JP2015224555A - Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit - Google Patents

Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit Download PDF

Info

Publication number
JP2015224555A
JP2015224555A JP2014108196A JP2014108196A JP2015224555A JP 2015224555 A JP2015224555 A JP 2015224555A JP 2014108196 A JP2014108196 A JP 2014108196A JP 2014108196 A JP2014108196 A JP 2014108196A JP 2015224555 A JP2015224555 A JP 2015224555A
Authority
JP
Japan
Prior art keywords
temperature
thermometer
vortex
discharge port
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014108196A
Other languages
Japanese (ja)
Inventor
朋生 伊藤
Tomoo Ito
朋生 伊藤
諭 武田
Satoshi Takeda
諭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2014108196A priority Critical patent/JP2015224555A/en
Publication of JP2015224555A publication Critical patent/JP2015224555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vortex flow fan which can be pressure-controlled through measurement of value of exhaust gas temperature increase.SOLUTION: A vortex flow fan system is provided which comprises: a vortex flow fan 100 including a fan casing having an annular flow passage ranging from a suction port to a discharge port, an impeller stored in the fan casing and generating vortex flow in the annular flow passage and a motor for rotationally driving the impeller; a first thermometer for measuring a suction side temperature at the suction port; a second thermometer 401 for measuring a temperature of discharge side at the discharge port; a solenoid valve 403 arranged at a flow passage of the discharge port; and a controller 402 for controlling opening/closing of the solenoid valve 403. The first thermometer and the second thermometer 401 are connected to the controller 402, which operates to open the solenoid valve 403 when an exhaust gas temperature increasing value that is a temperature difference between the suction side temperature and the exhaust side temperature reaches the first set temperature and to close the solenoid valve 403 when the exhaust gas temperature increasing value reaches the second set temperature lower than the first set temperature.

Description

本発明は、渦流式送風機の圧力制御に関する。 The present invention relates to pressure control of a vortex fan.

本技術分野の背景技術として、特開2013−249812号公報(特許文献1)がある。この特許文献1では、渦流式送風機の使用可能範囲を決定するのに必要なコイル温度、軸受温度の上昇値が排気温度の上昇値に連動しているので、コイル温度、軸受温度の上昇値の代用として排気温度の上昇値を用い、ファンケーシングから吐出口に至る流路に排気温度により開閉するリリーフバルブを設け、排気温度の上昇によりリリーフバルブを作動させて排気空気の一部を外部に放出し、渦流式送風機の使用可能範囲を適正化するものである。   As background art of this technical field, there is JP 2013-249812 A (Patent Document 1). In Patent Document 1, since the coil temperature and bearing temperature increase values necessary to determine the usable range of the vortex fan are linked to the exhaust temperature increase value, the coil temperature and bearing temperature increase values As an alternative, a rise value of the exhaust temperature is used, and a relief valve that opens and closes according to the exhaust temperature is provided in the flow path from the fan casing to the discharge port. When the exhaust temperature rises, the relief valve is operated to release a part of the exhaust air to the outside Therefore, the usable range of the vortex-type blower is optimized.

渦流式送風機の静圧の制御は、従来、渦流式送風機の接続配管上に圧力計を設け、圧力計の数値にて渦流式送風機の動作点の管理をしている。   Conventionally, the static pressure of the vortex fan is controlled by providing a pressure gauge on the connecting pipe of the vortex fan and managing the operating point of the vortex fan by the numerical value of the pressure gauge.

特開2013−249812号公報JP 2013-249812 A

渦流送風機の静圧の制御は圧力を圧力計にて直接測定する事により行われているが、圧力計を接続配管上に設けなくてはいけない為、測定点が接続配管により変化してしまうという課題があった。   The control of the static pressure of the vortex fan is performed by directly measuring the pressure with a pressure gauge, but the pressure gauge must be provided on the connection pipe, so the measurement point will change depending on the connection pipe. There was a problem.

