JP2015227651A - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP2015227651A
JP2015227651A JP2014114501A JP2014114501A JP2015227651A JP 2015227651 A JP2015227651 A JP 2015227651A JP 2014114501 A JP2014114501 A JP 2014114501A JP 2014114501 A JP2014114501 A JP 2014114501A JP 2015227651 A JP2015227651 A JP 2015227651A
Authority
JP
Japan
Prior art keywords
hub
main shaft
nacelle
wind power
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014114501A
Other languages
Japanese (ja)
Inventor
秀年 青木
Hidetoshi Aoki
秀年 青木
育男 飛永
Ikuo Tobinaga
育男 飛永
行平 田中
Kohei Tanaka
行平 田中
慎吾 稲村
Shingo Inamura
慎吾 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014114501A priority Critical patent/JP2015227651A/en
Priority to TW104114588A priority patent/TW201604398A/en
Priority to DE102015210278.5A priority patent/DE102015210278A1/en
Publication of JP2015227651A publication Critical patent/JP2015227651A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0691Rotors characterised by their construction elements of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind power generator which both prevents a connection face between a hub and a rotary main shaft from sliding due to the addition of a torque by the rotation of a windmill, and keeps the hub in a small construction.SOLUTION: A wind power generator includes a blade 2 which receives wind and rotates, a hub 1 supporting the blade, and a rotary main shaft 6 which rotates in conjunction with the rotation of the hub. The hub 1 and the rotary main shaft 6 are connected via a high friction part.

Description

本発明は、風力発電装置に関するものであり、特に風力発電装置のロータ支持構造に関する。     The present invention relates to a wind turbine generator, and more particularly to a rotor support structure for a wind turbine generator.

再生可能なエネルギー源として注目されている風力発電は、近年急速に導入が進むとともに発電容量が増加している。水平軸風車は大容量の風力発電装置のなかで最も普及が進んでいるタイプであり、タワー上部でナセルの側方に位置するロータの回転を、ナセル内部の発電機に伝達することによって、回転エネルギーを電気エネルギーに変換している。大型の水平軸風車は5MW以上の発電容量を有し、ブレードの直径は100mを超える場合がある。     Wind power generation, which is attracting attention as a renewable energy source, has recently been introduced rapidly and its power generation capacity has increased. Horizontal axis wind turbines are the most popular type of large-capacity wind power generators, and rotate by transmitting the rotation of the rotor located on the side of the nacelle at the top of the tower to the generator inside the nacelle. Energy is converted into electrical energy. Large horizontal axis wind turbines have a power generation capacity of more than 5MW, and the blade diameter may exceed 100m.

風力発電装置の大型化に伴い、ロータの回転を発電機に伝える動力伝達機構が受け持つ伝達トルクは、極めて大きくなっている。トルクの増大によって、それを伝達する風車構成部品間の接続はより強固なものとしなければならない。特に、構成部品同士が回転軸に垂直なフランジ様の面で接続される箇所は、締結面がすべりを生じる方向にトルクが負荷されるため、これを防止する必要がある。このような接続箇所には、例えばロータ回転の中心付近に位置するハブと、回転主軸とのボルト締結部がある。特許文献1において、球殻状のハブはナセル側に主軸接続部を有し、主軸はハブ側にフランジを有し、該主軸接続部とフランジとがボルトによって固接されている。     With the increase in size of wind power generators, the transmission torque that is handled by the power transmission mechanism that transmits the rotation of the rotor to the generator has become extremely large. With increasing torque, the connection between wind turbine components that transmit it must be made stronger. In particular, it is necessary to prevent the torque at the location where the component parts are connected to each other by a flange-like surface perpendicular to the rotation axis, because the torque is applied in the direction in which the fastening surface slips. Such a connection location includes, for example, a bolt fastening portion between a hub located near the center of rotor rotation and a rotation main shaft. In Patent Document 1, the spherical shell-shaped hub has a main shaft connecting portion on the nacelle side, the main shaft has a flange on the hub side, and the main shaft connecting portion and the flange are fixedly connected by bolts.

一方、風力発電装置のタワー上部の重量は、タワーが満たすべき強度に大きく影響するため、出来る限り小さく抑えられることが望ましい。特に、水平軸風車の場合には、ロータ重量を軽減することが重要である。これは、水平軸風車のタワー上部においては、ロータ重量をナセルから伸延する軸によって片持支持するという不安定な構造をとらざるを得ないため、ロータ重量が増加するとその支持構造の強度設計が難しくなるためである。さらに、重量を軽減することで、運搬コストや、重量物を高所に設置するという難易度の高い建設作業を行うコストを低減することができる。     On the other hand, the weight of the upper part of the tower of the wind power generator greatly affects the strength that the tower should satisfy, so it is desirable to keep it as small as possible. In particular, in the case of a horizontal axis wind turbine, it is important to reduce the rotor weight. This is because an unstable structure in which the rotor weight is cantilevered by the shaft extending from the nacelle must be supported at the upper part of the tower of the horizontal axis wind turbine. This is because it becomes difficult. Further, by reducing the weight, it is possible to reduce the transportation cost and the cost of performing a highly difficult construction work of installing a heavy object at a high place.

