JP2015225333A - Forgery prevention medium and transfer sheet - Google Patents

Forgery prevention medium and transfer sheet Download PDF

Info

Publication number
JP2015225333A
JP2015225333A JP2014112296A JP2014112296A JP2015225333A JP 2015225333 A JP2015225333 A JP 2015225333A JP 2014112296 A JP2014112296 A JP 2014112296A JP 2014112296 A JP2014112296 A JP 2014112296A JP 2015225333 A JP2015225333 A JP 2015225333A
Authority
JP
Japan
Prior art keywords
layer
image
medium
magnetic field
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112296A
Other languages
Japanese (ja)
Other versions
JP6369136B2 (en
Inventor
正志 久保田
Masashi Kubota
正志 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014112296A priority Critical patent/JP6369136B2/en
Publication of JP2015225333A publication Critical patent/JP2015225333A/en
Application granted granted Critical
Publication of JP6369136B2 publication Critical patent/JP6369136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Credit Cards Or The Like (AREA)
  • Polarising Elements (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a forgery prevention medium and a transfer sheet having a latent image as a high resolution image that can be formed by an on-demand system and can be recognized by use of a polarizing plate 66.SOLUTION: The forgery prevention medium includes an optical anisotropic layer and a high-reflectance perpendicular magnetization layer having a magnetic Kerr effect, in which an image is drawn in the high-reflectance perpendicular magnetization layer by irradiation heating with laser light 71 while applying a magnetic field so as to change a magnetization direction of a part where the image is drawn in the high-reflectance perpendicular magnetization layer, and changes in the magnetization direction can be visually recognized as a black-and-white image through a polarizing plate 66.

Description

本発明は、個人認証のための顔画像等の個人情報を、潜像として記録可能な偽造防止媒体に関する。   The present invention relates to a forgery prevention medium capable of recording personal information such as a face image for personal authentication as a latent image.

パスポートやIDカードなどは、目視による情報認証のため顔画像を備えることが多い。この顔画像は海外ではまだ印画紙を使用しているところが多い。しかしながら印画紙では貼り替えによる改ざんの恐れがある。   Passports and ID cards often have face images for visual information authentication. Many of these facial images still use photographic paper overseas. However, there is a risk of tampering with photographic paper.

このため、顔画像をデジタル化し、認証媒体上に再現する傾向が強い。再現の方法としては昇華性染料や顔料分散された樹脂等で転写層を形成している転写リボンによる熱転写方式、または認証媒体にレーザーを照射することにより画像形成するレーザーエングレーブ方式などがある。   For this reason, there is a strong tendency to digitize face images and reproduce them on authentication media. As a reproduction method, there are a thermal transfer method using a transfer ribbon in which a transfer layer is formed with a sublimation dye or a resin in which a pigment is dispersed, or a laser engrave method in which an image is formed by irradiating an authentication medium with a laser.

これら形成された画像は目視で認証が可能なためどこでもだれでも認証が可能という特長を持つ。しかしさらにセキュリティ性を高める目的で通常の目視では形成情報を認識できないが、フィルターを使うと認識できると言う潜像技術が提案されている。   These formed images has the advantage that possible anyone authentication anywhere because it can be authenticated visually. However, for the purpose of further improving the security, a latent image technique has been proposed in which formation information cannot be recognized by normal visual observation but can be recognized by using a filter.

潜像技術の例として液晶を使ったものがある。まず基板上に配向パターンによる画像形成した層を予め用意する。次にこの配向パターンに高分子液晶材料を塗布し適当な条件下に置くと液晶の長軸が配向パターンの方向に並ぶ。液晶の塗工方法としてはいろいろ提案されており、例えばインクジェットを使った方式がある(特許文献1)。   An example of the latent image technology is one using liquid crystal. First, an image-formed layer with an orientation pattern is prepared in advance on a substrate. Next, when a polymer liquid crystal material is applied to this alignment pattern and placed under appropriate conditions, the major axis of the liquid crystal is aligned in the direction of the alignment pattern. Various liquid crystal coating methods have been proposed. For example, there is a method using an ink jet (Patent Document 1).

複数の潜像を形成できる技術として、配向方向に規則性を持たせることでコントラストを高め、かつ複数の潜像形成を可能にする方法が提案されている(特許文献2)。   As a technique capable of forming a plurality of latent images, a method has been proposed in which contrast is increased by providing regularity in the alignment direction and a plurality of latent images can be formed (Patent Document 2).

これらの技術に共通な点は予め配向パターンを形成してある層が必要な点である。複雑なパターンを形成するためには、複数のマスクを精密に位置合わせしながら露光して、配向パターンを作る必要があるため、工程が複雑化してしまう。   The point common to these techniques is that a layer in which an orientation pattern is formed in advance is necessary. In order to form a complicated pattern, it is necessary to expose a plurality of masks while precisely aligning them to create an alignment pattern, which complicates the process.

