JP2015225257A - Photomask inspection method and photomask manufacturing method - Google Patents

Photomask inspection method and photomask manufacturing method Download PDF

Info

Publication number
JP2015225257A
JP2015225257A JP2014110667A JP2014110667A JP2015225257A JP 2015225257 A JP2015225257 A JP 2015225257A JP 2014110667 A JP2014110667 A JP 2014110667A JP 2014110667 A JP2014110667 A JP 2014110667A JP 2015225257 A JP2015225257 A JP 2015225257A
Authority
JP
Japan
Prior art keywords
light
photomask
shielding region
light shielding
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014110667A
Other languages
Japanese (ja)
Other versions
JP6375696B2 (en
Inventor
正治 西口
Masaharu Nishiguchi
正治 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014110667A priority Critical patent/JP6375696B2/en
Publication of JP2015225257A publication Critical patent/JP2015225257A/en
Application granted granted Critical
Publication of JP6375696B2 publication Critical patent/JP6375696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a photomask inspection method and a photomask manufacturing method, capable of obtaining the optical concentration of a photomask light shielding region pattern with high accuracy.SOLUTION: A light shielding region with a light shielding region pattern 15 of a photomask 10 is formed and a transparent region 14 where a transparent substrate 13 is exposed are irradiated with excimer laser light 21a, 21b, having the same wavelength as exposure light. The light intensity distribution of each of first transmission light 22a passing through the light shielding region and second transmission light 22b passing through the transparent region is measured by an imaging device. The light intensity distributions of the first transmission light 22a and the second transmission light 22b thus measured are compared to obtain the optical concentration of the light shielding region pattern 15.

Description

本発明は、半導体素子の製造等に用いられるフォトマスクに関し、特にフォトマスクの検査方法およびフォトマスクの製造方法に関するものである。   The present invention relates to a photomask used for manufacturing a semiconductor element, and more particularly to a photomask inspection method and a photomask manufacturing method.

半導体素子の高集積化、微細化を実現するために、現在、露光波長193nmのArFエキシマレーザー光を露光光に用いた光学式の投影露光装置により、フォトマスクを用いてウェハ上にパターン転写するフォトリソグラフィ技術が使用されている。   In order to realize high integration and miniaturization of semiconductor elements, a pattern is transferred onto a wafer using a photomask by an optical projection exposure apparatus using ArF excimer laser light with an exposure wavelength of 193 nm as exposure light. Photolithographic techniques are used.

ここで、半導体素子製造においては、通常、フォトマスクのマスクパターンが形成された露光領域を1/4に縮小投影して、ウェハ上に設けられたレジストに多面付け転写する(例えば、特許文献1)。
それゆえ、例えば図8に示すように、フォトマスク100においては、多面付け転写する際の境界部に位置するレジストが多重露光されてしまう不具合を防ぐために、露光領域101の外周には遮光領域パターン105が設けられている。
なお、図8に示す例において、露光領域101には、マスクパターン102が設けられており、露光領域101においてマスクパターン102が設けられていない領域は、透明基板103が露出する透明領域104になっている。
Here, in the manufacture of semiconductor elements, usually, an exposure area in which a mask pattern of a photomask is formed is projected to be reduced to ¼ and transferred onto a resist provided on a wafer (for example, Patent Document 1). ).
Therefore, for example, as shown in FIG. 8, in the photomask 100, a light-shielding region pattern is formed on the outer periphery of the exposure region 101 in order to prevent a problem that the resist positioned at the boundary portion when performing multi-face transfer is subjected to multiple exposure. 105 is provided.
In the example shown in FIG. 8, a mask pattern 102 is provided in the exposure region 101, and a region where the mask pattern 102 is not provided in the exposure region 101 is a transparent region 104 where the transparent substrate 103 is exposed. ing.

図9は、従来のフォトマスクの製造方法の一例を示すフローチャートである。通常、フォトマスクは、透明基板の上に遮光領域パターンを構成する材料層(遮光材料層と呼ぶ)が設けられたフォトマスクブランクを加工して、遮光領域パターンを含む各種パターンを形成することにより製造される。
そして、図9に示すように、従来においては、フォトマスクの遮光領域パターンの光学濃度(optical density)は、各種パターン形成工程(S103)前のフォトマスクブランクの状態で、分光光度計を用いて、上記の遮光材料層の透過光の光強度を測定することで取得していた(例えば、特許文献2)
FIG. 9 is a flowchart showing an example of a conventional photomask manufacturing method. Usually, a photomask is formed by processing a photomask blank provided with a material layer (referred to as a light shielding material layer) constituting a light shielding region pattern on a transparent substrate to form various patterns including the light shielding region pattern. Manufactured.
As shown in FIG. 9, conventionally, the optical density of the light-shielding region pattern of the photomask is measured using a spectrophotometer in the state of the photomask blank before the various pattern formation steps (S103). And obtained by measuring the light intensity of the transmitted light of the light shielding material layer (for example, Patent Document 2)

特許第3664332号公報Japanese Patent No. 3664332 特開2006−78807号公報JP 2006-78807 A

しかしながら、洗浄工程を含む各種製造工程を経たフォトマスクの遮光領域パターンの光学濃度は、各種パターン形成前のフォトマスクブランクの状態における遮光材料層の光学濃度と異なる場合がある。より具体的には、各種製造工程から受ける損傷等により、フォトマスクの遮光領域パターンの光学濃度は、フォトマスクブランクの状態における遮光材料層の光学濃度より小さい値となってしまう場合がある。   However, the optical density of the light shielding region pattern of the photomask that has undergone various manufacturing processes including the cleaning process may be different from the optical density of the light shielding material layer in the state of the photomask blank before the formation of the various patterns. More specifically, the optical density of the light-shielding region pattern of the photomask may be smaller than the optical density of the light-shielding material layer in the photomask blank state due to damage received from various manufacturing processes.

それゆえ、フォトマスクの遮光領域パターンの光学濃度をより正確に取得するためには、洗浄工程を含む各種製造工程を経たフォトマスクの状態で、露光光と同一波長の光を用いて遮光領域の透過光の光強度を測定することが必要である。   Therefore, in order to more accurately obtain the optical density of the light shielding region pattern of the photomask, the light shielding region of the light shielding region can be obtained using light having the same wavelength as the exposure light in the state of the photomask that has undergone various manufacturing processes including the cleaning process. It is necessary to measure the light intensity of the transmitted light.