特開2008−128135号公報JP 2008-128135 A

風力発電装置のハブと回転主軸との接続部において、ロータ回転の中心部に配置されるハブを小型化することによってロータ重量を低減し、かつ、トルク負荷に対する信頼性の高い接続構造を提供することが望まれる。   In the connection portion between the hub of the wind turbine generator and the rotation main shaft, the hub disposed at the center of the rotor rotation is downsized to reduce the rotor weight and provide a highly reliable connection structure for torque load. It is desirable.

接続部のすべりを防止する手段としては、例えばボルト本数を増やし、接続面の面圧を増加させる方法が考えられるが、同時にハブを小型化することを考えた場合、ハブと回転主軸との接続部の面積が小さくなり、増やせるボルトの本数が限られる。また、ボルト本数の増加は、それ自体がハブの重量を増加させることにもなる。このように、ハブと回転主軸の接続部の信頼性と、ハブの小型化はトレードオフの関係にあると言える。   As a means for preventing slipping of the connecting portion, for example, a method of increasing the number of bolts and increasing the surface pressure of the connecting surface can be considered, but when considering reducing the size of the hub at the same time, the connection between the hub and the rotating spindle is possible. The area of the part is reduced, and the number of bolts that can be increased is limited. Moreover, the increase in the number of bolts itself increases the weight of the hub. Thus, it can be said that there is a trade-off between the reliability of the connection between the hub and the rotating spindle and the miniaturization of the hub.

本発明が解決しようとする課題は、風車回転によるトルクの負荷に対して、ハブと回転主軸の接続面の信頼性を高めることと、ハブを小型に保つことを両立する、風力発電装置を提供することである。   The problem to be solved by the present invention is to provide a wind turbine generator that can improve both the reliability of the connection surface of the hub and the rotating spindle and keep the hub small with respect to the torque load caused by the windmill rotation. It is to be.

上記の課題を解決するために、本発明にかかる風力発電装置は、風を受けて回転するブレードと、該ブレードを支持するハブと、該ハブの回転に伴って回転する回転主軸とを備え、前記ハブと前記回転主軸とは高摩擦部を介して接続されることを特徴とする。   In order to solve the above-described problems, a wind power generator according to the present invention includes a blade that rotates by receiving wind, a hub that supports the blade, and a rotation main shaft that rotates as the hub rotates. The hub and the rotating main shaft are connected via a high friction part.

本発明によれば、風車回転によるトルクの負荷に対して、ハブと回転主軸の接続面の信頼性を高めることと、ハブを小型に保つことを両立する、風力発電装置を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the wind power generator which improves the reliability of the connection surface of a hub and a rotation main shaft with respect to the torque load by windmill rotation, and keeps a hub small. become.

一般的な水平軸風車の構成を示した図。The figure which showed the structure of the general horizontal axis windmill. ハブとナセル内部の構成を示した図。The figure which showed the structure inside a hub and a nacelle. 外輪駆動のロータ支持構造を示した図。The figure which showed the rotor support structure of an outer ring drive. ハブと回転主軸のボルト締結部を回転主軸の軸方向から見た図。The figure which looked at the bolt fastening part of the hub and the rotation main shaft from the axial direction of the rotation main shaft. 図4に示した締結部のうち、ボルト一本分の断面を示した図。The figure which showed the cross section for one volt | bolt among the fastening parts shown in FIG. 回転主軸をナセル側から挿入して組み立てる場合のロータ支持構造の例を示した図。The figure which showed the example of the rotor support structure in the case of assembling by inserting a rotation main shaft from the nacelle side. 分割した高摩擦部材を示した図。The figure which showed the divided | segmented high friction member.

以下に本発明を実施するための形態について図面を参照して説明する。以下の記載は本発明の一実施例であり、本発明を限定するものではない。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated with reference to drawings. The following description is one example of the present invention and does not limit the present invention.

尚、下述する摩擦部を構成するには、ハブと回転主軸との間に高摩擦部材を挿入する、ハブまたは回転主軸の少なくともいずれかの表面に金属粉を溶射する、高摩擦塗料を塗布する等の方法が挙げられる。     In addition, in order to constitute the friction part described below, a high friction material is sprayed on the surface of at least one of the hub and the rotation main shaft, or a high friction paint is applied between the hub and the rotation main shaft. And the like.

