。   (1) The electrostatic chuck of the present invention is a flat ceramic sintered body having a suction surface for adsorbing a wafer, a bipolar electrostatic chuck electrode embedded in the ceramic sintered body, and the ceramic An electrode formed on a surface of the sintered body opposite to the adsorption surface, the ceramic sintered body has a thickness of 0.6-2 [mm], and the ceramic between the bipolar electrostatic chuck electrodes An electrical resistance value of the sintered body is higher than an electrical resistance value of the ceramic sintered body between the adsorption surface and each electrostatic chuck electrode.

(2)(1)記載の静電チャックにおいて、前記吸着面の表面粗さRaが0.1〜1.0[μm]であることが好ましい。   (2) In the electrostatic chuck described in (1), it is preferable that the surface roughness Ra of the attracting surface is 0.1 to 1.0 [μm].

(3)(2)記載の静電チャックにおいて、前記セラミックス焼結体厚さが0.6〜1.5[mm]であることが好ましい。   (3) In the electrostatic chuck according to (2), it is preferable that the thickness of the ceramic sintered body is 0.6 to 1.5 [mm].

(4)(3)記載の静電チャックにおいて、双極の静電チャック電極の間における前記セラミックス焼結体の電気抵抗値が、吸着面と各静電チャック電極との間における前記セラミックス焼結体の電気抵抗値の100倍以上であることが好ましい。   (4) In the electrostatic chuck according to (3), the ceramic sintered body between the attraction surface and each electrostatic chuck electrode has an electrical resistance value between the bipolar electrostatic chuck electrodes. The electrical resistance value is preferably 100 times or more.

本発明の静電チャックによれば、セラミックス焼結体の厚さが2[mm]以下(好ましくは1.5[mm]以下)になる程度にまで静電チャックが薄型化されていることにより、静電チャックが、吸着面にウエハを吸着保持した状態で当該ウエハと一体的にプロセス間で搬送されうる。セラミックス焼結体における静電チャック電極間、吸着面と各静電チャック電極との間の電気抵抗値を制御すること、更には吸着面の表面粗さRaが調節されることにより、クーロン効果によるウエハ(対象物)の静電吸着性能が長時間にわたり維持されうる。よって、撓みまたは反りが生じうる程度に薄型化されたウエハが、プロセス間で搬送される間にわたってその平坦性が維持されたまま静電吸着されうる。   According to the electrostatic chuck of the present invention, the thickness of the ceramic sintered body is reduced to 2 [mm] or less (preferably 1.5 [mm] or less). The electrostatic chuck can be transferred between processes integrally with the wafer while the wafer is held by suction on the suction surface. By controlling the electrical resistance value between the electrostatic chuck electrodes in the ceramic sintered body, between the adsorption surface and each electrostatic chuck electrode, and by adjusting the surface roughness Ra of the adsorption surface, the Coulomb effect is achieved. The electrostatic adsorption performance of the wafer (object) can be maintained for a long time. Therefore, a wafer thinned to such an extent that bending or warping can occur can be electrostatically adsorbed while its flatness is maintained while being transferred between processes.

また、プロセスのために静電チャックが基台に載置された際、セラミックス焼結体の吸着面と反対側の面に形成された電極により静電チャックが当該基台に静電固定される。これにより、吸着面に保持されているウエハの位置決め精度も担保される。   When the electrostatic chuck is placed on the base for the process, the electrostatic chuck is electrostatically fixed to the base by an electrode formed on the surface opposite to the adsorption surface of the ceramic sintered body. . Thereby, the positioning accuracy of the wafer held on the suction surface is also ensured.

本発明の一実施形態としての静電チャックの構成説明図。The structure explanatory view of the electrostatic chuck as one embodiment of the present invention. 本発明の静電チャックの実施例および比較例の対比説明図。The comparison explanatory drawing of the Example and comparative example of the electrostatic chuck of this invention.

図1に示されている本発明の一実施形態としての静電チャックは、ウエハを吸着するための吸着面10を有する略平板状のセラミックス焼結体1と、セラミックス焼結体1に埋設されている双極の静電チャック電極2−1および2−2を備えている。セラミックス焼結体1において吸着面10の反対側には、プロセス用基台に静電吸着させるための電極3および外部電源を接続するための端子22が形成されている。   An electrostatic chuck as an embodiment of the present invention shown in FIG. 1 includes a substantially flat ceramic sintered body 1 having an adsorption surface 10 for adsorbing a wafer, and embedded in the ceramic sintered body 1. Bipolar electrostatic chuck electrodes 2-1 and 2-2 are provided. In the ceramic sintered body 1, an electrode 3 for electrostatic adsorption on the process base and a terminal 22 for connecting an external power source are formed on the opposite side of the adsorption surface 10.