本発明は、圧力計なしで圧力制御を可能にした渦流式送風機を提供するものである。   The present invention provides a vortex blower that enables pressure control without a pressure gauge.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、渦流式送風機システムであって、吸込口から吐出口に至る環状流路を有するファンケーシングと、ファンケーシングに格納された環状流路に渦流を発生させる羽根車と、羽根車を回転駆動するモータを備えた渦流式送風機と、吸込口の吸気側温度を測定する第1の温度計と、吐出口の排気側温度を測定する第2の温度計と、吐出口の流路に設けた電磁バルブと、電磁バルブの開閉制御を行うコントローラを有し、コントローラは、第1の温度計と第2の温度計が接続され、吸気側温度と排気側温度との温度差である排気温度上昇値が第1の設定温度に達した場合電磁バルブを開き、第1の設定温度より低い第2の設定温度に達した場合電磁バルブを閉じるように動作する。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. For example, a swirl type fan system having a fan casing having an annular flow path from a suction port to a discharge port, and being stored in the fan casing. An impeller that generates a vortex in the annular channel, a vortex fan provided with a motor that rotationally drives the impeller, a first thermometer that measures the intake side temperature of the suction port, and the exhaust side of the discharge port A second thermometer for measuring temperature; an electromagnetic valve provided in a flow path of the discharge port; and a controller for controlling opening and closing of the electromagnetic valve. The controller includes the first thermometer and the second thermometer. When the exhaust temperature rise value, which is the temperature difference between the intake side temperature and the exhaust side temperature, reaches the first set temperature, the electromagnetic valve is opened and the second set temperature lower than the first set temperature is reached. If you want to close the solenoid valve To work.

本発明によれば、排気温度上昇値の測定により、圧力計無しで圧力測定が可能となる。その為、測定装置の設置場所の制限を少なくし、再現が容易な圧力制御を可能にした渦流送風機を提供できる。 According to the present invention, pressure can be measured without a pressure gauge by measuring the exhaust gas temperature rise value. Therefore, it is possible to provide a vortex fan that reduces the restriction of the installation location of the measuring device and enables pressure control that is easy to reproduce.

本発明の実施例1にて使用される渦流式送風機の構成図。The block diagram of the eddy current type air blower used in Example 1 of this invention. 本発明の実施例1で使用される渦流式送風機の空力特性および排気温度特性図。The aerodynamic characteristic and exhaust temperature characteristic figure of the vortex-type air blower used in Example 1 of this invention. 本発明の実施例1における温度計、コントローラおよび電磁バルブを用いた渦流式送風機の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of the vortex-type air blower using the thermometer, controller, and electromagnetic valve in Example 1 of this invention. 本発明の実施例1における温度計の設置位置を示す図。The figure which shows the installation position of the thermometer in Example 1 of this invention. 本発明の実施例2で使用される渦流式送風機の空力特性および温度特性図。The aerodynamic characteristic and temperature characteristic figure of a vortex type air blower used in Example 2 of this invention. 本発明の実施例3における渦流式送風機ユニット。The vortex-type fan unit in Example 3 of this invention.

以下、本発明の実施例につき図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施例にて使用される渦流式送風機の構造図であり、(A)は横視図、(B)は前視図である。   FIG. 1 is a structural diagram of a vortex-type blower used in the present embodiment, where (A) is a side view and (B) is a front view.

図1(A)において、渦流式送風機100は、モータ101、ファンケーシング102、羽根車103、吸音器104により構成されており、図1(B)に示す、吸音器吸込口201より流入した空気が羽根車103の回転により圧縮されながらファンケーシング内流路105を通り、吸音器吐出口202より排出される機械である。すなわち、吸込口から吐出口に至る環状流路を有するファンケーシングと、そのファンケーシングに格納された環状流路に渦流を発生させる羽根車と、その羽根車を回転駆動するモータを備えた渦流式送風機である。   In FIG. 1 (A), the vortex-type blower 100 is composed of a motor 101, a fan casing 102, an impeller 103, and a sound absorber 104, and air that flows in from the sound absorber suction port 201 shown in FIG. 1 (B). Is a machine that passes through the fan casing flow path 105 and is discharged from the sound absorber discharge port 202 while being compressed by the rotation of the impeller 103. In other words, a fan casing having an annular flow path from the suction port to the discharge opening, an impeller that generates a vortex in the annular flow path stored in the fan casing, and a vortex type that includes a motor that rotationally drives the impeller It is a blower.

渦流式送風機は対象の負荷により圧力が上昇する。それに伴いモータのコイル温度、軸受温度および排気温度も上昇する。この時、排気温度上昇値は、渦流式送風機の吸込口から吸入される空気の温度と、渦流式送風機の吐出口から排出される空気の温度の差である。   The pressure of the vortex fan increases due to the load of the object. Along with this, the coil temperature, bearing temperature and exhaust temperature of the motor also rise. At this time, the exhaust gas temperature rise value is a difference between the temperature of the air sucked from the inlet of the vortex fan and the temperature of the air discharged from the outlet of the vortex fan.