高摩擦部材を挿入する場合には、該高摩擦部材はハブと回転主軸との接続面の形状に合わせて円環形状とするのが良い。更に、円環状の高摩擦部材を周方向に複数に分割することも可能である。   When a high friction member is inserted, the high friction member is preferably formed in an annular shape in accordance with the shape of the connection surface between the hub and the rotation main shaft. Furthermore, it is also possible to divide the annular high friction member into a plurality of parts in the circumferential direction.

場合により、風力発電装置には、ナセルに固定された固定主軸がハブの内周側に配置され、ハブと固定主軸の間には軸受が設けられ、回転主軸は固定主軸の内周側に配置される、外輪駆動と呼ばれる構造を有することも出来る。また、回転主軸はナセルと反対側の先端が径方向に広がった拡径部であり、該拡径部がハブに接続されていることがある。このとき、ハブは内径側に突出したフランジを有し、該フランジにおいて回転主軸と接続されると共に、ナセルとは反対側に回転主軸を挿入するための開口部を備えている場合もあり、回転主軸の挿入を可能とするために、回転主軸の拡径部の径方向最大幅は該開口部よりも小さくされていることを要する。以下、詳細な実施例について図面を用いて説明する。   In some cases, in the wind turbine generator, the fixed main shaft fixed to the nacelle is disposed on the inner peripheral side of the hub, a bearing is provided between the hub and the fixed main shaft, and the rotating main shaft is disposed on the inner peripheral side of the fixed main shaft. It is also possible to have a structure called outer ring drive. Further, the rotation main shaft is a diameter-expanded portion whose tip opposite to the nacelle expands in the radial direction, and the diameter-expanded portion may be connected to the hub. At this time, the hub has a flange protruding on the inner diameter side, and is connected to the rotation main shaft at the flange, and may have an opening for inserting the rotation main shaft on the side opposite to the nacelle. In order to allow the main shaft to be inserted, the maximum radial width of the enlarged diameter portion of the rotating main shaft needs to be smaller than the opening. Hereinafter, detailed embodiments will be described with reference to the drawings.

図1に一般的な水平軸風力発電装置の概観を示す。水平軸風力発電装置は根元部がハブ1に支持されているブレード2を有する。ブレードとハブ等から構成される回転体はロータ3と呼ばれ、ロータはブレードが風を受けることによってハブを中心に回転する。ロータはナセル4によって支持され、ナセルは地面に対して略鉛直方向に立つタワー5の上部に配置される。   Figure 1 shows an overview of a typical horizontal axis wind power generator. The horizontal axis wind power generator has a blade 2 whose root is supported by a hub 1. A rotating body composed of a blade and a hub is called a rotor 3, and the rotor rotates around the hub when the blade receives wind. The rotor is supported by the nacelle 4, and the nacelle is arranged at the upper part of the tower 5 standing in a substantially vertical direction with respect to the ground.

図2にハブ及びナセル内部の構成を示す。ハブは回転主軸6に連結され、回転主軸はロータの回転をナセル内部の増速機入力軸7に伝達する。増速機8は回転主軸の低速回転を高速回転に変換する。高速で回転する増速機出力軸9は発電機軸10に連結され、発電機11は以上の動力伝達機構によってロータから伝達された回転エネルギーを電気エネルギーに変換する。   FIG. 2 shows the internal configuration of the hub and nacelle. The hub is connected to the rotation main shaft 6, and the rotation main shaft transmits the rotation of the rotor to the gearbox input shaft 7 inside the nacelle. The speed increaser 8 converts the low speed rotation of the rotating main shaft into a high speed rotation. The speed increaser output shaft 9 that rotates at high speed is connected to the generator shaft 10, and the generator 11 converts the rotational energy transmitted from the rotor by the above power transmission mechanism into electrical energy.

図3に外輪駆動方式によってナセルがロータを支持する構造を示す。外輪駆動方式においては、ハブの内周側に配置される中空の固定主軸12がナセル側面に固定され、ハブが固定主軸の外周側に位置し、固定主軸とハブとの間には軸受13が配置され、固定主軸の内周側に位置する回転主軸はハブと連結されている。ここにおいて、固定主軸はナセルに対して相対的に静止しており、一方、回転主軸はハブと連結されているため、ロータの回転に伴い回転する。   FIG. 3 shows a structure in which the nacelle supports the rotor by the outer ring drive system. In the outer ring drive system, a hollow fixed main shaft 12 disposed on the inner peripheral side of the hub is fixed to the side surface of the nacelle, the hub is positioned on the outer peripheral side of the fixed main shaft, and a bearing 13 is provided between the fixed main shaft and the hub. The rotating main shaft that is disposed and located on the inner peripheral side of the fixed main shaft is connected to the hub. Here, the fixed main shaft is relatively stationary with respect to the nacelle, while the rotating main shaft is connected to the hub and thus rotates with the rotation of the rotor.