複雑な工程は、それ自体セキュリティになるため有効ではあるが、反面近年オンデマンドに情報を盛り込むというニーズが出てきており、この工法でオンデマンドに画像形成するのは難しいことから、この工法でオンデマンド性への対応という意味ではマイナス面が出ていることが否めない。   Although complicated processes are effective because they themselves become security, on the other hand, there is a need to incorporate information on demand in recent years, and it is difficult to form images on demand with this method. It cannot be denied that there is a downside in terms of dealing with on-demand.

オンデマンドな情報を盛り込む方法としては顔料分散型のインクリボンでよく使われる方法で、媒体を網点状に転写して画像を形成する方法がある。インクリボンを被転写体に接触させ、熱をかけることでリボンの熱がかかった部分が被転写体に転写されるというものである。近年では高精細な画像を形成するために局所的に熱をかける傾向にある。   As a method for incorporating on-demand information, there is a method often used in a pigment dispersion type ink ribbon, and there is a method of forming an image by transferring a medium in a dot pattern. When the ink ribbon is brought into contact with the transfer object and heat is applied, the heated portion of the ribbon is transferred to the transfer object. In recent years, there is a tendency to apply heat locally to form a high-definition image.

図1に転写の概要を示す。局所加熱の方法は大きさが100μm以下の微小発熱体11に転写媒体12、被転写体13を接触させた状態でパルス的に電流を流すことにより瞬間的に発熱体11を加熱すると、転写媒体の転写層が部分的に加熱され、この部分15が被転写体に転写されるというものである。通常転写に使用される転写ヘッドはこの微小発熱体が数100以上ライン状に並んでいるおり、形成する画像の情報に従ってそれぞれの発熱体を加熱することによって転写体による画像形成をする。   FIG. 1 shows an outline of transcription. In the local heating method, when the heat generating element 11 is instantaneously heated by passing a current in a pulsed manner while the transfer medium 12 and the transfer target 13 are in contact with the micro heat generating element 11 having a size of 100 μm or less, the transfer medium The transfer layer is partially heated, and this portion 15 is transferred to the transfer target. The transfer head normally used for transfer has several hundred or more minute heating elements arranged in a line, and each heating element is heated in accordance with information on the image to be formed to form an image on the transfer body.

微小発熱体の大きさが50μmであったとしても転写媒体の厚さ、転写層の熱応答性、キレ性などによっては加熱抵抗体より大きいサイズでないと転写できないこともある。図2に示すとおり転写媒体が厚い場合、媒体基材側から加熱して被転写体に必要な熱量が届くまでに熱伝導で周りにも熱が伝播するため、過熱体の大きさより大きな域24が転写可能域となってしまう。   Even if the size of the minute heating element is 50 μm, depending on the thickness of the transfer medium, the thermal responsiveness and the sharpness of the transfer layer, transfer may not be possible unless the size is larger than the heating resistor. As shown in FIG. 2, when the transfer medium is thick, heat is transferred to the surroundings by heat conduction from the medium substrate side until the necessary amount of heat reaches the transfer target, so that the region 24 larger than the size of the superheated body. Becomes a transferable area.

また反射用材料としてよく使われるアルミは、キレ性が良くないので抵抗体の温度制御で転写する設定した大きさの転写をすることが非常に難しい。   In addition, aluminum, which is often used as a reflective material, has poor sharpness, so it is very difficult to transfer a set size that is transferred by controlling the temperature of the resistor.

液晶を使った潜像媒体は熱転写用媒体に比べて厚い傾向にあり、かつ液晶自体もキレ性がいいものではない。加えてアルミを使用することが多いので潜像構成の媒体を転写して高解像度の画像形成は非常に難しい。解像度が低い画像ではセキュリティ性向上をうたうことは困難である。   Latent image media using liquid crystals tend to be thicker than thermal transfer media, and the liquid crystals themselves are not sharp. In addition, since aluminum is often used, it is very difficult to form a high-resolution image by transferring a medium having a latent image structure. It is difficult to claim improved security for images with low resolution.

特開2010−282153号公報JP 2010-282153 A 特開2009−258151号公報JP 2009-258151 A

以上のような問題を省みて、本発明は、オンデマンドに形成でき、偏光板を使うと認識できる潜像を、高解像度な画像として持つ偽造防止媒体偽および転写シートを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an anti-counterfeit medium fake and transfer sheet having a latent image that can be formed on demand and can be recognized by using a polarizing plate as a high-resolution image. To do.

上記の課題を解決するための手段として、請求項1に記載の発明は、光学異方性層と磁気カー効果を有する高反射率垂直磁化層とを持つ偽造防止媒体であって、
前記高反射率垂直磁化層に、磁場をかけながらレーザー照射加熱により描画し、前記高反射率垂直磁化層の描画された部分の磁化方向を変化させ、
前記磁化方向の変化を、偏光板を通すことで、白黒画像として目視可能とすることを特徴とする偽造防止媒体である。
As a means for solving the above problems, the invention according to claim 1 is an anti-counterfeit medium having an optically anisotropic layer and a high-reflectivity perpendicular magnetization layer having a magnetic Kerr effect,
Drawing on the high reflectivity perpendicular magnetization layer by laser irradiation heating while applying a magnetic field, changing the magnetization direction of the drawn portion of the high reflectivity perpendicular magnetization layer,
The anti-counterfeit medium is characterized in that the change in the magnetization direction is visible as a black and white image by passing through a polarizing plate.

