JP2015227757A - Hot water storage type water heater - Google Patents

Hot water storage type water heater Download PDF

Info

Publication number
JP2015227757A
JP2015227757A JP2014113888A JP2014113888A JP2015227757A JP 2015227757 A JP2015227757 A JP 2015227757A JP 2014113888 A JP2014113888 A JP 2014113888A JP 2014113888 A JP2014113888 A JP 2014113888A JP 2015227757 A JP2015227757 A JP 2015227757A
Authority
JP
Japan
Prior art keywords
hot water
water supply
flow rate
heat source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014113888A
Other languages
Japanese (ja)
Other versions
JP6119672B2 (en
Inventor
直紀 柴崎
Naoki Shibazaki
直紀 柴崎
利幸 佐久間
Toshiyuki Sakuma
利幸 佐久間
尚希 渡邉
Naoki Watanabe
尚希 渡邉
智史 栗田
Satoshi Kurita
智史 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014113888A priority Critical patent/JP6119672B2/en
Publication of JP2015227757A publication Critical patent/JP2015227757A/en
Application granted granted Critical
Publication of JP6119672B2 publication Critical patent/JP6119672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hot water storage type water heater capable of securing stability of a hot water supply temperature and suppressing deterioration in boiling-up efficiency.SOLUTION: A hot water storage type water heater comprises: a heat exchanger 52 for hot water supply which exchanges heat between hot water in a hot water storage tank 8 and fed hot water; a hot water supply source conduit 46 for guiding from the upper part of the hot water storage tank 8 to the lower part of the hot water storage tank 8 via the heat exchanger 52 for hot water supply; a water feed conduit 9 which guides fed hot water to a hot water supply terminal via the heat exchanger 52 for hot water supply; a hot water supply source pump 48 which circulates the hot water in the hot water supply source conduit 46; and a control unit 36. The control unit 36 controls the output of the hot water supply source pump 48 so that a heat source-side flow rate Fl is equal to or larger than a water feed-side flow rate Fk when the water feed-side flow rate Fk is equal to or larger than a flow rate threshold, and also controls the output of the hot water supply source pump 48 so that the heat source-side flow rate Fl is less than the water feed-side flow rate Fk when the water feed-side flow rate Fk is smaller than the flow rate threshold.

Description

本発明は、貯湯タンクに貯留された湯を熱源として給水を加熱して給湯する貯湯式給湯機に関する。   TECHNICAL FIELD The present invention relates to a hot water storage type hot water heater that supplies hot water by heating hot water stored in a hot water storage tank as a heat source.

従来から、貯湯タンクの上部から供給される湯水と給湯水とを熱交換器によって熱交換させるいわゆる間接給湯式の給湯機が知られている。特許文献1には、このような間接給湯式の給湯機の構成が開示されている。また、特許文献1に記載された給湯機では、熱交換器から流出する給湯側の湯の流量に応じてポンプの駆動力が制御され、熱源側の流体の循環流量が増減される。   2. Description of the Related Art Conventionally, a so-called indirect hot water heater in which hot water and hot water supplied from the upper part of a hot water storage tank are heat-exchanged by a heat exchanger is known. Patent Document 1 discloses the configuration of such an indirect hot water heater. Further, in the water heater described in Patent Document 1, the driving force of the pump is controlled according to the flow rate of hot water on the hot water side flowing out from the heat exchanger, and the circulation flow rate of the fluid on the heat source side is increased or decreased.

特開平5-99507号公報JP-A-5-99507

ところで、上記特許文献1の間接給湯式の給湯機においては、熱交換器の給水側を流れる給湯水の流量(以下、給水側流量)に応じて熱交換器の熱源側を流れる湯水の流量(以下、熱源側流量)が制御される。このような制御としては、例えば、給水側流量と熱源側流量との比率を一定(例えば給水側流量と熱源側流量とを同量)に制御することが考えられる。しかしながら、給水側流量が増えると熱源側から給湯側へ熱交換されずに熱交換器を通過してしまう熱量が増える。このため、熱交換器から導出される給湯水の温度は、給水側流量が増えるほど低下することとなり、また、反対に熱交換器から導出される熱源側の湯水の温度は上昇することとなる。さらに、熱交換器の給湯側から導出される給湯水の温度は、熱交換器における熱交換量だけでなく、熱交換器の給水側へ導入される市水の温度の影響も受ける。このため、これらの熱量が考慮されていない上記従来の技術では、安定した給湯温度を実現することができないおそれがあり、また貯湯タンクに戻る湯の温度が高くなることによる沸き上げ効率の低下も問題となるおそれがある。   By the way, in the indirect hot water supply type water heater of the above-mentioned Patent Document 1, the flow rate of hot water flowing through the heat source side of the heat exchanger (hereinafter referred to as water supply side flow rate) according to the flow rate of hot water flowing through the water supply side of the heat exchanger (hereinafter referred to as water supply side flow rate) ( Hereinafter, the heat source side flow rate) is controlled. As such control, for example, it is conceivable to control the ratio of the water supply side flow rate and the heat source side flow rate to be constant (for example, the water supply side flow rate and the heat source side flow rate are the same). However, when the water supply side flow rate increases, the amount of heat that passes through the heat exchanger without heat exchange from the heat source side to the hot water supply side increases. For this reason, the temperature of the hot water derived from the heat exchanger decreases as the flow rate on the water supply side increases, and conversely, the temperature of the hot water on the heat source side derived from the heat exchanger increases. . Furthermore, the temperature of hot water derived from the hot water supply side of the heat exchanger is affected not only by the amount of heat exchange in the heat exchanger but also by the temperature of city water introduced to the water supply side of the heat exchanger. For this reason, there is a possibility that a stable hot water supply temperature cannot be realized in the above-described conventional technology in which the amount of heat is not taken into account, and the boiling efficiency is lowered due to an increase in the temperature of hot water returning to the hot water storage tank. May be a problem.

本発明は、上述のような課題を解決するためになされたもので、給湯温度の安定性を確保するとともに沸き上げ効率の悪化を抑制することのできる貯湯式給湯機を提供することを目的とする。   This invention was made in order to solve the above problems, and it aims at providing the hot water storage type water heater which can suppress the deterioration of boiling efficiency while ensuring the stability of hot water supply temperature. To do.