ここで、遮光領域の中でも光学濃度の保証が必要な箇所は、露光領域に近接する個所であり、また、通常、遮光領域には各種アライメントマーク等が設けられることから、透過光の光強度測定に用いる光のスポット径は小さいサイズ、例えば、500μm以下、好ましくは100μm以下のスポット径であることが望ましい。   Here, in the light shielding area, the part where the optical density needs to be guaranteed is a part close to the exposure area. Usually, various kinds of alignment marks are provided in the light shielding area, so that the light intensity of the transmitted light is measured. It is desirable that the spot diameter of the light used for is a small size, for example, a spot diameter of 500 μm or less, preferably 100 μm or less.

しかしながら、分光光度計における光のスポット径は通常10mm程度と大きいため、フォトマスクの測定には不適である。
また、分光光度計の場合、重水素ランプの光を回折格子で分波して不要な光を排除することにより、所望の波長(露光光と同一波長)の光を得ていることから、得られる光のエネルギーは小さいものでしかない。それゆえ、何らかの方法によりスポット径を小さくすると、測定精度も低くなるという問題がある。
However, since the spot diameter of light in a spectrophotometer is usually as large as about 10 mm, it is not suitable for photomask measurement.
In the case of a spectrophotometer, light of a desired wavelength (same wavelength as exposure light) is obtained by demultiplexing the light of the deuterium lamp with a diffraction grating and eliminating unnecessary light. The energy of light that can be produced is only small. Therefore, there is a problem that if the spot diameter is reduced by any method, the measurement accuracy is also lowered.

本発明は、上記実情に鑑みてなされたものであり、フォトマスクの遮光領域パターンの光学濃度を精度良く取得することを可能とする、フォトマスクの検査方法およびフォトマスクの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a photomask inspection method and a photomask manufacturing method capable of accurately obtaining the optical density of the light shielding region pattern of the photomask. With the goal.

本発明者は、種々研究した結果、フォトマスクの遮光領域パターンが形成された遮光領域と透明基板が露出する透明領域にそれぞれ、露光光と同一波長のエキシマレーザー光を照射し、遮光領域を透過する第1の透過光及び透明領域を透過する第2の透過光の各光強度分布をそれぞれ撮像素子で測定し、測定した第1の透過光と第2の透過光の各光強度分布を比較して、遮光領域パターンの光学濃度を取得することにより、上記課題を解決できることを見出して本発明を完成したものである。   As a result of various studies, the inventor irradiates the light shielding region where the light shielding region pattern of the photomask is formed and the transparent region where the transparent substrate is exposed to each other by irradiating the light shielding region with an excimer laser beam having the same wavelength as the exposure light. Each light intensity distribution of the first transmitted light to be transmitted and the second transmitted light to be transmitted through the transparent region is measured by the image sensor, and the measured light intensity distributions of the first transmitted light and the second transmitted light are compared. Thus, the present invention has been completed by finding that the above problem can be solved by obtaining the optical density of the light shielding region pattern.

すなわち、本発明の請求項1に係る発明は、透明基板の上に露光光を遮光する遮光領域パターンを有するフォトマスクの検査方法であって、前記フォトマスクの前記遮光領域パターンが形成された遮光領域と前記透明基板が露出する透明領域にそれぞれ、前記露光光と同一波長のエキシマレーザー光を照射し、前記遮光領域を透過する第1の透過光及び前記透明領域を透過する第2の透過光の各光強度分布をそれぞれ撮像素子で測定し、前記撮像素子で測定した、前記第1の透過光と前記第2の透過光の各光強度分布を比較して、前記遮光領域パターンの光学濃度を取得することを特徴とするフォトマスクの検査方法である。   That is, the invention according to claim 1 of the present invention is a photomask inspection method having a light shielding area pattern for shielding exposure light on a transparent substrate, wherein the light shielding area pattern of the photomask is formed. The region and the transparent region where the transparent substrate is exposed are respectively irradiated with excimer laser light having the same wavelength as the exposure light, and the first transmitted light that passes through the light shielding region and the second transmitted light that passes through the transparent region. Each light intensity distribution of the light-shielding region pattern is measured by the image sensor, and the light intensity distributions of the first transmitted light and the second transmitted light measured by the image sensor are compared, and the optical density of the light-shielding region pattern is compared. This is a photomask inspection method characterized in that

また、本発明の請求項2に係る発明は、前記遮光領域に照射される前記エキシマレーザー光のスポット径が、100μm以下の大きさであることを特徴とする請求項1に記載のフォトマスクの検査方法である。   The invention according to claim 2 of the present invention is the photomask according to claim 1, wherein a spot diameter of the excimer laser light irradiated to the light shielding region is 100 μm or less. Inspection method.

また、本発明の請求項3に係る発明は、前記第1の透過光及び前記第2の透過光を、拡大レンズで拡大した後に撮像素子で測定することを特徴とする請求項1または請求項2に記載のフォトマスクの検査方法である。   The invention according to claim 3 of the present invention is characterized in that the first transmitted light and the second transmitted light are measured by an image sensor after being magnified by a magnifying lens. 2. A photomask inspection method according to 2.

また、本発明の請求項4に係る発明は、前記第1の透過光及び前記第2の透過光をそれぞれ蛍光板に当て、該蛍光板から放射される光を撮像素子で測定することにより、前記第1の透過光及び前記第2の透過光の各光強度分布を測定することを特徴とする請求項1乃至請求項3のいずれか一項に記載のフォトマスクの検査方法である。   In the invention according to claim 4 of the present invention, the first transmitted light and the second transmitted light are respectively applied to a fluorescent plate, and the light emitted from the fluorescent plate is measured by an imaging device, thereby 4. The photomask inspection method according to claim 1, wherein each light intensity distribution of the first transmitted light and the second transmitted light is measured. 5.

また、本発明の請求項5に係る発明は、透明基板の上に露光光を遮光する遮光領域パターンを形成する工程と、請求項1乃至請求項4のいずれか一項に記載のフォトマスクの検査方法を用いて前記遮光領域パターンの光学濃度を取得する工程を、順に備えることを特徴とするフォトマスクの製造方法である。   According to a fifth aspect of the present invention, there is provided a process for forming a light shielding region pattern for shielding exposure light on a transparent substrate, and the photomask according to any one of the first to fourth aspects. A method of manufacturing a photomask, comprising sequentially obtaining the optical density of the light shielding region pattern using an inspection method.