また、請求項2に記載の発明は、フィルム基材上に剥離層、請求項1に記載の偽造防止媒体、接着層を順次積層したことを特徴とする転写シートである。   The invention according to claim 2 is a transfer sheet, wherein a release layer, a forgery prevention medium according to claim 1 and an adhesive layer are sequentially laminated on a film substrate.

液晶を使った潜像媒体の反射層を潜像構成にあった磁気カー効果の材料にし、この媒体に集光レーザーを照射して局所的に加熱し、さらに外部磁場をかけて磁場方向を制御することで偏光方向を制御してオンデマンドに潜像を形成することが可能になり、潜像は大型の装置を使用することなく、偏光板を用いて確認できる。   The reflective layer of the latent image medium using liquid crystal is made of a magnetic Kerr effect material suitable for the latent image configuration, this medium is irradiated with a focused laser and heated locally, and an external magnetic field is applied to control the magnetic field direction. By doing so, it becomes possible to control the polarization direction to form a latent image on demand, and the latent image can be confirmed using a polarizing plate without using a large apparatus.

熱転写の概要の説明図である。It is explanatory drawing of the outline | summary of thermal transfer. 厚い転写媒体を使用したときの熱転写の概要の説明図である。It is explanatory drawing of the outline | summary of a thermal transfer when using a thick transfer medium. 潜像の説明図である。It is explanatory drawing of a latent image. 磁気カー効果の説明図である。It is explanatory drawing of a magnetic Kerr effect. 局所的に磁場方向を変える方法の説明である。It is description of the method of changing a magnetic field direction locally. 磁場方向によって偏光方向を変えた情報を読み取る方法の説明図である。It is explanatory drawing of the method of reading the information which changed the polarization direction with the magnetic field direction. 磁気カー効果で潜像に画像形成する方法の説明図である。It is explanatory drawing of the method of forming an image in a latent image by the magnetic Kerr effect.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。潜像が成り立つメカニズムを説明する。図3に示すように潜像は自然光では見えず、偏光した光ではじめてみることができる。偏光の方向が液晶の配向方向と同じである光35を照射すると液晶配向層32で偏光面の影響なく反射層33で反射し、そのまま通過、偏光板31も通過しこの部分は明るく見える。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. The mechanism by which the latent image is established will be described. As shown in FIG. 3, the latent image is not visible with natural light, but can only be seen with polarized light. When the light 35 whose polarization direction is the same as the alignment direction of the liquid crystal is irradiated, it is reflected by the reflection layer 33 without being affected by the polarization plane in the liquid crystal alignment layer 32, passes through as it is, passes through the polarizing plate 31, and this portion looks bright.

しかし偏光方法と配向方向のなす角が45度であるときは配向した液晶配向層32は1/4λ板と同じ効果を示すため反射層33に届いた時点で45度回転し、さらに液晶配向層32から出る時点ではさらに45度回転するためもとの偏光方向とは90度違うため偏光板31を通過することができないのでこの部分は暗く見える。   However, when the angle formed by the polarization method and the alignment direction is 45 degrees, the aligned liquid crystal alignment layer 32 exhibits the same effect as the ¼λ plate, so that it rotates 45 degrees when it reaches the reflection layer 33, and further the liquid crystal alignment layer At the time of exiting from 32, it further rotates by 45 degrees, so it differs from the original polarization direction by 90 degrees and cannot pass through the polarizing plate 31, so this part looks dark.

このように潜像の画像形成は入射光41の偏光方向と配向方向に違いによって反射光42の偏光方向が違うことを利用している。したがって配向以外の方法で偏光方向を制御できれば、配向による画像以外の画像を形成することが可能である。   As described above, the latent image formation utilizes the fact that the polarization direction of the reflected light 42 is different depending on the polarization direction and the orientation direction of the incident light 41. Therefore, if the polarization direction can be controlled by a method other than orientation, it is possible to form an image other than the image by orientation.

偏光方向を変える手段として磁気カー効果を使う方法がある。これは偏光した光がある種の磁性体43で反射する際に、偏光方向が回転する現象である。この現象が発生するのは磁場方向と偏光の関係が図4a、図4bに示す2通りであるが、図4aの方が偏光面を操作するような用途ではよく使われている。   There is a method of using the magnetic Kerr effect as a means of changing the polarization direction. This is a phenomenon in which the polarization direction rotates when polarized light is reflected by a certain kind of magnetic material 43. This phenomenon occurs in two ways, as shown in FIGS. 4a and 4b, between the direction of the magnetic field and the polarization, but FIG. 4a is more commonly used in applications where the plane of polarization is manipulated.