本発明に係る貯湯式給湯機は、湯水を貯留させる貯湯タンクと、貯湯タンクに貯留される湯水を加熱する加熱手段と、貯湯タンクの上部から供給される湯水と給湯水とを熱交換させるための給湯用熱交換器と、給湯水を給湯用熱交換器を経由して給湯端末へ導く給水管路と、貯湯タンクの上部から給湯用熱交換器を経由して貯湯タンクの下部へ導く給湯熱源管路と、給湯熱源管路の湯水を循環させる給湯熱源ポンプと、給水管路を流れる給湯水の流量である給水側流量を検知する給湯流量センサと、給湯端末への給湯が行われる給湯運転において給湯熱源ポンプの出力を制御する制御部と、を備え、制御部は、給水側流量が流量閾値以上である場合には給湯熱源管路を流れる湯水の流量である熱源側流量が給水側流量以上となるように給湯熱源ポンプの出力を制御し、給水側流量が流量閾値より小さい場合には熱源側流量が給水側流量より小さくなるように給湯熱源ポンプの出力を制御するものである。   The hot water storage type hot water heater according to the present invention heat-exchanges a hot water storage tank for storing hot water, heating means for heating the hot water stored in the hot water storage tank, and hot water supplied from the upper part of the hot water storage tank and hot water supply. Hot water supply heat exchanger, hot water supply pipe that leads hot water to the hot water terminal via the hot water heat exchanger, and hot water supply that leads from the upper part of the hot water tank to the lower part of the hot water tank via the hot water heat exchanger A hot water supply source, a hot water supply heat source pump that circulates hot water in the hot water supply heat source pipe, a hot water supply flow rate sensor that detects a flow rate of hot water flowing through the water supply pipe, and a hot water supply that supplies hot water to the hot water supply terminal A controller that controls the output of the hot water supply heat source pump in operation, and the control unit has a heat source side flow rate that is a flow rate of hot water flowing through the hot water supply heat source line when the water supply side flow rate is greater than or equal to a flow rate threshold value. Hot water supply heat so that it becomes more than flow rate Controlling the output of the pump, when the feed water side flow rate is less than the flow rate threshold value is used to control the output of the hot water supply heat source pump as the heat source-side flow rate is smaller than the feed water side flow.

本発明の貯湯式給湯機によれば、給湯温度の安定性を確保するとともに沸き上げ効率の悪化を抑制することのできる貯湯式給湯機を提供することが可能となる。   According to the hot water storage type hot water heater of the present invention, it is possible to provide a hot water storage type hot water heater capable of ensuring the stability of the hot water supply temperature and suppressing the deterioration of the boiling efficiency.

本発明の実施の形態1の貯湯式給湯機を示す構成図である。It is a block diagram which shows the hot water storage type water heater of Embodiment 1 of this invention. 本発明の実施の形態1に係る貯湯式給湯機の沸き上げ運転時の回路構成図である。It is a circuit block diagram at the time of the boiling operation of the hot water storage type hot water heater which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る貯湯式給湯機の給湯運転時の回路構成図である。It is a circuit block diagram at the time of the hot water supply operation of the hot water storage type hot water heater according to Embodiment 1 of the present invention. 給水側流量Fkに対する熱源側流量Flの変化及び給湯温度の変化を示す図である。It is a figure which shows the change of the heat source side flow volume Fl with respect to the water supply side flow volume Fk, and the change of hot water supply temperature. 給水温度Tiに対する熱源側流量Flの変化及び給湯温度の変化を示す図である。It is a figure which shows the change of the heat source side flow volume Fl with respect to the feed water temperature Ti, and the change of hot water supply temperature.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1の貯湯式給湯機の構成図である。貯湯式給湯機35は、タンクユニット33と、ヒートポンプサイクルを利用するHPユニット7と、運転動作指令及び設定値の変更操作を行うためのリモコン44とを備えている。HPユニット7とタンクユニット33とは、HP往き配管14とHP戻り配管15と図示しない電気配線とを介して接続されている。タンクユニット33には、制御部36が内蔵されている。タンクユニット33およびHPユニット7が備える各種弁類、ポンプ類等の作動は、これらと電気的に接続された制御部36により制御される。制御部36とリモコン44とは、相互通信が可能に接続されている。リモコン44には、図示を省略するが、貯湯式給湯機35の状態等の情報を表示する表示部、使用者が操作するスイッチ等の操作部、スピーカ及びマイク等が搭載されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention. The hot water storage type water heater 35 includes a tank unit 33, an HP unit 7 that uses a heat pump cycle, and a remote controller 44 for performing an operation operation and setting value changing operation. The HP unit 7 and the tank unit 33 are connected to each other via an HP outgoing pipe 14, an HP return pipe 15, and an electric wiring (not shown). A control unit 36 is built in the tank unit 33. Operations of various valves, pumps, and the like provided in the tank unit 33 and the HP unit 7 are controlled by a control unit 36 electrically connected thereto. The control unit 36 and the remote controller 44 are connected so that mutual communication is possible. Although not shown, the remote controller 44 includes a display unit that displays information such as the state of the hot water storage water heater 35, an operation unit such as a switch operated by the user, a speaker, a microphone, and the like.

HPユニット7は、タンクユニット33が備える貯湯タンク8から導かれた低温水を加熱するための加熱手段として機能する。HPユニット7は、圧縮機1、水冷媒熱交換器3、膨張弁4、空気熱交換器6を冷媒配管5にて環状に接続し、ヒートポンプサイクルを構成している。水冷媒熱交換器3は、冷媒配管5を流れる冷媒とタンクユニット33から導かれた低温水との間で熱交換を行うためのものである。   The HP unit 7 functions as a heating means for heating the low-temperature water led from the hot water storage tank 8 provided in the tank unit 33. The HP unit 7 connects the compressor 1, the water refrigerant heat exchanger 3, the expansion valve 4, and the air heat exchanger 6 in a ring shape with a refrigerant pipe 5 to constitute a heat pump cycle. The water-refrigerant heat exchanger 3 is for exchanging heat between the refrigerant flowing through the refrigerant pipe 5 and the low-temperature water led from the tank unit 33.

タンクユニット33には、以下の配管及び各種部品が内蔵されている。貯湯タンク8は、湯水を貯留するためのものである。水道等の水源から供給される給水は、第1給水配管9aを通じてタンクユニット33内へ導入される。貯湯タンク8の下部に設けられた水導入口8aは、第3給水配管9cを介して第1給水配管9aに接続されている。第3給水配管9cの途中には減圧弁31が設けられている。第1給水配管9aから第3給水配管9cへ導入される給水は、減圧弁31で規定の圧力に調圧された上で貯湯タンク8内に流入する。   The tank unit 33 incorporates the following piping and various parts. The hot water storage tank 8 is for storing hot water. Water supplied from a water source such as water is introduced into the tank unit 33 through the first water supply pipe 9a. A water inlet 8a provided at the lower part of the hot water storage tank 8 is connected to the first water supply pipe 9a via a third water supply pipe 9c. A pressure reducing valve 31 is provided in the middle of the third water supply pipe 9c. The water supplied from the first water supply pipe 9 a to the third water supply pipe 9 c is adjusted to a specified pressure by the pressure reducing valve 31 and then flows into the hot water storage tank 8.

貯湯タンク8の下部に設けられた水導出口8bには、水導出口配管10の一端が接続されている。水導出口配管10の他端は、熱源ポンプ12の吸込側に接続されている。熱源ポンプ12の吐出側は、HP往き配管14を介してHPユニット7の入口側と接続されている。また、タンクユニット33には、三方弁18が内蔵されている。三方弁18は、湯水が流入するaポートと、湯水が流出するb、cポートとを有する流路切替手段である。三方弁18のaポートは、HP戻り配管15を介してHPユニット7の出口側と接続されている。三方弁18のbポートは、送湯配管13を介して貯湯タンク8上部に設けられた温水導入口8dと接続されている。三方弁18のcポートは、バイパス配管16を介して貯湯タンク8の中央部から下部の間に設けられた温水導入口8cと接続されている。   One end of a water outlet port pipe 10 is connected to a water outlet port 8 b provided in the lower part of the hot water storage tank 8. The other end of the water outlet port pipe 10 is connected to the suction side of the heat source pump 12. The discharge side of the heat source pump 12 is connected to the inlet side of the HP unit 7 via the HP outgoing pipe 14. The tank unit 33 has a built-in three-way valve 18. The three-way valve 18 is a flow path switching means having an a port through which hot water flows in and b and c ports through which hot water flows out. The a port of the three-way valve 18 is connected to the outlet side of the HP unit 7 via the HP return pipe 15. The b port of the three-way valve 18 is connected to a hot water inlet 8d provided in the upper part of the hot water storage tank 8 via a hot water supply pipe 13. The c port of the three-way valve 18 is connected via a bypass pipe 16 to a hot water inlet 8 c provided between the central part and the lower part of the hot water storage tank 8.