セラミックス焼結体1の材質は、ハロゲン系のガス(たとえばCF、SF、NF、ClF)に対する耐腐食性の向上を図る観点から選択される。アルミナ、窒化アルミニウム、酸化イットリウム、イットリウムおよびアルミニウムの複合酸化物、酸化マグネシウム、またはフッ化物が例としてあげられる。同じく耐腐食性の向上を図る観点からセラミックスは高純度であることが好ましい。たとえば、アルミナは99.4%以上の高純度であることが好ましい。窒化アルミニウムは95%以上の高純度であり、残部は3A族元素の酸化物が含まれることが好ましい。耐腐食性の観点からセラミックス焼結体1は緻密質であって、気孔率が低いこと(たとえば1%以下であること)が好ましい。 The material of the ceramic sintered body 1 is selected from the viewpoint of improving the corrosion resistance against halogen-based gases (for example, CF 4 , SF 6 , NF 3 , and ClF 3 ). Examples include alumina, aluminum nitride, yttrium oxide, a composite oxide of yttrium and aluminum, magnesium oxide, or fluoride. Similarly, from the viewpoint of improving the corrosion resistance, the ceramic is preferably highly pure. For example, it is preferable that alumina has a high purity of 99.4% or more. It is preferable that aluminum nitride has a high purity of 95% or more and the balance contains an oxide of a 3A group element. From the viewpoint of corrosion resistance, the ceramic sintered body 1 is preferably dense and has a low porosity (for example, 1% or less).

双極の静電チャック電極2−1および2−2の間のセラミックス焼結体1の電気抵抗値は、吸着面10と各静電チャック電極2−1、2−2の間のセラミックス焼結体1の電気抵抗値よりも高くなっており、吸着面10の表面粗さRaが0.1〜1.0[μm]に調節されている。   The electrical resistance value of the ceramic sintered body 1 between the bipolar electrostatic chuck electrodes 2-1 and 2-2 is equal to the ceramic sintered body between the attracting surface 10 and the electrostatic chuck electrodes 2-1 and 2-2. 1 and the surface roughness Ra of the attracting surface 10 is adjusted to 0.1 to 1.0 [μm].

(静電チャックの製造方法)
本発明の静電チャックの製造方法について説明する。まず、同一種類かつ主原料が同一の(ただし、副原料または不純物の種類および含有量は相違していてもよい。)セラミックス粉末を原料としてセラミックス圧粉体が作製される。セラミックス圧粉体の上には、双極となる静電チャック電極2−1、2−2が設置され、更に、その上にセラミックス圧粉体が設置され同時焼成されることでセラミックス焼結体1が得られる。
(Electrostatic chuck manufacturing method)
A method for manufacturing the electrostatic chuck of the present invention will be described. First, a ceramic green compact is produced using ceramic powder as a raw material of the same type and the same main raw material (however, the types and contents of auxiliary raw materials or impurities may be different). On the ceramic green compact, electrostatic chuck electrodes 2-1 and 2-2 as bipolar electrodes are installed, and further, the ceramic green compact is installed on the ceramic compact and fired at the same time. Is obtained.

双極の静電チャックの間におけるセラミックス焼結体1の電気抵抗値R1は、セラミックス焼結体1の体積抵抗率ρ、静電チャック電極2−1および2−2の間の距離L1、静電チャック電極2−1および2−2における対向している辺の長さW、ならびに、静電チャック電極2−1および2−2のそれぞれの厚さTに基づき、関係式(1)にしたがって計算される。たとえば、静電チャック電極2−1および2−2がそれぞれ略半円形状であり、かつ、それぞれの径において相互に対向するように配置されている場合、各半円の直径がWに相当する。   The electrical resistance value R1 of the ceramic sintered body 1 between the bipolar electrostatic chucks is the volume resistivity ρ of the ceramic sintered body 1, the distance L1 between the electrostatic chuck electrodes 2-1 and 2-2, the electrostatic Based on the length W of the opposing sides of the chuck electrodes 2-1 and 2-2 and the thickness T of the electrostatic chuck electrodes 2-1 and 2-2, the calculation is performed according to the relational expression (1). Is done. For example, when each of the electrostatic chuck electrodes 2-1 and 2-2 has a substantially semicircular shape and is disposed so as to face each other in each diameter, the diameter of each semicircle corresponds to W. .