また、本発明の請求項6に係る発明は、前記遮光領域パターンを形成する工程の後であって、前記遮光領域パターンの光学濃度を取得する工程の前に、洗浄工程を備えることを特徴とする請求項5に記載のフォトマスクの製造方法である。   The invention according to claim 6 of the present invention is characterized by comprising a cleaning step after the step of forming the light shielding region pattern and before the step of obtaining the optical density of the light shielding region pattern. The photomask manufacturing method according to claim 5.

本発明のフォトマスクの検査方法によれば、フォトマスクの遮光領域パターンの光学濃度を精度良く取得することができる。
また、本発明のフォトマスクの製造方法によれば、各種製造工程を経たフォトマスクの状態で遮光領域パターンの光学濃度を保証することができる。
According to the photomask inspection method of the present invention, the optical density of the light shielding region pattern of the photomask can be obtained with high accuracy.
Moreover, according to the photomask manufacturing method of the present invention, it is possible to guarantee the optical density of the light shielding region pattern in the state of the photomask that has undergone various manufacturing processes.

本発明に係るフォトマスクの検査方法の一例を説明する図である。It is a figure explaining an example of the inspection method of the photomask concerning the present invention. 本発明に係るフォトマスクの検査方法に用いる検査装置の構成例を示す図である。It is a figure which shows the structural example of the test | inspection apparatus used for the test method of the photomask which concerns on this invention. 本発明に係るフォトマスクの検査方法の他の例を説明する図である。It is a figure explaining the other example of the inspection method of the photomask which concerns on this invention. 本発明に係るフォトマスクの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the photomask which concerns on this invention. 本発明に係るフォトマスクの製造方法の一例を示す概略工程図である。It is a schematic process drawing which shows an example of the manufacturing method of the photomask which concerns on this invention. 図5に続く本発明に係るフォトマスクの製造方法の一例を示す概略工程図である。FIG. 6 is a schematic process diagram illustrating an example of a method for manufacturing a photomask according to the present invention following FIG. 5. 実施例1における測定結果を示すグラフである。4 is a graph showing measurement results in Example 1. フォトマスクの一例を説明する図であり、(a)は概略平面図、(b)は(a)のA−A断面図である。It is a figure explaining an example of a photomask, (a) is a schematic plan view, (b) is AA sectional drawing of (a). 従来のフォトマスクの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the conventional photomask.

以下、本発明に係るフォトマスクの検査方法およびフォトマスクの製造方法について説明する。   Hereinafter, a photomask inspection method and a photomask manufacturing method according to the present invention will be described.

<フォトマスクの検査方法>
まず、本発明に係るフォトマスクの検査方法について説明する。
図1は、本発明に係るフォトマスクの検査方法の一例を説明する図である。
例えば、図1に示すように、本発明に係るフォトマスクの検査方法においては、フォトマスク10の遮光領域パターン15が形成された遮光領域と透明基板13が露出する透明領域14にそれぞれ、露光光と同一波長のエキシマレーザー光21a、21bを照射し、遮光領域を透過する第1の透過光22a及び透明領域を透過する第2の透過光22bの各光強度分布をそれぞれ撮像素子(図示せず)で測定し、撮像素子で測定した、第1の透過光22aと第2の透過光22bの各光強度分布を比較して、遮光領域パターン15の光学濃度を取得する。
上記の撮像素子としては、CCD(Charge Coupled Device、電荷結合素子)等を用いることができる。
<Photomask inspection method>
First, a photomask inspection method according to the present invention will be described.
FIG. 1 is a diagram for explaining an example of a photomask inspection method according to the present invention.
For example, as shown in FIG. 1, in the photomask inspection method according to the present invention, the exposure light is respectively applied to the light shielding region where the light shielding region pattern 15 of the photomask 10 is formed and the transparent region 14 where the transparent substrate 13 is exposed. Each of the light intensity distributions of the first transmitted light 22a that is irradiated with excimer laser beams 21a and 21b having the same wavelength as that of the first transmitted light and transmitted through the light shielding region and the second transmitted light 22b that is transmitted through the transparent region is image sensor (not shown). ) And the respective light intensity distributions of the first transmitted light 22a and the second transmitted light 22b measured by the image sensor, and the optical density of the light shielding region pattern 15 is obtained.
As the imaging element, a CCD (Charge Coupled Device) or the like can be used.

なお、図1においては、フォトマスク10の膜面側(遮光領域パターン15側)からエキシマレーザー光21a、21bを照射する形態を例示しているが、本発明に係るフォトマスクの検査方法においては、この形態に限定されず、フォトマスク10の裏面側(透明基板13側)からエキシマレーザー光21a、21bを照射する形態であっても良い。   FIG. 1 shows an example in which excimer laser beams 21a and 21b are irradiated from the film surface side (light shielding region pattern 15 side) of the photomask 10, but in the photomask inspection method according to the present invention, However, the present invention is not limited to this mode, and a mode in which excimer laser beams 21a and 21b are irradiated from the back surface side (transparent substrate 13 side) of the photomask 10 may be used.

上記のように、本発明に係るフォトマスクの検査方法においては、各種製造工程を経たフォトマスクの状態で、露光光と同一波長の光を用いて、遮光領域を透過する第1の透過光と透明領域を透過する第2の透過光の各光強度分布をそれぞれCCD等の撮像素子で測定し、測定した第1の透過光と第2の透過光の各光強度分布を比較して、遮光領域パターンの光学濃度を取得するため、遮光領域パターンの光学濃度をより正確に取得することができる。   As described above, in the photomask inspection method according to the present invention, in the state of the photomask that has undergone various manufacturing steps, the first transmitted light that passes through the light shielding region using light having the same wavelength as the exposure light, Each light intensity distribution of the second transmitted light that passes through the transparent region is measured by an image sensor such as a CCD, and the measured light intensity distributions of the first transmitted light and the second transmitted light are compared to block light. Since the optical density of the area pattern is acquired, the optical density of the light shielding area pattern can be acquired more accurately.