貯湯タンク8には、HPユニット7を用いて加熱された高温湯がHP戻り配管15及び送湯配管13を通じて温水導入口8dから流入するとともに、低温水が第3給水配管9cを通じて水導入口8aから流入する。これにより、貯湯タンク8には上下部で温度差が生じるように湯水が貯留される。貯湯タンク8の表面には、複数の貯湯温度センサが高さを変えて取り付けられている。より詳しくは、貯湯タンク8の表面の上部には貯湯温度センサ42が取り付けられ、貯湯タンク8の表面の下部には貯湯温度センサ43が取り付けられている。貯湯タンク8内の残湯量は、これら貯湯温度センサ42,43で貯湯タンク8内の湯水の温度分布を検出することにより把握される。制御部36は、検出された残湯量に基づいて、HPユニット7による貯湯タンク8内の湯水の沸上運転の開始、停止などを制御する。   Hot water heated using the HP unit 7 flows into the hot water storage tank 8 from the hot water inlet 8d through the HP return pipe 15 and the hot water supply pipe 13, and low temperature water flows through the third water supply pipe 9c to the water inlet 8a. Inflow from. As a result, hot water is stored in the hot water storage tank 8 so that a temperature difference occurs between the upper and lower portions. A plurality of hot water storage temperature sensors are attached to the surface of the hot water storage tank 8 at different heights. More specifically, a hot water storage temperature sensor 42 is attached to the upper part of the surface of the hot water storage tank 8, and a hot water storage temperature sensor 43 is attached to the lower part of the surface of the hot water storage tank 8. The amount of remaining hot water in the hot water storage tank 8 is grasped by detecting the temperature distribution of the hot water in the hot water storage tank 8 with these hot water storage temperature sensors 42 and 43. The control unit 36 controls the start and stop of the hot water boiling operation in the hot water storage tank 8 by the HP unit 7 based on the detected remaining hot water amount.

タンクユニット33には、給湯用熱交換器52が内蔵されている。給湯用熱交換器52の2次側入口は、第2給水配管9bを介して第1給水配管9aに接続されている。給湯用熱交換器52の2次側出口は、給湯配管21を介して給湯栓34に接続されている。以下の説明では、水源の給水を第1給水配管9a、第2給水配管9b、給湯用熱交換器52及び給湯配管21を介して給湯栓34へと導く管路を給水管路9と称する。また、第2給水配管9bの途中には、給水管路9を流れる給湯水の流量である給水側流量Fkを検知するための給湯流量センサ49と、第2給水配管9bを流れる給水の温度である給水温度Tiを検知するため、図の例では第1給水配管9aに配置された給水温度センサ53と、がそれぞれ配置されている。   The tank unit 33 incorporates a hot water supply heat exchanger 52. The secondary inlet of the hot water supply heat exchanger 52 is connected to the first water supply pipe 9a via the second water supply pipe 9b. The secondary outlet of the hot water supply heat exchanger 52 is connected to the hot water tap 34 via the hot water supply pipe 21. In the following description, the pipe that guides the water supply from the water source to the hot-water tap 34 through the first water supply pipe 9 a, the second water supply pipe 9 b, the hot water supply heat exchanger 52, and the hot water supply pipe 21 is referred to as the water supply pipe 9. Further, in the middle of the second water supply pipe 9b, a hot water supply flow rate sensor 49 for detecting a water supply side flow rate Fk, which is a flow rate of hot water flowing through the water supply pipe line 9, and the temperature of the water supply flowing through the second water supply pipe 9b. In order to detect a certain feed water temperature Ti, a feed water temperature sensor 53 arranged in the first feed water pipe 9a is arranged in the example of the drawing.

また、給湯用熱交換器52の1次側入口は、熱源導入配管46aを介して、貯湯タンク8の上部に設けられた温水導出口8eに接続されている。また、給湯用熱交換器52の1次側出口は、熱源導出配管46bを介して、貯湯タンク8の下部に設けられた温水導入口8fに接続されている。以下の説明では、温水導出口8eから導出された貯湯タンク8内の湯水を熱源導入配管46a、給湯用熱交換器52及び熱源導出配管46bを介して温水導入口8fから再び貯湯タンク8内へ戻す管路を給湯熱源管路46と称することとする。また、熱源導出配管46bの途中には、給湯熱源管路46の湯水を循環させるための給湯熱源ポンプ48が配置されている。さらに、熱源導出配管46bの途中には、給湯熱源管路46を流れる湯水の流量である給湯熱源流量Flを検知するための給湯熱源流量センサ50が配置されている。給湯栓34から出湯された高温湯は給湯端末である蛇口などの混合水栓51に供給され、低温の水道水と混合された上で使用者に利用される。   The primary inlet of the hot water supply heat exchanger 52 is connected to a hot water outlet 8e provided in the upper part of the hot water storage tank 8 via a heat source introduction pipe 46a. The primary outlet of the hot water supply heat exchanger 52 is connected to a hot water inlet 8f provided at the lower part of the hot water storage tank 8 via a heat source outlet pipe 46b. In the following description, the hot water in the hot water storage tank 8 led out from the hot water outlet 8e is reintroduced into the hot water storage tank 8 from the hot water inlet 8f via the heat source introduction pipe 46a, the hot water supply heat exchanger 52 and the heat source outlet pipe 46b. The line to be returned is referred to as a hot water supply heat source line 46. A hot water supply heat source pump 48 for circulating hot water in the hot water supply heat source pipe 46 is disposed in the middle of the heat source outlet pipe 46b. Further, a hot water supply heat source flow rate sensor 50 for detecting a hot water supply heat source flow rate Fl, which is a flow rate of hot water flowing through the hot water supply heat source pipeline 46, is disposed in the middle of the heat source outlet pipe 46b. The hot water discharged from the hot-water tap 34 is supplied to a mixing tap 51 such as a faucet that is a hot-water supply terminal, and is mixed with low-temperature tap water and used by the user.

次に、本実施の形態に係る貯湯式給湯機の動作について説明する。図2は、本発明の実施の形態1に係る貯湯式給湯機の沸き上げ運転時の回路構成図である。尚、ここでいう沸き上げ運転とは、HPユニット7を利用して沸き上げた湯を貯湯タンク8内に貯える運転のことである。この沸き上げ運転時には、三方弁18は、aポートとbポートとが連通しcポートが閉状態となるように制御される。これにより、HP戻り配管15と送湯配管13とが連通するとともに、バイパス配管16側を閉として貯湯タンク8の温水導入口8cへの流路が遮断される。   Next, the operation of the hot water storage type water heater according to the present embodiment will be described. FIG. 2 is a circuit configuration diagram of the hot water storage type water heater according to Embodiment 1 of the present invention at the time of boiling operation. The boiling operation referred to here is an operation in which hot water heated using the HP unit 7 is stored in the hot water storage tank 8. During the heating operation, the three-way valve 18 is controlled so that the a port and the b port communicate with each other and the c port is closed. Thereby, the HP return pipe 15 and the hot water supply pipe 13 communicate with each other, and the bypass pipe 16 side is closed, and the flow path to the hot water inlet 8c of the hot water storage tank 8 is blocked.

