JP2015225870A - Electron spin controller and control method - Google Patents

Electron spin controller and control method Download PDF

Info

Publication number
JP2015225870A
JP2015225870A JP2014107791A JP2014107791A JP2015225870A JP 2015225870 A JP2015225870 A JP 2015225870A JP 2014107791 A JP2014107791 A JP 2014107791A JP 2014107791 A JP2014107791 A JP 2014107791A JP 2015225870 A JP2015225870 A JP 2015225870A
Authority
JP
Japan
Prior art keywords
quantum well
electron spin
well layer
magnetic field
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014107791A
Other languages
Japanese (ja)
Other versions
JP6222737B2 (en
Inventor
治樹 眞田
Haruki Sanada
治樹 眞田
要司 国橋
Yoji Kunihashi
要司 国橋
後藤 秀樹
Hideki Goto
秀樹 後藤
哲臣 寒川
Tetsuomi Sagawa
哲臣 寒川
誠 好田
Makoto Yoshida
誠 好田
あすか 青木
Asuka Aoki
あすか 青木
淳作 新田
Junsaku Nitta
淳作 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2014107791A priority Critical patent/JP6222737B2/en
Publication of JP2015225870A publication Critical patent/JP2015225870A/en
Application granted granted Critical
Publication of JP6222737B2 publication Critical patent/JP6222737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To allow for local control of spin precession.SOLUTION: An electron spin controller includes a quantum well structure 104 laminating a first barrier wall 101, a quantum well layer 102, and a second barrier layer 103, an exciting light irradiation unit 105, and a magnetic field application unit 107. The exciting light irradiation unit 105 irradiates the control region 106 of the quantum well layer 102 selectively with circular polarization exciting light. The exciting light irradiation unit 105 can also control the intensity of the irradiating circular polarization light. Furthermore, the magnetic field application unit 107 applies a magnetic field in the plane direction of the quantum well layer 102, to the control region 106 thereof.

Description

本発明は、電子のスピン歳差運動を制御する電子スピン制御装置および制御方法に関する。   The present invention relates to an electron spin control device and a control method for controlling spin precession of electrons.

半導体においてスピンの向きやスピンの歳差運動周波数を制御することは、スピン自由度を利用した量子情報やスピンの向きで情報を記憶するスピントロニクスデバイスにおいて必要な基盤要素となる。半導体において電子スピンを生成する技術としては、円偏光励起による電子スピン生成が一般的である。この生成技術により半導体内部に電子スピンを生成することができる。この電子スピンの向きは、外部磁場を印加することで制御することが可能であり、外部磁場の強さに依存してスピン歳差運動周波数ωが変化する(非特許文献1参照)。このωは、以下の式(1)により表される。   Controlling spin direction and spin precession frequency in semiconductors is a necessary fundamental element in spintronic devices that store quantum information using spin degrees of freedom and information based on spin direction. As a technique for generating electron spin in a semiconductor, electron spin generation by circularly polarized light excitation is common. This generation technique can generate electron spin inside the semiconductor. The direction of the electron spin can be controlled by applying an external magnetic field, and the spin precession frequency ω changes depending on the strength of the external magnetic field (see Non-Patent Document 1). This ω is expressed by the following equation (1).

式(1)からからわかるように、ωは、材料固有値であるg因子と外部磁場Bexのみで決定される。従って、これまで、スピン歳差運動周波数を制御するためには、外部磁場を変調するか、g因子を変調するようにしていた。 As can be seen from the equation (1), ω is determined only by the g factor that is a material eigenvalue and the external magnetic field B ex . Therefore, in the past, in order to control the spin precession frequency, the external magnetic field was modulated or the g factor was modulated.

しかし、g因子は材料固有値となるため大きな変調が困難であり、また外部磁場を変化させてスピン歳差運動周波数を制御する場合には、素子全体に影響が出るため、外部磁場を変化させることなく局所的にスピン歳差運動周波数を変調する方法が要求されていた。   However, since the g factor is a material eigenvalue, large modulation is difficult, and when the spin precession frequency is controlled by changing the external magnetic field, the entire element is affected. There is a need for a method of locally modulating the spin precession frequency.