磁性体43にはそれぞれ特有のキュリー温度というものがあり、この温度以上になると材料中の微視的磁性体の磁場の方向がバラバラになるため磁気的性質が消える。またキュリー温度以上で外部磁場をかけるとその磁場方向に材料中の微視的磁性体の磁場方向がそろう。またこの状態でキュリー温度以下に冷却すると外部磁場によってそろった磁場方向の状態を保ったままになる。   Each of the magnetic bodies 43 has a unique Curie temperature. When the temperature exceeds this temperature, the direction of the magnetic field of the microscopic magnetic body in the material varies and the magnetic properties disappear. When an external magnetic field is applied above the Curie temperature, the magnetic field direction of the microscopic magnetic material in the material aligns with the magnetic field direction. In this state, cooling to the Curie temperature or lower keeps the state of the magnetic field aligned by the external magnetic field.

この原理を使ったものとして光磁気ディスク(MO,MDなど)がある。これらのドライブ装置の概念図を図5に示す。回転するディスク上にレーザー光52をレンズ53で集光して照射し、局所的に加熱する。するとディスクの加熱された加熱部511のところはキュリー温度以上となる。この状態ですぐに外部磁場54をかけ、磁気方向を記録すると加熱部512のような磁場に磁場分布をデジタル的に分布させ、情報を記録することができる。   There are magneto-optical disks (MO, MD, etc.) that use this principle. A conceptual diagram of these drive devices is shown in FIG. Laser light 52 is condensed and irradiated by a lens 53 onto a rotating disk, and heated locally. Then, the heated portion 511 where the disk is heated becomes equal to or higher than the Curie temperature. When the external magnetic field 54 is immediately applied in this state and the magnetic direction is recorded, the magnetic field distribution can be digitally distributed in the magnetic field such as the heating unit 512 to record information.

記録したディスク面に読み取り用のレーザー光61を照射すると、元々の磁場分布の反射面で偏光光が透過するよう偏光板66を設定しておけば、特に操作がなければ反射光62は偏光板66を透過するが、ディスク面の磁気方向が変化したところ磁性体65では反射光の偏光状態が変化するため、反射光64は偏光板を透過できない。このようにしてデジタル信号を読み取ることができる。   If the polarizing plate 66 is set so that when the laser beam 61 for reading is irradiated on the recorded disk surface, the polarized light is transmitted through the reflecting surface having the original magnetic field distribution, the reflected light 62 is reflected by the polarizing plate unless otherwise operated. 66, but when the magnetic direction of the disk surface changes, the polarization state of the reflected light changes in the magnetic body 65, so that the reflected light 64 cannot pass through the polarizing plate. In this way, a digital signal can be read.

潜像媒体の反射層にこの原理を適用し、反射層を磁性体の反射層にする。特に操作がなければ通常の潜像媒体と同じであるため、配向パターンに従った画像となる。しかしこの媒体に部分的に加熱してキュリー温度以上にして、さらにこの部分に外部磁場をかけ、そのまま冷却すると、この部分の磁場状態が変わるため液晶層で回転した偏光は磁性体反射層との反射でさらに回転する。   This principle is applied to the reflection layer of the latent image medium so that the reflection layer is made of a magnetic material. If there is no particular operation, the image is the same as an ordinary latent image medium, so that an image according to the orientation pattern is obtained. However, when this medium is partially heated to a temperature above the Curie temperature, an external magnetic field is applied to this part and then cooled as it is, the magnetic field state of this part changes, so that the polarized light rotated by the liquid crystal layer is different from the magnetic reflecting layer. Rotate further with reflection.

したがって磁性体の磁場状態を変える前に明るく表示されていた部分は磁場による回転作用により暗くなる。逆に磁場状態が変わる前が暗いところは回転作用によって明るくなる。このような方法を用いればオンデマンドに潜像画像形成が可能である。   Therefore, the brightly displayed portion before changing the magnetic field state of the magnetic material becomes dark due to the rotating action of the magnetic field. On the contrary, a dark place before the magnetic field changes changes due to the rotating action. If such a method is used, a latent image can be formed on demand.

例えば媒体をキュリー温度以上にするのに光ディスクと同様にレーザー光をレンズで集光して照射したとすると、このレーザーのスポットが画像形成のためのドットとなる。波動光学によれば単波長光の理論スポットサイズは波長の半分である。しかし実効的にこのサイズの実現は難しく、実際には1μm程度の直径となるため、このサイズのドットで画像形成が可能となる。   For example, if the medium is heated to the Curie temperature or higher and laser light is condensed and irradiated by a lens like an optical disk, the laser spot becomes a dot for image formation. According to wave optics, the theoretical spot size of single wavelength light is half the wavelength. However, it is difficult to realize this size effectively, and since the diameter is actually about 1 μm, it is possible to form an image with dots of this size.

また光磁気ディスクのドライブは6000rpmでディスクを回転させ、数10μmの間隔で情報を記録していることから100MHz程度のドット形成速度に達していると考えられ、非常に高速で画像形成が可能である。   The magneto-optical disk drive rotates the disk at 6000 rpm and records information at intervals of several tens of μm. Therefore, it is considered that the dot formation speed of about 100 MHz has been reached, and image formation is possible at a very high speed. is there.