沸き上げ運転は、上記のように三方弁18が制御された状態で、熱源ポンプ12とHPユニット7の運転を開始することにより実行される。その結果、貯湯タンク8の水導出口8bから流出する低温水は、水導出口配管10、熱源ポンプ12およびHP往き配管14を経由してHPユニット7に導かれ、水冷媒熱交換器3において加熱されて高温湯となった後、HP戻り配管15、三方弁18および送湯配管13を経由して、貯湯タンク8の温水導入口8dから当該貯湯タンク8内に流入し貯えられる。このような沸き上げ運転が実行されることで、貯湯タンク8の内部では、上層部から高温水が貯えられていき、この高温水層が徐々に厚くなる。   The boiling operation is executed by starting the operation of the heat source pump 12 and the HP unit 7 in a state where the three-way valve 18 is controlled as described above. As a result, the low temperature water flowing out from the water outlet 8b of the hot water storage tank 8 is guided to the HP unit 7 via the water outlet port 10, the heat source pump 12, and the HP outgoing pipe 14, and in the water refrigerant heat exchanger 3. After being heated to high temperature hot water, it flows into the hot water storage tank 8 from the hot water inlet 8d of the hot water storage tank 8 through the HP return pipe 15, the three-way valve 18 and the hot water supply pipe 13, and is stored therein. By performing such a boiling operation, high temperature water is stored from the upper layer inside the hot water storage tank 8, and the high temperature water layer gradually becomes thicker.

また、本実施の形態に係る貯湯式給湯機では、上述した沸き上げ運転によって貯湯タンク8内に貯留された高温水の熱源を用いて、水源から供給される給水を加熱する給湯運転が行われる。図3は、本発明の実施の形態1に係る貯湯式給湯機の給湯運転時の回路構成図である。給湯運転は、蛇口などが開かれたことを受けて、給湯熱源ポンプ48の運転を開始することにより実行される。その結果、貯湯タンク8の上部に貯留されている高温湯は、温水導出口8eから熱源導入配管46aを経由して給湯用熱交換器52の一次側に導入される。この際、第2給水配管9bを流れる低温水は給湯用熱交換器52の二次側に導入される。導入された低温水は給湯用熱交換器52において一次側の高温湯との熱交換によって加熱され高温湯となる。高温湯となった後の給水は、給湯配管21を経由して給湯栓34へ供給される。このような給湯運転が実行されることで、蛇口などの混合水栓51から連続して湯が出湯される。なお、以下の説明では、給湯用熱交換器52から導出された給水の温度を給湯温度と称することとする。   Further, in the hot water storage type hot water supply apparatus according to the present embodiment, a hot water supply operation for heating the water supplied from the water source is performed using the heat source of the high temperature water stored in the hot water storage tank 8 by the above-described boiling operation. . FIG. 3 is a circuit configuration diagram of the hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention during a hot water supply operation. The hot water supply operation is executed by starting the operation of the hot water supply heat source pump 48 in response to the opening of the faucet or the like. As a result, the hot water stored in the upper part of the hot water storage tank 8 is introduced from the hot water outlet 8e to the primary side of the hot water supply heat exchanger 52 via the heat source introduction pipe 46a. At this time, the low temperature water flowing through the second water supply pipe 9 b is introduced to the secondary side of the hot water supply heat exchanger 52. The introduced low temperature water is heated by heat exchange with the primary high temperature hot water in the hot water supply heat exchanger 52 to become high temperature hot water. The water supply after becoming hot water is supplied to the hot water tap 34 via the hot water supply pipe 21. By performing such a hot water supply operation, hot water is continuously discharged from the mixing tap 51 such as a faucet. In the following description, the temperature of the water supplied from the hot water supply heat exchanger 52 is referred to as a hot water supply temperature.

本実施の形態に係る貯湯式給湯機において給湯運転が開始されると、制御部36は、給湯流量センサ49により検知される給水側流量Fk(すなわち給湯用熱交換器52の二次側流量)に基づいて、給湯用熱交換器52の一次側流量である熱源側流量Flの目標流量Ftgtを設定する目標値設定手段を実行する。そして、制御部36は、給湯熱源流量センサ50により検知される熱源側流量Flが目標流量Ftgtとなるように、給湯熱源ポンプ48の出力をフィードバック制御するポンプ制御手段を実行する。なお、フィードバック制御では、例えばPID(Proportional Integral Derivative)制御によって給湯熱源ポンプ48の入力電圧Vpを制御する。   When the hot water supply operation is started in the hot water storage type water heater according to the present embodiment, the control unit 36 detects the water supply side flow rate Fk detected by the hot water supply flow rate sensor 49 (that is, the secondary side flow rate of the hot water supply heat exchanger 52). The target value setting means for setting the target flow rate Ftgt of the heat source side flow rate Fl, which is the primary flow rate of the hot water supply heat exchanger 52, is executed. And the control part 36 performs the pump control means which feedback-controls the output of the hot water supply heat source pump 48 so that the heat source side flow Fl detected by the hot water supply heat source flow sensor 50 becomes the target flow Ftgt. In the feedback control, the input voltage Vp of the hot water supply heat source pump 48 is controlled by, for example, PID (Proportional Integral Derivative) control.

本実施の形態の貯湯式給湯機は、目標流量Ftgtを設定する構成に特徴を有している。図4は、給水側流量Fkに対する熱源側流量Flの変化及び給湯温度の変化を示す図である。なお、この図中の点線は、Fl=Fkとした場合の熱源側流量Fl及び給湯温度の変化を、図中の実線は、Fl=f(Fk)とした場合の熱源側流量Fl及び給湯温度の変化を、それぞれ示している。また、この図では、給水温度Ti及び貯湯タンク8の上部に貯留されている高温湯の貯湯温度が一定である場合を示している。   The hot water storage type water heater of the present embodiment is characterized by a configuration for setting the target flow rate Ftgt. FIG. 4 is a diagram illustrating a change in the heat source side flow rate Fl and a change in the hot water supply temperature with respect to the water supply side flow rate Fk. The dotted line in this figure indicates changes in the heat source side flow rate Fl and hot water temperature when Fl = Fk, and the solid line in the figure indicates the heat source side flow rate Fl and hot water temperature when Fl = f (Fk). Each change is shown. Moreover, in this figure, the case where the hot water storage temperature of the hot water currently stored in the upper part of the hot water storage temperature Ti and the hot water storage tank 8 is constant is shown.

