JP2015227781A - Light-of-flight ranging device - Google Patents

Light-of-flight ranging device Download PDF

Info

Publication number
JP2015227781A
JP2015227781A JP2014112679A JP2014112679A JP2015227781A JP 2015227781 A JP2015227781 A JP 2015227781A JP 2014112679 A JP2014112679 A JP 2014112679A JP 2014112679 A JP2014112679 A JP 2014112679A JP 2015227781 A JP2015227781 A JP 2015227781A
Authority
JP
Japan
Prior art keywords
light
light emission
modulated
measuring device
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112679A
Other languages
Japanese (ja)
Other versions
JP6511733B2 (en
Inventor
光宏 清野
Mitsuhiro Kiyono
光宏 清野
柳井 謙一
Kenichi Yanai
謙一 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014112679A priority Critical patent/JP6511733B2/en
Publication of JP2015227781A publication Critical patent/JP2015227781A/en
Application granted granted Critical
Publication of JP6511733B2 publication Critical patent/JP6511733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation of ranging accuracy while preventing reduction of a frame rate.SOLUTION: A light-of-flight ranging device 1 controls a plurality of light-emitting elements 8a to 8n to individually emit modulation light and a plurality of light-receiving elements 11a to 11n to individually receive incident light if the modulation light emitted from the respective light-emitting elements 8a to 8n possibly interferes with modulation light emitted from a different device. By splitting a space (light emission area) in which the light-emitting elements 8a to 8n emit the modulation light, the probability of the occurrence of light emission interference can be reduced in a period in which a light emission period of the device 1 overlaps a light emission period of the different device.

Description

本発明は、変調光を空間に発光し、変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積し、その電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する光飛行型測距装置に関する。   The present invention emits modulated light into a space, receives incident light including reflected light reflected by the object, accumulates charges, and based on the accumulated state of the charges from the own device to the object. The present invention relates to an optical flight type distance measuring device that measures a distance.

従来より、変調光(測距光)を空間に発光し、変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積し、その電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する光飛行(TOF:Time of Flight)型測距装置が供されている。光飛行型測距装置は、変調光と反射光との位相差を用いて、画素毎に自装置から対象物までの距離を計測する。この種の光飛行型測距装置が同一の検知空間内に複数存在すると、自装置から変調光が発光されている空間(発光エリア)と、他装置から変調光が発光されている空間とが重なり、変調光同士の干渉(発光干渉)が発生する可能性がある。そして、発光干渉が発生すると、他装置から発光された変調光の影響を受け、自装置から発光された変調光と当該変調光が対象物で反射した反射光との位相差に誤差が発生し、測距精度が低下するという問題がある。この問題に対し、例えば特許文献1には、発光期間の後段にランダムな付加期間を付加し、発光パターンをランダムに形成することが開示されている。特許文献1の方法では、他装置から発光された変調光を数千〜数十万周期の露光期間を経て相殺することで、発光干渉の発生を防止し、測距精度の低下を防止する。   Conventionally, modulated light (ranging light) is emitted into the space, incident light including reflected light reflected by the object is received and accumulated, and charges are accumulated from the self-device based on the accumulated state of the charges. An optical flight (TOF: Time of Flight) type distance measuring device for measuring the distance to an object is provided. The optical flight-type distance measuring device measures the distance from the device itself to the object for each pixel using the phase difference between the modulated light and the reflected light. When a plurality of this type of optical flight rangefinders exist in the same detection space, there is a space (light emitting area) where modulated light is emitted from its own device and a space where modulated light is emitted from other devices. Overlap and interference between modulated lights (light emission interference) may occur. When light emission interference occurs, there is an error in the phase difference between the modulated light emitted from the device itself and the reflected light reflected by the target object due to the influence of the modulated light emitted from the other device. There is a problem that the ranging accuracy is lowered. To deal with this problem, for example, Patent Document 1 discloses that a random additional period is added after the light emission period to form a light emission pattern at random. In the method of Patent Document 1, the modulated light emitted from another device is canceled through an exposure period of several thousand to several hundred thousand cycles, thereby preventing the occurrence of light emission interference and preventing the distance measurement accuracy from being lowered.

特開2013−76645号公報JP2013-76645A

しかしながら、特許文献1に開示されている技術では、測距精度の低下を防止することはできるが、時間方向に期間を延長することになるので、フレームレート(1フレームあたりの処理速度)が低下するという新たな問題が生じる。   However, although the technique disclosed in Patent Document 1 can prevent a decrease in distance measurement accuracy, the period is extended in the time direction, so the frame rate (processing speed per frame) decreases. A new problem arises.

本発明は、上記した事情に鑑みてなされたものであり、その目的は、フレームレートの低下を防止しつつ、測距精度の低下を防止することができる光飛行型測距装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an optical flight-type distance measuring device that can prevent a decrease in distance measurement accuracy while preventing a decrease in frame rate. It is in.

請求項1に記載した発明によれば、複数の発光素子は、所定の発光周波数の変調光を互いに異なる空間に発光する。発光制御回路は、複数の発光素子から変調光を個別に発光させる。複数の発光素子に対応して設けられている複数の受光素子は、対応する発光素子から発光された変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積する。受光制御回路は、複数の受光素子を個別に動作させると共に、複数の受光素子における電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する。この場合、発光制御回路は、発光期間において複数の発光素子から変調光を時分割で発光させ、複数の発光素子から変調光が発光される空間を分割する分割発光処理を行う。   According to the first aspect of the present invention, the plurality of light emitting elements emit modulated light having a predetermined light emission frequency in different spaces. The light emission control circuit individually emits modulated light from the plurality of light emitting elements. The plurality of light receiving elements provided corresponding to the plurality of light emitting elements receive incident light including reflected light reflected from the object by the modulated light emitted from the corresponding light emitting elements, and accumulate electric charges. The light reception control circuit individually operates the plurality of light receiving elements and measures the distance from the own device to the object based on the charge accumulation state in the plurality of light receiving elements. In this case, the light emission control circuit performs a divided light emission process in which modulated light is emitted from a plurality of light emitting elements in a time division manner in a light emission period, and a space in which the modulated light is emitted from the plurality of light emitting elements is divided.

自装置の発光素子から変調光が発光されている空間(発光エリア)と、他装置の発光素子から変調光が発光されている空間とが重なると、変調光同士の発光干渉が発生する。この場合、発光期間において変調光が発光される空間を常に同じとする構成では、自装置の発光期間と他装置の発光期間とが重なる期間の全てで他装置から発光された変調光の影響を受ける。その結果、発光期間が重なる期間の全てで発光干渉が発生する可能性がある。これに対し、本発明では、分割発光処理を行うことで、発光期間において変調光が発光される空間を分割して切替える。発光期間において変調光が発光される空間を分割して切替えると、自装置の発光期間と他装置の発光期間とが重なる期間の少なくとも一部で他装置から発光された変調光の影響を受けない期間が発生する可能性がある。その結果、発光期間が重なる期間の少なくとも一部で他装置から発光された変調光の影響を受けない期間が発生すると、その期間では発光干渉が発生することはない。   When the space (light emitting area) where the modulated light is emitted from the light emitting element of its own device overlaps the space where the modulated light is emitted from the light emitting element of the other device, light emission interference between the modulated light occurs. In this case, in the configuration in which the space in which the modulated light is emitted during the light emission period is always the same, the influence of the modulated light emitted from the other device is all over the period in which the light emission period of the own device overlaps the light emission period of the other device. receive. As a result, there is a possibility that light emission interference occurs in the entire period in which the light emission periods overlap. On the other hand, in the present invention, by performing the divided light emission process, the space in which the modulated light is emitted during the light emission period is divided and switched. If the space in which the modulated light is emitted is divided and switched during the light emission period, it is not affected by the modulated light emitted from the other device in at least a part of the period in which the light emission period of the own device and the light emission period of the other device overlap. Period may occur. As a result, if a period that is not affected by the modulated light emitted from the other device occurs in at least a part of the period in which the light emission periods overlap, no light emission interference occurs during that period.

即ち、分割発光処理を行うことで、分割発光処理を行わない場合よりも、発光干渉が発生する期間を短縮する(抑制する)ことができる。これにより、変調光と反射光との位相差に誤差が発生する可能性を低減することができ、測距精度の低下を防止することができる。このとき、従来の付加期間に相当する期間を付加する必要もないので、フレームレートの低下を防止することができる。   That is, by performing the divided light emission process, it is possible to shorten (suppress) the period during which the light emission interference occurs compared to the case where the divided light emission process is not performed. Thereby, it is possible to reduce the possibility that an error occurs in the phase difference between the modulated light and the reflected light, and it is possible to prevent the distance measurement accuracy from being lowered. At this time, since it is not necessary to add a period corresponding to the conventional addition period, it is possible to prevent a decrease in the frame rate.