また、上記のように、本発明に係るフォトマスクの検査方法においては、フォトマスク10の遮光領域を透過する第1の透過光22aと透明領域14を透過する第2の透過光22bの測定に、露光光と同一波長(例えば、193nm)のエキシマレーザー光21a、21bを用いる。すなわち、測定に用いる光には、分光光度計を用いる場合の重水素ランプの光のような不要な波長の光は含まれていない。   In addition, as described above, in the photomask inspection method according to the present invention, the first transmitted light 22a that passes through the light-shielding region of the photomask 10 and the second transmitted light 22b that passes through the transparent region 14 are measured. Excimer laser beams 21a and 21b having the same wavelength as the exposure light (for example, 193 nm) are used. That is, the light used for the measurement does not include light having an unnecessary wavelength, such as light from a deuterium lamp when a spectrophotometer is used.

それゆえ、不要な波長の光を排除することによるエネルギーロスがなく、従来の重水素ランプの光を分波して得られる光よりも高いエネルギーが得られるため、測定精度の低下を抑えつつ、エキシマレーザー光21a、21bのスポット径を100μm以下の大きさにできる。そして、スポット径を小さくできるため、より露光領域11に近接した遮光領域パターン15の光学濃度を正確に取得できる。   Therefore, there is no energy loss due to eliminating light of unnecessary wavelength, and higher energy is obtained than the light obtained by demultiplexing the light of the conventional deuterium lamp, thus suppressing the decrease in measurement accuracy, The spot diameter of the excimer laser beams 21a and 21b can be made 100 μm or less. And since a spot diameter can be made small, the optical density of the light shielding area | region pattern 15 nearer to the exposure area | region 11 can be acquired correctly.

また、本発明に係るフォトマスクの検査方法においては、従来の分光光度計に用いられる光電子増倍管と異なり、CCD等の撮像素子で測定することにより、画素数に応じた分解能で、第1の透過光22a及び第2の透過光22bの各光強度分布を測定することが可能になる。
それゆえ、遮光領域を透過する第1の透過光22aの光強度と、透明領域14を透過する第2の透過光22bの光強度の各分布曲線を比較することで、より正確な遮光領域パターン15の光学濃度の値を得ることができる。
In addition, in the photomask inspection method according to the present invention, unlike the photomultiplier tube used in the conventional spectrophotometer, the first measurement is performed with an image sensor such as a CCD, and the first resolution is obtained according to the number of pixels. Each light intensity distribution of the transmitted light 22a and the second transmitted light 22b can be measured.
Therefore, by comparing the distribution curves of the light intensity of the first transmitted light 22a that passes through the light shielding area and the light intensity of the second transmitted light 22b that passes through the transparent area 14, a more accurate light shielding area pattern can be obtained. A value of 15 optical densities can be obtained.

より具体的には、例えば、第1の透過光22aの光強度分布において、スポット径中心付近の数値変動が小さい範囲の値を第1の透過光22aの光強度とし、同様に、第2の透過光22bの光強度分布において、スポット径中心付近の数値変動が小さい範囲の値を第2の透過光22bの光強度とし、両者の差分を取ることで、より正確な遮光領域パターン15の光学濃度の値を得ることができる。   More specifically, for example, in the light intensity distribution of the first transmitted light 22a, a value in a range where the numerical variation near the center of the spot diameter is small is set as the light intensity of the first transmitted light 22a. In the light intensity distribution of the transmitted light 22b, a value in a range where the numerical variation near the center of the spot diameter is small is set as the light intensity of the second transmitted light 22b, and the difference between the two is taken, so that the optical of the light-shielding region pattern 15 can be more accurate. A concentration value can be obtained.

ここで、本発明に係るフォトマスクの検査方法においては、第1の透過光22a及び第2の透過光22bを拡大せずにCCD等の撮像素子で測定することもできるが、第1の透過光22a及び第2の透過光22bを、拡大レンズで拡大した後にCCD等の撮像素子で測定することが、より好ましい。拡大レンズで拡大することにより、画素サイズが大きいCCD等の撮像素子であっても、より高精度に光強度分布を測定できるからである。   Here, in the photomask inspection method according to the present invention, the first transmission light 22a and the second transmission light 22b can be measured by an image pickup device such as a CCD without enlarging the first transmission light 22a and the second transmission light 22b. More preferably, the light 22a and the second transmitted light 22b are magnified by a magnifying lens and then measured by an imaging device such as a CCD. This is because by magnifying with a magnifying lens, the light intensity distribution can be measured with higher accuracy even with an image sensor such as a CCD having a large pixel size.

本発明において、上記の拡大レンズによる拡大の範囲は、高精度に光強度分布を測定できる範囲であれば特に制限されないが、好適な範囲として、例えば100倍〜200倍に拡大することを挙げることができる。   In the present invention, the range of magnification by the above magnifying lens is not particularly limited as long as the light intensity distribution can be measured with high accuracy, but as a suitable range, for example, enlarging to 100 to 200 times is mentioned. Can do.

図2は、本発明に係るフォトマスクの検査方法に用いる検査装置の構成例を示す図である。
図2に示すように、検査装置30は、エキシマレーザー光源31、コンデンサレンズ32、拡大レンズ33、CCD34を有しており、
コンデンサレンズ32と拡大レンズ33の間に、測定対象のフォトマスク10が配置される。なお図示は省略するが、検査装置30は、フォトマスク移動機構も備えており、このフォトマスク移動機構により、フォトマスク10の所望の箇所にエキシマレーザー光を照射することができる。
FIG. 2 is a diagram showing a configuration example of an inspection apparatus used in the photomask inspection method according to the present invention.
As shown in FIG. 2, the inspection apparatus 30 has an excimer laser light source 31, a condenser lens 32, a magnifying lens 33, and a CCD 34.
The photomask 10 to be measured is disposed between the condenser lens 32 and the magnifying lens 33. Although illustration is omitted, the inspection apparatus 30 also includes a photomask moving mechanism, and the photomask moving mechanism can irradiate a desired portion of the photomask 10 with excimer laser light.