目標流量Ftgtを給水側流量Fkに設定すると、図中点線に示すように、熱源側流量FlがFl=Fkに制御される。この場合、給水側流量Fkが多量であるほど給湯温度は低下する。これは、給水側流量Fkが多量になると、給湯用熱交換器52において熱交換されずに通過してしまう熱量が増えることに起因する。このため、給湯温度は給水側流量Fkが増えるほど低下することとなり、また、反対に給湯用熱交換器52から貯湯タンク8へ戻される湯水の温度は上昇することとなる。このような場合、安定した給湯温度を実現できないばかりか沸き上げ効率の低下も問題となる。   When the target flow rate Ftgt is set to the water supply side flow rate Fk, the heat source side flow rate Fl is controlled to Fl = Fk as shown by the dotted line in the figure. In this case, the hot water supply temperature decreases as the water supply side flow rate Fk increases. This is because when the water supply side flow rate Fk becomes large, the amount of heat that passes through the hot water supply heat exchanger 52 without heat exchange increases. For this reason, the hot water supply temperature decreases as the water supply side flow rate Fk increases, and conversely, the temperature of the hot water returned from the hot water supply heat exchanger 52 to the hot water storage tank 8 increases. In such a case, not only a stable hot water supply temperature cannot be realized, but also a decrease in boiling efficiency becomes a problem.

そこで、本実施の形態の貯湯式給湯機では、Fl=f(Fk)が実現されるように目標流量Ftgtを設定することとする。具体的には、図4に実線で示すように、給水側流量Fkが流量閾値より小さい範囲ではFl<Fkとなり且つ給水側流量Fkが流量閾値以上の範囲ではFl≧Fkとなる関数を用いて、目標流量Ftgtを設定することとする。給水側流量Fkの流量閾値は、Fk=Flにて給湯温度が目標温度となる給水側流量Fkの値を使用する。これにより、Fk<流量閾値の範囲では給湯温度を低下させ且つFk≧流量閾値の範囲では給湯温度を上昇させることができるので、給水側流量Fkが変化した場合であっても、給湯温度を目標温度に近づけて安定した給湯温度を実現することができる。   Therefore, in the hot water storage type water heater of the present embodiment, the target flow rate Ftgt is set so that Fl = f (Fk) is realized. Specifically, as shown by a solid line in FIG. 4, a function is used where Fl <Fk when the water supply side flow rate Fk is smaller than the flow rate threshold value, and Fl ≧ Fk when the water supply side flow rate Fk is greater than or equal to the flow rate threshold value. The target flow rate Ftgt is set. As the flow rate threshold of the water supply side flow rate Fk, the value of the water supply side flow rate Fk at which the hot water supply temperature becomes the target temperature when Fk = Fl is used. As a result, the hot water temperature can be lowered within the range of Fk <flow rate threshold and the hot water temperature can be raised within the range of Fk ≧ flow rate threshold. Therefore, even when the water supply side flow rate Fk changes, the hot water temperature is targeted. It is possible to achieve a stable hot water supply temperature close to the temperature.

次に、上述した本実施の形態の制御の一具体例を説明する。例えば、給水側流量Fkが最大流量20L/minである場合においてFk=Flで制御すると、給水側流量Fkが20L/minより下がるにつれて徐々に給湯温度が上昇する。しかしながら、流量閾値となる流量を20L/minとし、給水側流量Fkが20L/min未満ではFl<Fkとなり、給水側流量Fkが20L/minではFl=Fkとなるように制御すると、Fk=Flで制御した場合と比較してどの流量域でも給湯温度は低下する。このため、給湯温度は給水側流量Fkによらず最大流量時の給湯温度で一定とすることができ、低流量時における高温の給湯を抑制することができる。   Next, a specific example of the control of the present embodiment described above will be described. For example, when the water supply side flow rate Fk is the maximum flow rate 20 L / min and control is performed with Fk = Fl, the hot water supply temperature gradually rises as the water supply side flow rate Fk falls below 20 L / min. However, if the flow rate serving as the flow rate threshold is 20 L / min, Fl <Fk when the water supply side flow rate Fk is less than 20 L / min, and Fl = Fk when the water supply side flow rate Fk is 20 L / min, Fk = Fl. Compared with the case where the control is carried out, the hot water supply temperature decreases in any flow rate region. For this reason, the hot water supply temperature can be made constant at the hot water supply temperature at the maximum flow rate regardless of the water supply side flow rate Fk, and high temperature hot water supply at the low flow rate can be suppressed.

以上説明したように、本実施の形態の貯湯式給湯機によれば、給水側流量Fkに変動が生じた場合であっても、給湯温度を一定に維持することができる。また、貯湯タンク8に戻される湯水の温度上昇を抑制することができるので、沸き上げ効率の低下を抑制することが可能となる。   As described above, according to the hot water storage type hot water supply apparatus of the present embodiment, the hot water supply temperature can be kept constant even when the water supply side flow rate Fk varies. Moreover, since the temperature rise of the hot water returned to the hot water storage tank 8 can be suppressed, it is possible to suppress a decrease in boiling efficiency.

ところで、上述した実施の形態の貯湯式給湯機では、熱源側流量FlのPID制御を実行しているが、熱源側流量Flが目標流量Ftgtとなるように給湯熱源ポンプ48の入力電圧Vpを制御する他のフィードバック制御を用いることとしてもよい。   By the way, in the hot water storage type hot water heater of the above-described embodiment, the PID control of the heat source side flow rate Fl is executed, but the input voltage Vp of the hot water supply heat source pump 48 is controlled so that the heat source side flow rate Fl becomes the target flow rate Ftgt. Other feedback control may be used.

また、上述した実施の形態の貯湯式給湯機では、関数Fl=f(Fk)を用いて熱源側流量Flを制御することとしているが、給水側流量Fkが流量閾値より小さい範囲ではFl<Fkとなり且つ給水側流量Fkが流量閾値以上の範囲ではFl≧Fkとなる関数であればその構成は特に限定されない。但し、給湯温度が目標温度で一定となるような関数にすることがより好ましく、これにより給湯温度の変動を有効に抑制することができる。   Further, in the hot water storage type hot water heater of the above-described embodiment, the heat source side flow rate Fl is controlled using the function Fl = f (Fk). However, in the range where the water supply side flow rate Fk is smaller than the flow rate threshold, Fl <Fk. If the function is such that Fl ≧ Fk in the range where the water supply side flow rate Fk is equal to or higher than the flow rate threshold value, the configuration is not particularly limited. However, it is more preferable to use a function in which the hot water supply temperature is constant at the target temperature, and this makes it possible to effectively suppress fluctuations in the hot water supply temperature.

また、上述した実施の形態の貯湯式給湯機では、関数Fl=f(Fk)を用いて熱源側流量Flを制御することとしているが、給湯温度が目標温度で一定となるような熱源側流量Flと給水側流量Fkとの関係を規定したマップを用いて熱源側流量Flを制御してもよい。   Further, in the hot water storage type water heater of the above-described embodiment, the heat source side flow rate Fl is controlled using the function Fl = f (Fk), but the heat source side flow rate is such that the hot water supply temperature is constant at the target temperature. The heat source side flow rate Fl may be controlled using a map that defines the relationship between Fl and the water supply side flow rate Fk.