R1 = ρ × L1 ÷ S1 (S1 = W × T)‥(1)。   R1 = ρ × L1 ÷ S1 (S1 = W × T) (1).

吸着面10と静電チャック電極2−1および2−2のそれぞれとの間におけるセラミックス焼結体1の電気抵抗値R2は、セラミックス焼結体1の体積抵抗率ρ、吸着面10から静電チャック電極2−1および2−2のそれぞれまでの距離L2、静電チャック電極2−1および2−2の各面積S2に基づき、関係式(2)にしたがって計算される。
尚、吸着面10から静電チャック電極2−1および静電チャック電極2−2のそれぞれまでの距離、静電チャック電極2−1および2−2の各電極面積はほぼ同じ値になるように設計されている。静電チャック電極2−1および2−2の面積および形状のそれぞれは同一であってもよく異なっていてもよい。
The electrical resistance value R2 of the ceramic sintered body 1 between the suction surface 10 and each of the electrostatic chuck electrodes 2-1 and 2-2 is expressed by the volume resistivity ρ of the ceramic sintered body 1, Based on the distance L2 to each of the chuck electrodes 2-1 and 2-2 and the areas S2 of the electrostatic chuck electrodes 2-1 and 2-2, the calculation is performed according to the relational expression (2).
The distance from the suction surface 10 to each of the electrostatic chuck electrode 2-1 and the electrostatic chuck electrode 2-2 and the area of each electrode of the electrostatic chuck electrodes 2-1 and 2-2 are set to substantially the same value. Designed. The areas and shapes of the electrostatic chuck electrodes 2-1 and 2-2 may be the same or different.

R2 = ρ × L2 ÷ S2 ‥(2)。   R2 = ρ × L2 ÷ S2 (2).

そして、セラミックス焼結体1に加工が施されることにより、最終的な厚さ加工がなされ、吸着面10の表面粗さRaが調節され、更にはセラミックス焼結体1においてウエハ吸着面とは反対側の面に電極3が形成されることで静電チャックが作製される。   Then, the ceramic sintered body 1 is processed so that the final thickness processing is performed, and the surface roughness Ra of the adsorption surface 10 is adjusted. The electrostatic chuck is manufactured by forming the electrode 3 on the opposite surface.

〔実施例〕
径r=150[mm]の略円盤状のセラミックス焼結体1の厚さt、双極の静電チャック電極2−1および2−2の間におけるセラミックス焼結体1の電気抵抗値R1と、吸着面10および双極の静電チャック電極2−1および2−2との間におけるセラミックス焼結体1の電気抵抗値R2の抵抗比率A(A=R1/R2)、ならびに、静電吸着面10の表面粗さRaが表1に示されているように設計されることにより実施例1〜6の静電チャックが作製された。セラミックス焼結体1として、体積抵抗率1E14(=1 × 1014)[Ω・cm]以上の窒化アルミニウム焼結体が用いられた。
〔Example〕
A thickness t of a substantially disc-shaped ceramic sintered body 1 having a diameter r = 150 [mm], an electrical resistance value R1 of the ceramic sintered body 1 between the bipolar electrostatic chuck electrodes 2-1 and 2-2, The resistance ratio A (A = R1 / R2) of the electrical resistance value R2 of the ceramic sintered body 1 between the adsorption surface 10 and the bipolar electrostatic chuck electrodes 2-1 and 2-2, and the electrostatic adsorption surface 10 The electrostatic chucks of Examples 1 to 6 were manufactured by designing the surface roughness Ra of Table 1 as shown in Table 1. As the ceramic sintered body 1, an aluminum nitride sintered body having a volume resistivity of 1E14 (= 1 × 10 14 ) [Ω · cm] or more was used.