検査装置30において、エキシマレーザー光源31から発せられたエキシマレーザー光41は、所定のスポット径を有する平行光42として、フォトマスク10の所望の遮光領域又は透明領域に照射され、透過光43は拡大レンズ33で拡大され、拡大された透過光44の光強度分布がCCD34で測定される。   In the inspection apparatus 30, the excimer laser light 41 emitted from the excimer laser light source 31 is irradiated as a parallel light 42 having a predetermined spot diameter to a desired light-shielding region or transparent region of the photomask 10, and the transmitted light 43 is enlarged. The light intensity distribution of the transmitted light 44 magnified by the lens 33 is measured by the CCD 34.

また、本発明に係るフォトマスクの検査方法においては、図3に示すように、第1の透過光22aを蛍光板51に当て、この蛍光板から放射される光(第1の放射光52a)をCCD53で測定しても良い。同様に、第2の透過光22bを蛍光板51に当て、この蛍光板から放射される光(第2の放射光52b)をCCD53で測定しても良い。   Further, in the photomask inspection method according to the present invention, as shown in FIG. 3, the first transmitted light 22a is applied to the fluorescent plate 51, and the light emitted from the fluorescent plate (first emitted light 52a) is applied to the CCD 53. You may measure with. Similarly, the second transmitted light 22 b may be applied to the fluorescent plate 51, and the light emitted from the fluorescent plate (second emitted light 52 b) may be measured by the CCD 53.

第1の透過光22aや第2の透過光22bのように、露光光と同一波長(例えば193nm)の光を測定できるCCDは一般に高価であるが、上記のように、第1の透過光22aや第2の透過光22bを蛍光板51に当てることで、より安価なCCDでも測定可能な波長の放射光(第1の放射光52aや第2の放射光52b)を生じさせることができる。
そして、この第1の放射光52aや第2の放射光52bを測定することで、より安価なCCDを用いる場合であっても、所望の光強度分布を測定することができる。
A CCD that can measure light having the same wavelength as the exposure light (for example, 193 nm), such as the first transmitted light 22a and the second transmitted light 22b, is generally expensive, but as described above, the first transmitted light 22a In addition, by applying the second transmitted light 22b to the fluorescent plate 51, it is possible to generate radiated light (first radiated light 52a and second radiated light 52b) having a wavelength that can be measured by a cheaper CCD.
By measuring the first radiated light 52a and the second radiated light 52b, a desired light intensity distribution can be measured even when a cheaper CCD is used.

<フォトマスクの製造方法>
次に、本発明に係るフォトマスクの製造方法について説明する。
図4は、本発明に係るフォトマスクの製造方法の一例を示すフローチャートである。
図4に示すように、本発明に係るフォトマスクの製造方法においては、まず、遮光材料層が主面に設けられたフォトマスクブランクを準備し(S1)、次に、準備したフォトマスクブランクを加工して遮光領域パターンを含む各種パターンを形成し(S2)、その後、上記の本発明に係るフォトマスクの検査方法を用いて、形成した遮光領域パターンの光学濃度を取得する(S4)。
<Photomask manufacturing method>
Next, a method for manufacturing a photomask according to the present invention will be described.
FIG. 4 is a flowchart showing an example of a photomask manufacturing method according to the present invention.
As shown in FIG. 4, in the photomask manufacturing method according to the present invention, first, a photomask blank provided with a light shielding material layer on the main surface is prepared (S1), and then the prepared photomask blank is prepared. Various patterns including the light shielding area pattern are formed by processing (S2), and then the optical density of the formed light shielding area pattern is obtained by using the photomask inspection method according to the present invention (S4).

上記のように、本発明に係るフォトマスクの製造方法においては、遮光領域パターンを含む各種パターン形成工程の後に、上記の本発明に係るフォトマスクの検査方法を用いて、遮光領域パターンの光学濃度を取得する工程を備える。
それゆえ、従来のように、各種パターン形成前のフォトマスクブランクの状態で遮光材料層の透過光を測定し、その測定値から算出した光学濃度を、フォトマスクの遮光領域パターンの光学濃度としていた場合に比べ、実際に形成したフォトマスクの遮光領域パターンの光学濃度を、より正確に取得することができる。
これにより、本発明のフォトマスクの製造方法によれば、各種製造工程を経たフォトマスクの状態で遮光領域パターンの光学濃度を保証することができる。
As described above, in the photomask manufacturing method according to the present invention, the optical density of the light shielding region pattern is obtained using the photomask inspection method according to the present invention after various pattern forming steps including the light shielding region pattern. The process of acquiring.
Therefore, as before, the transmitted light of the light shielding material layer was measured in the state of the photomask blank before forming various patterns, and the optical density calculated from the measured value was used as the optical density of the light shielding area pattern of the photomask. Compared to the case, the optical density of the light shielding region pattern of the actually formed photomask can be obtained more accurately.
Thereby, according to the photomask manufacturing method of the present invention, it is possible to guarantee the optical density of the light shielding region pattern in the state of the photomask that has undergone various manufacturing processes.

また、本発明に係るフォトマスクの製造方法においては、図4に示すように、遮光領域パターンを含む各種パターンを形成した後にフォトマスクを洗浄し(S3)、その後、上記の本発明に係るフォトマスクの検査方法を用いて、形成した遮光領域パターンの光学濃度を取得する(S4)ことが、より好ましい。
洗浄工程を経た出荷直前の状態におけるフォトマスクの遮光領域パターンの光学濃度を保証することができるからである。
Further, in the photomask manufacturing method according to the present invention, as shown in FIG. 4, after the formation of various patterns including a light shielding region pattern, the photomask is washed (S3), and then the photomask according to the present invention described above. It is more preferable to obtain the optical density of the formed light shielding region pattern using a mask inspection method (S4).
This is because it is possible to guarantee the optical density of the light shielding region pattern of the photomask in a state just before shipment after the cleaning process.

上記の本発明に係るフォトマスクの製造方法について、図5及び図6を用いて、より詳しく説明する。ここで、図5及び図6は、本発明に係るフォトマスクの製造方法の一例を示す概略工程図である。   The above-described photomask manufacturing method according to the present invention will be described in more detail with reference to FIGS. Here, FIG. 5 and FIG. 6 are schematic process diagrams showing an example of a photomask manufacturing method according to the present invention.