実施の形態2.
次に、本発明の実施の形態2について説明する。実施の形態2の貯湯式給湯機は、給水温度Tiに応じて熱源側流量Flの目標流量Ftgtを設定する点に特徴を有している。図5は、給水温度Tiに対する熱源側流量Flの変化及び給湯温度の変化を示す図である。なお、この図中の点線は、Fl=Fkとした場合の熱源側流量Fl及び給湯温度の変化を、図中の実線は、Fl=g(Ti)とした場合の熱源側流量Fl及び給湯温度の変化を、それぞれ示している。また、この図では、給水側流量Fk及び貯湯タンク8の上部に貯留されている高温湯の貯湯温度が一定である場合を示している。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. The hot water storage type hot water heater of the second embodiment is characterized in that the target flow rate Ftgt of the heat source side flow rate Fl is set according to the feed water temperature Ti. FIG. 5 is a diagram showing a change in the heat source flow rate Fl and a change in the hot water supply temperature with respect to the water supply temperature Ti. The dotted line in this figure indicates changes in the heat source side flow rate Fl and hot water supply temperature when Fl = Fk, and the solid line in the drawing indicates the heat source side flow rate Fl and hot water supply temperature when Fl = g (Ti). Each change is shown. Moreover, in this figure, the case where the hot water storage temperature of the hot water stored in the upper part of the water supply side flow volume Fk and the hot water storage tank 8 is constant is shown.

目標流量Ftgtを給水側流量Fkに設定すると、図中点線に示すように、熱源側流量FlがFl=Fkに制御される。この場合、給水温度Tiが高温であるほど給湯温度は上昇し、安定した給湯温度を実現できないおそれがある。   When the target flow rate Ftgt is set to the water supply side flow rate Fk, the heat source side flow rate Fl is controlled to Fl = Fk as shown by the dotted line in the figure. In this case, the hot water supply temperature rises as the water supply temperature Ti is higher, and there is a possibility that a stable hot water supply temperature cannot be realized.

そこで、本実施の形態の貯湯式給湯機では、Fl=g(Ti)が実現されるように目標流量Ftgtを設定することとする。具体的には、図5に実線で示すように、給水温度Tiが温度閾値以上の範囲ではFl<Fkとなり且つ給水側流量Fkが温度閾値未満の範囲ではFl≧Fkとなる関数を用いて、目標流量Ftgtを設定することとする。給水温度Tiの温度閾値は、Fk=Flにて給湯温度が目標温度となる給水温度Tiの値を使用する。これにより、Ti<温度閾値の範囲では給湯温度を上昇させ且つTi≧閾値の範囲では給湯温度を低下させることができるので、給水温度Tiが変化した場合であっても、給湯温度を目標温度に近づけて安定した給湯温度を実現することができる。   Therefore, in the hot water storage type water heater of the present embodiment, the target flow rate Ftgt is set so that Fl = g (Ti) is realized. Specifically, as shown by a solid line in FIG. 5, using a function in which Fl <Fk in the range where the feed water temperature Ti is equal to or higher than the temperature threshold and Fl ≧ Fk in the range where the feed water flow rate Fk is less than the temperature threshold, The target flow rate Ftgt is set. As the temperature threshold value of the feed water temperature Ti, the value of the feed water temperature Ti at which the hot water supply temperature becomes the target temperature at Fk = Fl is used. Thus, the hot water supply temperature can be increased in the range of Ti <temperature threshold and the hot water supply temperature can be decreased in the range of Ti ≧ threshold, so that the hot water supply temperature is set to the target temperature even when the feed water temperature Ti changes. Close and stable hot water supply temperature can be realized.

次に、上述した本実施の形態の制御の一具体例を説明する。例えば、熱源側流量を給水温度Tiによらず制御した場合、給水温度Tiが上がるにつれて徐々に給湯温度が上昇してしまう。しかしながら、給水温度Tiの温度閾値を10℃とし、給水温度Tiが10℃以上ではFl<Fkとなるように制御すると、Fk=Flで制御した場合と比較して給湯温度は低下する。また、給水温度Tiが10℃未満ではFl≧Fkとなるように制御するとFk=Flで制御した場合と比較して給湯温度は上昇する。このため、給湯温度は給水温度Tiによらず一定とすることができ、高温の給水時に高温の給湯を抑制することができる。   Next, a specific example of the control of the present embodiment described above will be described. For example, when the heat source side flow rate is controlled regardless of the feed water temperature Ti, the hot water supply temperature gradually increases as the feed water temperature Ti rises. However, if the temperature threshold value of the feed water temperature Ti is set to 10 ° C. and the feed water temperature Ti is controlled to satisfy Fl <Fk when the feed water temperature Ti is 10 ° C. or more, the hot water supply temperature is lowered as compared with the case where Fk = Fl. Further, when the feed water temperature Ti is less than 10 ° C., the hot water supply temperature rises as compared with the case where the control is performed so that Fl ≧ Fk. For this reason, hot water supply temperature can be made constant irrespective of the water supply temperature Ti, and hot water supply can be suppressed at the time of high temperature water supply.

以上説明したように、本実施の形態の貯湯式給湯機によれば、給水温度Tiに変動が生じた場合であっても、給湯温度を一定に維持することができる。また、貯湯タンク8に戻される湯水の流量を抑制することができるので、無駄な中温水の還流による沸き上げ効率の低下を抑制することが可能となる。   As described above, according to the hot water storage type hot water supply apparatus of the present embodiment, the hot water supply temperature can be kept constant even when the water supply temperature Ti varies. Moreover, since the flow rate of the hot water returned to the hot water storage tank 8 can be suppressed, it is possible to suppress a decrease in the boiling efficiency due to the recirculation of useless medium temperature water.

ところで、上述した実施の形態の貯湯式給湯機では、関数Fl=g(Ti)を用いて熱源側流量Flを制御することとしているが、給湯温度が目標温度で一定となるような熱源側流量Flと給水温度Tiとの関係を規定したマップを用いて熱源側流量Flを制御してもよい。   By the way, in the hot water storage type water heater of the above-described embodiment, the heat source side flow rate Fl is controlled using the function Fl = g (Ti), but the heat source side flow rate is such that the hot water supply temperature is constant at the target temperature. The heat-source-side flow rate Fl may be controlled using a map that defines the relationship between Fl and the feed water temperature Ti.

また、上述した実施の形態の貯湯式給湯機では、給水温度Tiに応じて熱源側流量Flの目標流量Ftgtを設定することとしたが、給水側流量Fkに応じて熱源側流量Flの目標流量Ftgtを設定する実施の形態1の制御と組み合わせることとしてもよい。この場合、例えば、Fl=f(Fk)×g(Ti)となる関数を用いて目標流量Ftgtを設定することができる。これにより、給水側流量Fk及び給水温度Tiの双方によらず給湯温度を目標値に制御することが可能となる。   In the hot water storage type water heater of the above-described embodiment, the target flow rate Ftgt of the heat source side flow rate Fl is set according to the feed water temperature Ti, but the target flow rate of the heat source side flow rate Fl according to the feed water side flow rate Fk. It is good also as combining with control of Embodiment 1 which sets Ftgt. In this case, for example, the target flow rate Ftgt can be set using a function of Fl = f (Fk) × g (Ti). This makes it possible to control the hot water supply temperature to the target value regardless of both the water supply side flow rate Fk and the water supply temperature Ti.