図2は渦流式送風機の風量―圧力特性301と排気温度上昇値302の特性図を示したものである。渦流式送風機の温度上昇は圧力の上昇に連動しており、排気温度上昇値も連動している。すなわち、風量の増加(図2の横軸)に対して、圧力と排気温度上昇値は共に単調減少する特性となっている。よって、あらかじめ、風量―圧力特性と排気温度上昇値を測定しておけば、実測した排気温度上昇値から圧力を算出することができる。よって、排気温度上昇値の監視を、渦流式送風機の圧力の上昇値の監視として代用できる。   FIG. 2 is a characteristic diagram of the air volume-pressure characteristic 301 and the exhaust gas temperature rise value 302 of the vortex-type fan. The temperature rise of the vortex fan is linked to the pressure rise, and the exhaust temperature rise is also linked. That is, the pressure and the exhaust gas temperature increase value both monotonously decrease as the air volume increases (horizontal axis in FIG. 2). Therefore, if the air volume-pressure characteristics and the exhaust gas temperature rise value are measured in advance, the pressure can be calculated from the actually measured exhaust gas temperature rise value. Therefore, monitoring of the exhaust gas temperature increase value can be substituted for monitoring the pressure increase value of the vortex flow fan.

図3は、渦流式送風機に温度計401、電磁バルブ403、コントローラ402を設置した渦流式送風機システムの全体構成図である。404に示す風の流れに沿って排気空気が排出され、それを吸音器吐出口202の流路に設けた電磁バルブ403を開閉することにより渦流式送風機の圧力を調整する。   FIG. 3 is an overall configuration diagram of a vortex fan system in which a thermometer 401, an electromagnetic valve 403, and a controller 402 are installed in the vortex fan. Exhaust air is discharged along the flow of wind indicated by 404, and the pressure of the vortex fan is adjusted by opening and closing an electromagnetic valve 403 provided in the flow path of the sound absorber discharge port 202.

図4は、図3における温度計401の設置位置を説明するための図であり、図3を紙面左からみた前視図である。図4に示すように、渦流式送風機の吸音器吸込口201の吸気側と吸音器吐出口202の排気側の通風路のそれぞれに温度計401を設置する。温度計には吸気側と排気側との温度差により圧力を演算するコントローラ402が接続される。   4 is a diagram for explaining the installation position of the thermometer 401 in FIG. 3, and is a front view of FIG. 3 as viewed from the left side of the drawing. As shown in FIG. 4, a thermometer 401 is installed in each of the ventilation paths on the intake side of the sound absorber suction port 201 and the exhaust side of the sound absorber discharge port 202 of the vortex-type blower. A controller 402 is connected to the thermometer to calculate the pressure based on the temperature difference between the intake side and the exhaust side.

コントローラ402は、吸気側と排気側との温度差である排気温度上昇値から渦流式送風機の図2の特性より圧力値を演算し、設定した圧力値により信号を電磁バルブ403へ送る。コントローラ402は、所定の第1の設定温度に達した場合電磁バルブへバルブを開く信号を送り、所定の第2の設定温度に達した場合電磁バルブへバルブを閉じる信号を送る。また第1の設定温度には管理する圧力の上限値を設定し、第2の設定温度は管理する圧力の下限値を設定する。すなわち、第1の設定温度に対して第2の設定温度は低い関係となる。   The controller 402 calculates a pressure value from the exhaust temperature rise value, which is a temperature difference between the intake side and the exhaust side, based on the characteristics of the vortex-type blower shown in FIG. 2, and sends a signal to the electromagnetic valve 403 based on the set pressure value. The controller 402 sends a signal for opening the valve to the electromagnetic valve when the predetermined first set temperature is reached, and sends a signal for closing the valve to the electromagnetic valve when the predetermined second set temperature is reached. Further, the upper limit value of the pressure to be managed is set as the first set temperature, and the lower limit value of the pressure to be managed is set as the second set temperature. That is, the second set temperature is lower than the first set temperature.