次に図7を使って本発明の実施例を説明する。画像形成装置は加熱用レーザー71、集光レンズ72、レンズ位置掃引機構、コイル73からなる描画部とこの描画部と潜像媒体74の2次元的な相対位置かえる掃引部からなる。レーザー71から照射された光はレンズ72に入射、集光して潜像媒体74に照射される。   Next, an embodiment of the present invention will be described with reference to FIG. The image forming apparatus includes a heating laser 71, a condensing lens 72, a lens position sweeping mechanism, a drawing unit including a coil 73, and a sweeping unit for changing the two-dimensional relative position of the drawing unit and the latent image medium 74. The light emitted from the laser 71 is incident on the lens 72, condensed, and irradiated onto the latent image medium 74.

予め潜像に適するよう画像処理しておいた画像情報を画像形成装置に入力する。装置は媒体の端から描画部を動かし、先の画像情報で画像形成に必要な場所でレーザー71を照射し、同時に磁場発生装置73のコイルに電流を流して磁場を形成し媒体反射層の磁場方向を変える。このような操作を潜像媒体74全面で行うよう描画部を掃引部が操作して画像を形成していく。   Image information that has been subjected to image processing so as to be suitable for a latent image is input to the image forming apparatus. The apparatus moves the drawing unit from the edge of the medium, irradiates the laser 71 at a place necessary for image formation with the previous image information, and simultaneously forms a magnetic field by causing a current to flow through the coil of the magnetic field generator 73 to form the magnetic field of the medium reflection layer. Change direction. The sweep unit operates the drawing unit so as to perform such an operation on the entire surface of the latent image medium 74 to form an image.

光磁気ディスクはポリカーボネイド製の円盤であるため、ディスクと集光レンズの間がある程度一定とすることができる。潜像媒体は通常フィルム上に形成されるため、フィルムのゆがみ等でレンズ焦点の焦点距離内に媒体が必ずしもあるとは限らない。そこでレンズと媒体照射地点の距離が一定となるよう距離検知機構とレンズ位置補正機構が付いていることが好ましい。   Since the magneto-optical disk is a polycarbonate disk, the distance between the disk and the condenser lens can be made constant to some extent. Since the latent image medium is usually formed on a film, the medium is not always within the focal length of the lens focal point due to distortion of the film or the like. Therefore, it is preferable that a distance detection mechanism and a lens position correction mechanism are provided so that the distance between the lens and the medium irradiation point is constant.

この機構によって集光レンズ焦点が媒体上にあるかを常にモニターし、必要に応じてレンズ位置調整を随時行う。焦点が媒体上にあるかを確認する手段としてはレンズすぐ横に微小距離センサーをおく、もしくは媒体柄の荷焦点が合うようオートフォーカス機構を集光レンズに備えることで、集光レンズの焦点が媒体に合うようにする方法もある。   By this mechanism, it is always monitored whether the condenser lens focus is on the medium, and the lens position is adjusted as needed. As a means of confirming whether the focal point is on the medium, the focal point of the condensing lens can be adjusted by placing a minute distance sensor next to the lens, or by providing the condensing lens with an autofocus mechanism so that the load of the medium pattern is in focus. There are also ways to make it fit the medium.

<高反射率垂直磁化層>
反射材料として望ましい性質は、1)反射率が高い,2)保磁力が強い、3)キュリー温度が高いであることが挙げられる。反射率が低いと画像全体が暗くなり、コントラストが低い画像となってしまうし、保持力が低いと形成した画像を長期間維持することができない。またキュリー温度が低いと保持力が低く、例えば太陽直下の自動車室内のように高温化に保管された場合、キュリー温度を超えてしまい、画像保持ができなくなることがありうる。またカー回転角については大きければ良いというものではない。例えば特許文献2記載の潜像構成では22.5度毎に潜像の見え方が変わる。従ってカー回転角はこれ以下でないと意味をなさない。
<High reflectivity perpendicular magnetization layer>
Desirable properties as a reflective material include 1) high reflectivity, 2) strong coercivity, and 3) high Curie temperature. If the reflectance is low, the entire image becomes dark and the contrast is low, and if the holding power is low, the formed image cannot be maintained for a long time. If the Curie temperature is low, the holding power is low. For example, if the Curie temperature is stored at a high temperature, such as in an automobile room directly under the sun, the Curie temperature may be exceeded and image holding may not be possible. Also, the car rotation angle is not necessarily large. For example, in the latent image configuration described in Patent Document 2, the appearance of the latent image changes every 22.5 degrees. Therefore, it does not make sense if the Kerr rotation angle is not less than this.