本発明の一実施形態を示す機能ブロック図Functional block diagram showing an embodiment of the present invention 撮像素子の構成を示す機能ブロック図Functional block diagram showing the configuration of the image sensor タイミングチャート(その1)Timing chart (1) 光飛行型測距装置が車両に搭載されている態様を示す図The figure which shows the aspect by which the optical flight type distance measuring device is mounted in the vehicle 発光エリアを示す図Diagram showing the light emitting area 発光干渉が発生する態様を示す図(その1)The figure which shows the aspect which light emission interference generate | occur | produces (the 1) 全体発光処理及び分割発光処理を示す図The figure which shows whole light emission processing and division | segmentation light emission processing 発光干渉が想定される変調光の種類を示す図The figure which shows the kind of modulated light where emission interference is assumed フローチャート(その1)Flow chart (Part 1) フローチャート(その2)Flow chart (Part 2) タイミングチャート(その2)Timing chart (2) 発光干渉が発生する態様を示す図(その2)The figure which shows the aspect which light emission interference generate | occur | produces (the 2) 発光期間が重なる態様を示す図(その1)The figure which shows the aspect which the light emission period overlaps (the 1) 発光期間が重なる態様を示す図(その2)The figure which shows the aspect which the light emission period overlaps (the 2) 発光期間が重なる態様を示す図(その3)The figure which shows the aspect which the light emission period overlaps (the 3)

以下、本発明を、車両に搭載可能な光飛行型測距装置に適用した一実施形態について図面を参照して説明する。光飛行型測距装置1は、1個の撮像素子が1画素として構成されているセンサであり、所定の発光周波数の変調光(測距光)を空間に発光する(照射する)。そして、光飛行型測距装置1は、その発光した変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積し、その電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する。対象物は、例えば人、車両、壁等である。   Hereinafter, an embodiment in which the present invention is applied to an optical flight rangefinder that can be mounted on a vehicle will be described with reference to the drawings. The optical flight-type distance measuring device 1 is a sensor in which one image sensor is configured as one pixel, and emits (irradiates) modulated light (ranging light) having a predetermined emission frequency into space. Then, the optical flight-type distance measuring device 1 receives incident light including reflected light, which is reflected by the modulated light emitted from the target object, and accumulates charges. Measure the distance to. The object is, for example, a person, a vehicle, a wall, or the like.

光飛行型測距装置1は、制御部2と、発光部3と、受光部4とを有する。制御部2は、ハードウェアの構成として、発光部3の発光動作を制御する発光制御回路5と、受光部4の受光動作を制御する受光制御回路6と、記憶部7とを有する。   The optical flight type distance measuring device 1 includes a control unit 2, a light emitting unit 3, and a light receiving unit 4. As a hardware configuration, the control unit 2 includes a light emission control circuit 5 that controls the light emission operation of the light emission unit 3, a light reception control circuit 6 that controls the light reception operation of the light reception unit 4, and a storage unit 7.

発光部3は、複数の光源としての発光素子8a〜8nと、複数の発光素子8a〜8nと1対1に対応する複数の駆動回路9a〜9nとを有する。各駆動回路9a〜9nは、発光制御回路5から発光指令信号を同時又は個別に入力し、発光指令信号を入力すると、発光指令を対応する各発光素子8a〜8nに出力する。又、各駆動回路9a〜9nは、車両に搭載されている車両バッテリ(図示せず)から電力供給回路(図示せず)を介して電力が供給される。各駆動回路9a〜9nは、車両バッテリから電力供給回路を介して供給された電力を、発光制御回路5から入力する発光指令信号により指示されている電力量(電流量)の電力に変換し、対応する各発光素子8a〜8nに供給する。   The light emitting unit 3 includes light emitting elements 8a to 8n as a plurality of light sources, and a plurality of driving circuits 9a to 9n corresponding to the light emitting elements 8a to 8n in a one-to-one relationship. Each drive circuit 9a-9n inputs the light emission command signal from the light emission control circuit 5 simultaneously or individually. When the light emission command signal is input, the drive circuits 9a-9n output the light emission command to the corresponding light emitting elements 8a-8n. The drive circuits 9a to 9n are supplied with electric power from a vehicle battery (not shown) mounted on the vehicle via an electric power supply circuit (not shown). Each of the drive circuits 9a to 9n converts the power supplied from the vehicle battery via the power supply circuit into power of the amount of power (current amount) indicated by the light emission command signal input from the light emission control circuit 5, It supplies to each light emitting element 8a-8n corresponding.

各発光素子8a〜8nは、例えばLED(Light Emitting Diode)やレーザ等の高速変調(高速点滅)が可能なデバイスから構成されている。各発光素子8a〜8nは、対応する各駆動回路9a〜9nから発光指令を入力すると、各駆動回路9a〜9nから供給される電力を動作電力として駆動し、変調光を予め設定されている空間に発光する。各発光素子8a〜8nが変調光を発光する空間は、他の発光素子8a〜8nが変調光を発光する空間と重ならないように設定されている。即ち、複数の発光素子8a〜8nは、変調光を互いに異なる空間に発光する。   Each light emitting element 8a-8n is comprised from the device which can perform high-speed modulation (high-speed blink), such as LED (Light Emitting Diode) and a laser, for example. When the light emitting elements 8a to 8n receive light emission commands from the corresponding driving circuits 9a to 9n, the power supplied from the driving circuits 9a to 9n is driven as the operating power, and the modulated light is set in advance. Flashes. The space where each of the light emitting elements 8a to 8n emits modulated light is set so as not to overlap the space where the other light emitting elements 8a to 8n emit modulated light. That is, the plurality of light emitting elements 8a to 8n emit modulated light in different spaces.

受光部4は、選択回路10と、発光部3の複数の発光素子8a〜8nと1対1に対応する複数の受光素子11a〜11nとを有する。選択回路10は、受光制御回路6から受光指令信号を入力すると、受光指令を各受光素子11a〜11nに同時又は個別に出力する。又、選択回路10は、受光制御回路6から読出指令信号を入力すると、読出指令を各受光素子11a〜11nに同時又は個別に出力する。   The light receiving unit 4 includes a selection circuit 10, a plurality of light emitting elements 8a to 8n of the light emitting unit 3, and a plurality of light receiving elements 11a to 11n corresponding one-to-one. When receiving the light reception command signal from the light reception control circuit 6, the selection circuit 10 outputs the light reception command to each of the light receiving elements 11a to 11n simultaneously or individually. In addition, when the read command signal is input from the light receiving control circuit 6, the selection circuit 10 outputs the read command to each of the light receiving elements 11a to 11n simultaneously or individually.

各受光素子11a〜11nは、選択回路10から受光指令を入力すると、各発光素子8a〜8nから発光された変調光が対象物で反射した反射光を含む入射光の受光を待機する(受光不可能な状態から受光可能な状態へと移行する)。各受光素子11a〜11nは、規則的に配列されている複数の撮像素子12a〜12nを有する。各撮像素子12a〜12nは、図2に示すように、光電変換素子13と、電荷蓄積部14とを有する。光電変換素子13は、変調光が対象物で反射した反射光を含む入射光を受光すると、その受光した入射光を受光量に応じた電荷に変換する。電荷蓄積部14は、第1〜第4の4個の単位蓄積部15a〜15dを有し、光電変換素子13により変換された電荷を変調光の変調周期(1フレームの周期)に同期して振り分ける。そして、電荷蓄積部14は、その振り分けた電荷をそれぞれ第1〜第4の単位蓄積部15a〜15dに蓄積する。   When each light receiving element 11a to 11n receives a light reception command from the selection circuit 10, the light receiving elements 11a to 11n wait for reception of incident light including reflected light reflected by the object with the modulated light emitted from each light emitting element 8a to 8n. Transition from a possible state to a state where light can be received). Each of the light receiving elements 11a to 11n includes a plurality of imaging elements 12a to 12n that are regularly arranged. As shown in FIG. 2, each of the imaging elements 12 a to 12 n includes a photoelectric conversion element 13 and a charge accumulation unit 14. When the photoelectric conversion element 13 receives incident light including reflected light reflected by the object, the photoelectric conversion element 13 converts the received incident light into an electric charge corresponding to the amount of light received. The charge storage unit 14 includes first to fourth unit storage units 15a to 15d, and the charge converted by the photoelectric conversion element 13 is synchronized with the modulation period (period of one frame) of the modulated light. Distribute. The charge storage unit 14 stores the distributed charges in the first to fourth unit storage units 15a to 15d, respectively.

又、各受光素子11a〜11nは、選択回路10から読出指令を入力すると、各撮像素子12a〜12nの第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を受光制御回路4に出力する。受光制御回路4は、読出指令を所定の時間間隔で選択回路10に出力し、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を所定の時間間隔で読出す。そして、受光制御回路4は、その読出した電荷の電荷量を用いて変調光と反射光との遅延時間(位相差)を計算し、画素毎に自装置から対象物までの距離を計測する。尚、受光制御回路4により計測された自装置から対象物までの距離が外部出力端子(図示せず)から外部に出力されることで、例えば自装置から対象物までの距離が所定距離(基準値)未満になると、警告が報知される等の動作が行われる。   In addition, when the light receiving elements 11a to 11n receive a read command from the selection circuit 10, the light receiving elements 11a to 11n receive the charge amounts of the charges accumulated in the first to fourth unit accumulation units 15a to 15d of the imaging elements 12a to 12n. Output to the control circuit 4. The light reception control circuit 4 outputs a read command to the selection circuit 10 at a predetermined time interval, and reads out the charge amount of the charges accumulated in the first to fourth unit storage units 15a to 15d at a predetermined time interval. . Then, the light reception control circuit 4 calculates the delay time (phase difference) between the modulated light and the reflected light using the read charge amount, and measures the distance from the own device to the object for each pixel. The distance from the own device measured by the light receiving control circuit 4 to the object is output to the outside from an external output terminal (not shown), for example, so that the distance from the own device to the object is a predetermined distance (reference When the value is less than (value), an operation such as a warning is performed.