本発明に係るフォトマスクの製造方法においては、図5(a)に示すように、まず、透明基板13の上に、遮光材料層61が設けられたフォトマスクブランク60を準備する。   In the photomask manufacturing method according to the present invention, as shown in FIG. 5A, first, a photomask blank 60 provided with a light shielding material layer 61 on a transparent substrate 13 is prepared.

次に、遮光材料層61の上にレジスト63を形成し(図5(b))、続いて、電子線71等を用いたパターン描画及び現像を施し(図5(c))、レジストパターン63Pを形成する(図5(d))。
ここで、レジストパターン63Pは、マスクパターン12を形成することになるレジストパターン63a、および、遮光領域パターン15を形成することになるレジストパターン63bを含んでいる。
Next, a resist 63 is formed on the light shielding material layer 61 (FIG. 5B), followed by pattern drawing and development using an electron beam 71 or the like (FIG. 5C), and a resist pattern 63P. Is formed (FIG. 5D).
Here, the resist pattern 63P includes a resist pattern 63a that forms the mask pattern 12 and a resist pattern 63b that forms the light shielding region pattern 15.

次に、レジストパターン63Pから露出する遮光材料層61をドライエッチングし(図6(e))、その後レジストパターン63Pを除去して(図6(f))、透明基板13の上にマスクパターン12と遮光領域パターン15を有するフォトマスク10を得る。   Next, the light shielding material layer 61 exposed from the resist pattern 63P is dry-etched (FIG. 6E), and then the resist pattern 63P is removed (FIG. 6F), and the mask pattern 12 is formed on the transparent substrate 13. A photomask 10 having a light shielding region pattern 15 is obtained.

次に、上記工程で得られたフォトマスク10を洗浄し、その後、図6(g)に示すように、フォトマスク10の遮光領域パターン15が形成された領域と透明基板13が露出する透明領域14に、それぞれ露光光と同一波長のエキシマレーザー光21a、21bを照射し、遮光領域を透過する第1の透過光22a及び透明領域14を透過する第2の透過光22bの各光強度分布をCCD等の撮像素子で測定し、測定した第1の透過光22aと第2の透過光22bの各光強度分布を比較して、遮光領域パターン15の光学濃度を取得する。   Next, the photomask 10 obtained in the above step is washed, and then, as shown in FIG. 6G, the region where the light shielding region pattern 15 of the photomask 10 is formed and the transparent region where the transparent substrate 13 is exposed. 14 are irradiated with excimer laser beams 21a and 21b having the same wavelength as the exposure light, respectively, and the respective light intensity distributions of the first transmitted light 22a that passes through the light shielding region and the second transmitted light 22b that passes through the transparent region 14 are shown. The optical density of the light shielding region pattern 15 is obtained by measuring with an image pickup device such as a CCD and comparing the measured light intensity distributions of the first transmitted light 22a and the second transmitted light 22b.

以上、本発明に係るフォトマスクの検査方法およびフォトマスクの製造方法について、それぞれの実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる場合であっても本発明の技術的範囲に包含される。   As mentioned above, although each embodiment was described about the inspection method of a photomask and the manufacturing method of a photomask which concern on this invention, this invention is not limited to the said embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect regardless of the case. Are included in the technical scope.

以下に実施例を示して、本発明をさらに具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

[実施例1]
(フォトマスクの製造)
外形152mm×152mm、厚さ6.35mmの透明基板の上に、遮光材料層として膜厚70nmのクロム(Cr)膜を有するフォトマスクブランクを準備した。
次に、上記のクロム膜(Cr)の上に電子線レジストを塗布し、電子線描画装置にてパターン描画および現像を施し、所望のレジストパターンを形成した。
次に、塩素と酸素の混合ガスでレジストパターンから露出するクロム膜をドライエッチングして、所望のマスクパターンおよび遮光領域パターンを形成し、その後、レジストパターンを酸素プラズマでアッシング除去し、硫酸過水で洗浄して、実施例1のフォトマスクを得た。
[Example 1]
(Manufacture of photomasks)
A photomask blank having a chromium (Cr) film having a thickness of 70 nm as a light shielding material layer on a transparent substrate having an outer shape of 152 mm × 152 mm and a thickness of 6.35 mm was prepared.
Next, an electron beam resist was applied onto the chromium film (Cr), and pattern drawing and development were performed with an electron beam drawing apparatus to form a desired resist pattern.
Next, the chromium film exposed from the resist pattern is dry-etched with a mixed gas of chlorine and oxygen to form a desired mask pattern and a light-shielding region pattern. The photomask of Example 1 was obtained.

(光学濃度の測定)
上記のようにして得られたフォトマスクの遮光領域と透明領域にそれぞれ、波長193nm、スポット径80μmのエキシマレーザー光を照射し、遮光領域を透過する第1の透過光及び透明領域を透過する第2の透過光を、それぞれ光学レンズで150倍に拡大した後にCCDで測定した。
結果を図7に示す。なお、図7に示す光強度分布は、上記の第2の透過光の光強度の値を1として、上記の第1の透過光のスポット径の中心から半径5μmの範囲内の光強度の分布を示すものである。
(Measurement of optical density)
Excimer laser light having a wavelength of 193 nm and a spot diameter of 80 μm is irradiated to the light-shielding region and the transparent region of the photomask obtained as described above, respectively, and the first transmitted light that passes through the light-shielding region and the first light that passes through the transparent region. Each of the two transmitted lights was magnified 150 times with an optical lens and then measured with a CCD.
The results are shown in FIG. The light intensity distribution shown in FIG. 7 is a light intensity distribution within a radius of 5 μm from the center of the spot diameter of the first transmitted light, where the value of the light intensity of the second transmitted light is 1. Is shown.

(評価)
図7に示すように、得られた光強度の値は、安定して0.0011〜0.0012の範囲にあり、これは、遮光領域パターンの透過率が0.11%〜0.12%の範囲、すなわち、遮光領域パターンの光学濃度が2.9〜3.0の範囲であることを示している。
すなわち、本発明に係るフォトマスクの検査方法により、各種製造工程を経たフォトマスクの遮光領域パターンの光学濃度を、精度良く取得することができることが確認された。
(Evaluation)
As shown in FIG. 7, the obtained light intensity values are stably in the range of 0.0011 to 0.0012. This is because the transmittance of the light shielding region pattern is 0.11% to 0.12%. In other words, the optical density of the light shielding region pattern is in the range of 2.9 to 3.0.
That is, it was confirmed that the optical density of the light-shielding region pattern of the photomask that has undergone various manufacturing steps can be obtained with high accuracy by the photomask inspection method according to the present invention.

10 フォトマスク
11 露光領域
12 マスクパターン
13 透明基板
14 透明領域
15 遮光領域パターン
21a、21b エキシマレーザー光
22a 第1の透過光
22b 第2の透過光
30 検査装置
31 エキシマレーザー光源
32 コンデンサレンズ
33 拡大レンズ
34 CCD
41 エキシマレーザー光
42 平行光
43、44 透過光
51 蛍光板
52a 第1の放射光
52b 第2の放射光
53 CCD
60 フォトマスクブランク
61 遮光材料層
61P 遮光材料パターン
63 レジスト
63P レジストパターン
71 電子線
100 フォトマスク
101 露光領域
102 マスクパターン
103 透明基板
104 透明領域
105 遮光領域パターン
DESCRIPTION OF SYMBOLS 10 Photomask 11 Exposure area | region 12 Mask pattern 13 Transparent substrate 14 Transparent area 15 Light-shielding area pattern 21a, 21b Excimer laser beam 22a 1st transmitted light 22b 2nd transmitted light 30 Inspection apparatus 31 Excimer laser light source 32 Condenser lens 33 Magnifying lens 34 CCD
41 Excimer laser light 42 Parallel light 43, 44 Transmitted light 51 Fluorescent plate 52a First emitted light 52b Second emitted light 53 CCD
60 Photomask blank 61 Light shielding material layer 61P Light shielding material pattern 63 Resist 63P Resist pattern 71 Electron beam 100 Photomask 101 Exposure region 102 Mask pattern 103 Transparent substrate 104 Transparent region 105 Light shielding region pattern

Claims (6)

透明基板の上に露光光を遮光する遮光領域パターンを有するフォトマスクの検査方法であって、
前記フォトマスクの前記遮光領域パターンが形成された遮光領域と前記透明基板が露出する透明領域にそれぞれ、前記露光光と同一波長のエキシマレーザー光を照射し、
前記遮光領域を透過する第1の透過光及び前記透明領域を透過する第2の透過光の各光強度分布をそれぞれ撮像素子で測定し、
前記撮像素子で測定した、前記第1の透過光と前記第2の透過光の各光強度分布を比較して、前記遮光領域パターンの光学濃度を取得することを特徴とするフォトマスクの検査方法。
A photomask inspection method having a light shielding region pattern for shielding exposure light on a transparent substrate,
Irradiating a light shielding region where the light shielding region pattern of the photomask is formed and a transparent region where the transparent substrate is exposed, respectively, with an excimer laser beam having the same wavelength as the exposure light;
Each light intensity distribution of the 1st transmitted light which permeate | transmits the said light-shielding area | region and the 2nd transmitted light which permeate | transmits the said transparent area | region is measured with an image pick-up element, respectively.
A method for inspecting a photomask, comprising: comparing optical intensity distributions of the first transmitted light and the second transmitted light measured by the imaging device to obtain an optical density of the light shielding region pattern. .
前記遮光領域に照射される前記エキシマレーザー光のスポット径が、100μm以下の大きさであることを特徴とする請求項1に記載のフォトマスクの検査方法。   The photomask inspection method according to claim 1, wherein a spot diameter of the excimer laser light applied to the light shielding region is 100 μm or less. 前記第1の透過光及び前記第2の透過光を、拡大レンズで拡大した後に撮像素子で測定することを特徴とする請求項1または請求項2に記載のフォトマスクの検査方法。   3. The photomask inspection method according to claim 1, wherein the first transmitted light and the second transmitted light are measured by an imaging device after being magnified by a magnifying lens. 4. 前記第1の透過光及び前記第2の透過光をそれぞれ蛍光板に当て、該蛍光板から放射される光を撮像素子で測定することにより、前記第1の透過光及び前記第2の透過光の各光強度分布を測定することを特徴とする請求項1乃至請求項3のいずれか一項に記載のフォトマスクの検査方法。   Each of the first transmitted light and the second transmitted light is measured by applying the first transmitted light and the second transmitted light to the fluorescent plate and measuring the light emitted from the fluorescent plate with an imaging device. The photomask inspection method according to any one of claims 1 to 3, wherein the light intensity distribution is measured. 透明基板の上に露光光を遮光する遮光領域パターンを形成する工程と、
請求項1乃至請求項4のいずれか一項に記載のフォトマスクの検査方法を用いて前記遮光領域パターンの光学濃度を取得する工程を、
順に備えることを特徴とするフォトマスクの製造方法。
Forming a light shielding region pattern for shielding exposure light on a transparent substrate;
The step of acquiring the optical density of the light shielding region pattern using the photomask inspection method according to claim 1,
A method for manufacturing a photomask, comprising: sequentially.
前記遮光領域パターンを形成する工程の後であって、前記遮光領域パターンの光学濃度を取得する工程の前に、洗浄工程を備えることを特徴とする請求項5に記載のフォトマスクの製造方法。

6. The method of manufacturing a photomask according to claim 5, further comprising a cleaning step after the step of forming the light shielding region pattern and before the step of acquiring the optical density of the light shielding region pattern.

JP2014110667A 2014-05-28 2014-05-28 Photomask inspection method and photomask manufacturing method Active JP6375696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110667A JP6375696B2 (en) 2014-05-28 2014-05-28 Photomask inspection method and photomask manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110667A JP6375696B2 (en) 2014-05-28 2014-05-28 Photomask inspection method and photomask manufacturing method

Publications (2)

Publication Number Publication Date
JP2015225257A true JP2015225257A (en) 2015-12-14
JP6375696B2 JP6375696B2 (en) 2018-08-22

Family

ID=54842024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110667A Active JP6375696B2 (en) 2014-05-28 2014-05-28 Photomask inspection method and photomask manufacturing method

Country Status (1)