電磁バルブ403は、コントローラ402から送られる信号によりバルブを開閉するセンサーを具備しており、コントローラ402より送られてくる信号によりバルブを開閉する。また電磁バルブは渦流式送風機の流路配管上であれば、何れの位置においても使用可能である。   The electromagnetic valve 403 includes a sensor that opens and closes the valve by a signal sent from the controller 402, and opens and closes the valve by a signal sent from the controller 402. Further, the electromagnetic valve can be used at any position as long as it is on the flow path piping of the vortex-type blower.

以上の説明の通り、渦流式送風機の温度計、コントローラおよび電磁バルブを使用する事により圧力計を設けずに渦流式送風機の圧力管理が可能となる。その為、測定装置の設置場所の制限を少なくし、再現が容易な圧力制御を可能にした渦流送風機を提供できる。   As described above, the pressure management of the vortex fan can be performed without providing a pressure gauge by using the thermometer, controller and electromagnetic valve of the vortex fan. Therefore, it is possible to provide a vortex fan that reduces the restriction of the installation location of the measuring device and enables pressure control that is easy to reproduce.

本実施例は、実施例1で用いた排気温度上昇値の代わりに、モータのコイル温度上昇値、または軸受温度上昇値を用いる場合について説明する。 In this embodiment, the case where the coil temperature rise value of the motor or the bearing temperature rise value is used instead of the exhaust temperature rise value used in the first embodiment will be described.

図5は、渦流式送風機の風量―圧力特性301と排気温度上昇値302に加え、コイル温度上昇値303、軸受温度上昇値304の特性図を示したものである。ここで、コイル温度上昇値および軸受温度上昇値は周囲温度との温度差である。この特性図からわかるように、渦流式送風機のコイル温度上昇値、および軸受温度上昇値は、排気温度上昇値と同様に、圧力の上昇に連動している。すなわち、風量の増加(図5の横軸)に対して、圧力とコイル温度上昇値、および軸受温度上昇値は共に単調減少する特性となっている。よって、あらかじめ、風量―圧力特性とコイル温度上昇値または軸受温度上昇値を測定しておけば、実測したコイル温度上昇値または軸受温度上昇値から圧力を算出することができる。よって、コイル温度上昇値または軸受温度上昇値の監視を、渦流式送風機の圧力の上昇値の監視として代用できる。   FIG. 5 shows a characteristic diagram of the coil temperature rise value 303 and the bearing temperature rise value 304 in addition to the air volume-pressure characteristic 301 and the exhaust temperature rise value 302 of the vortex-type blower. Here, the coil temperature rise value and the bearing temperature rise value are temperature differences from the ambient temperature. As can be seen from this characteristic diagram, the coil temperature rise value and the bearing temperature rise value of the vortex-type blower are linked to the pressure rise, similarly to the exhaust temperature rise value. In other words, the pressure, the coil temperature rise value, and the bearing temperature rise value both monotonously decrease as the air volume increases (horizontal axis in FIG. 5). Therefore, if the air volume-pressure characteristics and the coil temperature rise value or the bearing temperature rise value are measured in advance, the pressure can be calculated from the actually measured coil temperature rise value or the bearing temperature rise value. Therefore, monitoring of the coil temperature rise value or the bearing temperature rise value can be substituted for monitoring the pressure rise value of the vortex fan.

なお、送風機においてモータの異常加熱をチェックするために温度計を設置している場合には、その温度計を流用して圧力を算出できる。   In addition, when the thermometer is installed in the air blower to check the abnormal heating of the motor, the pressure can be calculated by using the thermometer.

本実施例は、渦流式送風機100と温度計401、電磁バルブ403、コントローラ402をユニット化した渦流式送付機ユニットについて説明する。
図6は、本実施例の送付機ユニットの構造図であり、(A)は横視図、(B)は前視図である。図6に示すように、渦流式送風機100と温度計401、電磁バルブ403、コントローラ402は1つの基台に配置され1つの送付機ユニットとして扱われる。
In the present embodiment, a vortex flow transmitter unit in which the vortex flow fan 100, a thermometer 401, an electromagnetic valve 403, and a controller 402 are unitized will be described.
6A and 6B are structural views of the sending machine unit of the present embodiment, where FIG. 6A is a side view and FIG. 6B is a front view. As shown in FIG. 6, the vortex fan 100, the thermometer 401, the electromagnetic valve 403, and the controller 402 are arranged on one base and handled as one sending machine unit.