さらに、電子スピンを用いて演算を行うためには、外部磁場下で電子スピンのコヒーレント制御を行い、この状態を制御した後においても保持する必要がある。しかしながら、外部磁場による制御下では、電子スピンは時間発展をするため、制御した情報を長時間保持することは困難となる。   Further, in order to perform an operation using electron spin, it is necessary to perform coherent control of electron spin under an external magnetic field and hold this state even after controlling this state. However, under the control of an external magnetic field, the electron spin develops over time, so it becomes difficult to hold the controlled information for a long time.

K. Morita et al. , "Strong anisotropic spin dynamics in narrow n - InGaAs AlGaAs (110) quantum wells", Applied Physics Letters, vol.87, 171905, 2005.K. Morita et al., "Strong anisotropic spin dynamics in narrow n-InGaAs AlGaAs (110) quantum wells", Applied Physics Letters, vol.87, 171905, 2005. A. P. Heberle et al. , "Quantum Beats of Electron Larmor Precession in GaAs Wells", Physical Review Letters, vol.72, no.24, pp.3887-3890,1994.A. P. Heberle et al., "Quantum Beats of Electron Larmor Precession in GaAs Wells", Physical Review Letters, vol.72, no.24, pp.3887-3890,1994.

以上に説明したように、従来では、スピン歳差運動周波数を制御するためには、式(1)の外部磁場Bexを制御することで周波数を変化させてきた。また、外部磁場生成にはコイルによる誘導磁界が用いられているため、磁場を印加するとデバイス全体に磁場変調を与える状態となっていた。このため、従来では、局所的にスピン歳差周波数を変調することは困難であるという問題があった。 As described above, conventionally, in order to control the spin precession frequency, the frequency has been changed by controlling the external magnetic field Bex of the equation (1). In addition, since an induction magnetic field generated by a coil is used to generate an external magnetic field, the magnetic field modulation is applied to the entire device when a magnetic field is applied. For this reason, conventionally, there has been a problem that it is difficult to locally modulate the spin precession frequency.

本発明は、以上のような問題点を解消するためになされたものであり、スピン歳差運動を局所的に制御できるようにすることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to enable local control of spin precession.

本発明に係る電子スピン制御装置は、半導体からなる量子井戸層を備える量子井戸構造と、円偏光した励起光を量子井戸層の制御領域に選択的に照射する励起光照射手段と、量子井戸層の平面方向への磁場を量子井戸層の制御領域に印加する磁場印加手段とを備える。   An electron spin control device according to the present invention includes a quantum well structure including a quantum well layer made of a semiconductor, excitation light irradiation means for selectively irradiating a control region of the quantum well layer with circularly polarized excitation light, and a quantum well layer Magnetic field applying means for applying a magnetic field in the planar direction to the control region of the quantum well layer.

上記電子スピン制御装置において、量子井戸構造は、主表面を(110)面としたIII−V族化合物半導体からなる第1障壁層と、第1障壁層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる量子井戸層と、量子井戸層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる第2障壁層とを備える。   In the electron spin control device, the quantum well structure is formed on the first barrier layer made of a III-V group compound semiconductor having a main surface of (110) plane, and the main surface of the quantum well structure is (110). A quantum well layer made of a group III-V compound semiconductor having a surface) and a second barrier layer made of a group III-V compound semiconductor formed on the quantum well layer and having a main surface as a (110) surface. .

また、本発明に係る電子スピン制御方法は、半導体からなる量子井戸層を備える量子井戸構造の制御領域に、選択的に円偏光した励起光を照射して、制御領域に選択的に電子スピンを生成する励起光照射ステップと、量子井戸層の平面方向への磁場を量子井戸層の制御領域に印加して、制御領域に生成した電子スピンを歳差運動させる磁場印加ステップと、励起光の強度を制御することで電子スピンの歳差運動を制御する制御ステップとを備える。   In addition, the electron spin control method according to the present invention irradiates a control region of a quantum well structure including a quantum well layer made of a semiconductor with selectively circularly polarized excitation light, and selectively emits electron spin to the control region. The excitation light irradiation step to be generated, the magnetic field application step for precessing the electron spin generated in the control region by applying a magnetic field in the plane direction of the quantum well layer to the control region of the quantum well layer, and the intensity of the excitation light And a control step of controlling the precession of the electron spin by controlling.