図2には、A−Ra平面において、各実施例の静電チャックの抵抗比率Aおよび吸着面10の表面粗さRaの組み合わせを表わすプロットが丸付き数字で示されている。実施例1〜6の静電チャックのプロット(A,Ra)が第1指定領域S1に含まれている。第1指定領域S1は、図2において一点鎖線により表わされている4本の線分、すなわちA=1.5(0.1≦Ra≦1.0)、Ra=0.1(1.5≦A≦1000)、A=1000(0.1≦Ra≦1.0)およびRa=1.0(1.5≦A≦1000)により囲まれている矩形状の領域である。実施例3〜4の静電チャックのプロット(A,Ra)が、第1指定領域S1の一部である第2指定領域S2に含まれている。第2指定領域S2は、図2において二点鎖線により表わされている4本の線分、すなわちA=100(0.1≦Ra≦1.0)、Ra=0.1(100≦A≦1000)、A=1000(0.1≦Ra≦1.0)およびRa=1.0(100≦A≦1000)により囲まれている矩形状の領域である。   In FIG. 2, on the A-Ra plane, a plot representing a combination of the resistance ratio A of the electrostatic chuck and the surface roughness Ra of the attracting surface 10 of each example is indicated by circled numbers. The plots (A, Ra) of the electrostatic chucks of Examples 1 to 6 are included in the first designated region S1. The first designated region S1 has four line segments represented by a one-dot chain line in FIG. 2, that is, A = 1.5 (0.1 ≦ Ra ≦ 1.0), Ra = 0.1 (1. 5 ≦ A ≦ 1000), A = 1000 (0.1 ≦ Ra ≦ 1.0) and Ra = 1.0 (1.5 ≦ A ≦ 1000). The plots (A, Ra) of the electrostatic chucks of Examples 3 to 4 are included in the second designated area S2 that is a part of the first designated area S1. The second designated region S2 has four line segments represented by two-dot chain lines in FIG. 2, that is, A = 100 (0.1 ≦ Ra ≦ 1.0), Ra = 0.1 (100 ≦ A ≦ 1000), A = 1000 (0.1 ≦ Ra ≦ 1.0) and Ra = 1.0 (100 ≦ A ≦ 1000).

厚さ300[μm]、径150[mm]の半導体ウエハが各実施例の静電チャックの吸着性能評価のために用いられた。ウエハが静電チャックに吸着されている状態で静電チャック電極2−1、2−2に対する電圧印加が停止された時点における吸着力Fに対する、その時点から1週間(168時間)経過時点における吸着力(=αF)の低下率αが測定された。電圧印加停止時に、端子22を介して静電チャック電極2−1、2−2から電荷がGND(グラウンド)に逃げないようにするため、GNDを浮遊状態とした。当該測定結果が表1に示されている。フォースゲージを用いて水平方向へのウエハの吸着力が、吸着力FおよびαFとして測定された。   A semiconductor wafer having a thickness of 300 [μm] and a diameter of 150 [mm] was used for evaluating the adsorption performance of the electrostatic chuck of each example. With respect to the suction force F at the time when the voltage application to the electrostatic chuck electrodes 2-1 and 2-2 is stopped while the wafer is attracted to the electrostatic chuck, the suction is performed at one week (168 hours) after that time. The reduction rate α of force (= αF) was measured. In order to prevent electric charges from escaping from the electrostatic chuck electrodes 2-1 and 2-2 to the GND (ground) via the terminal 22 when the voltage application is stopped, the GND is set in a floating state. The measurement results are shown in Table 1. The wafer suction force in the horizontal direction using a force gauge was measured as the suction force F and αF.

表1および図2から、プロット(A,Ra)が第1指定領域S1に含まれている実施例1〜6の静電チャックによるウエハの吸着力低下率αが0.35以上であることがわかる。プロット(A,Ra)が第2指定領域S2に含まれている実施例3〜4の静電チャックによるウエハの吸着力低下率αが0.56以上であってより高いことがわかる。ただし、実施例6の静電チャックは、実施例1〜5の静電チャックよりも厚いため、ウエハカセットの入口の高さによっては使用に適さない場合もある。   From Table 1 and FIG. 2, it is found that the wafer adsorption force reduction rate α by the electrostatic chucks of Examples 1 to 6 in which the plot (A, Ra) is included in the first designated region S1 is 0.35 or more. Recognize. It can be seen that the lowering rate α of the attractive force of the wafer by the electrostatic chucks of Examples 3 to 4 in which the plot (A, Ra) is included in the second designated region S2 is 0.56 or higher and higher. However, since the electrostatic chuck of Example 6 is thicker than the electrostatic chucks of Examples 1 to 5, it may not be suitable for use depending on the height of the entrance of the wafer cassette.