特許文献2の例で言えば、周期が22.5度なのでほぼこれの半分程度が目安とすれば、反射材料としてはカー回転角が9度のUSbTeがある。しかしこの材料はキュリー温度が低いため、本発明に望ましい反射層構成としてカー回転角エンハンス効果を狙った中間層を備えたBiMn系の反射材料を例に挙げる。この反射材料系に関してはいくつかの研究結果が発表されており、Bi、Mnの順にトータル100nm未満の反射層を形成すると、カー回転角が2.5度程度となる。   In the example of Patent Document 2, since the period is 22.5 degrees, if approximately half of this is a guide, there is USbTe with a Kerr rotation angle of 9 degrees as a reflective material. However, since this material has a low Curie temperature, a BiMn-based reflective material provided with an intermediate layer aiming at the Kerr rotation angle enhancement effect is taken as an example of a reflective layer configuration desirable for the present invention. Several research results have been published for this reflective material system. When a reflective layer having a total thickness of less than 100 nm is formed in the order of Bi and Mn, the Kerr rotation angle becomes about 2.5 degrees.

また、さらにNdをこの上に形成すると3.5度の回転角が得られるという報告もある。一例として「Mn1.27−XBiNdx薄膜の磁気特性」松田哲、豆塚武司、千葉大学教育学部研究紀要p54、2006を挙げることができる。   There is also a report that a rotation angle of 3.5 degrees can be obtained when Nd is further formed thereon. As an example, “Mn1.27-XBiNdx thin film magnetic properties” Satoshi Matsuda, Takeshi Muzuka, Bulletin of Faculty of Education, Chiba University p54, 2006 can be mentioned.

反射層の形成方法としては蒸着、イオンプレーテイングなどが一般的であり、このようにして形成された反射層は、数100度でアニールし、さらに10kOeの磁場を書けることで磁化方向を揃える、いわゆる初期化を行うことで高反射率垂直磁化反射層となる。カー回転角が3.5度では十分ではないため、回転角をエンハンスする効果のある多層反射層を中間層として形成する。この中間層で多重反射することで回転角をエンハンスすることが可能ある。平成23年度「革新的な三次元映像技術による超臨場感コミュニケーション技術の研究開発」や「課題ア革新的三次元映像表示のためのデバイス技術」の研究開発目標・成果と今後の研究計画」によればSi−N層を40nm程度中間層として形成した場合、約4倍の回転角が得られるとされている。このような層を形成すれば見かけ上回転角を10度以上にエンハンスすることができる。   As a method for forming the reflective layer, vapor deposition, ion plating, etc. are generally used. The reflective layer formed in this way is annealed at several hundred degrees, and further, a magnetic field of 10 kOe can be written to align the magnetization direction. By performing so-called initialization, a high reflectivity perpendicular magnetization reflective layer is obtained. Since a Kerr rotation angle of 3.5 degrees is not sufficient, a multilayer reflective layer having an effect of enhancing the rotation angle is formed as an intermediate layer. It is possible to enhance the rotation angle by multiple reflection at this intermediate layer. In 2011 “Research and Development of Ultra-Realistic Communication Technology Using Innovative 3D Video Technology” and “Problem A Device Technology for Innovative 3D Video Display” R & D Objectives / Results and Future Research Plan Therefore, when the Si-N layer is formed as an intermediate layer of about 40 nm, it is said that a rotation angle of about 4 times can be obtained. If such a layer is formed, the apparent rotation angle can be enhanced to 10 degrees or more.

中間層によりカー回転角をエンハンスする場合、一般にエンハンス度が大きいと反射率がさがる。下がる度合いは使用材料によって異なるため、必要な回転角を見極めながら反射率とのバランスを考えて中間層厚を設定する必要がある。   When enhancing the Kerr rotation angle by the intermediate layer, the reflectance generally decreases when the degree of enhancement is large. Since the degree of lowering depends on the material used, it is necessary to set the intermediate layer thickness in consideration of the balance with the reflectance while determining the required rotation angle.

<光学異方性層>
光学異方性層の形成については特許文献2を例に述べる。特許文献2では4つの異なる配向方向の領域を持ち、これらの領域を巧みに配置することで画像を形成している。配向方向の設定方法としては光配向、ラビング配向などがあり、これらの方法で配向し、画像形成した光学異方性層に液晶物質を配して位相差層を形成する。なお位相差層はそのリターデーションが設計波長の1/2となるように設定することが望ましい。
<Optically anisotropic layer>
The formation of the optically anisotropic layer will be described using Patent Document 2 as an example. In Patent Document 2, there are four regions with different orientation directions, and an image is formed by skillfully arranging these regions. Examples of the alignment direction setting method include photo-alignment and rubbing alignment, and a phase difference layer is formed by arranging a liquid crystal substance on the optically anisotropic layer formed by image alignment and image formation. The retardation layer is preferably set so that the retardation is ½ of the design wavelength.

設定波長は通常は人間の視感度の高い緑域の波長を適用することが多いが目的によってより視感度の低い波長に設定する場合もある。   Usually, a wavelength in the green region where human visibility is high is often applied as the set wavelength, but there are cases where it is set to a wavelength with lower visibility depending on the purpose.