上記電子スピン制御方法において、量子井戸構造は、主表面を(110)面としたIII−V族化合物半導体からなる第1障壁層と、第1障壁層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる量子井戸層と、量子井戸層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる第2障壁層とから構成すればよい。   In the electron spin control method, the quantum well structure has a first barrier layer made of a III-V group compound semiconductor having a main surface of (110) plane and a main surface formed on the first barrier layer (110). ) -Faced quantum well layer made of a III-V group compound semiconductor and a second barrier layer made of a group III-V compound semiconductor formed on the quantum well layer and having a main surface as a (110) face. do it.

以上説明したことにより、本発明によれば、スピン歳差運動を局所的に制御できるようになるという優れた効果が得られる。   As described above, according to the present invention, it is possible to obtain an excellent effect that the spin precession can be locally controlled.

図1は、本発明の実施の形態における電子スピン制御装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of an electron spin control device according to an embodiment of the present invention. 図2は、本発明の実施の形態における電子スピン制御方法を説明するフローチャートである。FIG. 2 is a flowchart for explaining the electron spin control method according to the embodiment of the present invention. 図3は、量子井戸構造を示す断面図である。FIG. 3 is a cross-sectional view showing a quantum well structure. 図4は、実施の形態における量子井戸構造において、外部磁場B=0.7Tを印加した状態で、励起光強度を変調した時の、電子スピン歳差運動の時間発展の状態を示す特性図である。FIG. 4 is a characteristic diagram showing the state of time evolution of electron spin precession when the excitation light intensity is modulated with the external magnetic field B = 0.7 T applied in the quantum well structure in the embodiment. is there.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における電子スピン制御装置の構成を示す構成図である。この電子スピン制御装置は、第1障壁層101,量子井戸層102,第2障壁層103が積層された量子井戸構造104と、励起光照射部105と、磁場印加部107とを備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a configuration of an electron spin control device according to an embodiment of the present invention. The electron spin control device includes a quantum well structure 104 in which a first barrier layer 101, a quantum well layer 102, and a second barrier layer 103 are stacked, an excitation light irradiation unit 105, and a magnetic field application unit 107.

励起光照射部105は、円偏光した励起光を量子井戸層102の制御領域106に選択的に照射する。また、励起光照射部105は、照射する円偏光の光強度を制御可能とされている。また、磁場印加部107は、量子井戸層102の平面方向への磁場を、量子井戸層102の制御領域106に印加する。   The excitation light irradiation unit 105 selectively irradiates the control region 106 of the quantum well layer 102 with circularly polarized excitation light. The excitation light irradiation unit 105 can control the light intensity of the circularly polarized light to be irradiated. The magnetic field application unit 107 applies a magnetic field in the plane direction of the quantum well layer 102 to the control region 106 of the quantum well layer 102.

次に、本発明の実施の形態における電子スピン制御方法について、図2のフローチャートを用いて説明する。まず、ステップS201で、量子井戸層102の制御領域106に、励起光照射部105により選択的に円偏光した励起光を照射し、制御領域106に選択的に電子スピンを生成する(励起光照射)。次に、ステップS202で、磁場印加部107により、量子井戸層102の平面方向への磁場を量子井戸層102の制御領域106に印する(磁場印加)。これにより、制御領域106に生成した電子スピンを歳差運動させる。この後、ステップS203で、励起光照射部105による励起光の強度を制御することで、電子スピンの歳差運動を制御する。   Next, an electron spin control method according to the embodiment of the present invention will be described with reference to the flowchart of FIG. First, in step S201, the control region 106 of the quantum well layer 102 is irradiated with excitation light selectively circularly polarized by the excitation light irradiation unit 105, and electron spin is selectively generated in the control region 106 (excitation light irradiation). ). Next, in step S202, the magnetic field application unit 107 marks a magnetic field in the plane direction of the quantum well layer 102 on the control region 106 of the quantum well layer 102 (magnetic field application). Thereby, the electron spin generated in the control region 106 is precessed. Thereafter, in step S203, the intensity of excitation light by the excitation light irradiation unit 105 is controlled to control the precession of electron spin.

以下、より詳細に説明する。以下では、図3に示す量子井戸構造を例に説明する。図3に示す量子井戸構造は、主表面を(110)としたGaAs基板301と、GaAs基板301の上にエピタキシャル成長したGaAsバッファ層302と、GaAsバッファ層302の上にエピタキシャル成長したAl0.3Ga0.7Asからなる第1障壁層303と、第1障壁層303の上にエピタキシャル成長したGaAsからなる量子井戸層304と、量子井戸層304の上にエピタキシャル成長したAl0.3Ga0.7Asからなる第2障壁層305と、第2障壁層305の上に形成したGaAs層からなるキャップ層306とを備える。 This will be described in more detail below. Hereinafter, the quantum well structure shown in FIG. 3 will be described as an example. The quantum well structure shown in FIG. 3 has a GaAs substrate 301 having a main surface of (110), a GaAs buffer layer 302 epitaxially grown on the GaAs substrate 301, and Al 0.3 Ga 0.7 As epitaxially grown on the GaAs buffer layer 302. A first barrier layer 303 made of GaAs, a quantum well layer 304 made of GaAs epitaxially grown on the first barrier layer 303, and a second barrier layer 305 made of Al 0.3 Ga 0.7 As epitaxially grown on the quantum well layer 304, And a cap layer 306 made of a GaAs layer formed on the second barrier layer 305.

GaAsバッファ層302は、層厚200nmに形成され、第1障壁層303は、層厚500nmに形成され、量子井戸層304は層厚10nmに形成され、第2障壁層305は層厚420nmに形成され、キャップ層306は、層厚5nmに形成されている。   The GaAs buffer layer 302 is formed with a thickness of 200 nm, the first barrier layer 303 is formed with a thickness of 500 nm, the quantum well layer 304 is formed with a thickness of 10 nm, and the second barrier layer 305 is formed with a thickness of 420 nm. The cap layer 306 is formed with a layer thickness of 5 nm.

また、第1障壁層303の量子井戸層304界面から積層方向100nm程度には、Siがδドープされ、第2障壁層305の量子井戸層304界面から積層方向20nm程度には、Siがδドープされている。また、量子井戸層304には、5×1011cm-2程度に、n型不純物が導入されている。 Further, Si is δ-doped from the interface of the quantum well layer 304 of the first barrier layer 303 to about 100 nm in the stacking direction, and Si is δ-doped from the interface of the quantum well layer 304 of the second barrier layer 305 to about 20 nm in the stacking direction. Has been. In addition, an n-type impurity is introduced into the quantum well layer 304 at about 5 × 10 11 cm −2 .

上述したように、(110)結晶方向に成長した量子井戸構造では、各層の積層方向(量子化軸方向)τppのスピン緩和時間と、各層の平面方向のスピン緩和時間τprが異なる値を示す(非特許文献2参照)。この場合、スピン歳差運動周波数ω’は、以下の式(2)で表される。 As described above, in the quantum well structure grown in the (110) crystal direction, the spin relaxation time τ pp in the stacking direction (quantization axis direction) τ pp of each layer is different from the spin relaxation time τ pr in the plane direction of each layer. This is shown (see Non-Patent Document 2). In this case, the spin precession frequency ω ′ is expressed by the following equation (2).

(110)量子井戸構造の場合τpp>>τprであることが知られており(2)式右辺の第2項が有限の値を持つ。2種類のスピン緩和時間(τppとτpr)は、円偏光励起により電子スピン生成を行う際に、円偏光励起強度を変化させることでスピン緩和時間を変調することが可能となる。このことは、式(2)右辺の第2項が変調できることを意味し、外部磁場が一定であっても、光励起した局所的な空間のスピン歳差運動周波数のみを変調することが可能となる。 (110) In the case of a quantum well structure, it is known that τ pp >> τ pr , and the second term on the right side of equation (2) has a finite value. The two types of spin relaxation times (τ pp and τ pr ) can modulate the spin relaxation time by changing the intensity of circularly polarized excitation when generating electron spin by circularly polarized excitation. This means that the second term on the right side of Equation (2) can be modulated, and even if the external magnetic field is constant, it is possible to modulate only the spin precession frequency of the local space that has been photoexcited. .

また、式(2)右辺第1項のラーモア歳差運動周波数ωと、第2項のスピン歳差運動レートの値が等しくなると、電子スピンの歳差運動が停止できる。これは、外部磁場下でも電子スピン状態を長時間保持できることを意味しており、光励起した領域のみの電子スピン情報を長時間保持することが可能となる。   Further, when the Larmor precession frequency ω in the first term on the right side of Equation (2) is equal to the value of the spin precession rate in the second term, the precession of electron spin can be stopped. This means that the electron spin state can be maintained for a long time even under an external magnetic field, and the electron spin information of only the photoexcited region can be maintained for a long time.

図3に示す(110)面に成長したGaAs/AlGaAs半導体による量子井戸構造において、各層平面に垂直な方向より円偏光を照射することで、量子井戸層304内に電子スピンを光励起することができる。このように光励起している状態で、各層の平面方向に均一外部磁場を印加する。この外部磁場により、歳差運動周波数ωで電子スピンは回転する。この状態で、円偏光の励起光強度を変化させると、円偏光照射部分に生成された電子スピンの歳差運動周波数を変調させることができる。   In the quantum well structure made of a GaAs / AlGaAs semiconductor grown on the (110) plane shown in FIG. . In this state of photoexcitation, a uniform external magnetic field is applied in the plane direction of each layer. This external magnetic field rotates the electron spin at the precession frequency ω. In this state, if the intensity of the excitation light of circularly polarized light is changed, the precession frequency of the electron spin generated in the circularly polarized light irradiation portion can be modulated.

図4に、外部磁場B=0.7Tを印加した状態で、励起光強度を変調した時の、電子スピン歳差運動の時間発展の状態を示す。図4中に示す「5mW」,「10mw」,「20mw」,「40mw」,「60mw」は、励起光強度を示す。図4に示すように、励起光強度を増大させるに従い、一定の外部磁場にも関わらず、スピン歳差運動周波数が変調されていることが分かる。   FIG. 4 shows the state of time evolution of electron spin precession when the excitation light intensity is modulated with the external magnetic field B = 0.7 T applied. “5 mW”, “10 mw”, “20 mw”, “40 mw”, and “60 mw” shown in FIG. 4 indicate the excitation light intensity. As shown in FIG. 4, as the excitation light intensity is increased, the spin precession frequency is modulated despite the constant external magnetic field.

上述した発明によれば、照射する光のスポット径(数ミクロン)領域(制御領域)の電子スピンのみの歳差運動周波数を変調することができ、これ以外の領域の電子スピンに影響を及ぼさない。この結果、均一磁場中において電子スピンの回転制御が可能となる。このように、本発明によれば、スピン歳差運動を局所的に制御できるようになる。   According to the above-mentioned invention, the precession frequency of only the electron spin in the spot diameter (several microns) region (control region) of the irradiated light can be modulated, and the electron spin in other regions is not affected. . As a result, it is possible to control the rotation of the electron spin in a uniform magnetic field. Thus, according to the present invention, the spin precession can be locally controlled.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

101…第1障壁層、102…量子井戸層、103…第2障壁層、104…量子井戸構造、105…励起光照射部、106…制御領域、107…磁場印加部。   DESCRIPTION OF SYMBOLS 101 ... 1st barrier layer, 102 ... Quantum well layer, 103 ... 2nd barrier layer, 104 ... Quantum well structure, 105 ... Excitation light irradiation part, 106 ... Control region, 107 ... Magnetic field application part.