比較例Comparative example

略円盤状のセラミックス焼結体1の厚さt、双極の静電チャック電極2−1および2−2の間におけるセラミックス焼結体1の電気抵抗値R1と、吸着面10と双極の静電チャック電極2−1および2−2との間におけるセラミックス焼結体1の電気抵抗値R2の抵抗比率A(A=R1/R2)、ならびに、静電吸着面10の表面粗さRaが表2に示されているように設計されることにより比較例1〜3の静電チャックが作製された。実施例と同様にセラミックス焼結体1として、体積抵抗率1E14[Ω・cm]以上の窒化アルミニウム焼結体が用いられた。   The thickness t of the substantially disk-shaped ceramic sintered body 1, the electric resistance value R1 of the ceramic sintered body 1 between the bipolar electrostatic chuck electrodes 2-1 and 2-2, and the electrostatic force between the attracting surface 10 and the bipolar Table 2 shows the resistance ratio A (A = R1 / R2) of the electrical resistance value R2 of the ceramic sintered body 1 between the chuck electrodes 2-1 and 2-2 and the surface roughness Ra of the electrostatic chucking surface 10. The electrostatic chucks of Comparative Examples 1 to 3 were manufactured by designing as shown in FIG. As in the example, an aluminum nitride sintered body having a volume resistivity of 1E14 [Ω · cm] or higher was used as the ceramic sintered body 1.

図2には、抵抗比率A−Ra平面において、各実施例の静電チャックの抵抗比率AおよびRaの組み合わせを表わすプロットが三角付き数字で示されている。比較例1〜3の静電チャックのプロット(A,Ra)が第1指定領域S1から外れている。   In FIG. 2, plots representing combinations of the resistance ratios A and Ra of the electrostatic chucks of the respective examples are shown by triangular numbers in the resistance ratio A-Ra plane. The plots (A, Ra) of the electrostatic chucks of Comparative Examples 1 to 3 are out of the first designated region S1.

表2およびプロット(A,Ra)が第1指定領域S1から外れているから、比較例1〜3の静電チャックによるウエハの吸着力低下率αが0.08以下(α=0の場合は静電チャックからウエハが剥離)であり、実施例1〜6のそれよりも低いことがわかる。   Since Table 2 and the plot (A, Ra) are out of the first designated region S1, the wafer adsorption force reduction rate α by the electrostatic chucks of Comparative Examples 1 to 3 is 0.08 or less (when α = 0). It can be seen that the wafer is peeled from the electrostatic chuck and is lower than that of Examples 1-6.

1‥セラミックス焼結体、2‥静電チャック電極、3・・裏面電極、10‥吸着面、W‥ウエハ。 DESCRIPTION OF SYMBOLS 1 ... Ceramic sintered body, 2 ... Electrostatic chuck electrode, 3 ... Back electrode, 10 ... Adsorption surface, W ... Wafer.

Claims (4)

ウエハを吸着するための吸着面を有する平板状のセラミックス焼結体と、前記セラミックス焼結体に埋設されている双極の静電チャック電極と、前記セラミックス焼結体において吸着面の反対側の面に形成された電極とを備え、
前記セラミックス焼結体厚さが0.6〜2[mm]であり、双極の静電チャック電極の間における前記セラミックス焼結体の電気抵抗値が、吸着面と各静電チャック電極との間における前記セラミックス焼結体の電気抵抗値よりも高いことを特徴とする静電チャック
A flat ceramic sintered body having an adsorption surface for adsorbing a wafer, a bipolar electrostatic chuck electrode embedded in the ceramic sintered body, and a surface opposite to the adsorption surface in the ceramic sintered body And an electrode formed on
The ceramic sintered body thickness is 0.6-2 [mm], and the electrical resistance value of the ceramic sintered body between the bipolar electrostatic chuck electrodes is between the suction surface and each electrostatic chuck electrode. An electrostatic chuck characterized by being higher in electrical resistance than the ceramic sintered body in
請求項1記載の静電チャックにおいて、前記吸着面の表面粗さRaが0.1〜1.0[mm]であることを特徴とする静電チャック。   2. The electrostatic chuck according to claim 1, wherein a surface roughness Ra of the attraction surface is 0.1 to 1.0 [mm]. 請求項2記載の静電チャックにおいて、前記セラミックス焼結体厚さが0.6〜1.5[mm]であることを特徴とする静電チャック。   3. The electrostatic chuck according to claim 2, wherein the ceramic sintered body has a thickness of 0.6 to 1.5 [mm]. 請求項3記載の静電チャックにおいて、双極の静電チャック電極の間における前記セラミックス焼結体の電気抵抗値が、吸着面と各静電チャック電極との間における前記セラミックス焼結体の電気抵抗値の100倍以上であることを特徴とする静電チャック。   4. The electrostatic chuck according to claim 3, wherein an electric resistance value of the ceramic sintered body between the bipolar electrostatic chuck electrodes is an electric resistance of the ceramic sintered body between the adsorption surface and each electrostatic chuck electrode. An electrostatic chuck characterized by being 100 times or more of the value.
JP2014113079A 2014-05-30 2014-05-30 Electrostatic chuck Active JP6370115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113079A JP6370115B2 (en) 2014-05-30 2014-05-30 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113079A JP6370115B2 (en) 2014-05-30 2014-05-30 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2015228406A true JP2015228406A (en) 2015-12-17
JP6370115B2 JP6370115B2 (en) 2018-08-08