1 圧縮機、3 水冷媒熱交換器、4 膨張弁、5 冷媒循環配管、6 空気熱交換器、7 HPユニット(加熱手段)、8 貯湯タンク、8a 水導入口、8b 水導出口、8c 温水導入口、8d 温水導入口、8e 温水導出口、8f 温水導入口、9 給水管路、9a 第1給水配管、9b 第2給水配管、9c 第3給水配管、10 水導出口配管、12 熱源ポンプ、13 送湯配管、14 HP往き配管、15 HP戻り配管、16 バイパス配管、21 給湯配管、31 減圧弁、33 タンクユニット、34 給湯栓、35 貯湯式給湯機、36 制御部、42,43 貯湯温度センサ、44 リモコン装置、46 給湯熱源管路、46a 熱源導入配管、46b 熱源導出配管、48 給湯熱源ポンプ、49 給湯流量センサ、50 給湯熱源流量センサ、51 混合水栓、52 給湯用熱交換器、53 給水温度センサ DESCRIPTION OF SYMBOLS 1 Compressor, 3 Water refrigerant heat exchanger, 4 Expansion valve, 5 Refrigerant circulation piping, 6 Air heat exchanger, 7 HP unit (heating means), 8 Hot water storage tank, 8a Water inlet, 8b Water outlet, 8c Inlet, 8d Hot water inlet, 8e Hot water outlet, 8f Hot water inlet, 9 Water supply pipe, 9a First water supply pipe, 9b Second water supply pipe, 9c Third water supply pipe, 10 Water outlet pipe, 12 Heat source pump , 13 Hot water supply piping, 14 HP outgoing piping, 15 HP return piping, 16 Bypass piping, 21 Hot water supply piping, 31 Pressure reducing valve, 33 Tank unit, 34 Hot water tap, 35 Hot water storage type hot water heater, 36 Control unit, 42, 43 Hot water storage Temperature sensor, 44 Remote control device, 46 Hot water supply heat source line, 46a Heat source introduction piping, 46b Heat source extraction piping, 48 Hot water supply heat source pump, 49 Hot water supply flow rate sensor, 50 Hot water supply heat source flow Sensor, 51 water mixing, heat exchanger 52 hot water, 53 water temperature sensor

Claims (9)

湯水を貯留させる貯湯タンクと、
前記貯湯タンクに貯留される湯水を加熱する加熱手段と、
前記貯湯タンクの上部から供給される湯水と給湯水とを熱交換させるための給湯用熱交換器と、
前記給湯水を前記給湯用熱交換器を経由して給湯端末へ導く給水管路と、
前記貯湯タンクの上部から前記給湯用熱交換器を経由して前記貯湯タンクの下部へ導く給湯熱源管路と、
前記給湯熱源管路の湯水を循環させる給湯熱源ポンプと、
前記給水管路を流れる前記給湯水の流量である給水側流量を検知する給湯流量センサと、
前記給湯端末への給湯が行われる給湯運転において前記給湯熱源ポンプの出力を制御する制御部と、を備え、
前記制御部は、前記給水側流量が流量閾値以上である場合には前記給湯熱源管路を流れる湯水の流量である熱源側流量が前記給水側流量以上となるように前記給湯熱源ポンプの出力を制御し、前記給水側流量が前記流量閾値より小さい場合には前記熱源側流量が前記給水側流量より小さくなるように前記給湯熱源ポンプの出力を制御する貯湯式給湯機。
A hot water storage tank for storing hot water,
Heating means for heating hot water stored in the hot water storage tank;
A hot water supply heat exchanger for exchanging heat between hot water and hot water supplied from the upper part of the hot water storage tank;
A water supply conduit for guiding the hot water to the hot water terminal via the hot water heat exchanger;
A hot water supply heat source line leading from the upper part of the hot water storage tank to the lower part of the hot water storage tank via the hot water supply heat exchanger;
A hot water supply heat source pump for circulating hot water in the hot water supply heat source line;
A hot water supply flow rate sensor for detecting a water supply side flow rate which is a flow rate of the hot water supply flowing through the water supply pipeline;
A controller that controls the output of the hot water supply heat source pump in a hot water supply operation in which hot water is supplied to the hot water supply terminal, and
The control unit outputs the output of the hot water source heat source pump so that a heat source side flow rate, which is a flow rate of hot water flowing through the hot water source heat source pipe, becomes equal to or higher than the water supply side flow rate when the water supply side flow rate is equal to or higher than a flow rate threshold. A hot water storage type hot water heater that controls and controls the output of the hot water supply heat source pump so that the heat source side flow rate is smaller than the water supply side flow rate when the water supply side flow rate is smaller than the flow rate threshold.
前記制御部は、前記熱源側流量が前記給水側流量と同量であり且つ前記給湯用熱交換器から前記給水管路へ導出された前記給湯水の温度が目標温度である場合の前記給水側流量の値を前記流量閾値として設定するように構成されて成る請求項1に記載の貯湯式給湯機。   The controller is configured to supply water when the heat source side flow rate is the same as the water supply side flow rate, and the temperature of the hot water supplied from the hot water heat exchanger to the water supply line is a target temperature. The hot water storage type hot water supply device according to claim 1, wherein a flow rate value is set as the flow rate threshold value. 前記制御部は、
前記給水側流量に基づいて、前記熱源側流量の目標流量を設定する設定手段と、
前記熱源側流量が前記目標流量となるように前記給湯熱源ポンプの出力を制御するポンプ制御手段と、
を含む請求項1又は請求項2に記載の貯湯式給湯機。
The controller is
Setting means for setting a target flow rate of the heat source side flow rate based on the water supply side flow rate;
Pump control means for controlling the output of the hot water supply heat source pump so that the heat source side flow rate becomes the target flow rate;
The hot water storage type hot water supply device according to claim 1 or claim 2 comprising:
前記熱源側流量を検知する給湯熱源流量センサを更に備え、
前記ポンプ制御手段は、前記給湯熱源流量センサにより検知された前記熱源側流量が前記目標流量となるように、前記給湯熱源ポンプの出力にフィードバック制御を施すように構成されて成る請求項3に記載の貯湯式給湯機。
A hot water supply heat source flow sensor for detecting the heat source side flow rate;
The said pump control means is comprised so that feedback control may be performed to the output of the said hot water supply heat source pump so that the said heat source side flow volume detected by the said hot water supply heat source flow sensor may become the said target flow volume. Hot water storage water heater.
前記制御部は、前記給水側流量の最大流量を前記流量閾値として設定するよう構成されて成る請求項1、請求項3及び請求項4の何れか1項に記載の貯湯式給湯機。   The hot water storage type hot water supply apparatus according to any one of claims 1, 3, and 4, wherein the control unit is configured to set a maximum flow rate of the water supply side flow rate as the flow rate threshold value. 前記給水管路から前記給湯用熱交換器へ導入される前記給湯水の温度である給水温度を検知する給水温度センサを備え、
前記制御部は、前記給水温度が温度閾値以上である場合には前記熱源側流量が前記給水側流量より小さくなるように前記給湯熱源ポンプの出力を制御し、前記給水温度が前記温度閾値より小さい場合には前記熱源側流量が前記給水側流量以上になるように前記給湯熱源ポンプの出力を制御する請求項1から請求項5の何れか1項に記載の貯湯式給湯機。
A water supply temperature sensor that detects a water supply temperature that is a temperature of the hot water supplied from the water supply pipe to the heat exchanger for hot water supply;
The control unit controls the output of the hot water supply heat source pump so that the heat source side flow rate is smaller than the water supply side flow rate when the feed water temperature is equal to or higher than a temperature threshold, and the water supply temperature is smaller than the temperature threshold. The hot water storage type hot water supply apparatus according to any one of claims 1 to 5, wherein an output of the hot water supply heat source pump is controlled so that the heat source side flow rate becomes equal to or higher than the water supply side flow rate.
前記制御部は、前記熱源側流量が前記給水側流量と同量であり且つ前記給湯用熱交換器から前記給水管路へ導出された前記給湯水の温度が目標温度である場合の前記給水温度の値を前記温度閾値として設定するように構成されて成る請求項6に記載の貯湯式給湯機。   The controller is configured to supply water temperature when the heat source side flow rate is the same as the water supply side flow rate and the temperature of the hot water supplied from the hot water heat exchanger to the water supply line is a target temperature. The hot water storage type hot water supply device according to claim 6, wherein the value is set as the temperature threshold value. 湯水を貯留させる貯湯タンクと、
前記貯湯タンクに貯留される湯水を加熱する加熱手段と、
前記貯湯タンクの上部から供給される湯水と給湯水とを熱交換させるための給湯用熱交換器と、
前記給湯水を前記給湯用熱交換器を経由して給湯端末へ導く給水管路と、
前記貯湯タンクの上部から前記給湯用熱交換器を経由して前記貯湯タンクの下部へ導く給湯熱源管路と、
前記給湯熱源管路の湯水を循環させる給湯熱源ポンプと、
前記給水管路を流れる前記給湯水の流量である給水側流量を検知する給湯流量センサと、
前記給水管路から前記給湯用熱交換器へ導入される前記給湯水の温度である給水温度を検知する給水温度センサと、
前記給湯端末への給湯が行われる給湯運転において前記給湯熱源ポンプの出力を制御する制御部と、を備え、
前記制御部は、前記給水温度が温度閾値以上である場合には、前記給湯熱源管路を流れる湯水の流量である熱源側流量が前記給水管路を流れる前記給湯水の流量である給水側流量より小さくなるように前記給湯熱源ポンプの出力を制御し、前記給水温度が前記温度閾値より小さい場合には、前記熱源側流量が前記給水側流量以上になるように前記給湯熱源ポンプの出力を制御する貯湯式給湯機。
A hot water storage tank for storing hot water,
Heating means for heating hot water stored in the hot water storage tank;
A hot water supply heat exchanger for exchanging heat between hot water and hot water supplied from the upper part of the hot water storage tank;
A water supply conduit for guiding the hot water to the hot water terminal via the hot water heat exchanger;
A hot water supply heat source line leading from the upper part of the hot water storage tank to the lower part of the hot water storage tank via the hot water supply heat exchanger;
A hot water supply heat source pump for circulating hot water in the hot water supply heat source line;
A hot water supply flow rate sensor for detecting a water supply side flow rate which is a flow rate of the hot water supply flowing through the water supply pipeline;
A feed water temperature sensor that detects a feed water temperature that is a temperature of the hot water supplied from the feed water pipe to the heat exchanger for hot water supply;
A controller that controls the output of the hot water supply heat source pump in a hot water supply operation in which hot water is supplied to the hot water supply terminal, and
When the feed water temperature is equal to or higher than a temperature threshold, the control unit has a water supply side flow rate in which a heat source side flow rate that is a flow rate of hot water flowing through the hot water supply heat source pipeline is a flow rate of the hot water supply flowing through the water supply pipeline The output of the hot water supply heat source pump is controlled to be smaller, and the output of the hot water supply heat source pump is controlled so that the flow rate on the heat source side is equal to or higher than the flow rate on the supply water side when the feed water temperature is lower than the temperature threshold. Hot water storage water heater.
前記制御部は、前記熱源側流量が前記給水側流量と同量であり且つ前記給湯用熱交換器から前記給水管路へ導出された前記給湯水の温度が目標温度である場合の前記給水温度の値を前記温度閾値として設定するように構成されて成る請求項8に記載の貯湯式給湯機。   The controller is configured to supply water temperature when the heat source side flow rate is the same as the water supply side flow rate and the temperature of the hot water supplied from the hot water heat exchanger to the water supply line is a target temperature. The hot water storage type water heater according to claim 8, wherein the value is set as the temperature threshold value.
JP2014113888A 2014-06-02 2014-06-02 Hot water storage water heater Active JP6119672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113888A JP6119672B2 (en) 2014-06-02 2014-06-02 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113888A JP6119672B2 (en) 2014-06-02 2014-06-02 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2015227757A true JP2015227757A (en) 2015-12-17
JP6119672B2 JP6119672B2 (en) 2017-04-26