Claims (4)

半導体からなる量子井戸層を備える量子井戸構造と、
円偏光した励起光を前記量子井戸層の制御領域に選択的に照射する励起光照射手段と、
前記量子井戸層の平面方向への磁場を前記量子井戸層の制御領域に印加する磁場印加手段と
を備えることを特徴とする電子スピン制御装置。
A quantum well structure including a quantum well layer made of a semiconductor;
Excitation light irradiation means for selectively irradiating the control region of the quantum well layer with circularly polarized excitation light;
An electron spin control device comprising: a magnetic field applying unit that applies a magnetic field in a plane direction of the quantum well layer to a control region of the quantum well layer.
請求項1記載の電子スピン制御装置において、
前記量子井戸構造は、
主表面を(110)面としたIII−V族化合物半導体からなる第1障壁層と、
前記第1障壁層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる前記量子井戸層と、
前記量子井戸層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる第2障壁層と
を備えることを特徴とする電子スピン制御装置。
The electron spin control device according to claim 1.
The quantum well structure is
A first barrier layer made of a III-V compound semiconductor having a main surface of (110) plane;
The quantum well layer formed of a III-V group compound semiconductor formed on the first barrier layer and having a main surface of (110) plane;
An electron spin control device comprising: a second barrier layer made of a group III-V compound semiconductor formed on the quantum well layer and having a main surface of (110) as a main surface.
半導体からなる量子井戸層を備える量子井戸構造の制御領域に、選択的に円偏光した励起光を照射して、制御領域に選択的に電子スピンを生成する励起光照射ステップと、
前記量子井戸層の平面方向への磁場を前記量子井戸層の制御領域に印加して、前記制御領域に生成した前記電子スピンを歳差運動させる磁場印加ステップと、
前記励起光の強度を制御することで前記電子スピンの歳差運動を制御する制御ステップと
を備えることを特徴とする電子スピン制御方法。
An excitation light irradiation step for selectively irradiating a control region of a quantum well structure including a quantum well layer made of a semiconductor with selectively circularly polarized excitation light and selectively generating electron spins on the control region;
Applying a magnetic field in the planar direction of the quantum well layer to the control region of the quantum well layer, and precessing the electron spin generated in the control region; and
And a control step of controlling the precession of the electron spin by controlling the intensity of the excitation light.
請求項3記載の電子スピン制御方法において、
前記量子井戸構造は、
主表面を(110)面としたIII−V族化合物半導体からなる第1障壁層と、
前記第1障壁層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる前記量子井戸層と、
前記量子井戸層の上に形成されて主表面を(110)面としたIII−V族化合物半導体からなる第2障壁層と
から構成することを特徴とする電子スピン制御方法。
The electron spin control method according to claim 3.
The quantum well structure is
A first barrier layer made of a III-V compound semiconductor having a main surface of (110) plane;
The quantum well layer formed of a III-V group compound semiconductor formed on the first barrier layer and having a main surface of (110) plane;
An electron spin control method comprising: a second barrier layer made of a III-V group compound semiconductor formed on the quantum well layer and having a (110) plane as a main surface.
JP2014107791A 2014-05-26 2014-05-26 Electron spin control method Active JP6222737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107791A JP6222737B2 (en) 2014-05-26 2014-05-26 Electron spin control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107791A JP6222737B2 (en) 2014-05-26 2014-05-26 Electron spin control method

Publications (2)

Publication Number Publication Date
JP2015225870A true JP2015225870A (en) 2015-12-14
JP6222737B2 JP6222737B2 (en) 2017-11-01

Family

ID=54842449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107791A Active JP6222737B2 (en) 2014-05-26 2014-05-26 Electron spin control method

Country Status (1)

Country Link
JP (1) JP6222737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203736A1 (en) 2015-03-18 2016-09-22 Mitsubishi Paper Mills Limited Printing paper and process for the production of printing material
WO2023203665A1 (en) * 2022-04-20 2023-10-26 国立大学法人東北大学 Electron spin wave multiplex transmission apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448791A (en) * 1990-06-15 1992-02-18 Canon Inc Optical semiconductor device
US20030057415A1 (en) * 2001-09-27 2003-03-27 Kazuhiro Komori Quantum logic gate and quantum logic operation method using exciton
JP2003152173A (en) * 2001-11-13 2003-05-23 Univ Tohoku Spin filter
JP2004103952A (en) * 2002-09-11 2004-04-02 National Institute Of Advanced Industrial & Technology Quantum logic element using exciton and quantum logic operation method
JP2005011907A (en) * 2003-06-17 2005-01-13 Japan Science & Technology Agency Spin-injection magnetization-reversal magneto-resistance element using quantum size effect
JP2013026592A (en) * 2011-07-26 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Spin polarized carrier transport device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448791A (en) * 1990-06-15 1992-02-18 Canon Inc Optical semiconductor device
US20030057415A1 (en) * 2001-09-27 2003-03-27 Kazuhiro Komori Quantum logic gate and quantum logic operation method using exciton
JP2003152173A (en) * 2001-11-13 2003-05-23 Univ Tohoku Spin filter
US20030122148A1 (en) * 2001-11-13 2003-07-03 Tohoku University Spin filter
JP2004103952A (en) * 2002-09-11 2004-04-02 National Institute Of Advanced Industrial & Technology Quantum logic element using exciton and quantum logic operation method
JP2005011907A (en) * 2003-06-17 2005-01-13 Japan Science & Technology Agency Spin-injection magnetization-reversal magneto-resistance element using quantum size effect
JP2013026592A (en) * 2011-07-26 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Spin polarized carrier transport device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203736A1 (en) 2015-03-18 2016-09-22 Mitsubishi Paper Mills Limited Printing paper and process for the production of printing material
WO2023203665A1 (en) * 2022-04-20 2023-10-26 国立大学法人東北大学 Electron spin wave multiplex transmission apparatus

Also Published As

Publication number Publication date
JP6222737B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
Schmidt et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS 2
Trotta et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry
Huo et al. A light-hole exciton in a quantum dot
Chekhovich et al. Nuclear spin effects in semiconductor quantum dots
TW423028B (en) Quantum computer
Lebrun et al. Understanding of phase noise squeezing under fractional synchronization of a nonlinear spin transfer vortex oscillator
Pinsker et al. On-demand dark soliton train manipulation in a spinor polariton condensate
JP5426597B2 (en) Quantum logic component and method for controlling qubits
Bhattacharya et al. Room-temperature spin polariton diode laser
Tholen et al. Strain-induced g-factor tuning in single InGaAs/GaAs quantum dots
Flisinski et al. Optically detected magnetic resonance at the quadrupole-split nuclear states in (In, Ga) As/GaAs quantum dots
JP6222737B2 (en) Electron spin control method
Grigoryev et al. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals
US20160036384A1 (en) Spin oscillator device
Keatley et al. Direct observation of magnetization dynamics generated by nanocontact spin-torque vortex oscillators
Luo et al. Tunable spin-orbit coupling and magnetic superstripe phase in a Bose-Einstein condensate
Park et al. Efficient Room‐Temperature Voltage Control of Picosecond Optical Spin Orientation Using a III‐V Semiconductor Nanostructure
JP2013026592A (en) Spin polarized carrier transport device
Pozina et al. Optical Cavity Based on GaN Planar Nanowires Grown by Selective Area Metal‐Organic Vapor Phase Epitaxy
Hernandez et al. Resonant optical control of the electrically induced spin polarization by periodic excitation
JP2017123078A (en) Quantum gate device and quantum computation method
Sohn et al. Engineering a diamond spin-qubit with a nano-electro-mechanical system
Alekseev Anisotropic interface contribution to the spin-orbit interaction in quantum wells
JP2019029511A (en) Solid-state quantum memory
Arnold et al. Macroscopic polarization rotation induced by a single spin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6222737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250