<偽造防止媒体>
カード基材に磁気カー効果を有する高反射率垂直磁化層、光学異方性層を順じ積層し、磁場をかけながらレーザー照射により顔写真を、高反射率垂直磁化層に描画した。この描画された顔写真は、そのままでは見ることができないが、偏光フィルムをかざして観察すると、白黒の顔を認識できる。
<Forgery prevention medium>
A high reflectivity perpendicular magnetization layer having a magnetic Kerr effect and an optically anisotropic layer were sequentially laminated on the card substrate, and a face photograph was drawn on the high reflectivity perpendicular magnetization layer by laser irradiation while applying a magnetic field. Although the drawn face photograph cannot be seen as it is, a black and white face can be recognized by observing with a polarizing film.

<転写シートの作製>
フィルム基材上に剥離層を設けその上に光学異方性層、磁気カー効果を有する高反射率垂直磁化層、接着層、剥離紙を設けた転写シートを作製し、作製した偽造防止媒体を、カード基材に貼り付けた後、磁場をかけながらレーザー照射により顔写真を、高反射率垂直磁化層に描画した。この描画された顔写真は、そのままでは見ることができないが、偏光フィルムをかざして観察すると、白黒の顔を認識できる。
<Preparation of transfer sheet>
A transfer sheet is prepared by providing a release layer on a film substrate, an optically anisotropic layer, a highly reflective perpendicular magnetization layer having a magnetic Kerr effect, an adhesive layer, and a release paper. After being attached to the card substrate, a face photograph was drawn on the high-reflectivity perpendicular magnetization layer by laser irradiation while applying a magnetic field. Although the drawn face photograph cannot be seen as it is, a black and white face can be recognized by observing with a polarizing film.

11・・・発熱体
12・・・転写媒体
13・・・被転写媒体
14・・・加熱域
15・・・転写部
21・・・発熱体
22・・・転写媒体
23・・・被転写媒体
24・・・加熱域
25・・・転写部
31・・・偏光板
32・・・液晶配向層
33・・・反射層
34・・・入射自然光
35・・・入射偏光光
36・・・配向層透過光
37・・・反射光
38・・・配向層透過光
39・・・透過光
3a・・・配向層透過光
3b・・・反射光
3c・・・配向層透過光
3d・・・透過光
41・・・入射光
42・・・反射光
43・・・磁性体
44・・・磁性体
51・・・磁性体
52・・・レーザー光
53・・・レンズ
511・・・加熱部
512・・・加熱部
54・・・外部磁場
61・・・レーザー光(入射光)
62・・・反射光
63・・・磁性体
64・・・反射光
65・・・磁性体
66・・・偏光板
71・・・レーザー
72・・・集光レンズ
73・・・磁場発生装置
74・・・潜像媒体
75・・・2軸ステージの移動方向
DESCRIPTION OF SYMBOLS 11 ... Heat generating body 12 ... Transfer medium 13 ... Transfer medium 14 ... Heating area 15 ... Transfer part 21 ... Heat generating body 22 ... Transfer medium 23 ... Transfer medium 24 ... heating region 25 ... transfer part 31 ... polarizing plate 32 ... liquid crystal alignment layer 33 ... reflective layer 34 ... incident natural light 35 ... incident polarized light 36 ... alignment layer Transmitted light 37 ... Reflected light 38 ... Alignment layer transmitted light 39 ... Transmitted light 3a ... Alignment layer transmitted light 3b ... Reflected light 3c ... Alignment layer transmitted light 3d ... Transmitted light 41 ... Incident light 42 ... Reflected light 43 ... Magnetic body 44 ... Magnetic body 51 ... Magnetic body 52 ... Laser light 53 ... Lens 511 ... Heating unit 512 ... -Heating part 54 ... External magnetic field 61 ... Laser light (incident light)
62 ... reflected light 63 ... magnetic material 64 ... reflected light 65 ... magnetic material 66 ... polarizing plate 71 ... laser 72 ... condensing lens 73 ... magnetic field generator 74 ... Latent image medium 75 ... Moving direction of 2-axis stage

Claims (2)

光学異方性層と磁気カー効果を有する高反射率垂直磁化層とを持つ偽造防止媒体であって、前記高反射率垂直磁化層に、磁場をかけながらレーザー照射加熱により描画し、前記高反射率垂直磁化層の描画された部分の磁化方向を変化させ、
前記磁化方向の変化を、偏光板を通すことで、白黒画像として目視可能とすることを特徴とする偽造防止媒体。
An anti-counterfeit medium having an optically anisotropic layer and a high-reflectance perpendicular magnetization layer having a magnetic Kerr effect, wherein the high-reflectance perpendicular magnetization layer is drawn by laser irradiation heating while applying a magnetic field, and the high-reflection Change the magnetization direction of the drawn portion of the perpendicular magnetic layer,
An anti-counterfeit medium characterized in that the change in the magnetization direction is visible as a black and white image by passing through a polarizing plate.
フィルム基材上に剥離層、請求項1に記載の偽造防止媒体、接着層を順次積層したことを特徴とする転写シート。   A transfer sheet, wherein a release layer, the anti-counterfeit medium according to claim 1 and an adhesive layer are sequentially laminated on a film substrate.
JP2014112296A 2014-05-30 2014-05-30 Anti-counterfeit medium and transfer sheet Expired - Fee Related JP6369136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112296A JP6369136B2 (en) 2014-05-30 2014-05-30 Anti-counterfeit medium and transfer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112296A JP6369136B2 (en) 2014-05-30 2014-05-30 Anti-counterfeit medium and transfer sheet