Family

ID=54885318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113888A Active JP6119672B2 (en) 2014-06-02 2014-06-02 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP6119672B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221204A (en) * 2004-02-09 2005-08-18 Denso Corp Storage water heater
JP2007085582A (en) * 2005-09-20 2007-04-05 Hitachi Appliances Inc Operating method of electric water heater
JP2009150635A (en) * 2007-11-27 2009-07-09 Denso Corp Hot-water supply system
JP2010156484A (en) * 2008-12-26 2010-07-15 Hitachi Appliances Inc Water heater
JP2013242060A (en) * 2012-05-18 2013-12-05 Panasonic Corp Water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221204A (en) * 2004-02-09 2005-08-18 Denso Corp Storage water heater
JP2007085582A (en) * 2005-09-20 2007-04-05 Hitachi Appliances Inc Operating method of electric water heater
JP2009150635A (en) * 2007-11-27 2009-07-09 Denso Corp Hot-water supply system
JP2010156484A (en) * 2008-12-26 2010-07-15 Hitachi Appliances Inc Water heater
JP2013242060A (en) * 2012-05-18 2013-12-05 Panasonic Corp Water heater

Also Published As

Publication number Publication date
JP6119672B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6515859B2 (en) Hot water storage system
JP6036563B2 (en) Hot water storage water heater
JP6520802B2 (en) Heat storage system
JP6160772B2 (en) Hot water storage water heater
JP5585358B2 (en) Hot water storage water heater
JP5553059B2 (en) Hot water storage water heater
JP5655695B2 (en) Hot water storage water heater
JP5434955B2 (en) Heat pump water heater
JP6390903B2 (en) Hot water storage hot water system
JP6252290B2 (en) Hot water storage water heater
JP6119672B2 (en) Hot water storage water heater
JP5664345B2 (en) Hot water storage water heater
JP5423558B2 (en) Hot water storage water heater
WO2015182005A1 (en) Storage type hot water supply device
JP2010112648A (en) Heat pump water heater
JP2009063262A (en) Heat pump type water heater
JP2015078773A (en) Hot water storage type water heater
WO2018087867A1 (en) Heating medium circulation system
JP2014142112A (en) Hot water storage type water heater
JP2017194219A (en) Storage water heater
JP6143092B2 (en) Hot water storage system
JP6687156B2 (en) Heat medium supply system
JP6805910B2 (en) Hot water storage type hot water supply device
JP2015218980A (en) Hot water storage type water heater
JP6337831B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250