次に、発光部3の発光動作及び受光部4の受光動作の制御について、図3を参照して説明する。制御部2は、予め格納されている制御プログラムをマイクロコンピュータが実行することで、発光制御回路5により発光部3の発光動作を制御し、受光制御回路6により受光部4の受光動作を制御する。   Next, the control of the light emitting operation of the light emitting unit 3 and the light receiving operation of the light receiving unit 4 will be described with reference to FIG. The control unit 2 controls the light emission operation of the light emission unit 3 by the light emission control circuit 5 and the light reception operation of the light reception unit 4 by the light reception control circuit 6 by the microcomputer executing a control program stored in advance. .

制御部2は、1フレームの周期内の発光期間において、発光指令信号を周期がTs、オン時間がTs/2、オフ時間がTs/2の矩形波として発光制御回路5から各駆動回路9a〜9nに出力させ、各発光素子8a〜8nからのTs/2時間の発光とTs/2時間の発光停止とを繰り返させる。尚、制御部2は、発光指令信号を矩形波で出力させることに限らず、発光指令信号を正弦波や鋸波等で出力させても良い。   In the light emission period within one frame period, the control unit 2 converts the light emission command signal from the light emission control circuit 5 to each of the drive circuits 9a to 9a as a rectangular wave having a period of Ts, an on time of Ts / 2, and an off time of Ts / 2. 9n, and the light emission from each of the light emitting elements 8a to 8n is repeated for Ts / 2 hours and stopped for Ts / 2 hours. The control unit 2 is not limited to outputting the light emission command signal as a rectangular wave, and may output the light emission command signal as a sine wave or a sawtooth wave.

制御部2は、発光期間において、受光指令信号を受光制御回路6から選択回路10に出力させ、各受光素子11a〜11nの第1〜第4の単位蓄積部15a〜15dにおける電荷を蓄積するタイミングを制御する。即ち、制御部2は、発光指令信号の周期Tsを4等分した時間を、それぞれ順にT、T、T、Tとすると、各発光素子8a〜8nの発光と同期するタイミングで第1の単位蓄積部15aをTs/2時間オンする(蓄積Q1)。又、制御部2は、第1の単位蓄積部15aのオンからT遅れたタイミングで第2の単位蓄積部15bをTs/2時間オンする(蓄積Q2)。又、制御部2は、第1の単位蓄積部15aのオンから(T+T)遅れたタイミングで第3の単位蓄積部15cをTs/2時間オンする(蓄積Q3)。更に、制御部2は、第1の単位蓄積部15aのオンから(T+T+T)遅れたタイミングで第4の単位蓄積部15dをTs/2時間オンする(蓄積Q4)。制御部2は、このように周期Tsを4等分した時間ずつずらして電荷を振り分け、変調光の発光からそれぞれ0度、90度、180度、270度位相がずれた電荷の蓄積を繰り返させる。 The control unit 2 outputs a light reception command signal from the light reception control circuit 6 to the selection circuit 10 during the light emission period, and accumulates charges in the first to fourth unit storage units 15a to 15d of the light receiving elements 11a to 11n. To control. In other words, the control unit 2 assumes that the time divided into four equal to the period Ts of the light emission command signal is T 1 , T 2 , T 3 , and T 4 in order, and is synchronized with the light emission of the light emitting elements 8a to 8n. The first unit accumulation unit 15a is turned on for Ts / 2 hours (accumulation Q1). The control unit 2, the second unit storage section 15b Ts / 2 hours to turn on by T 1 delayed timing from ON of the first unit storage portion 15a (accumulation Q2). Further, the control unit 2 turns on the third unit accumulation unit 15c for Ts / 2 time (accumulation Q3) at a timing delayed by (T 1 + T 2 ) from turning on the first unit accumulation unit 15a. Further, the control unit 2 turns on the fourth unit storage unit 15d for Ts / 2 hours (storage Q4) at a timing delayed by (T 1 + T 2 + T 3 ) after the first unit storage unit 15a is turned on. In this way, the control unit 2 distributes the charges by shifting the period Ts by four equal intervals, and repeats the accumulation of charges whose phases are shifted by 0 degrees, 90 degrees, 180 degrees, and 270 degrees from the emission of the modulated light, respectively. .

一般的に、自装置から対象物までの距離を計測するには、数ms程度の時間の電荷の蓄積が必要である。一方、各発光素子8a〜8nから発光される変調光の発光周波数(変調周波数)は数十MHzである。よって、変調の1周期Tsは数十ns程度である。このため、自装置から対象物までの距離を計測するには、数千〜数十万周期の露光期間(電荷蓄積期間)を必要とする。制御部2は、露光期間の時間間隔毎に第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を読出す。   Generally, in order to measure the distance from its own device to an object, it is necessary to accumulate charges for a time of about several ms. On the other hand, the emission frequency (modulation frequency) of the modulated light emitted from each of the light emitting elements 8a to 8n is several tens of MHz. Therefore, one modulation period Ts is about several tens of ns. For this reason, in order to measure the distance from the own apparatus to the object, an exposure period (charge accumulation period) of several thousand to several hundred thousand cycles is required. The control unit 2 reads the charge amount stored in the first to fourth unit storage units 15a to 15d at each time interval of the exposure period.

制御部2は、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を読出すと、以下のようにして自装置から対象物までの距離を計測する。各発光素子8a〜8nから発光された変調光と、変調光が対象物で反射して各受光素子11a〜11nに受光される反射光との間には、光が対象物まで往復する飛行時間による遅延時間(位相差)が生じる。制御部2は、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量をそれぞれC1、C2、C3、C4とすると、次式(1)により遅延時間Tdを計算する。   When the control unit 2 reads the charge amount of the charges accumulated in the first to fourth unit accumulating units 15a to 15d, it measures the distance from the own device to the object as follows. Between the modulated light emitted from each of the light emitting elements 8a to 8n and the reflected light reflected by the object and received by each of the light receiving elements 11a to 11n, the flight time during which the light reciprocates to the object Causes a delay time (phase difference). The control unit 2 calculates the delay time Td by the following equation (1), assuming that the charge amounts of the charges accumulated in the first to fourth unit accumulation units 15a to 15d are C1, C2, C3, and C4, respectively. .

Td=tan−1[(C1−C3)/(C2−C4)]…(1)
尚、各受光素子11a〜11nには反射光の他に背景光も入射光として受光されるが、入射光のうち反射光による(反射光成分の)電荷は遅延時間に応じて第1〜第4の単位蓄積部15a〜15dに割り振られる。そのため、第1〜第4の単位蓄積部15a〜15dに蓄積される反射光による電荷の電荷量は異なる。一方、入射光のうち背景光による(背景光成分の)電荷は均等に第1〜第4の単位蓄積部15a〜15dに割り振られる。そのため、第1〜第4の単位蓄積部15a〜15dに蓄積される背景光による電荷の電荷量は略等しくなる。上記した式(1)では、背景光による電荷の電荷量が相殺されるので、背景光の影響を受けずに遅延時間Tdを計算することができる。
Td = tan −1 [(C1-C3) / (C2-C4)] (1)
The light receiving elements 11a to 11n receive background light as incident light as well as reflected light. However, the charge of the reflected light (of the reflected light component) of the incident light depends on the delay time. 4 unit storage units 15a to 15d. For this reason, the charge amounts of the reflected light accumulated in the first to fourth unit accumulation units 15a to 15d are different. On the other hand, the electric charge by the background light (background light component) in the incident light is equally allocated to the first to fourth unit accumulating units 15a to 15d. Therefore, the charge amount of the background light accumulated in the first to fourth unit accumulating units 15a to 15d is substantially equal. In the above equation (1), the amount of charge of the background light is canceled out, so that the delay time Td can be calculated without being affected by the background light.

制御部2は、遅延時間Tdを計算すると、その計算した遅延時間Td、周期Ts、光速cを用い、次式(2)により自装置から対象物までの距離Dを計算する。
D=(Td/2π)・(c/2Ts)
尚、制御部2は、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を読出す場合に、それらの電荷量を同時に読出しても良いし個別に読出しても良いし、複数のフレームに亘って読出しても良い。又、本実施形態では、電荷蓄積部14を4個の単位蓄積部15a〜15dで構成する場合を例示したが、互いに異なる位相の電荷量に基づいて自装置から対象物までの距離Dを計算可能であれば、単位蓄積部の個数は2以上の幾つであっても良い。
When calculating the delay time Td, the control unit 2 uses the calculated delay time Td, period Ts, and speed of light c to calculate the distance D from the own device to the object using the following equation (2).
D = (Td / 2π) · (c / 2Ts)
The controller 2 may read the charge amounts stored in the first to fourth unit accumulators 15a to 15d at the same time or individually. It is also possible to read over a plurality of frames. Further, in the present embodiment, the case where the charge storage unit 14 is configured by the four unit storage units 15a to 15d is exemplified, but the distance D from the own device to the object is calculated based on the charge amounts of different phases. If possible, the number of unit storage units may be any number of two or more.

光飛行型測距装置1が車両に搭載される態様としては、図4に示す態様がある。図4(a)に示すように、例えば光飛行型測距装置1が車両Aの前方部及び後方部に搭載される態様では、車両Aの前方及び後方が発光部3の発光エリアXとなり、対象物の監視対象となる。又、図4(b)に示すように、例えば光飛行型測距装置1が車両Aの側方部に搭載される態様では、車両Aの側方が発光部3の発光エリアとなり、対象物の監視対象となる。更に、図4(c)に示すように、例えば光飛行型測距装置1が車両Aの前側方隅部及び後側方隅部に搭載される態様では、車両の前側方及び後側方(車両の周囲)が発光部3の発光エリアXとなり、対象物の監視対象となる。尚、例えば光飛行型測距装置1が車両Aの前方部のみに搭載されても良い等、光飛行型測距装置1が車両Aに搭載される個数や位置はどのような態様であっても良い。   As a mode in which the optical flight type distance measuring device 1 is mounted on a vehicle, there is a mode shown in FIG. As shown in FIG. 4 (a), for example, in the aspect in which the optical flight type distance measuring device 1 is mounted on the front part and the rear part of the vehicle A, the front and rear of the vehicle A become the light emission area X of the light emitting part 3, The object is monitored. Further, as shown in FIG. 4B, for example, in the aspect in which the optical flight type distance measuring device 1 is mounted on the side portion of the vehicle A, the side of the vehicle A becomes the light emitting area of the light emitting portion 3, and the object Will be monitored. Further, as shown in FIG. 4C, for example, in the aspect in which the optical flight type distance measuring device 1 is mounted on the front side corner and the rear side corner of the vehicle A, the front side and rear side ( The periphery of the vehicle) becomes the light emitting area X of the light emitting unit 3, and is the object to be monitored. In addition, for example, the number and position of the optical flight type distance measuring device 1 mounted on the vehicle A may be any way, for example, the optical flight type distance measuring device 1 may be mounted only on the front portion of the vehicle A. Also good.

発光部3の発光エリアXは、各発光素子8a〜8nの発光エリアの総和である。即ち、図5に示すように、例えば発光素子8a〜8nの個数が6個(n=f)であれば、発光部3の発光エリアXは、各発光素子8a〜8fのそれぞれの発光エリアXa〜Xfの総和である。発光エリアXa〜Xfは、水平方向(路面と平行方向)に区切られており、均等(同じ面積)であっても良いし不均等(異なる面積)であっても良い。発光部3の発光エリアXは、所望の監視対象の面積により決定される。即ち、監視対象の面積を相対的に広くする要求があれば、発光部3の発光エリアXが相対的に広くなるように各発光素子8a〜8nの発光エリアXa〜Xnが決定される。一方、監視対象の面積を相対的に狭くする要求があれば、発光部3の発光エリアXが相対的に狭くなるように各発光素子8a〜8nの発光エリアXa〜Xnが決定される。   The light emitting area X of the light emitting unit 3 is the sum of the light emitting areas of the light emitting elements 8a to 8n. That is, as shown in FIG. 5, for example, if the number of light emitting elements 8a to 8n is six (n = f), the light emitting area X of the light emitting unit 3 is the light emitting area Xa of each of the light emitting elements 8a to 8f. This is the sum of ~ Xf. The light emitting areas Xa to Xf are partitioned in the horizontal direction (direction parallel to the road surface) and may be uniform (same area) or non-uniform (different areas). The light emitting area X of the light emitting unit 3 is determined by the desired area to be monitored. That is, if there is a request to relatively increase the area to be monitored, the light emitting areas Xa to Xn of the light emitting elements 8a to 8n are determined so that the light emitting area X of the light emitting unit 3 is relatively wide. On the other hand, if there is a request to relatively reduce the area to be monitored, the light emitting areas Xa to Xn of the light emitting elements 8a to 8n are determined so that the light emitting area X of the light emitting unit 3 is relatively narrow.

光飛行型測距装置1が同一の検知空間内に複数存在すると、自装置から発光された変調光と他装置から発光された変調光との干渉(発光干渉)が発生する可能性がある。即ち、図6(a)に示すように、例えば直進路では対向する車両Aと車両Bとの距離が接近すると、車両Aの光飛行型測距装置1の車両前方の発光エリアXと、車両Bの光飛行型測距装置1の車両前方の発光エリアYとが重なり、発光干渉が発生する可能性がある。又、図6(b)に示すように、例えば交差点でも車両Aと車両Bとの距離が接近すると、車両Aの光飛行型測距装置1の車両前方の発光エリアXと、車両Bの光飛行型測距装置1の車両前方の発光エリアYとが重なることで、発光干渉が発生する可能性がある。更に、図6(c)に示すように、例えば駐車場内でも車両Aと車両Bとの距離が接近すると、車両Aの光飛行型測距装置1の車両右後方の発光エリアXと、車両Bの光飛行型測距装置1の車両左前方の発光エリアYとが重なることで、発光干渉が発生する可能性がある。そして、発光干渉が発生すると、他装置(例えば車両Bの光飛行型測距装置1)から発光された変調光の影響を受け、自装置(例えば車両Aの光飛行型測距装置1)から発光された変調光と当該変調光が対象物で反射した反射光との位相差に誤差が発生し、測距精度が低下するという問題がある。   When there are a plurality of optical flight type distance measuring devices 1 in the same detection space, there is a possibility that interference (emission interference) between the modulated light emitted from the own device and the modulated light emitted from another device may occur. That is, as shown in FIG. 6A, for example, when the distance between the vehicle A and the vehicle B facing each other approaches on a straight road, the light emitting area X in front of the vehicle of the optical flight rangefinder 1 of the vehicle A and the vehicle There is a possibility that light emission interference may occur due to overlap with the light emitting area Y in front of the vehicle of the optical flight distance measuring device 1 of B. As shown in FIG. 6B, for example, when the distance between the vehicle A and the vehicle B approaches even at an intersection, the light emission area X in front of the vehicle of the optical flight type distance measuring device 1 of the vehicle A and the light of the vehicle B When the light emitting area Y in front of the vehicle of the flight-type distance measuring device 1 overlaps, light emission interference may occur. Further, as shown in FIG. 6C, for example, when the distance between the vehicle A and the vehicle B approaches in the parking lot, the light emitting area X on the right rear side of the optical flight rangefinder 1 of the vehicle A and the vehicle B There is a possibility that light emission interference may occur due to the overlap with the light emitting area Y on the left front side of the optical flight type distance measuring device 1. When the light emission interference occurs, it is influenced by the modulated light emitted from another device (for example, the optical flight type distance measuring device 1 of the vehicle B), and from its own device (for example, the optical flight type distance measuring device 1 of the vehicle A). There is a problem that an error occurs in the phase difference between the emitted modulated light and the reflected light that is reflected by the object, and the ranging accuracy is lowered.

このような発光干渉が発生する可能性があることを考慮し、光飛行型測距装置1において、制御部2は、発光部3の発光エリアXを空間的に分割しない全体発光処理と、発光部3の発光エリアXを水平方向(路面と平行方向)に空間的に分割する分割発光処理とを切替えて行う。   In consideration of the possibility that such light emission interference may occur, in the optical flight type distance measuring device 1, the control unit 2 performs an overall light emission process that does not spatially divide the light emission area X of the light emission unit 3, and light emission. The divided light emission processing for spatially dividing the light emitting area X of the unit 3 in the horizontal direction (in the direction parallel to the road surface) is switched.

制御部2は、図7(a)に示すように、全体発光処理を行う場合には、発光指令信号を同時に出力させ、各発光素子8a〜8nから変調光を同時に発光させると共に、発光指令信号の出力に同期して受光指令信号を同時に出力させ、各受光素子11a〜11nに入射光を同時に受光させる。一方、制御部2は、図7(b)及び(c)に示すように、分割発光処理を行う場合には、発光指令信号を時間差で個別に出力させ、各発光素子8a〜8nから変調光を時間差で個別に発光させる共に、発光指令信号の出力に同期して受光指令信号を個別に出力させ、各受光素子11a〜11nに入射光を時間差で個別に受光させる。   As shown in FIG. 7A, when performing the entire light emission processing, the control unit 2 simultaneously outputs a light emission command signal, simultaneously emits modulated light from each of the light emitting elements 8a to 8n, and emits the light emission command signal. The light receiving command signal is simultaneously output in synchronization with the output of the light receiving element, and the respective light receiving elements 11a to 11n receive the incident light simultaneously. On the other hand, as shown in FIGS. 7B and 7C, when performing the divided light emission processing, the control unit 2 outputs the light emission command signals individually with a time difference, and modulates light from each of the light emitting elements 8a to 8n. The light receiving command signals are individually output in synchronization with the output of the light emission command signal, and the respective light receiving elements 11a to 11n individually receive the incident light with the time difference.

この場合、制御部2は、図7(b)に示すように、分割発光処理(非ランダム)を行う場合には、発光指令信号を出力させる順序を例えば上位側から下位側(図5では時計回り方向が上位側から下位側への方向)に向かって一方向とする。即ち、制御部2は、各発光素子8a〜8nの発光順序を例えば上位側から下位側に向かって一方向とする(規則性がある順序とする)。そのため、分割発光処理(非ランダム)では、全てのフレームで各発光素子8a〜8nの発光順序が同じである。一方、制御部2は、図7(c)に示すように、分割発光処理(ランダム)を行う場合には、発光指令信号を出力させる順序をランダムとする。即ち、制御部2は、各発光素子8a〜8nの発光順序をランダムとする(規則性がない順序とする)。そのため、分割発光処理(ランダム)では、フレーム毎で各発光素子8a〜8nの発光順序が異なる。又、制御部2は、分割発光処理を行う場合には、変調光を発光させる発光素子8a〜8nに供給する電力を、全体発光処理を行う場合に変調光を同時に発光させる複数の発光素子8a〜8nに個別に供給する電力よりも高める。   In this case, as shown in FIG. 7 (b), when performing the divided light emission processing (non-random), the control unit 2 changes the order in which the light emission command signal is output from the upper side to the lower side (in FIG. The direction of rotation is one direction from the upper side to the lower side. That is, the control unit 2 sets the light emission order of each of the light emitting elements 8a to 8n to, for example, one direction from the upper side to the lower side (the order having regularity). Therefore, in the divided light emission processing (non-random), the light emission order of the light emitting elements 8a to 8n is the same in all frames. On the other hand, as shown in FIG. 7C, the control unit 2 makes the order of outputting the light emission command signal random when performing the divided light emission processing (random). That is, the control part 2 makes the light emission order of each light emitting element 8a-8n random (it makes it an order without regularity). Therefore, in the divided light emission process (random), the light emission order of the light emitting elements 8a to 8n differs for each frame. In addition, when the divided light emission process is performed, the control unit 2 supplies the power supplied to the light emitting elements 8a to 8n that emit the modulated light, and the plurality of light emitting elements 8a that simultaneously emit the modulated light when the entire light emission process is performed. ˜8n higher than the power supplied individually.