Publications (2)

Publication Number Publication Date
JP2015225333A true JP2015225333A (en) 2015-12-14
JP6369136B2 JP6369136B2 (en) 2018-08-08

Family

ID=54842074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112296A Expired - Fee Related JP6369136B2 (en) 2014-05-30 2014-05-30 Anti-counterfeit medium and transfer sheet

Country Status (1)

Country Link
JP (1) JP6369136B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269248A (en) * 1985-05-24 1986-11-28 Fujitsu Ltd Photomagnetic disk
JPH02148484A (en) * 1988-11-29 1990-06-07 Nec Corp Magneto-optical disk medium
JPH0371457A (en) * 1989-08-10 1991-03-27 Sumitomo Metal Ind Ltd Magneto-optical recording and reproducing device
JPH03130945A (en) * 1989-09-18 1991-06-04 Hitachi Ltd Magnetic recording medium and method of recording/ reproducing using this medium
US5479097A (en) * 1993-12-29 1995-12-26 Storage Technology Corporation Data corruption detector for magnetic media
JPH08190335A (en) * 1995-01-10 1996-07-23 Toppan Printing Co Ltd Pattern printing body by magnetic ink having surface polarization layer
JP2001071698A (en) * 1999-09-02 2001-03-21 Toppan Printing Co Ltd Method for preventing ovd-formed medium from being forged, ovd transfer foil and ovd-formed medium treated for forgery prevention
EP1569177A1 (en) * 2004-02-24 2005-08-31 Kba-Giori S.A. Method and apparatus for checking magnetizable elements
JP2009059429A (en) * 2007-08-31 2009-03-19 Nhk Spring Co Ltd Information recording card, information reading device, and information reading method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269248A (en) * 1985-05-24 1986-11-28 Fujitsu Ltd Photomagnetic disk
JPH02148484A (en) * 1988-11-29 1990-06-07 Nec Corp Magneto-optical disk medium
JPH0371457A (en) * 1989-08-10 1991-03-27 Sumitomo Metal Ind Ltd Magneto-optical recording and reproducing device
JPH03130945A (en) * 1989-09-18 1991-06-04 Hitachi Ltd Magnetic recording medium and method of recording/ reproducing using this medium
US5479097A (en) * 1993-12-29 1995-12-26 Storage Technology Corporation Data corruption detector for magnetic media
JPH08190335A (en) * 1995-01-10 1996-07-23 Toppan Printing Co Ltd Pattern printing body by magnetic ink having surface polarization layer
JP2001071698A (en) * 1999-09-02 2001-03-21 Toppan Printing Co Ltd Method for preventing ovd-formed medium from being forged, ovd transfer foil and ovd-formed medium treated for forgery prevention
EP1569177A1 (en) * 2004-02-24 2005-08-31 Kba-Giori S.A. Method and apparatus for checking magnetizable elements
JP2009059429A (en) * 2007-08-31 2009-03-19 Nhk Spring Co Ltd Information recording card, information reading device, and information reading method

Also Published As

Publication number Publication date
JP6369136B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
US9612375B2 (en) Optical biometric security element
JP4909535B2 (en) Laminated reflector, authentication card, barcode label, authentication system, and authentication area forming system
US10414195B2 (en) Anti-counterfeiting medium and method for fabricating anti-counterfeiting medium
JP2012018347A (en) Forgery prevention medium having printing and birefringent pattern
JP2010131878A (en) Information recording body and information recording method therefor
JPWO2014167834A1 (en) Anti-counterfeit medium, manufacturing method thereof, and anti-counterfeit method
JP6369136B2 (en) Anti-counterfeit medium and transfer sheet
JP6210549B2 (en) Image photographing method, image photographing reproducing method, spatial light modulator, image reproducing device, and digital hologram forming device.
JPH03118198A (en) Card and image forming method
WO2013047633A1 (en) Object having latent image and latent image photography device which photographs same
US20210086544A1 (en) Reflective security element
US20060204751A1 (en) Content information layer for an optical record carrier
US20220355608A1 (en) Method of forming a security device
JP2004122566A (en) Counterfeit-proof card
JP7272734B2 (en) Information display medium and its manufacturing method
JP5185580B2 (en) Information recording medium
JP2014063039A (en) Transfer foil and forgery prevention medium
JPH05282504A (en) Information storage card and its information reader
JP5054636B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP2017203959A (en) Optical kit
JP2002103815A (en) Rewritable recording medium and method for recording the same
JP2016074105A (en) Hologram transfer foil assembly, formation method of image display body, image display body and personal authentication medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees