JP2015224454A - Mounting structure for solar battery panel - Google Patents

Mounting structure for solar battery panel Download PDF

Info

Publication number
JP2015224454A
JP2015224454A JP2014109388A JP2014109388A JP2015224454A JP 2015224454 A JP2015224454 A JP 2015224454A JP 2014109388 A JP2014109388 A JP 2014109388A JP 2014109388 A JP2014109388 A JP 2014109388A JP 2015224454 A JP2015224454 A JP 2015224454A
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
frame
air
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014109388A
Other languages
Japanese (ja)
Inventor
成憲 岩澤
Shigenori Iwazawa
成憲 岩澤
佐藤 寛
Hiroshi Sato
佐藤  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Homes Co Ltd
Original Assignee
Panasonic Corp
Panahome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Panahome Corp filed Critical Panasonic Corp
Priority to JP2014109388A priority Critical patent/JP2015224454A/en
Publication of JP2015224454A publication Critical patent/JP2015224454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mounting structure for a solar battery panel, which enables efficient discharge of heat on the back side of the solar battery panel.SOLUTION: In a mounting structure for mounting a solar battery panel 3 via a support crosspiece part 2 on an inclined roof 1 of a building, transverse frames 4a and 4b supporting the solar battery panel 3 and fixed onto the support crosspiece part 2 are each provided with a vent hole 410 for making air pass in an eaves-ridge direction D1 of the inclined roof 1. An air flow F2 in an upper area within an air space 7 is generated through the vent hole 410.

Description

本発明は、太陽電池パネルの取付構造に関し、詳しくは、太陽電池パネルの裏面側に空気の流れを作り出す技術に関する。   The present invention relates to a solar cell panel mounting structure, and more particularly to a technique for creating an air flow on the back side of a solar cell panel.

特許文献1に開示されるように、太陽電池パネルを傾斜屋根に取り付ける構造として、傾斜屋根に支持桟部を固定し、太陽電池パネルの縁部を支持するように取り付けたフレームを、この支持桟部上に固定する取付構造が知られている。   As disclosed in Patent Document 1, as a structure for attaching a solar cell panel to an inclined roof, a support frame is fixed to the inclined roof, and a frame attached so as to support an edge of the solar cell panel is attached to the support frame. An attachment structure for fixing on a part is known.

特開2011−106121号公報JP 2011-106121 A

前記した従来の取付構造では、支持桟部に貫通孔を設け、この貫通孔を通じて傾斜屋根上の排水と通気を行っていた。   In the conventional mounting structure described above, a through hole is provided in the support bar, and drainage and ventilation are performed on the inclined roof through the through hole.

従来の取付構造では、支持桟部にある貫通孔を通じて通気が行われるため、太陽電池パネルと傾斜屋根の間での空気の流れが、太陽電池パネルから離れた側の流れ(傾斜屋根に近い下側の流れ)になりやすい。そのため、従来の取付構造は、空気の流れによって太陽電池パネルの裏面側の熱を効率的に排出しにくいという課題を有していた。   In the conventional mounting structure, air is ventilated through the through-hole in the support beam, so that the air flow between the solar cell panel and the inclined roof flows on the side away from the solar cell panel (below the inclined roof). Side flow). Therefore, the conventional mounting structure had the subject that it was difficult to discharge | emit the heat | fever on the back surface side of a solar cell panel efficiently by the flow of air.

本発明は前記課題を解決する発明であり、太陽電池パネルの裏面側の熱を効率的に排出することのできる太陽電池パネルの取付構造を提供することを、目的とする。   This invention is invention which solves the said subject, and it aims at providing the attachment structure of the solar cell panel which can discharge | emit efficiently the heat | fever of the back surface side of a solar cell panel.

前記課題を解決するために、本発明を、下記構成を具備する太陽電池パネルの取付構造とする。   In order to solve the above problems, the present invention provides a solar cell panel mounting structure having the following configuration.

本発明は、太陽電池パネルと、支持桟部と、フレームと、空気層とを備える太陽電池パネルの取付構造である。前記太陽電池パネルは、建物の傾斜屋根に取り付けられる。前記支持桟部は、前記傾斜屋根に固定される。前記フレームは、前記太陽電池パネルの縁部を支持し、且つ、前記支持桟部上に固定される。前記空気層は、前記太陽電池パネルと前記傾斜屋根との間に形成される。前記フレームは、前記傾斜屋根の軒棟方向に空気を通過させる通気口を有する。   The present invention is a solar cell panel mounting structure including a solar cell panel, a support bar, a frame, and an air layer. The solar panel is attached to an inclined roof of a building. The support bar is fixed to the inclined roof. The frame supports an edge of the solar cell panel and is fixed on the support bar. The air layer is formed between the solar cell panel and the inclined roof. The frame has a vent hole that allows air to pass in the direction of the eaves of the inclined roof.

本発明は、太陽電池パネルの裏面側の熱を効率的に排出することができるという効果を奏する。   The present invention has an effect that heat on the back side of the solar cell panel can be efficiently discharged.

本発明の一実施形態の太陽電池パネルの取付構造を備えた建物の概略斜視図である。It is a schematic perspective view of the building provided with the attachment structure of the solar cell panel of one Embodiment of this invention. 本発明の一実施形態の太陽電池パネルの取付構造の主要部の分解斜視図である。It is a disassembled perspective view of the principal part of the attachment structure of the solar cell panel of one Embodiment of this invention. 図3Aは、本発明の一実施形態の太陽電池パネルの取付構造で用いるフレームを取り付けた太陽電池パネルの平面図であり、図3Bは、本発明の一実施形態の太陽電池パネルの取付構造で用いるフレームを取り付けた太陽電池パネルの側面図である。FIG. 3A is a plan view of a solar cell panel to which a frame used in the solar cell panel mounting structure of one embodiment of the present invention is attached, and FIG. 3B is a solar cell panel mounting structure of one embodiment of the present invention. It is a side view of the solar cell panel which attached the frame to be used. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のB断面図である。It is B sectional drawing of FIG. 図6Aは図4の要部拡大図であり、図6Bは図4の他の要部拡大図であり、図6Cは図5の要部拡大図であり、図6Dは図5の他の要部拡大図である。6A is an enlarged view of the main part of FIG. 4, FIG. 6B is an enlarged view of the other main part of FIG. 4, FIG. 6C is an enlarged view of the main part of FIG. 5, and FIG. FIG.

本発明を、添付図面に示す実施形態に基づいて説明する。   The present invention will be described based on embodiments shown in the accompanying drawings.

図1〜図6には、本発明の一実施形態の太陽電池パネルの取付構造を示している。   1 to 6 show a solar cell panel mounting structure according to an embodiment of the present invention.

本実施形態の取付構造は、図1に示すように、建物の傾斜屋根1上に複数の太陽電池パネル3,3…を配置する構造である。   The attachment structure of this embodiment is a structure which arrange | positions several solar cell panel 3,3 ... on the inclined roof 1 of a building, as shown in FIG.

以下の本文中において、傾斜屋根1の傾斜した方向を「軒棟方向D1」といい、軒棟方向D1の下側を「軒側」、軒棟方向D1の上側を「棟側」という。平面視において軒棟方向D1と直交する方向を「横方向D2」という。   In the following text, the inclined direction of the inclined roof 1 is referred to as “eave building direction D1”, the lower side of the eave building direction D1 is referred to as “eave side”, and the upper side of the eave building direction D1 is referred to as “building side”. A direction orthogonal to the eaves-ridge direction D1 in plan view is referred to as a “lateral direction D2”.

図2等に示すように、本実施形態の取付構造では、建物の傾斜屋根1の上面に、複数のベース板10を配置する。ベース板10は、軒棟方向D1に沿って複数連設し、且つ、横方向D2に沿って複数連設する。   As shown in FIG. 2 etc., in the mounting structure of this embodiment, the several base board 10 is arrange | positioned on the upper surface of the inclined roof 1 of a building. A plurality of the base plates 10 are continuously provided along the eave building direction D1, and a plurality of the base plates 10 are provided continuously along the lateral direction D2.

各ベース板10上には、横方向D2が長手方向となるように、ネジ等で支持桟部2を固定する。支持桟部2は、軒棟方向D1に貫通する通水孔20を有する。   On each base plate 10, the support bar 2 is fixed with screws or the like so that the lateral direction D <b> 2 is the longitudinal direction. The support crosspiece 2 has a water passage hole 20 penetrating in the eaves-ridge direction D1.

本実施形態では、軒棟方向D1に所定の間隔をあけて複数の支持桟部2が位置し、且つ、横方向D2に沿って複数の支持桟部2が一直線状に連続する。太陽電池パネル3は、軒棟方向D1に隣接する支持桟部2間に、架け渡して取り付ける。   In the present embodiment, the plurality of support bars 2 are positioned at a predetermined interval in the eaves building direction D1, and the plurality of support bars 2 are continuous in a straight line along the horizontal direction D2. The solar cell panel 3 is installed so as to be bridged between the support bars 2 adjacent to the eaves-ridge direction D1.

図3A、図3B等に示すように、矩形状の外形を有する太陽電池パネル3の周縁には、矩形枠状のフレーム4を取り付ける。   As shown in FIG. 3A, FIG. 3B, etc., a rectangular frame-like frame 4 is attached to the periphery of the solar cell panel 3 having a rectangular outer shape.

図6A〜図6D等に示すように、フレーム4は、太陽電池パネル3の縁部30を嵌め込んで支持するように断面コ字状に設けた支持部40と、支持部40から下方に延長した形状の下枠部41とを有する。下枠部41は、軒棟方向D1に貫通する複数の通気口410を有する。   As shown in FIG. 6A to FIG. 6D and the like, the frame 4 extends downward from the support portion 40 and a support portion 40 provided in a U-shaped cross section so as to fit and support the edge portion 30 of the solar cell panel 3. And a lower frame portion 41 having the shape described above. The lower frame portion 41 has a plurality of vent holes 410 penetrating in the eaves-ridge direction D1.

更に具体的に述べると、全体として矩形枠状の外形を有するフレーム4は、一直線状である軒側の横フレーム4aと、一直線状である棟側の横フレーム4bとを有する(図3A参照)。軒側の横フレーム4aと棟側の横フレーム4bとは、互いに平行に位置する。フレーム4は、横フレーム4a,4bの端同士をつなぐ一対の縦フレーム4c,4cを、更に有する。   More specifically, the frame 4 having a rectangular frame-like outer shape as a whole has a straight eave-side horizontal frame 4a and a straight ridge-side horizontal frame 4b (see FIG. 3A). . The eaves-side horizontal frame 4a and the ridge-side horizontal frame 4b are positioned in parallel to each other. The frame 4 further includes a pair of vertical frames 4c and 4c that connect the ends of the horizontal frames 4a and 4b.

支持部40のうち軒側の横フレーム4aに含まれる部分は、太陽電池パネル3の縁部30のうち軒側の縁部30aを支持する。支持部40のうち棟側の横フレーム4bに含まれる部分は、太陽電池パネル3の縁部30のうち棟側の縁部30bを支持する。   A portion of the support portion 40 included in the eaves side horizontal frame 4 a supports the eaves side edge 30 a of the edge 30 of the solar cell panel 3. A portion included in the ridge-side horizontal frame 4 b of the support portion 40 supports the ridge-side edge portion 30 b of the edge portion 30 of the solar cell panel 3.

フレーム4の下側部分である下枠部41は、軒側の横フレーム4aの下側部分である軒側下枠部41aと、棟側の横フレーム4bの下側部分である棟側下枠部41bとを含む。   The lower frame portion 41 which is the lower portion of the frame 4 includes an eave side lower frame portion 41a which is a lower portion of the eave-side horizontal frame 4a and a ridge-side lower frame which is a lower portion of the ridge-side horizontal frame 4b. Part 41b.

軒側下枠部41aと棟側下枠部41bは共に、左右方向D2に所定の間隔をあけて複数の通気口410を有する(図3A、図3B参照)。   Both the eaves-side lower frame portion 41a and the ridge-side lower frame portion 41b have a plurality of vent holes 410 at predetermined intervals in the left-right direction D2 (see FIGS. 3A and 3B).

軒側下枠部41aが有する通気口410の個数は、棟側下枠部41bが有する通気口410の個数と、同一に設けている。また、軒側下枠部41aが有する通気口410,410間の距離は、棟側下枠部41bが有する通気口410,410間の距離と、同一に設けている。   The number of vent holes 410 included in the eaves-side lower frame portion 41a is the same as the number of vent holes 410 included in the ridge-side lower frame portion 41b. Moreover, the distance between the vent holes 410 and 410 which the eaves side lower frame part 41a has is provided in the same way as the distance between the vent holes 410 and 410 which the ridge side lower frame part 41b has.

図4等に示すように、傾斜屋根1上に複数の太陽電池パネル3,3…を配置した状態で、最も軒側に位置する支持桟部2には、軒先カバー60と、最も軒側に位置する太陽電池パネル3を支持する軒側の横フレーム4aとが、図示略のボルトを用いて取付固定される。   As shown in FIG. 4 and the like, in a state where a plurality of solar battery panels 3, 3... Are arranged on the inclined roof 1, the support rail portion 2 located closest to the eaves side includes the eaves end cover 60 and the eaves end cover 60. The eaves-side horizontal frame 4a that supports the solar cell panel 3 that is positioned is attached and fixed using bolts (not shown).

この支持桟部2上において、取付固定された軒先カバー60と横フレーム4aの間には、軒棟方向D1に所定の隙間50が位置し、上方からカバー62を嵌め込むことで、隙間50の上方を水密に封止する。   On the support bar 2, a predetermined gap 50 is positioned in the eave building direction D <b> 1 between the attached eaves cover 60 and the lateral frame 4 a, and by inserting the cover 62 from above, The upper part is sealed watertight.

最も棟側に位置する支持桟部2には、最も棟側に位置する太陽電池パネル3を支持する棟側の横フレーム4bと、棟カバー61とが、図示略のボルトを用いて取付固定される。   A horizontal frame 4b on the ridge side that supports the solar panel 3 located on the most ridge side and a ridge cover 61 are attached and fixed to the support rail portion 2 located on the most ridge side using bolts (not shown). The

この支持桟部2上において、取付固定された横フレーム4bと棟カバー61との間には、軒棟方向D1に所定の隙間51が位置し、上方からカバー63を嵌め込むことで、隙間51の上方を水密に封止する。   On the support bar 2, a predetermined gap 51 is positioned in the eaves-ridge direction D <b> 1 between the attached and fixed horizontal frame 4 b and the building cover 61, and the cover 63 is fitted from above so that the gap 51 The upper part of is sealed watertight.

更に、本実施形態では、隙間51を気密に封止する気密材80を設けている。気密材80は、棟カバー61と隙間51の間に介在する(図6B参照)。   Further, in the present embodiment, an airtight material 80 that hermetically seals the gap 51 is provided. The airtight member 80 is interposed between the ridge cover 61 and the gap 51 (see FIG. 6B).

最も軒側の支持桟部2と最も棟側の支持桟部2を除く他の支持桟部2には、軒側に位置する太陽電池パネル3の横フレーム4bと、棟側に位置する太陽電池パネル3の横フレーム4aとが、図示略のボルトを用いて取付固定される(図6A参照)。   The support frame 2 other than the support frame 2 on the most eaves side and the support frame 2 on the most building side includes a horizontal frame 4b of the solar cell panel 3 located on the eave side and a solar cell positioned on the building side. The horizontal frame 4a of the panel 3 is attached and fixed using a bolt (not shown) (see FIG. 6A).

この支持桟部2上において、取付固定された横フレーム4a,4b間には、軒棟方向D1に所定の隙間52が位置する。隙間52に上方からカバー64を嵌め込むことで、隙間52の上方を水密に封止する。   On the support bar 2, a predetermined gap 52 is located in the eaves-ridge direction D1 between the attached and fixed horizontal frames 4a and 4b. By fitting the cover 64 into the gap 52 from above, the upper part of the gap 52 is sealed watertight.

本実施形態では、隙間52を気密に封止する気密材81を設けている。気密材81は、カバー64と、軒側に位置する太陽電池パネル3の横フレーム4bとの間に介在し、且つ、カバー64と、棟側に位置する太陽電池パネル3の横フレーム4aとの間に介在する。   In the present embodiment, an airtight material 81 that hermetically seals the gap 52 is provided. The airtight member 81 is interposed between the cover 64 and the horizontal frame 4b of the solar cell panel 3 located on the eaves side, and between the cover 64 and the horizontal frame 4a of the solar cell panel 3 located on the ridge side. Intervene in between.

更に、本実施形態では、図5や図6Cに示すように、横方向D2に隣接する太陽電池パネル3,3のフレーム4,4間に、隣接する太陽電池パネル3,3間を気密に封止する気密材82を介在させている。気密材82は、隣接する太陽電池パネル3,3のフレーム4,4間の隙間を水密に封止するカバー65の裏面側に配されている。   Furthermore, in this embodiment, as shown in FIG. 5 and FIG. 6C, between the solar cell panels 3 and 3 adjacent to the horizontal direction D2, the adjacent solar cell panels 3 and 3 are hermetically sealed. An airtight material 82 to be stopped is interposed. The airtight member 82 is disposed on the back side of the cover 65 that seals the gap between the frames 4 and 4 of the adjacent solar cell panels 3 and 3 in a watertight manner.

また、図5や図6Dに示すように、横方向D2の端に位置する太陽電池パネル3の縦フレーム4cと、この太陽電池パネル3に隣接して傾斜屋根1上に位置する側面カバー66との間に、気密材83を介在させている。   5 and 6D, the vertical frame 4c of the solar cell panel 3 positioned at the end in the horizontal direction D2, and the side cover 66 positioned on the inclined roof 1 adjacent to the solar cell panel 3 An airtight member 83 is interposed between the two.

本実施形態の取付構造で複数の太陽電池パネル3,3…を傾斜屋根1に取り付けたとき、各太陽電池パネル3は傾斜屋根1に対して平行に位置し、各太陽電池パネル3と傾斜屋根1との間には、図4等に示すような空気層7が形成される。   When a plurality of solar battery panels 3, 3... Are attached to the inclined roof 1 in the mounting structure of the present embodiment, each solar battery panel 3 is positioned in parallel to the inclined roof 1. An air layer 7 as shown in FIG.

軒棟方向D1に隣接する太陽電池パネル3,3のうち、軒側の太陽電池パネル3の下方にある空気層7(以下「軒側空気層70」という。)と、棟側の太陽電池パネル3の下方にある空気層7(以下「棟側空気層71」という。)とは、支持桟部2が有する通水孔20(図2参照)を通じて、軒棟方向D1に連通する。   Of the solar cell panels 3 and 3 adjacent to the eaves building direction D1, the air layer 7 below the eaves side solar cell panel 3 (hereinafter referred to as “eave side air layer 70”) and the solar cell panel on the building side. The air layer 7 below 3 (hereinafter referred to as “building side air layer 71”) communicates with the eaves building direction D1 through the water passage hole 20 (see FIG. 2) of the support bar 2.

したがって、図4や図6Aに矢印で示すように、通水孔20を通じて軒側空気層70から棟側空気層71へと移動する空気の流れF1が発生する。ここでの空気の流れF1は、太陽電池パネル3の裏側で温められた空気が、傾斜屋根1に沿って棟側に移動する流れである。   Therefore, as shown by arrows in FIG. 4 and FIG. 6A, an air flow F <b> 1 that moves from the eaves-side air layer 70 to the ridge-side air layer 71 through the water passage hole 20 is generated. The air flow F <b> 1 here is a flow in which the air heated on the back side of the solar cell panel 3 moves to the ridge side along the inclined roof 1.

空気の流れF1は、軒側空気層70と棟側空気層71のうち、傾斜屋根1に近い側の領域(下側領域)で、傾斜屋根1に沿って棟側に移動する。   The air flow F <b> 1 moves to the ridge side along the inclined roof 1 in a region (lower region) closer to the inclined roof 1 in the eaves-side air layer 70 and the ridge-side air layer 71.

加えて、軒側空気層70と棟側空気層71は、支持桟部2上にある横フレーム4bが有する通気口410と、支持桟部2上にある横フレーム4aが有する通気口410と、隣接する横フレーム4b,4a間の隙間52とを通じて、軒棟方向D1に連通する。   In addition, the eaves-side air layer 70 and the ridge-side air layer 71 include a vent 410 included in the horizontal frame 4b on the support bar 2, and a vent 410 included in the horizontal frame 4a on the support bar 2. It communicates with the eaves-ridge direction D1 through the gap 52 between the adjacent horizontal frames 4b, 4a.

したがって、図4や図6Aに矢印で示すように、両側の通気口410,410と隙間52を通じて、軒側空気層70から棟側空気層71へと移動する空気の流れF2が発生する。   Therefore, as indicated by arrows in FIGS. 4 and 6A, an air flow F2 is generated that moves from the eaves-side air layer 70 to the ridge-side air layer 71 through the vent holes 410, 410 and the gaps 52 on both sides.

ここで発生する空気の流れF2は、軒側空気層70と棟側空気層71のうち、各太陽電池パネル3に近い側の領域(上側領域)で、各太陽電池パネル3の裏面に沿って棟側に移動する流れである。   The air flow F <b> 2 generated here is a region (upper region) closer to each solar cell panel 3 in the eaves-side air layer 70 and the ridge-side air layer 71 along the back surface of each solar cell panel 3. It is a flow that moves to the building side.

各太陽電池パネル3の温度は日照時に高温となるが、本実施形態では傾斜屋根1に近い下側領域で空気の流れF1が生じ、且つ、各太陽電池パネル3の裏面に近い上側領域で空気の流れF2が生じるので、各太陽電池パネル3の温度上昇が効果的に抑制される。   Although the temperature of each solar cell panel 3 becomes high at the time of sunlight, in this embodiment, the air flow F1 occurs in the lower region near the inclined roof 1, and the air flows in the upper region near the back surface of each solar cell panel 3. Therefore, the temperature rise of each solar cell panel 3 is effectively suppressed.

加えて、本実施形態では、各気密部材80,81,82,83を用いた気密構造により、太陽電池パネル3,3…と傾斜屋根1との間で互いに連通して位置する空気層7,7…の気密性を高め、且つ、空気層7,7…の空気を強制的に流す送風機構9を備えている。前記気密構造は、隣接する太陽電池パネル3,3間の気密性を気密材81,82等で高め、太陽電池パネル3と側面カバー66との間の気密性を気密材83等で高め、更に、太陽電池パネル3と棟カバー61との間の気密性を気密材80等で高める構造である。   In addition, in the present embodiment, the air layer 7, which is located in communication with each other between the solar cell panels 3, 3... And the inclined roof 1, due to the airtight structure using the airtight members 80, 81, 82, 83. 7 is provided, and a blower mechanism 9 for forcibly flowing the air in the air layers 7, 7. The airtight structure enhances the airtightness between the adjacent solar cell panels 3 and 3 with the airtight materials 81 and 82 and the like, and enhances the airtightness between the solar cell panel 3 and the side cover 66 with the airtight material 83 and the like. In this structure, the airtightness between the solar cell panel 3 and the building cover 61 is enhanced by the airtight material 80 or the like.

本実施形態の送風機構9は、図4に示すように、傾斜屋根1の一部を開口させた吸気口90と、吸気口90から下方に連続する吸気路91と、吸気路91内に空気を引き込む図示略のファンとを備える。吸気口90は、最も棟側に位置する太陽電池パネル3の下方に位置する。   As shown in FIG. 4, the air blowing mechanism 9 of the present embodiment includes an intake port 90 that opens a part of the inclined roof 1, an intake passage 91 that continues downward from the intake port 90, and air in the intake passage 91. And a fan (not shown) that draws The air inlet 90 is located below the solar cell panel 3 located closest to the ridge.

送風機構9は、ファンを駆動させることで、最も棟側に位置する太陽電池パネル3の下方にある空気層7の空気を、建物内に強制的に引き込む。これにより、複数の太陽電池パネル3,3…を一枚のパネルのように連設したパネルブロック全体の下方で、軒側から棟側へと向かう一体的な空気の流れを、強制的な風量で生じさせる構造である。   The air blowing mechanism 9 drives the fan to forcibly draw the air in the air layer 7 below the solar cell panel 3 positioned closest to the building side into the building. As a result, the integrated air flow from the eave side to the ridge side under the entire panel block in which a plurality of solar battery panels 3, 3. This is a structure generated by

以上のように、本実施形態の取付構造は、建物の傾斜屋根1に取り付けられる太陽電池パネル3と、傾斜屋根1に固定される支持桟部2と、フレーム4と、太陽電池パネル3と傾斜屋根1との間に形成される空気層7とを備える。フレーム4は、太陽電池パネル3の縁部30を支持し、且つ、支持桟部2上に固定される。フレーム4は、傾斜屋根1の軒棟方向D1に空気を通過させる通気口410を有する。   As described above, the mounting structure of the present embodiment includes the solar cell panel 3 attached to the inclined roof 1 of the building, the support bar 2 fixed to the inclined roof 1, the frame 4, and the solar cell panel 3. An air layer 7 formed between the roof 1 and the roof 1 is provided. The frame 4 supports the edge 30 of the solar cell panel 3 and is fixed on the support bar 2. The frame 4 has an air vent 410 that allows air to pass in the eaves-ridge direction D1 of the inclined roof 1.

本実施形態の取付構造によれば、フレーム4に貫通形成した通気口410を通じて、太陽電池パネル3の裏面に沿った上側領域において、棟側に移動する空気の流れF2が発生するので、太陽電池パネル3の温度上昇を効果的に抑制することができる。   According to the mounting structure of the present embodiment, the air flow F <b> 2 that moves toward the ridge is generated in the upper region along the back surface of the solar cell panel 3 through the vent hole 410 formed through the frame 4. The temperature rise of the panel 3 can be effectively suppressed.

更に、本実施形態の取付構造では、空気層7内の空気を棟側に向けて強制的に送り出す送風機構9を、備えている。   Furthermore, the mounting structure of the present embodiment includes a blower mechanism 9 that forcibly sends the air in the air layer 7 toward the building.

そのため、本実施形態の取付構造によれば、空気層7の上側領域での空気の流れF2を、大きな風量で発生させることができ、その結果として、太陽電池パネル3の温度上昇を更に効果的に抑制することができる。   Therefore, according to the mounting structure of the present embodiment, the air flow F2 in the upper region of the air layer 7 can be generated with a large air volume, and as a result, the temperature rise of the solar cell panel 3 is more effective. Can be suppressed.

更に、本実施形態の取付構造では、空気層7の気密性を高める気密構造を備えている。   Furthermore, the mounting structure of this embodiment includes an airtight structure that increases the airtightness of the air layer 7.

そのため、本実施形態では、太陽電池パネル3の温度上昇を抑制する空気の流れF2を、空気層7において軒棟方向D1に沿って万遍なく生じさせることができる。その結果として、太陽電池パネル3の温度上昇を更に効率的に抑制することができる。   Therefore, in this embodiment, the air flow F <b> 2 that suppresses the temperature rise of the solar battery panel 3 can be generated uniformly along the eaves-ridge direction D <b> 1 in the air layer 7. As a result, the temperature rise of the solar cell panel 3 can be further efficiently suppressed.