又、記憶部7は、図8に示すように、発光部3から発光される変調光との発光干渉が想定される変調光の種別と、それぞれの周波数(図8ではf1〜f6)を、優先度の高低を付与して記憶している。優先度は、発光部3から発光される変調光との発光干渉が発生する可能性である。発光部3から発光させる変調光との発光干渉が想定される変調光には、車両に搭載されている光飛行型測距装置1から発光される変調光、光飛行型測距装置1以外の他装置から発光される変調光を含む。尚、f1〜f6は、互いに異なる値である。尚、図8では、発光部3から発光される変調光との発光干渉が想定される変調光の種別を6個例示しているが、どのような個数であっても良い。   In addition, as shown in FIG. 8, the storage unit 7 stores the type of modulated light assumed to emit light interference with the modulated light emitted from the light emitting unit 3, and the respective frequencies (f1 to f6 in FIG. 8), A priority level is assigned and stored. The priority is the possibility that light emission interference with the modulated light emitted from the light emitting unit 3 occurs. The modulated light assumed to emit light interference with the modulated light emitted from the light emitting unit 3 includes modulated light emitted from the optical flight rangefinder 1 mounted on the vehicle, other than the optical flight rangefinder 1. Includes modulated light emitted from other devices. F1 to f6 are different values. In FIG. 8, six types of modulated light assumed to emit light interference with the modulated light emitted from the light emitting unit 3 are illustrated, but any number may be used.

次に、上記した構成の作用について、図9から図15も参照して説明する。
光飛行型測距装置1において、制御部2は、1フレーム処理を開始すると、発光干渉有無判定処理に移行する(S1)。制御部2は、発光干渉有無判定処理に移行すると、n(周波数の種別を示すパラメータ)に「1」を設定し(S11)、受光部4の駆動周波数をnにしたがって設定する(S12)。即ち、制御部2は、記憶部7を参照し、受光部4の駆動周波数をf1に設定し、発光周波数がf1の変調光の受光を受光部4に待機させる。
Next, the operation of the above-described configuration will be described with reference to FIGS.
In the optical flight rangefinder 1, when the one-frame process is started, the control unit 2 proceeds to a light emission interference presence / absence determination process (S1). When the control unit 2 proceeds to the light emission interference presence / absence determination process, the control unit 2 sets “1” to n (a parameter indicating the type of frequency) (S11), and sets the drive frequency of the light receiving unit 4 according to n (S12). That is, the control unit 2 refers to the storage unit 7, sets the drive frequency of the light receiving unit 4 to f1, and causes the light receiving unit 4 to wait for the reception of the modulated light having the light emission frequency f1.

次いで、制御部2は、図11に示すように、発光期間において、発光指令信号を出力させずに受光指令信号を出力させ、各受光素子11a〜11nの各撮像素子12a〜12nの第1〜第4の単位蓄積部15a〜15dに電荷を蓄積させる(S13)。このとき、発光周波数がf1の変調光を発光している他装置が自装置の周囲に存在していなければ、発光周波数がf1の変調光が入射光として受光部4に受光されることはない。即ち、背景光のみの受光量に応じた電荷が各受光素子11a〜11nに蓄積される。一方、発光周波数がf1の変調光を発光している他装置が自装置の周囲に存在していれば、発光周波数がf1の変調光が入射光として受光部4に受光される。即ち、背景光と他装置から発光された変調光の受光量に応じた電荷が各受光素子11a〜11nに蓄積される。   Next, as shown in FIG. 11, the control unit 2 outputs a light reception command signal without outputting a light emission command signal during the light emission period, and outputs the first to first imaging elements 12 a to 12 n of the light receiving elements 11 a to 11 n. Charges are accumulated in the fourth unit accumulation units 15a to 15d (S13). At this time, if there is no other device that emits the modulated light having the emission frequency f1 around the device, the modulated light having the emission frequency f1 is not received by the light receiving unit 4 as incident light. . That is, charges corresponding to the amount of light received from only the background light are accumulated in the light receiving elements 11a to 11n. On the other hand, if another device that emits modulated light having a light emission frequency of f1 exists around the device itself, the light having a light emission frequency of f1 is received by the light receiving unit 4 as incident light. That is, charges corresponding to the amounts of received light of background light and modulated light emitted from other devices are accumulated in the respective light receiving elements 11a to 11n.

制御部2は、各受光素子11a〜11nの電荷の蓄積状態を判定することで、他装置から発光された変調光が受光された(変調光を検出した)か否かを判定する(S14)。制御部2は、各受光素子11a〜11に蓄積されている電荷が背景光のみの受光量に相当すると判定し、変調光を検出していないと判定すると(S14:NO)、周波数fnで発光干渉が発生する可能性がないと特定する(S15)。即ち、この場合は、制御部2は、周波数f1で発光干渉が発生する可能性がないと特定する。   The control unit 2 determines whether or not the modulated light emitted from the other device is received (the modulated light is detected) by determining the charge accumulation states of the light receiving elements 11a to 11n (S14). . When the control unit 2 determines that the charge accumulated in each of the light receiving elements 11a to 11 corresponds to the amount of received light of only the background light, and determines that the modulated light is not detected (S14: NO), the control unit 2 emits light at the frequency fn. It is specified that there is no possibility of interference (S15). That is, in this case, the control unit 2 specifies that there is no possibility of light emission interference occurring at the frequency f1.

制御部2は、記憶部7に記憶させている全ての周波数(図8ではf1〜f6)について調査したか否かを判定し(S16)、調査していない周波数があると判定すると(S16:NO)、nをインクリメントし(S17)、上記したステップS12に戻り、S12以降の処理を繰返して行う。即ち、この場合は、制御部2は、記憶部7を参照し、受光部4の駆動周波数をf1からf2に切替え、発光周波数がf2の変調光の受光を受光部4に待機させる。これ以降、制御部2は、周波数f2で発光干渉が発生する可能性がないと特定すると、受光部4の駆動周波数をf2からf3に切替え、これ以降も同様にして上記した処理を繰返して行う。   The control unit 2 determines whether or not all the frequencies (f1 to f6 in FIG. 8) stored in the storage unit 7 have been checked (S16), and determines that there is a frequency that has not been checked (S16: NO), n is incremented (S17), the process returns to the above step S12, and the processes after S12 are repeated. That is, in this case, the control unit 2 refers to the storage unit 7, switches the driving frequency of the light receiving unit 4 from f 1 to f 2, and causes the light receiving unit 4 to wait for reception of the modulated light having the light emission frequency f 2. Thereafter, when the control unit 2 specifies that there is no possibility of occurrence of light emission interference at the frequency f2, the drive frequency of the light receiving unit 4 is switched from f2 to f3, and thereafter, the above processing is repeated in the same manner. .

制御部2は、調査していない周波数がない、即ち、記憶部7に記憶させている全ての周波数について調査したと判定すると(S16:YES)、調査対象の全ての周波数で発光干渉が発生する可能性がないと特定する(S18)。そして、制御部2は、全体発光処理を行う旨を決定し(S19)、発光干渉有無判定処理を終了してリターンする。   If the control unit 2 determines that there is no frequency that has not been investigated, that is, that all the frequencies stored in the storage unit 7 have been investigated (S16: YES), light emission interference occurs at all the frequencies to be investigated. It is specified that there is no possibility (S18). Then, the control unit 2 determines to perform the entire light emission process (S19), ends the light emission interference presence / absence determination process, and returns.

一方、制御部2は、図11に示すように他装置から変調光が発光されたことで、変調光を検出したと判定すると(S14:YES)、過去数フレームでも他装置から発光された変調光が受光されていた(変調光を検出していた)か否かを判定する(S20)。制御部2は、過去数フレームでは変調光を検出していなかったと判定すると(S20:NO)、周波数fnで発光干渉が発生する可能性があると特定し、その発光干渉が単発的であり、発光干渉が発生する周期が同期していない(非同期である)と特定する(S21)。そして、制御部2は、分割発光処理(非ランダム)を行う旨を決定し(S22)、発光干渉有無判定処理を終了してリターンする。又、制御部2は、過去数フレームでも変調光を検出していたと判定すると(S20:YES)、周波数fnで発光干渉が発生する可能性があると特定し、その発光干渉が連続的(周期的)であり、発光干渉が発生する周期が同期していると特定する(S23)。そして、制御部2は、分割発光処理(ランダム)を行う旨を決定し(S24)、発光干渉有無判定処理を終了してリターンする。   On the other hand, when the control unit 2 determines that the modulated light is detected because the modulated light is emitted from the other device as illustrated in FIG. 11 (S14: YES), the modulation emitted from the other device is also performed in the past several frames. It is determined whether light has been received (modulated light has been detected) (S20). When determining that the modulated light has not been detected in the past several frames (S20: NO), the control unit 2 specifies that light emission interference may occur at the frequency fn, and the light emission interference is single-shot, It is specified that the cycle in which the light emission interference occurs is not synchronized (asynchronous) (S21). Then, the control unit 2 determines to perform the divided light emission process (non-random) (S22), ends the light emission interference presence / absence determination process, and returns. If the control unit 2 determines that the modulated light has been detected even in the past several frames (S20: YES), the control unit 2 specifies that light emission interference may occur at the frequency fn, and the light emission interference is continuous (periodic). It is specified that the period in which the light emission interference occurs is synchronized (S23). Then, the control unit 2 determines that the divided light emission process (random) is to be performed (S24), ends the light emission interference presence / absence determination process, and returns.

制御部2は、このようにして全体発光処理、分割発光処理(非ランダム)、分割発光処理(ランダム)の何れを行う旨を決定し、発光干渉有無判定処理を終了してリターンすると、その決定した発光処理にしたがって発光部3の発光動作及び受光部4の受光動作を行う。制御部2は、全体発光処理にしたがって発光部3の発光動作及び受光部4の受光動作を行う場合には、各発光素子8a〜8nから変調光を同時に発光させると共に、各受光素子11a〜11nに入射光を同時に受光させる。制御部2は、分割発光処理(非ランダム)にしたがって発光部3の発光動作及び受光部4の受光動作を行う場合には、各発光素子8a〜8nから変調光を規則性のある順序で個別に発光させると共に、各受光素子11a〜11nに入射光を規則性のある順序で個別に受光させる。制御部2は、分割発光処理(ランダム)にしたがって発光部3の発光動作及び受光部4の受光動作を行う場合には、各発光素子8a〜8nから変調光を規則性のない順序で個別に発光させると共に、各受光素子11a〜11nに入射光を規則性のない順序で個別に受光させる。   In this way, the control unit 2 determines whether to perform the entire light emission process, the divided light emission process (non-random), or the divided light emission process (random), ends the light emission interference presence / absence determination process, and returns. The light emitting operation of the light emitting unit 3 and the light receiving operation of the light receiving unit 4 are performed in accordance with the light emission processing performed. When performing the light emitting operation of the light emitting unit 3 and the light receiving operation of the light receiving unit 4 in accordance with the entire light emission process, the control unit 2 simultaneously emits modulated light from the light emitting elements 8a to 8n and the light receiving elements 11a to 11n. Simultaneously receives incident light. When performing the light emitting operation of the light emitting unit 3 and the light receiving operation of the light receiving unit 4 according to the divided light emission process (non-random), the control unit 2 individually modulates the modulated light from the light emitting elements 8a to 8n in a regular order. And the light receiving elements 11a to 11n individually receive incident light in a regular order. When performing the light emitting operation of the light emitting unit 3 and the light receiving operation of the light receiving unit 4 according to the divided light emission processing (random), the control unit 2 individually modulates the modulated light from the light emitting elements 8a to 8n in a non-regular order. While making it light-emit, each light receiving element 11a-11n light-receives incident light individually in the order without a regularity.

図12に示すように車両Aと車両Bとが直進路で対向し、車両Aの前方の発光エリアXの一部(発光エリアXe、Xf)と車両Bの前方の発光エリアYの一部とが重なり、図13〜15に示すように車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる場合を想定する。又、車両Bの光飛行型測距装置1が全体発光処理を行う(分割発光処理を行う機能を有していない)場合を想定する。図13は、車両Aの光飛行型測距装置1が全体発光処理を行う場合を示している。この場合は、車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる期間(t2〜t3、t6〜t7)の全てで発光干渉が発生する可能性がある。   As shown in FIG. 12, the vehicle A and the vehicle B face each other in a straight path, and a part of the light emitting area X in front of the vehicle A (light emitting areas Xe and Xf) and a part of the light emitting area Y in front of the vehicle B Are assumed, and a part of the light emission period of the vehicle A and a part of the light emission period of the vehicle B overlap as shown in FIGS. Further, it is assumed that the optical flight type distance measuring device 1 of the vehicle B performs the entire light emission process (does not have a function of performing the divided light emission process). FIG. 13 shows a case where the optical flight type distance measuring device 1 of the vehicle A performs the entire light emission processing. In this case, there is a possibility that light emission interference occurs in the entire period (t2 to t3, t6 to t7) where a part of the light emission period of the vehicle A and a part of the light emission period of the vehicle B overlap.

これに対し、図14は、車両Aの光飛行型測距装置1が分割発光処理(非ランダム)を行う場合を示している。この場合は、車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる期間(t2〜t3、t6〜t7)で発光干渉が発生しない期間が発生する。即ち、発光素子8e、8fから変調光を発光させる期間(t21〜t3、t61〜t7)では、発光エリアXe、Xfと発光エリアYとが重なり発光干渉が発生する可能性があるが、発光素子8dから変調光を発光させる期間(t2〜t21、t6〜t61)では、発光エリアXdと発光エリアYとが重ならず発光干渉が発生する可能性はない。   On the other hand, FIG. 14 shows a case where the optical flight type distance measuring device 1 of the vehicle A performs the divided light emission processing (non-random). In this case, a period in which no light emission interference occurs occurs during a period (t2 to t3, t6 to t7) in which a part of the light emission period of the vehicle A and a part of the light emission period of the vehicle B overlap. That is, in the period (t21 to t3, t61 to t7) in which the modulated light is emitted from the light emitting elements 8e and 8f, the light emitting areas Xe and Xf and the light emitting area Y may overlap and light emission interference may occur. In the period (t2 to t21, t6 to t61) in which the modulated light is emitted from 8d, the light emission area Xd and the light emission area Y do not overlap and there is no possibility of light emission interference.

又、図15は、車両Aの光飛行型測距装置1が分割発光処理(ランダム)を行う場合を示している。この場合も、車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる期間(t2〜t3、t6〜t7)で発光干渉が発生しない期間が発生する。即ち、発光期間が重なる期間(t2〜t3)においては、発光素子8fから変調光を発光させる期間(t21〜t22)では、発光エリアXfと発光エリアYとが重なり発光干渉が発生する可能性があるが、発光素子8b、8cから変調光を発光させる期間(t2〜t21、t22〜t3)では、発光エリアXb、Xcと発光エリアYとが重ならず発光干渉が発生する可能性はない。又、発光期間が重なる期間(t6〜t7)においては、発光素子8eから変調光を発光させる期間(t62〜t7)では、発光エリアXeと発光エリアYとが重なり発光干渉が発生する可能性があるが、発光素子8a、8cから変調光を発光させる期間(t6〜t62)では、発光エリアXa、Xcと発光エリアYとが重ならず発光干渉が発生する可能性はない。   FIG. 15 shows a case where the optical flight type distance measuring device 1 of the vehicle A performs divided light emission processing (random). Also in this case, a period in which no light emission interference occurs in a period (t2 to t3, t6 to t7) in which a part of the light emission period of the vehicle A and a part of the light emission period of the vehicle B overlap. That is, in the period (t2 to t3) in which the light emission period overlaps, in the period (t21 to t22) in which the modulated light is emitted from the light emitting element 8f, the light emission area Xf and the light emission area Y may overlap and light emission interference may occur. However, in the period (t2 to t21, t22 to t3) during which modulated light is emitted from the light emitting elements 8b and 8c, the light emitting areas Xb and Xc and the light emitting area Y do not overlap and there is no possibility of light emission interference. Further, in the period (t6 to t7) in which the light emission period overlaps, in the period (t62 to t7) in which the modulated light is emitted from the light emitting element 8e, the light emission area Xe and the light emission area Y may overlap and light emission interference may occur. However, in the period (t6 to t62) during which modulated light is emitted from the light emitting elements 8a and 8c, the light emitting areas Xa and Xc and the light emitting area Y do not overlap and there is no possibility of light emission interference.

このように分割発光処理を行うことで、全体発光処理を行う場合よりも発光干渉が発生する可能性がある期間を短縮し(抑制し)、発光干渉が発生する可能性を低減している。図12では車両Aと車両Bとが直進路で対向する場合を説明したが、上記した図6に示したように交差点や駐車場内で車両Aと車両Bとが接近する場合も同様である。   By performing the divided light emission processing in this way, the period during which light emission interference may occur is reduced (suppressed) and the possibility of light emission interference occurring is reduced as compared with the case of performing the entire light emission processing. In FIG. 12, the case where the vehicle A and the vehicle B face each other on a straight path has been described. However, the same applies to the case where the vehicle A and the vehicle B approach each other in an intersection or a parking lot as shown in FIG.

以上に説明したように本実施形態によれば、次に示す効果を得ることができる。
光飛行型測距装置1において、発光干渉が発生する可能性があると判定すると、発光期間において複数の発光素子8a〜8nから変調光を時分割で発光させ、複数の発光素子8a〜8nから変調光が発光される空間を分割する分割発光処理を行うようにした。これにより、自装置の発光期間と他装置の発光期間とが重なる期間で、発光干渉が発生する可能性を低減することができ、測距精度の低下を防止することができる。
As described above, according to the present embodiment, the following effects can be obtained.
When it is determined that there is a possibility of light emission interference in the optical flight rangefinder 1, modulated light is emitted in a time-division manner from the plurality of light emitting elements 8a to 8n during the light emission period, and from the plurality of light emitting elements 8a to 8n. A divisional light emission process for dividing a space where modulated light is emitted is performed. Thereby, it is possible to reduce the possibility that light emission interference occurs in a period in which the light emission period of the own device and the light emission period of the other device overlap, and to prevent a decrease in distance measurement accuracy.

又、発光干渉が発生する可能性があるときには分割発光処理を行い、発光干渉が発生する可能性がないときには全体発光処理を行い、分割発光処理と全体発光処理とを切替えて行うようにした。これにより、分割発光処理により発光干渉の発生を防止することと、全体発光処理により検知空間を広く確保することとの両立を図ることができる。   Further, when there is a possibility that light emission interference occurs, the divided light emission process is performed. When there is no possibility that light emission interference occurs, the whole light emission process is performed, and the divided light emission process and the whole light emission process are switched. Thereby, it is possible to achieve both of preventing the occurrence of light emission interference by the divided light emission process and ensuring a wide detection space by the whole light emission process.

又、分割発光処理を行うときの変調光を発光させる発光素子8a〜8nに供給する電力を、全体発光処理を行うときの変調光を同時に発光させる複数の発光素子8a〜8nに個別に供給する電力よりも高めるようにした。これにより、分割発光処理を行うときには各発光素子8a〜8nの各々の発光パワーを高めることができ、その分、必要とする露光期間を短縮することができる。   Further, the power supplied to the light emitting elements 8a to 8n that emit the modulated light when performing the divided light emission process is individually supplied to the plurality of light emitting elements 8a to 8n that simultaneously emit the modulated light when the entire light emission process is performed. I made it higher than electric power. Thereby, when performing the division | segmentation light emission process, each light emission power of each light emitting element 8a-8n can be raised, and the required exposure period can be shortened by that much.

又、発光干渉が発生する可能性の有無を1フレームの単位で判定するようにした。これにより、分割発光処理と全体発光処理とを1フレームの単位で切替えることができる。又、発光干渉が発生する可能性がある旨を一のフレームのみで判定すると、分割発光処理(非ランダム)を行うようにした。これにより、発光順序をランダムに決定する処理を省きつつ、発光干渉が発生する可能性を低減することができる。又、発光干渉が発生する可能性がある旨を複数のフレームに亘って判定すると、分割発光処理(ランダム)を行うようにした。これにより、発光エリアの重なりの程度によっては、発光順序が常に同じであると、発光干渉が発生する可能性を低減し得ないことも想定されるが、発光順序をランダムに決定することで、発光干渉が発生する可能性を低減することができる。   In addition, the possibility of occurrence of light emission interference is determined in units of one frame. Thereby, the divided light emission processing and the whole light emission processing can be switched in units of one frame. Further, when it is determined that there is a possibility that light emission interference may occur in only one frame, the divided light emission processing (non-random) is performed. As a result, it is possible to reduce the possibility of light emission interference while omitting the process of randomly determining the light emission order. Further, when it is determined over a plurality of frames that light emission interference may occur, the divided light emission process (random) is performed. Thereby, depending on the degree of overlap of the light emitting areas, if the light emission order is always the same, it is also assumed that the possibility of light emission interference cannot be reduced, but by randomly determining the light emission order, The possibility of occurrence of light emission interference can be reduced.

又、発光部3から発光される変調光との発光干渉が発生する可能性が想定される複数の変調光に付与されている優先度にしたがって複数の変調光の各々について発光干渉が発生する可能性の有無を判定するようにした。これにより、発光干渉が発生する可能性の有無を判定する処理を、発光干渉が発生する可能性が高い周波数から順に効率良く判定することができ、分割発光処理を行う旨を効率良く決定することができる。   In addition, light emission interference may occur for each of the plurality of modulated lights according to the priority given to the plurality of modulated lights that are expected to cause light emission interference with the modulated light emitted from the light emitting unit 3. The presence or absence of sex was determined. As a result, the process for determining whether or not there is a possibility of occurrence of light emission interference can be efficiently determined in order from the frequency at which the light emission interference is likely to occur, and it is efficiently determined that the divided light emission process is performed. Can do.

本発明は、上記した実施形態にのみ限定されるものではなく、以下のように変形又は拡張することができる。
車両以外の用途に適用しても良い。
分割発光処理(ランダム)では、一の発光期間において、特定の発光素子から変調光を複数回発光させたり、特定の発光素子から変調光を発光させなくしたり、一部の幾つかの発光素子から変調光を同時に発光させたりする等、規則性がない発光順序であればどのような発光順序としても良い。
The present invention is not limited to the above-described embodiment, and can be modified or expanded as follows.
You may apply to uses other than a vehicle.
In the split light emission process (random), in one light emission period, modulated light is emitted from a specific light emitting element a plurality of times, modulated light is not emitted from a specific light emitting element, or from some of the light emitting elements. Any light emission order may be used as long as the light emission order has no regularity, such as simultaneous emission of modulated light.

図面中、1は光飛行型測距装置、5は発光制御回路、6は受光制御回路、7は記憶部、8a〜8nは発光素子、11a〜11nは受光素子である。   In the drawings, 1 is an optical flight type distance measuring device, 5 is a light emission control circuit, 6 is a light reception control circuit, 7 is a storage unit, 8a to 8n are light emitting elements, and 11a to 11n are light receiving elements.

Claims (9)

所定の発光周波数の変調光を互いに異なる空間に発光する複数の発光素子(8a〜8n)と、
前記複数の発光素子から変調光を個別に発光させる発光制御回路(5)と、
前記複数の発光素子に対応して設けられ、対応する発光素子から発光された変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積する複数の受光素子(11a〜11n)と、
前記複数の受光素子を個別に動作させると共に、前記複数の受光素子における電荷の蓄積状態に基づいて前記自装置から対象物までの距離を計測する受光制御回路(6)と、を備え、
前記発光制御回路は、前記発光期間において複数の発光素子から変調光を時分割で発光させ、前記複数の発光素子から変調光が発光される空間を分割する分割発光処理を行うことを特徴とする光飛行型測距装置(1)。
A plurality of light emitting elements (8a to 8n) that emit modulated light having a predetermined light emission frequency in different spaces;
A light emission control circuit (5) for individually emitting modulated light from the plurality of light emitting elements;
A plurality of light receiving elements (11a to 11n) that are provided corresponding to the plurality of light emitting elements, receive incident light including reflected light reflected from the object by the modulated light emitted from the corresponding light emitting elements, and accumulate charges. )When,
A light receiving control circuit (6) for individually operating the plurality of light receiving elements and measuring a distance from the device to an object based on a charge accumulation state in the plurality of light receiving elements;
The light emission control circuit performs a divided light emission process in which modulated light is emitted in a time division manner from a plurality of light emitting elements in the light emission period, and a space in which the modulated light is emitted from the plurality of light emitting elements is divided. Optical flight type distance measuring device (1).
請求項1に記載した光飛行型測距装置において、
前記発光制御回路は、前記分割発光処理と、発光期間において前記複数の発光素子から変調光を同時に発光させ、前記複数の発光素子から変調光が発光される空間を分割しない全体発光処理とを切替えて行うことを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to claim 1,
The light emission control circuit switches between the divided light emission processing and the whole light emission processing that simultaneously emits modulated light from the plurality of light emitting elements during a light emission period and does not divide a space in which the modulated light is emitted from the plurality of light emitting elements. An optical flight-type distance measuring device.
請求項2に記載した光飛行型測距装置において、
前記発光制御回路は、前記分割発光処理を行うときの変調光を発光させる発光素子に供給する電力を、前記全体発光処理を行うときの変調光を同時に発光させる複数の発光素子に個別に供給する電力よりも高めることを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to claim 2,
The light emission control circuit individually supplies power supplied to a light emitting element that emits modulated light when performing the divided light emission process to a plurality of light emitting elements that simultaneously emit modulated light when performing the overall light emission process. An optical flight-type distance measuring device characterized by being higher than electric power.
請求項1から3の何れか一項に記載した光飛行型測距装置において、
前記受光制御回路は、前記複数の発光素子から変調光が発光されていない期間の前記複数の受光素子における電荷の蓄積状態に基づいて、発光干渉が発生する可能性の有無を判定し、
前記発光制御回路は、発光干渉が発生する可能性の有が前記受光制御回路により判定された場合に、前記分割発光処理を行うことを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to any one of claims 1 to 3,
The light reception control circuit determines whether or not light emission interference may occur based on a charge accumulation state in the plurality of light receiving elements during a period in which modulated light is not emitted from the plurality of light emitting elements,
The light emission type distance measuring device, wherein the light emission control circuit performs the divided light emission processing when the light reception control circuit determines that there is a possibility of light emission interference.
請求項4に記載した光飛行型測距装置において、
前記受光制御回路は、発光干渉が発生する可能性の有無を1フレームの単位で判定することを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to claim 4,
The optical flight distance measuring device, wherein the light receiving control circuit determines whether or not light emission interference may occur in units of one frame.
請求項5に記載した光飛行型測距装置において、
前記発光制御回路は、発光干渉が発生する可能性の有が一のフレームのみで前記受光制御回路により判定された場合には、前記複数の発光素子から変調光を発光させる発光順序を規則性がある順序に設定することを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to claim 5,
The light emission control circuit has regularity in the light emission order for emitting modulated light from the plurality of light emitting elements when the light reception control circuit determines that there is a possibility of light emission interference in only one frame. An optical flight-type distance measuring device that is set in a certain order.
請求項5又は6に記載した光飛行型測距装置において、
前記発光制御回路は、発光干渉が発生する可能性の有が複数のフレームに亘って前記受光制御回路により判定された場合には、前記複数の発光素子から変調光を発光させる発光順序を規則性がない順序に設定することを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to claim 5 or 6,
The light emission control circuit has a regular light emission sequence for emitting modulated light from the plurality of light emitting elements when the light reception control circuit determines that light emission interference may occur over a plurality of frames. An optical flight-type distance measuring device that is set in an order that does not have any.
請求項4から7の何れか一項に記載した光飛行型測距装置において、
前記受光制御回路は、前記変調光との発光干渉が発生する可能性が想定される変調光が複数の場合には、前記複数の変調光に付与されている優先度にしたがって前記複数の変調光の各々について発光干渉が発生する可能性の有無を判定することを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to any one of claims 4 to 7,
The light reception control circuit, when there is a plurality of modulated lights that are likely to cause light emission interference with the modulated light, the plurality of modulated lights according to the priority given to the plurality of modulated lights. An optical flight-type distance measuring device characterized by determining whether or not there is a possibility of occurrence of light emission interference for each of the above.
請求項8に記載した光飛行型測距装置において、
前記変調光との発光干渉の発生の可能性が想定される複数の変調光の種別と、その変調光の周波数との対応を記憶する記憶部(7)を備えたことを特徴とする光飛行型測距装置。
In the optical flight type distance measuring device according to claim 8,
An optical flight comprising a storage unit (7) for storing correspondence between a plurality of types of modulated light assumed to be likely to cause light emission interference with the modulated light and the frequency of the modulated light Type ranging device.
JP2014112679A 2014-05-30 2014-05-30 Optical flight type distance measuring device Active JP6511733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112679A JP6511733B2 (en) 2014-05-30 2014-05-30 Optical flight type distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112679A JP6511733B2 (en) 2014-05-30 2014-05-30 Optical flight type distance measuring device