Family

ID=54885730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113079A Active JP6370115B2 (en) 2014-05-30 2014-05-30 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP6370115B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206545A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Retention device and semiconductor manufacturing device using the same
JPH09162272A (en) * 1995-12-04 1997-06-20 Sony Corp Electrostatic chuck, thin board holding device, semiconductor manufacturing device, and transfer method
JP2000114357A (en) * 1998-09-30 2000-04-21 Toto Ltd Electrostatic chuck device
JP2006120847A (en) * 2004-10-21 2006-05-11 Sumitomo Osaka Cement Co Ltd Bipolar electrostatic chuck and its manufacturing method
JP2007214339A (en) * 2006-02-09 2007-08-23 Taiheiyo Cement Corp Bipolar electrostatic chuck
JP2008277545A (en) * 2007-04-27 2008-11-13 Shinko Electric Ind Co Ltd Electrostatic chuck
JP2011222978A (en) * 2010-03-24 2011-11-04 Toto Ltd Electrostatic chuck

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206545A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Retention device and semiconductor manufacturing device using the same
JPH09162272A (en) * 1995-12-04 1997-06-20 Sony Corp Electrostatic chuck, thin board holding device, semiconductor manufacturing device, and transfer method
JP2000114357A (en) * 1998-09-30 2000-04-21 Toto Ltd Electrostatic chuck device
JP2006120847A (en) * 2004-10-21 2006-05-11 Sumitomo Osaka Cement Co Ltd Bipolar electrostatic chuck and its manufacturing method
JP2007214339A (en) * 2006-02-09 2007-08-23 Taiheiyo Cement Corp Bipolar electrostatic chuck
JP2008277545A (en) * 2007-04-27 2008-11-13 Shinko Electric Ind Co Ltd Electrostatic chuck
JP2011222978A (en) * 2010-03-24 2011-11-04 Toto Ltd Electrostatic chuck

Also Published As

Publication number Publication date
JP6370115B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP2006332204A (en) Electrostatic chuck
TW201732992A (en) Wafer carrier for smaller wafers and wafer pieces
JP2003282688A (en) Electrostatic chuck
JP5111954B2 (en) Electrostatic chuck and manufacturing method thereof
JP3586034B2 (en) Electrostatic chuck
JP6370115B2 (en) Electrostatic chuck
JP5300363B2 (en) Holding jig and transport device using the same
JP2004179364A (en) Electrostatic chuck
JP6017895B2 (en) Alumina sintered body manufacturing method, vacuum chuck manufacturing method, and electrostatic chuck manufacturing method
JP4849887B2 (en) Electrostatic chuck
JP4879771B2 (en) Electrostatic chuck
JP2009043589A (en) Heater unit for semiconductor or flat panel display manufacturing-inspecting device, and device equipped with the same
JP7122174B2 (en) ELECTROSTATIC CHUCK AND METHOD FOR MANUFACTURING ELECTROSTATIC CHUCK
WO2020262368A1 (en) Electrostatic chuck heater
JP5225023B2 (en) Sample holder and transfer device
JP2017092337A (en) Substrate support device
JP4510358B2 (en) Electrostatic chuck and manufacturing method thereof
JP2552420Y2 (en) Ceramic electrostatic chuck
JP5225043B2 (en) Electrostatic chuck
JP3370532B2 (en) Electrostatic chuck
TWM503654U (en) Laminated electrostatic chuck and the semiconductor device
JP7150510B2 (en) electrostatic chuck
JP7312031B2 (en) ELECTROSTATIC CHUCK AND METHOD OF OPERATION THEREOF
JP7214867B2 (en) electrostatic chuck
JP2005116686A (en) Bipolar electrostatic chuck

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180710

R150 Certificate of patent or registration of utility model

Ref document number: 6370115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250