下記の表1には、本発明者らが人工気象室で行った実験の結果を示している。   Table 1 below shows the results of experiments conducted by the present inventors in an artificial weather chamber.

この実験では、傾斜屋根1上で軒棟方向D1と横方向D2に沿ったマトリクス状に太陽電池パネル3,3…を取り付け、多数の照射ランプで太陽電池パネル3,3…に光を照射し、室温を33℃に長時間保った状態で、太陽電池パネル3,3…の平均温度を測定した。   In this experiment, the solar cell panels 3, 3,... Are attached in a matrix along the eave building direction D1 and the lateral direction D2 on the inclined roof 1, and the solar cell panels 3, 3,. The average temperature of the solar cell panels 3, 3... Was measured while keeping the room temperature at 33 ° C. for a long time.

Figure 2015224454
Figure 2015224454

表1に示す仕様Bは、本実施形態のような通気口410をフレーム4に設けず、送風機構9による強制的な送風を行わず、更に気密材80,81,82,83等の気密構造を設けない、いわゆる現行型の仕様である。現行の仕様Bで実験を行った結果、太陽電池パネル3,3…の平均温度は74.8℃であった。表1にある温度比較の欄では、仕様Bでの平均温度との比較を示している。   The specification B shown in Table 1 does not provide the air vent 410 in the frame 4 as in the present embodiment, does not perform forced air blowing by the air blowing mechanism 9, and further airtight structures such as the airtight materials 80, 81, 82, 83, etc. This is the so-called current specification. As a result of conducting an experiment with the current specification B, the average temperature of the solar cell panels 3, 3... Was 74.8.degree. The column of temperature comparison in Table 1 shows a comparison with the average temperature in the specification B.

表1に示す仕様A1〜A3は、いずれも通気口410をフレーム4に設けた仕様である。仕様A2では、送風機構9によって50m/hの強制的な送風を行い、仕様A3では、送風機構9によって50m/hの強制的な送風を行い、且つ、気密材80,81,82,83等の気密構造を設けている。仕様A3は、図1〜図6で示した本実施形態の取付構造と同様の構造である。 The specifications A1 to A3 shown in Table 1 are specifications in which the ventilation holes 410 are provided in the frame 4. In the specification A2, the blowing mechanism 9 performs forced blowing of 50 m 3 / h, and in the specification A3, the blowing mechanism 9 performs forced blowing of 50 m 3 / h, and the airtight materials 80, 81, 82, An airtight structure such as 83 is provided. The specification A3 is the same structure as the mounting structure of the present embodiment shown in FIGS.

仕様Bと仕様A1との比較から分かるように、フレーム4に通気口410を設けることで、現行の仕様Bと比較してパネル平均温度は0.4℃低下した。これは、暖められた空気が太陽電池パネル3の裏面に沿って棟側に流動し、空気層7の上側領域での空気の流れF2が生じることで、太陽電池パネル3の温度上昇が抑えられたと考えられる。   As can be seen from the comparison between the specification B and the specification A1, the panel average temperature was lowered by 0.4 ° C. compared with the current specification B by providing the ventilation holes 410 in the frame 4. This is because the warmed air flows toward the building along the back surface of the solar cell panel 3 and the air flow F2 in the upper region of the air layer 7 is generated, so that the temperature rise of the solar cell panel 3 is suppressed. It is thought.

仕様Bと仕様A2との比較から分かるように、フレーム4に通気口410を設けて空気の流れF2が生じ得る構造にしたうえで、送風機構9によって強制的な送風を行うことで、パネル平均温度は3.8℃低下した。これは、太陽電池パネル3の裏面に沿って棟側に流れる空気の流れF2を強制的な風量で生じさせることで、太陽電池パネル3の温度上昇が更に抑えられたものと考えらえる。   As can be seen from the comparison between the specification B and the specification A2, the frame 4 is provided with the air vent 410 so that the air flow F2 can be generated, and then the forced air blowing is performed by the air blowing mechanism 9, so that the panel average The temperature dropped by 3.8 ° C. It can be considered that this is because the temperature increase of the solar cell panel 3 is further suppressed by generating the air flow F2 flowing toward the ridge along the back surface of the solar cell panel 3 with a forced air volume.