Publications (2)

Publication Number Publication Date
JP2015227781A true JP2015227781A (en) 2015-12-17
JP6511733B2 JP6511733B2 (en) 2019-05-15

Family

ID=54885334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112679A Active JP6511733B2 (en) 2014-05-30 2014-05-30 Optical flight type distance measuring device

Country Status (1)

Country Link
JP (1) JP6511733B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013857A1 (en) * 2015-07-22 2017-01-26 パナソニックIpマネジメント株式会社 Distance measurement device
JP2017125682A (en) * 2016-01-11 2017-07-20 株式会社デンソー Laser radar device and surroundings monitoring system
JP2018063222A (en) * 2016-10-14 2018-04-19 富士通株式会社 Distance measurement device, distance measurement method and program
WO2019012756A1 (en) * 2017-07-11 2019-01-17 ソニーセミコンダクタソリューションズ株式会社 Electronic device and method for controlling electronic device
JP2021507261A (en) * 2017-12-15 2021-02-22 イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングIbeo Automotive Systems GmbH How to improve local and remote detection of lidar receivers
JP2021507262A (en) * 2017-12-15 2021-02-22 イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングIbeo Automotive Systems GmbH LIDAR measurement system
CN113631943A (en) * 2019-03-27 2021-11-09 欧司朗光电半导体有限公司 Optoelectronic device and lidar system
JP2022505527A (en) * 2018-11-01 2022-01-14 ウェイモ エルエルシー Sorting shots in the lidar system
JP7019870B1 (en) * 2021-01-28 2022-02-15 三菱電機株式会社 Rider device and transmission / reception separation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184381A (en) * 1986-02-07 1987-08-12 Koito Mfg Co Ltd Radar equipment for automobile
JPH07218632A (en) * 1994-02-01 1995-08-18 Nikon Corp Distance measuring equipment
JP2002333487A (en) * 2001-05-08 2002-11-22 Sunx Ltd Photoelectric sensor
JP2007205775A (en) * 2006-01-31 2007-08-16 Sunx Ltd Photoelectric sensor
JP2009124398A (en) * 2007-11-14 2009-06-04 Stanley Electric Co Ltd Range image generating apparatus
JP2010107448A (en) * 2008-10-31 2010-05-13 Toyota Motor Corp Distance measuring device
JP2013076645A (en) * 2011-09-30 2013-04-25 Stanley Electric Co Ltd Distance image generation apparatus and distance image generation method
WO2014010107A1 (en) * 2012-07-11 2014-01-16 北陽電機株式会社 Scanning-type distance measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184381A (en) * 1986-02-07 1987-08-12 Koito Mfg Co Ltd Radar equipment for automobile
JPH07218632A (en) * 1994-02-01 1995-08-18 Nikon Corp Distance measuring equipment
JP2002333487A (en) * 2001-05-08 2002-11-22 Sunx Ltd Photoelectric sensor
JP2007205775A (en) * 2006-01-31 2007-08-16 Sunx Ltd Photoelectric sensor
JP2009124398A (en) * 2007-11-14 2009-06-04 Stanley Electric Co Ltd Range image generating apparatus
JP2010107448A (en) * 2008-10-31 2010-05-13 Toyota Motor Corp Distance measuring device
JP2013076645A (en) * 2011-09-30 2013-04-25 Stanley Electric Co Ltd Distance image generation apparatus and distance image generation method
WO2014010107A1 (en) * 2012-07-11 2014-01-16 北陽電機株式会社 Scanning-type distance measuring device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017013857A1 (en) * 2015-07-22 2018-05-10 パナソニックIpマネジメント株式会社 Ranging device
WO2017013857A1 (en) * 2015-07-22 2017-01-26 パナソニックIpマネジメント株式会社 Distance measurement device
JP2017125682A (en) * 2016-01-11 2017-07-20 株式会社デンソー Laser radar device and surroundings monitoring system
JP2018063222A (en) * 2016-10-14 2018-04-19 富士通株式会社 Distance measurement device, distance measurement method and program
US10996320B2 (en) 2017-07-11 2021-05-04 Sony Semiconductor Solutions Corporation Electronic device and control method of electronic device
WO2019012756A1 (en) * 2017-07-11 2019-01-17 ソニーセミコンダクタソリューションズ株式会社 Electronic device and method for controlling electronic device
JP7074875B2 (en) 2017-12-15 2022-05-24 イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング LIDAR measurement system
JP2021507262A (en) * 2017-12-15 2021-02-22 イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングIbeo Automotive Systems GmbH LIDAR measurement system
JP7074874B2 (en) 2017-12-15 2022-05-24 イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to improve local and remote detection of lidar receivers
JP2021507261A (en) * 2017-12-15 2021-02-22 イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングIbeo Automotive Systems GmbH How to improve local and remote detection of lidar receivers
US11639999B2 (en) 2017-12-15 2023-05-02 Ibeo Automotive Systems GmbH Method for improved near and remote detection of a LIDAR receiving unit
US11686822B2 (en) 2017-12-15 2023-06-27 Microvision, Inc. LIDAR measurement system
JP2022505527A (en) * 2018-11-01 2022-01-14 ウェイモ エルエルシー Sorting shots in the lidar system
JP7246473B2 (en) 2018-11-01 2023-03-27 ウェイモ エルエルシー Reordering shots in the Lidar system
CN113631943A (en) * 2019-03-27 2021-11-09 欧司朗光电半导体有限公司 Optoelectronic device and lidar system
JP2022526776A (en) * 2019-03-27 2022-05-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic equipment and LIDAR system
JP7331126B2 (en) 2019-03-27 2023-08-22 エイエムエス-オスラム インターナショナル ゲーエムベーハー Optoelectronic devices and LIDAR systems
JP7019870B1 (en) * 2021-01-28 2022-02-15 三菱電機株式会社 Rider device and transmission / reception separation device

Also Published As

Publication number Publication date
JP6511733B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP2015227781A (en) Light-of-flight ranging device
JP5019117B2 (en) Distance image generator
JP6698655B2 (en) Ranging device
JP6427998B2 (en) Optical flight rangefinder
JP6805504B2 (en) Distance measuring device, mobile device and distance measuring method
JP6852416B2 (en) Distance measuring device, mobile body, robot, device and 3D measuring method
US9921311B2 (en) Method and time-of-flight camera for providing distance information
US20170350969A1 (en) Controlling transmission of pulses from a sensor
US9170095B1 (en) Distance detection device and method including dynamically adjusted frame rate
JP2013076645A (en) Distance image generation apparatus and distance image generation method
JP6665535B2 (en) Laser radar device
US9453743B2 (en) Distance measuring apparatus
US20160370460A1 (en) Sensor, sensor system and method of finding range
JP6455088B2 (en) Optical flight rangefinder
US10481263B2 (en) Range finding apparatus, moveable apparatus, robot, three dimensional measurement apparatus, method of measuring three dimensional information, and storage medium
JP2017015448A (en) Light flight type range-finding device
JP2019049480A (en) Distance measuring device
JP2013019708A (en) Distance measuring device
US20150331093A1 (en) Controlling transmission of pulses from a sensor
JP2021520498A (en) Control method of sensor element of LIDAR measurement system
JP2016169985A (en) Light wave range finder
US20220276358A1 (en) Distance-measuring imaging device
JP2021018231A (en) Measuring apparatus, measuring method, and program
JP2016217907A (en) Distance image generation device
KR101850284B1 (en) Flame sensing system and sensing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R151 Written notification of patent or utility model registration

Ref document number: 6511733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250