本実施例によれば、あらかじめ温度計等を設置済みであるので、この配置条件で風量―圧力特性や排気温度上昇値を測定しておけば、実測した排気温度上昇値から圧力を算出する際に、配置条件が異なることによる誤差が生じることがなく、より正確に圧力を算出することが出来るという効果がある。   According to this embodiment, since a thermometer or the like has been installed in advance, if the air volume-pressure characteristics and the exhaust gas temperature rise value are measured under this arrangement condition, the pressure is calculated from the actually measured exhaust gas temperature rise value. In addition, there is an effect that the pressure can be calculated more accurately without causing an error due to different arrangement conditions.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   The present invention is not limited to the above-described embodiments, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

100:渦流式送風機、101:モータ、102:ファンケーシング、
103:羽根車、104:吸音器、105:ファンケーシング内流路、
201:吸音器吸込口、202:吸音器吐出口、301:風量−圧力特性、
302:排気温度上昇値、303:コイル温度上昇値、304:軸受温度上昇値、
401:温度計、402:コントローラ、403:電磁バルブ、
404:流路内の風の流れ
100: Eddy current blower, 101: Motor, 102: Fan casing,
103: Impeller, 104: Sound absorber, 105: Flow path in fan casing,
201: Sound absorber suction port, 202: Sound absorber discharge port, 301: Air flow-pressure characteristics,
302: Exhaust temperature rise value, 303: Coil temperature rise value, 304: Bearing temperature rise value,
401: Thermometer, 402: Controller, 403: Electromagnetic valve,
404: Flow of wind in the flow path

Claims (3)

吸込口から吐出口に至る環状流路を有するファンケーシングと、該ファンケーシングに格納された前記環状流路に渦流を発生させる羽根車と、該羽根車を回転駆動するモータを備えた渦流式送風機と、
前記吸込口の吸気側温度を測定する第1の温度計と、
前記吐出口の排気側温度を測定する第2の温度計と、
前記吐出口の流路に設けた電磁バルブと、
該電磁バルブの開閉制御を行うコントローラを有し、
該コントローラは、前記第1の温度計と第2の温度計が接続され、前記吸気側温度と排気側温度との温度差である排気温度上昇値が第1の設定温度に達した場合前記電磁バルブを開き、前記第1の設定温度より低い第2の設定温度に達した場合前記電磁バルブを閉じることを特徴とする渦流式送風機システム。
A fan casing having an annular flow path extending from the suction port to the discharge port, an impeller for generating a vortex in the annular flow passage stored in the fan casing, and a vortex blower provided with a motor for rotationally driving the impeller When,
A first thermometer for measuring an intake side temperature of the suction port;
A second thermometer for measuring the exhaust side temperature of the discharge port;
An electromagnetic valve provided in the flow path of the discharge port;
Having a controller for controlling the opening and closing of the electromagnetic valve;
The controller is connected to the first thermometer and the second thermometer, and when the exhaust temperature rise value, which is a temperature difference between the intake side temperature and the exhaust side temperature, reaches a first set temperature, the electromagnetic An eddy current blower system that opens a valve and closes the electromagnetic valve when a second set temperature lower than the first set temperature is reached.
吸込口から吐出口に至る環状流路を有するファンケーシングと、該ファンケーシングに格納された前記環状流路に渦流を発生させる羽根車と、該羽根車を回転駆動するモータを備えた渦流式送風機と、
前記吸込口の吸気側温度を測定する第1の温度計と、
前記吐出口の排気側温度を測定する第2の温度計と、
前記吐出口の流路に設けた電磁バルブと、
前記第1の温度計と第2の温度計が接続され、前記吸気側温度と排気側温度との温度差である排気温度上昇値が第1の設定温度に達した場合前記電磁バルブを開き、前記第1の設定温度より低い第2の設定温度に達した場合前記電磁バルブを閉じるコントローラを有し、
前記渦流式送風機と前記第1の温度計と前記第2の温度計と前記電磁バルブと前記コントローラが1つの基台に配置されたことを特徴とする渦流式送風機ユニット。
A fan casing having an annular flow path extending from the suction port to the discharge port, an impeller for generating a vortex in the annular flow passage stored in the fan casing, and a vortex blower provided with a motor for rotationally driving the impeller When,
A first thermometer for measuring an intake side temperature of the suction port;
A second thermometer for measuring the exhaust side temperature of the discharge port;
An electromagnetic valve provided in the flow path of the discharge port;
The first thermometer and the second thermometer are connected, and when the exhaust temperature rise value, which is the temperature difference between the intake side temperature and the exhaust side temperature, reaches the first set temperature, the electromagnetic valve is opened; A controller that closes the solenoid valve when a second set temperature lower than the first set temperature is reached;
An eddy current fan unit, wherein the vortex air fan, the first thermometer, the second thermometer, the electromagnetic valve, and the controller are arranged on one base.
吸込口から吐出口に至る環状流路を有するファンケーシングと、該ファンケーシングに格納された前記環状流路に渦流を発生させる羽根車と、該羽根車を回転駆動するモータを備えた渦流式送風機の圧力制御方法であって、
前記吸込口の吸気側温度と前記吐出口の排気側温度との温度差である排気温度上昇値が第1の設定温度に達した場合前記吐出口の流路に設けた電磁バルブを開き、前記第1の設定温度より低い第2の設定温度に達した場合前記電磁バルブを閉じることを特徴とする渦流式送風機の圧力制御方法。
A fan casing having an annular flow path extending from the suction port to the discharge port, an impeller for generating a vortex in the annular flow passage stored in the fan casing, and a vortex blower provided with a motor for rotationally driving the impeller The pressure control method of
When an exhaust temperature rise value, which is a temperature difference between the intake side temperature of the suction port and the exhaust side temperature of the discharge port, reaches a first set temperature, an electromagnetic valve provided in the flow path of the discharge port is opened, A pressure control method for a vortex-type fan, wherein the electromagnetic valve is closed when a second set temperature lower than the first set temperature is reached.
JP2014108196A 2014-05-26 2014-05-26 Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit Pending JP2015224555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108196A JP2015224555A (en) 2014-05-26 2014-05-26 Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108196A JP2015224555A (en) 2014-05-26 2014-05-26 Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit

Publications (1)

Publication Number Publication Date
JP2015224555A true JP2015224555A (en) 2015-12-14

Family

ID=54841527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108196A Pending JP2015224555A (en) 2014-05-26 2014-05-26 Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit

Country Status (1)

Country Link
JP (1) JP2015224555A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277009U (en) * 1975-12-06 1977-06-08
JPH10220390A (en) * 1997-02-06 1998-08-18 Hitachi Ltd Muffler for blower
JP2013249812A (en) * 2012-06-04 2013-12-12 Hitachi Industrial Equipment Systems Co Ltd Vortex fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277009U (en) * 1975-12-06 1977-06-08
JPH10220390A (en) * 1997-02-06 1998-08-18 Hitachi Ltd Muffler for blower
JP2013249812A (en) * 2012-06-04 2013-12-12 Hitachi Industrial Equipment Systems Co Ltd Vortex fan

Similar Documents

Publication Publication Date Title
CN110576419B (en) Safety workbench with controlled circulating air flow and method for operating the same
US9657958B2 (en) Industrial on-demand exhaust ventilation system with closed-loop regulation of duct air velocities
US10260746B2 (en) Combustion device with a side duct for measuring turbulent flows
JP5854641B2 (en) Variable air volume control device
US20160047392A1 (en) Methods and systems for controlling turbocompressors
US8746271B2 (en) Flow control valve
EP3521821A8 (en) Gas detecting device
WO2014110116A1 (en) Optimized airflow distribution system
KR101574682B1 (en) Fume hood system for laboratory with indoor suction and exhaust
EP3045733A1 (en) Motorised impeller assemblies
US9109810B2 (en) System and method for ventilating a turbine
US20200149762A1 (en) Biosafety Cabinet and Inspection Method of Exhaust Duct Connection
CN104879896A (en) Intelligent and accurate air supply system of air conditioning unit
EP2093428A1 (en) A fan assembly and method of controlling the volume flow rate of fluid through such an assembly
US20210172779A1 (en) Systems and methods for control of an air duct
CN102797692A (en) Gas emission control method and electrical equipment
JP6005181B2 (en) Preventing pump surging in compressors
CN205619496U (en) Parallelly connected double fan control system
JP4588712B2 (en) Fan with a laminar flow element in front of the suction port
JP2015224555A (en) Pressure control method of vortex flow fan, and vortex flow fan system and vortex flow fan unit
CN104965496A (en) Anti-surge control method based on anti-surge control system
US20140109653A1 (en) Intelligent pipeline pressure sensing device
JP6420711B2 (en) Ventilation system
JP2011007792A (en) Device and method for testing compressor
JP6300624B2 (en) Compression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170725