Country Link
JP (1) JP6375696B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210250A (en) * 1988-10-12 1990-08-21 Hitachi Ltd Method and device for detecting fault of photomask
JPH06130651A (en) * 1992-09-07 1994-05-13 Fujitsu Ltd Photomask, production and inspection thereof and dry-etching method for transparent substrate
JPH07104458A (en) * 1993-10-01 1995-04-21 Dainippon Printing Co Ltd Transmission factor measuring method and device
JPH07333827A (en) * 1994-06-06 1995-12-22 Canon Inc Foreign matter inspecting device and production of semiconductor device by using the same
JPH0894338A (en) * 1994-09-26 1996-04-12 Toshiba Corp Mask inspection device
JPH08106154A (en) * 1994-10-06 1996-04-23 Fujitsu Ltd Method for inspecting halftone phase shift reticle
JPH08124828A (en) * 1994-10-24 1996-05-17 Nec Corp Exposure light projection device
JP2002251000A (en) * 2001-02-26 2002-09-06 Semiconductor Leading Edge Technologies Inc Method of manufacturing phase shift mask, phase shift mask, phase shift mask blank and method of manufacturing semiconductor device
JP2006078991A (en) * 2004-09-13 2006-03-23 Hoya Corp Transparent substrate for mask blank, and the mask blank
US20080041716A1 (en) * 2006-08-18 2008-02-21 Schott Lithotec Usa Corporation Methods for producing photomask blanks, cluster tool apparatus for producing photomask blanks and the resulting photomask blanks from such methods and apparatus
JP2010079192A (en) * 2008-09-29 2010-04-08 Fujitsu Microelectronics Ltd Method of manufacturing photomask
JP2011008021A (en) * 2009-06-25 2011-01-13 Fujitsu Semiconductor Ltd Phase-shift mask inspecting method
US20110090329A1 (en) * 2009-08-24 2011-04-21 Carl Zeiss Sms Gmbh Method for emulation of a photolithographic process and mask inspection microscope for performing the method
WO2013011112A1 (en) * 2011-07-20 2013-01-24 Carl Zeiss Sms Ltd. Method and apparatus for determining a critical dimension variation of a photolithographic mask

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210250A (en) * 1988-10-12 1990-08-21 Hitachi Ltd Method and device for detecting fault of photomask
JPH06130651A (en) * 1992-09-07 1994-05-13 Fujitsu Ltd Photomask, production and inspection thereof and dry-etching method for transparent substrate
JPH07104458A (en) * 1993-10-01 1995-04-21 Dainippon Printing Co Ltd Transmission factor measuring method and device
JPH07333827A (en) * 1994-06-06 1995-12-22 Canon Inc Foreign matter inspecting device and production of semiconductor device by using the same
JPH0894338A (en) * 1994-09-26 1996-04-12 Toshiba Corp Mask inspection device
JPH08106154A (en) * 1994-10-06 1996-04-23 Fujitsu Ltd Method for inspecting halftone phase shift reticle
JPH08124828A (en) * 1994-10-24 1996-05-17 Nec Corp Exposure light projection device
JP2002251000A (en) * 2001-02-26 2002-09-06 Semiconductor Leading Edge Technologies Inc Method of manufacturing phase shift mask, phase shift mask, phase shift mask blank and method of manufacturing semiconductor device
JP2006078991A (en) * 2004-09-13 2006-03-23 Hoya Corp Transparent substrate for mask blank, and the mask blank
US20080041716A1 (en) * 2006-08-18 2008-02-21 Schott Lithotec Usa Corporation Methods for producing photomask blanks, cluster tool apparatus for producing photomask blanks and the resulting photomask blanks from such methods and apparatus
JP2010079192A (en) * 2008-09-29 2010-04-08 Fujitsu Microelectronics Ltd Method of manufacturing photomask
JP2011008021A (en) * 2009-06-25 2011-01-13 Fujitsu Semiconductor Ltd Phase-shift mask inspecting method
US20110090329A1 (en) * 2009-08-24 2011-04-21 Carl Zeiss Sms Gmbh Method for emulation of a photolithographic process and mask inspection microscope for performing the method
WO2013011112A1 (en) * 2011-07-20 2013-01-24 Carl Zeiss Sms Ltd. Method and apparatus for determining a critical dimension variation of a photolithographic mask

Also Published As

Publication number Publication date
JP6375696B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP4912241B2 (en) Inspection method and inspection apparatus, lithographic apparatus, lithographic processing cell, and device manufacturing method
JP6609568B2 (en) Inspection using differential die and differential database
KR102145075B1 (en) Time-varyng intensity map generation for reticles
KR101070558B1 (en) Inspection method of photo mask, manufacturing method of photo mask, manufacturing method of electronic device, test mask and test mask set
JP5178561B2 (en) Pattern inspection method, pattern inspection apparatus, photomask manufacturing method, and pattern transfer method
JP2006301631A (en) Photomask structure providing improved photolithographic step window and method of manufacturing the same
JP5097520B2 (en) Gray-tone mask inspection method, gray-tone mask manufacturing method for liquid crystal device manufacturing, and pattern transfer method
JP2004012779A (en) Method for inspecting mask and device for inspecting mask defect
JP2011169743A (en) Inspection apparatus and inspection method
JP5097517B2 (en) Proximity exposure photomask inspection apparatus, proximity exposure photomask inspection method, proximity exposure photomask manufacturing method, and pattern transfer method
JP2011192792A (en) Pattern size measuring method
JP6375696B2 (en) Photomask inspection method and photomask manufacturing method
US20110116705A1 (en) Method of measuring focal variations of a photolithography apparatus and a method of fabricating a semiconductor device using the focal variations measuring method
US9619878B2 (en) Inspecting high-resolution photolithography masks
JP4997748B2 (en) Photomask transfer simulation method having focus monitor mark
JP2008140795A (en) Stepper and method, and process for fabricating device
JP2014165275A (en) Exposure method and exposure system
JP6394422B2 (en) Defect inspection method and inspection light irradiation method
JP2003043665A (en) Method of manufacturing photomask
JP5525838B2 (en) Mask blank substrate, mask blank, transfer mask, and semiconductor device manufacturing method
JP2003330163A (en) Apparatus and method for inspecting photomask
KR20190013517A (en) Method for inspecting a photomask, method for manufacturing a photomask, and apparatus for inspecting a photomask
JP5005370B2 (en) Halftone mask and patterning method using the same
JP2009198737A (en) Method for evaluating photomask defect transfer characteristic, and photomask
JP2012123409A (en) Test mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6375696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150