外輪駆動方式は、ロータ重量をナセルに支持するはたらきを主に固定主軸が分担し、ロータの回転を増速機に伝達するはたらきを回転主軸が分担する。対照的に、一本の軸に重量支持と回転伝達の両方の役割を負わせる場合、当該軸は端部に極めて大きな重量が負荷されると同時に風による変動荷重を受けるという厳しい荷重条件の下で、軸芯を保ちながら回転しなければならない。その結果、当該軸の強度を高めるために軸径を大きくする、剛性の高い材料を用いる、等の対策が必要となり、軸の重量が増加する。一方、外輪駆動方式の回転主軸はロータ重量による負荷が小さいため低剛性で軽量としてよく、ロータ支持構造全体としても軽量化することが出来る。   In the outer ring drive system, the fixed main shaft mainly shares the function of supporting the rotor weight on the nacelle, and the rotating main shaft shares the function of transmitting the rotation of the rotor to the gearbox. In contrast, when a single shaft has both weight support and rotational transmission, the shaft is subjected to severe load conditions in which extreme weight is loaded at the end and the load is fluctuated by wind. And you have to rotate while keeping the axis. As a result, measures such as increasing the shaft diameter and using a highly rigid material are required to increase the strength of the shaft, and the weight of the shaft increases. On the other hand, the outer ring drive type rotation main shaft is light in weight due to the weight of the rotor, so it can be light and low in rigidity, and the rotor support structure as a whole can be lightened.

図3において、回転主軸はベルマウス14と呼ばれる径方向に広がった端部(拡径部)を有する。ここで、径方向とは回転主軸の軸方向に実質的に垂直な方向を指す。ベルマウスは可撓性が高く、主軸の軸方向と径方向のミスアライメントを吸収する効果がある。一方、ハブは内径側に突出したフランジ15を有し、該フランジはベルマウスよりもナセル側に位置すると共に、ベルマウスにボルト締結されている。   In FIG. 3, the rotation main shaft has an end portion (expanded diameter portion) which is called a bell mouth 14 and expands in the radial direction. Here, the radial direction refers to a direction substantially perpendicular to the axial direction of the rotation main shaft. Bellmouth is highly flexible and has the effect of absorbing misalignment in the axial direction and radial direction of the main shaft. On the other hand, the hub has a flange 15 projecting toward the inner diameter side. The flange is positioned on the nacelle side of the bell mouth and is bolted to the bell mouth.

本実施例における風力発電装置を組み立てる際、回転主軸は、ハブのうちでナセルと反対側に設けられた開口部16から、ハブ内に挿入される。図3中に示した矢印17は回転主軸の挿入方向を示している。ここで、ベルマウスの径方向最大幅をa、ナセル開口部の径方向最小幅をAと定義すると、回転主軸の挿入が可能であるためにはa<Aでなければならない。ハブ開口部の径方向最小幅Aは、ハブ全体の大きさに対する影響が大きく、軽量化を考えた場合、なるべく小さいことが望ましい。Aが小さくなると、ベルマウスの径方向最大幅aはそれよりもさらに小さくしなければならないが、回転主軸はベルマウス外周部でハブのフランジにボルト締結されるため、締結面積が縮小する。   When assembling the wind turbine generator in the present embodiment, the rotation main shaft is inserted into the hub through the opening 16 provided on the opposite side of the hub from the nacelle. An arrow 17 shown in FIG. 3 indicates the insertion direction of the rotating spindle. Here, if the maximum radial width of the bell mouth is defined as a and the minimum radial width of the nacelle opening is defined as A, a <A must be satisfied in order to allow insertion of the rotation spindle. The radial minimum width A of the hub opening has a great influence on the overall size of the hub, and is desirably as small as possible in view of weight reduction. When A becomes smaller, the maximum width a in the radial direction of the bell mouth must be made smaller than that, but the rotation main shaft is bolted to the flange of the hub at the outer periphery of the bell mouth, so the fastening area is reduced.

図4に回転主軸の軸方向から見たベルマウスとフランジとのボルト締結部を示す。ベルマウスまたはフランジはその外周部でボルト18によって締結されている。矢印19はロータの回転によって該ボルト締結部に負荷されるトルクの方向を表しており、このトルクはベルマウスとフランジとの締結面にすべりを生じる方向に負荷される。   FIG. 4 shows a bolt fastening portion between the bell mouth and the flange as viewed from the axial direction of the rotating main shaft. The bell mouth or flange is fastened by a bolt 18 at its outer periphery. An arrow 19 represents the direction of torque applied to the bolt fastening portion by the rotation of the rotor, and this torque is applied in a direction that causes slipping on the fastening surface between the bell mouth and the flange.

図5は図4のうちボルト一本分の締結部の断面図である。トルクによってすべりを生じる方向に負荷される外力をF、全ボルトが締結面に与える力をN、締結面20の最大静止摩擦係数をμと定義すると、F>μNとなった場合に締結面にすべりが生じる。先述のように、ハブの小型化のためにベルマウスの径方向最大幅aを小さくすると、締結面積が減少し、使用できるボルト本数が減少する。ボルト本数の減少はすなわちNが小さくなることを意味し、したがって、すべりが生じないための許容外力Fが小さくなる。ここにおいて、ハブ開口部の径方向最小幅Aを小さく、かつ、許容外力Fを大きくする方法として、締結面の最大静止摩擦係数μを大きくすると良い。   FIG. 5 is a cross-sectional view of a fastening portion for one bolt in FIG. If F is the external force applied in the direction in which slip occurs due to torque, N is the force applied to all the bolts by the fastening surface, and μ is the maximum coefficient of static friction of the fastening surface 20, it will be applied to the fastening surface when F> μN. Slip occurs. As described above, if the maximum width a in the radial direction of the bell mouth is reduced in order to reduce the size of the hub, the fastening area is reduced and the number of bolts that can be used is reduced. The decrease in the number of bolts means that N becomes smaller, and therefore the allowable external force F for preventing slipping becomes smaller. Here, as a method for reducing the minimum radial width A of the hub opening and increasing the allowable external force F, it is preferable to increase the maximum static friction coefficient μ of the fastening surface.

本発明における風力発電装置は、回転主軸のベルマウスとハブのフランジとが高摩擦部を介して接続される。高摩擦であるとは、回転主軸とハブが直接接続される場合よりも大きな摩擦係数を付与できることを意味しており、一般的な鉄鋼材料同士の最大静止摩擦係数が0.1〜0.2であることを考慮すると、少なくとも最大静止摩擦係数0.2より大きければその効果が期待できる。高摩擦を与える手段としては、摩擦係数の高い部材を接続面に挿入する、或いは高摩擦係数の材料を回転主軸やハブの少なくともいずれかの表面に溶射すると良い。   In the wind turbine generator according to the present invention, the bell mouth of the rotating spindle and the flange of the hub are connected via a high friction part. High friction means that a larger friction coefficient can be given than when the rotating spindle and the hub are directly connected, and that the maximum static friction coefficient between general steel materials is 0.1 to 0.2. In consideration, the effect can be expected if it is at least larger than the maximum static friction coefficient 0.2. As a means for imparting high friction, a member having a high coefficient of friction may be inserted into the connection surface, or a material having a high coefficient of friction may be sprayed on at least one of the surfaces of the rotating main shaft and the hub.

実施例においては、高摩擦係数を付与する手段として、円環状の高摩擦部材をハブのフランジと回転主軸のベルマウスとの間に挟む。高摩擦部材としては、例えば金属の母材表面にタングステン粒子を溶射したものを用いると良い。高摩擦部材の挿入は、前記組立手順において、固定主軸が取り付けられたハブをナセル側が下になるように上下反転させた直後、回転主軸をハブ内に挿入する直前に行い、挿入された高摩擦部材は、ハブ内部に突出したフランジ上に置かれ、その後挿入される回転主軸のベルマウスが高摩擦部材の上に配置され、最後にボルト締結される。   In the embodiment, as a means for imparting a high friction coefficient, an annular high friction member is sandwiched between the flange of the hub and the bell mouth of the rotating main shaft. As the high friction member, for example, a metal base material surface sprayed with tungsten particles may be used. In the above assembly procedure, the high friction member is inserted immediately after the hub to which the fixed main shaft is attached is turned upside down so that the nacelle side is down, and immediately before the rotation main shaft is inserted into the hub. The member is placed on a flange protruding inside the hub, and a bell mouth of a rotating spindle to be inserted thereafter is placed on the high friction member and finally bolted.

図6を用いて、本発明を実施するための第2の形態について説明する。なお、実施例1と重複する構造については説明を省略する。   A second mode for carrying out the present invention will be described with reference to FIG. Note that the description of the same structure as that of the first embodiment is omitted.

実施例1において回転主軸は、ハブのうちでナセルと反対側に設けられた開口部から挿入されたが、本実施例においてはハブのうちでナセル側から固定主軸の内側に挿入される。矢印22は回転主軸の挿入方向を示している。挿入された回転主軸のベルマウスはハブの内周側に突出したフランジないしは壁面よりもナセル側に位置し、外周部をフランジないしは壁面にボルト締結されている。ここにおいて、固定主軸の径方向最小幅をBと定義すると、回転主軸の挿入が可能であるためにはa<Bでなければならない。このように構成することによって、回転主軸をナセルに取り付けた後に、ハブや固定主軸など、その他のロータ部分をナセルに設置することが出来る。大型風力発電装置では、ロータの重量が非常に大きく、タワー上部に吊り上げての設置作業が容易ではない。実施例は、回転主軸のみを先にナセルに取り付けてしまい、後に吊り上げるロータは回転主軸を含まず軽量にすることが出来るため、建設の工期を短くし、コストを抑える効果がある。   In the first embodiment, the rotation main shaft is inserted from the opening provided on the opposite side of the hub from the nacelle. In this embodiment, the rotation main shaft is inserted from the nacelle side to the inside of the fixed main shaft in the hub. An arrow 22 indicates the insertion direction of the rotation main shaft. The inserted bell mouth of the rotating spindle is positioned closer to the nacelle side than the flange or wall surface protruding to the inner peripheral side of the hub, and the outer peripheral portion is bolted to the flange or wall surface. Here, if the radial minimum width of the fixed main shaft is defined as B, a <B must be satisfied in order to allow the rotation main shaft to be inserted. By comprising in this way, after attaching a rotation main axis | shaft to a nacelle, other rotor parts, such as a hub and a fixed main axis | shaft, can be installed in a nacelle. In a large-scale wind power generator, the weight of the rotor is very large, and it is not easy to install it by lifting it on the top of the tower. In the embodiment, only the rotating main shaft is attached to the nacelle first, and the rotor to be lifted later can be reduced in weight without including the rotating main shaft, so that the construction period is shortened and the cost is reduced.

実施例3は、実施例1または2において、ハブのフランジと回転主軸のベルマウスとの間に挟んだ円環状の高摩擦部材を、周方向に複数に分割した構造である。図7に分割した高摩擦部材23を示す。高摩擦を与える手段として高摩擦部材を挿入する場合には、高摩擦部材を周方向に分割することによって、ハブまたは回転主軸に片当りすることを防止することが出来る。また、高摩擦部材を制作する際に、高い平面精度で加工することが出来る。分割された高摩擦部材は、風力発電装置のメンテナンスの際に、取り外しが容易であるという利点も有する。   The third embodiment has a structure in which the annular high-friction member sandwiched between the flange of the hub and the bell mouth of the rotating main shaft in the first or second embodiment is divided into a plurality in the circumferential direction. FIG. 7 shows the divided high friction member 23. When a high friction member is inserted as a means for imparting high friction, the high friction member can be prevented from hitting the hub or the rotating main shaft by dividing the high friction member in the circumferential direction. Moreover, when producing a high friction member, it can process with high plane accuracy. The divided high friction member also has an advantage that it can be easily removed during maintenance of the wind turbine generator.

分割することによって、高摩擦部材とフランジ、または高摩擦部材とベルマウスとの片当りを軽減する効果がある。特に大型の風力発電装置の場合、フランジ面の平面精度を得ることが難しく片当たりが生じやすいが、分割によって、高摩擦部材がフランジ面に追従しやすくなる。また、高摩擦部材の製作が容易になり、平面加工精度を向上させることが出来る。さらに、このように分割すると、メンテナンスや部品交換等の必要が生じた際の締結部の分解が容易になる。分割をしない場合、ボルトを取り外した後に回転主軸をハブから引き抜かなければ高摩擦部材を取り外すことができないが、分割した場合には、回転主軸をハブ外に移動することなく高摩擦部材のみを取り外すことができる。   By dividing, there is an effect of reducing the contact between the high friction member and the flange or between the high friction member and the bell mouth. In particular, in the case of a large-scale wind power generator, it is difficult to obtain a flat surface accuracy of the flange surface, and a single contact is likely to occur, but the high friction member easily follows the flange surface by the division. Further, the production of the high friction member becomes easy, and the planar processing accuracy can be improved. Furthermore, when divided in this way, the fastening portion can be easily disassembled when maintenance or parts replacement is required. Without splitting, the high-friction member cannot be removed unless the rotating spindle is pulled out of the hub after removing the bolts. However, when splitting, only the high-friction member is removed without moving the rotating spindle out of the hub. be able to.

上記各実施例で説明したようにハブと回転主軸の接続部を高摩擦部とすることで、回転主軸の径方向最大幅がハブ開口部よりも小さくなければならないという制限によって接続面の面積が小さくならざるを得ない場合でも、すべりが発生し難い接続を可能にし、ハブの小型化と接続の強度を両立させることが出来る。また、ボルトやナットといった接続部材の破損を防止することが出来る。さらに、ボルトやナットといった接続面に略垂直方向の力を与える部材の使用個数を低減することが出来るため、ロータを軽量化する効果が期待できる。     As described in the above embodiments, the connection area between the hub and the rotating spindle is a high friction part, so that the area of the connecting surface is limited by the limitation that the radial maximum width of the rotating spindle must be smaller than the hub opening. Even if it is unavoidable to make the connection smaller, it is possible to achieve a connection in which slippage is unlikely to occur, and it is possible to achieve both the miniaturization of the hub and the strength of the connection. Moreover, damage to connecting members such as bolts and nuts can be prevented. In addition, since the number of members such as bolts and nuts that apply a substantially vertical force to the connection surface can be reduced, an effect of reducing the weight of the rotor can be expected.

1 ハブ
2 ブレード
3 ロータ
4 ナセル
5 タワー
6 回転主軸
7 増速機入力軸
8 増速機
9 増速機出力軸
10 発電機入力軸
11 発電機
12 固定主軸
13 軸受
14 ベルマウス
15 フランジ
16 開口部
17 実施例1の回転主軸挿入方向
18 ボルト
19 トルクの方向
20 ハブと回転主軸の締結面
21 ナット
22 実施例2の回転主軸挿入方向
DESCRIPTION OF SYMBOLS 1 Hub 2 Blade 3 Rotor 4 Nacelle 5 Tower 6 Rotation main shaft 7 Speed increaser input shaft 8 Speed increaser 9 Speed increaser output shaft 10 Generator input shaft 11 Generator 12 Fixed main shaft 13 Bearing 14 Bell mouth 15 Flange 16 Opening 17 Rotating Spindle Insertion Direction 18 Bolt 19 Torque Direction 20 Fastening Surface 21 of Hub and Rotating Spindle Nut 22 Rotating Spindle Insertion Direction of Embodiment 2

Claims (8)

風を受けて回転するブレードと、
該ブレードを支持するハブと、
該ハブの回転に伴って回転する回転主軸とを備え、
前記ハブと前記回転主軸とは高摩擦部を介して接続されることを特徴とする風力発電装置。
A blade that rotates in response to the wind;
A hub that supports the blade;
A rotation spindle that rotates as the hub rotates,
The hub and the rotating main shaft are connected via a high friction part.
請求項1に記載の風力発電装置であって、前記ハブまたは前記回転主軸の少なくともいずれかの表面には高摩擦部が形成されることを特徴とする風力発電装置。   2. The wind power generator according to claim 1, wherein a high friction portion is formed on a surface of at least one of the hub and the rotation main shaft. 3. 請求項1に記載の風力発電装置であって、前記ハブまたは前記回転主軸の間には高摩擦部材が配置されることを特徴とする風力発電装置。   The wind power generator according to claim 1, wherein a high friction member is disposed between the hub or the rotating main shaft. 請求項3に記載の風力発電装置であって、前記高摩擦部材は周方向に複数に分割されたものであることを特徴とする風力発電装置。   The wind power generator according to claim 3, wherein the high friction member is divided into a plurality in the circumferential direction. 請求項1ないし4のいずれか1項に記載の風力発電装置であって、更に前記ハブの内周側に配置される固定主軸と、該固定主軸と前記ハブの間に設けられる軸受とを備えることを特徴とする風力発電装置。   The wind turbine generator according to any one of claims 1 to 4, further comprising a fixed main shaft disposed on an inner peripheral side of the hub, and a bearing provided between the fixed main shaft and the hub. Wind power generator characterized by that. 請求項5に記載の風力発電装置であって、前記回転主軸の先端は径方向に広がった拡径部であり、該拡径部は前記ハブに接続されることを特徴とする風力発電装置。   6. The wind turbine generator according to claim 5, wherein a tip end of the rotation main shaft is a radially enlarged portion that expands in a radial direction, and the radially enlarged portion is connected to the hub. 請求項6に記載の風力発電装置であって、
更に前記回転主軸の回転エネルギーが伝達される機器を内部に有するナセルと、
前記ハブのうちで内径側に突出し、かつ前記拡径部に対して前記ナセル側に設けられると共に前記拡径部に接続されるフランジと、
前記ハブのうちで前記ナセルとは反対側に形成される開口部とを備え、
前記拡径部の径方向最大幅よりも前記開口部は大きいことを特徴とする風力発電装置。
The wind turbine generator according to claim 6,
Furthermore, a nacelle having a device to which the rotational energy of the rotating spindle is transmitted,
A flange that protrudes on the inner diameter side of the hub and is provided on the nacelle side with respect to the enlarged diameter portion and connected to the enlarged diameter portion,
An opening formed on the opposite side of the hub from the nacelle,
The wind power generator characterized by the said opening part being larger than the radial direction maximum width of the said enlarged diameter part.
請求項6に記載の風力発電装置であって、
更に前記回転主軸の回転エネルギーが伝達される機器を内部に有するナセルと、
前記ハブのうちで内径側に突出し、かつ前記拡径部に対して前記ナセルとは反対側に設けられると共に前記拡径部に接続されるフランジと、
前記ハブのうちで前記ナセル側に形成される開口部とを備え、
前記拡径部の径方向最大幅よりも前記開口部は大きいことを特徴とする風力発電装置。
The wind turbine generator according to claim 6,
Furthermore, a nacelle having a device to which the rotational energy of the rotating spindle is transmitted,
A flange that protrudes on the inner diameter side of the hub and is provided on the opposite side to the nacelle with respect to the enlarged diameter portion and connected to the enlarged diameter portion,
An opening formed on the nacelle side of the hub,
The wind power generator characterized by the said opening part being larger than the radial direction maximum width of the said enlarged diameter part.
JP2014114501A 2014-06-03 2014-06-03 Wind power generator Pending JP2015227651A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014114501A JP2015227651A (en) 2014-06-03 2014-06-03 Wind power generator
TW104114588A TW201604398A (en) 2014-06-03 2015-05-07 Wind power generator
DE102015210278.5A DE102015210278A1 (en) 2014-06-03 2015-06-03 Wind power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114501A JP2015227651A (en) 2014-06-03 2014-06-03 Wind power generator

Publications (1)

Publication Number Publication Date
JP2015227651A true JP2015227651A (en) 2015-12-17

Family

ID=54481752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114501A Pending JP2015227651A (en) 2014-06-03 2014-06-03 Wind power generator

Country Status (3)

Country Link
JP (1) JP2015227651A (en)
DE (1) DE102015210278A1 (en)
TW (1) TW201604398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054679A1 (en) * 2015-09-29 2017-04-06 北京金风科创风电设备有限公司 Bearing support apparatus for wind power generator assembly and installation method thereof, and wind power generator assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299616B1 (en) 2016-09-23 2019-07-10 Siemens Gamesa Renewable Energy A/S Mounting segments and a wind turbine with mounting segments

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972383B2 (en) 2006-11-22 2012-07-11 富士重工業株式会社 Horizontal axis windmill hub

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054679A1 (en) * 2015-09-29 2017-04-06 北京金风科创风电设备有限公司 Bearing support apparatus for wind power generator assembly and installation method thereof, and wind power generator assembly
US10823155B2 (en) 2015-09-29 2020-11-03 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Bearing supporting apparatus for wind turbine generator system, installing method, and wind turbine generator system

Also Published As

Publication number Publication date
DE102015210278A1 (en) 2015-12-03
TW201604398A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US8164211B2 (en) Wind turbine generator
JP5224553B2 (en) Turbine rotor and power plant
EP2500564B1 (en) Gear box, seal and cover arrangements
EP2416006B1 (en) Yaw assembly for use in wind turbines
US8092171B2 (en) Systems and methods for assembling a pitch assembly for use in a wind turbine
US7946819B2 (en) Wind turbine drive shaft connection arrangement
US9261071B2 (en) Mounting arrangement for pitch gear
US20140003946A1 (en) Cone angle insert for wind turbine rotor
US8469664B2 (en) Yaw bearing assembly and tower for wind turbine
CN108757351B (en) Direct-drive wind generating set
JP2012154267A (en) Phase changing method for blade bearing and phase changing tool
EP2772646A2 (en) Wind turbine generator
WO2020047112A1 (en) Counterweight assembly for use during single blade installation of a wind turbine
EP3085957A1 (en) Slewing bearing device for a wind turbine
EP2476899A1 (en) Wind turbine blade bearing
US20150056078A1 (en) Pitch bearing assembly with stiffener
JP2015227651A (en) Wind power generator
US11111902B2 (en) Nacelle and rotor for a wind turbine, and method
US10598159B2 (en) Wind turbine bearings
US9938959B2 (en) Hub and bearing system and a turbine comprising the hub and bearing system
JP6887933B2 (en) Wind power generator
US11519392B2 (en) Roller pitch bearings
CN112751456B (en) Generator and wind generating set
EP2981713B1 (en) A hub and bearing system and a turbine comprising the hub and bearing system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112