なお、表1には示していないが、フレーム4に通気口410を設けない構造で、送風機構9による50m/hの強制的な送風を行った場合にも、パネル平均温度は73.2℃となり、現行の仕様Bと比較してパネル平均温度は1.6℃低下した。しかし、仕様A2での温度低下(3.8℃)と比較すれば半分以下であり、この結果からも、フレーム4に通気口410を設けて空気の流れF2を生じさせた場合に、高い温度抑制効果が得られることが分かる。 Although not shown in Table 1, the panel average temperature is 73.2 even when forced air is blown at 50 m 3 / h by the air blowing mechanism 9 in the structure in which the ventilation hole 410 is not provided in the frame 4. The panel average temperature decreased by 1.6 ° C. compared to the current specification B. However, it is less than half compared with the temperature drop (3.8 ° C.) in the specification A2. Also from this result, when the frame 4 is provided with the vent 410 to generate the air flow F2, the high temperature It turns out that the suppression effect is acquired.

仕様Bと仕様A3との比較から分かるように、フレーム4に通気口410を設けて空気の流れF2が生じ得る構造にし、送風機構9によって強制的な送風を行い、気密材80,81,82,83等の気密構造を設けた場合には、パネル平均温度は4.1℃低下した。これは、送風機構9と気密構造を設けたことで、連設される複数の太陽電池パネル3,3…の下方にある空気層7,7…で、送風機構9による強制的な送風が万遍なく生じるようになり、その結果、太陽電池パネル3,3…の温度が万遍なく抑えられたと考えられる。   As can be seen from the comparison between the specification B and the specification A3, the frame 4 is provided with a vent hole 410 so that an air flow F2 can be generated, and forced air is blown by the air blowing mechanism 9, and the airtight materials 80, 81, 82 are provided. , 83, etc., the panel average temperature decreased by 4.1 ° C. This is because the air blowing mechanism 9 and the airtight structure are provided, so that the air layers 7, 7... Below the plurality of solar cell panels 3, 3. As a result, it is thought that the temperature of the solar cell panels 3, 3.

以上、本発明を添付図面に示す実施形態に基づいて説明したが、本発明は前記実施形態に限定されない。本発明の意図する範囲内であれば、適宜の設計変更を行うことが可能である。   As mentioned above, although this invention was demonstrated based on embodiment shown to an accompanying drawing, this invention is not limited to the said embodiment. Within the range intended by the present invention, appropriate design changes can be made.

1 傾斜屋根
2 支持桟部
3 太陽電池パネル
30 縁部
4 フレーム
410 通気口
7 空気層
9 送風機構
D1 軒棟方向
F2 空気の流れ
DESCRIPTION OF SYMBOLS 1 Inclined roof 2 Supporting frame part 3 Solar cell panel 30 Edge part 4 Frame 410 Ventilation hole 7 Air layer 9 Blowing mechanism D1 Eaves building direction F2 Air flow

Claims (3)

建物の傾斜屋根に取り付けられる太陽電池パネルと、
前記傾斜屋根に固定される支持桟部と、
前記太陽電池パネルの縁部を支持し、且つ、前記支持桟部上に固定されるフレームと、
前記太陽電池パネルと前記傾斜屋根との間に形成される空気層と、を備え、
前記フレームは、前記傾斜屋根の軒棟方向に空気を通過させる通気口を有することを特徴とする太陽電池パネルの取付構造。
Solar panels attached to the sloped roof of the building,
A support bar fixed to the inclined roof;
A frame that supports an edge of the solar cell panel and is fixed on the support bar;
An air layer formed between the solar cell panel and the inclined roof,
The mounting structure of a solar cell panel, wherein the frame has a vent hole that allows air to pass in the direction of the eaves of the inclined roof.
前記空気層内の空気を棟側に向けて強制的に送り出す送風機構を、更に備えることを特徴とする請求項1に記載の太陽電池パネルの取付構造。 The solar cell panel mounting structure according to claim 1, further comprising a blower mechanism that forcibly sends air in the air layer toward the ridge side. 前記空気層の気密性を高める気密構造を、更に備えることを特徴とする請求項2に記載の太陽電池パネルの取付構造。 The solar cell panel mounting structure according to claim 2, further comprising an airtight structure that increases the airtightness of the air layer.
JP2014109388A 2014-05-27 2014-05-27 Mounting structure for solar battery panel Pending JP2015224454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014109388A JP2015224454A (en) 2014-05-27 2014-05-27 Mounting structure for solar battery panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014109388A JP2015224454A (en) 2014-05-27 2014-05-27 Mounting structure for solar battery panel

Publications (1)

Publication Number Publication Date
JP2015224454A true JP2015224454A (en) 2015-12-14

Family

ID=54841447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109388A Pending JP2015224454A (en) 2014-05-27 2014-05-27 Mounting structure for solar battery panel

Country Status (1)

Country Link
JP (1) JP2015224454A (en)

Similar Documents

Publication Publication Date Title
JP5633498B2 (en) Solar power panels
JP5590004B2 (en) Rectification stand for solar power generation panel
CN105375368A (en) High-efficiency heat radiation power distribution cabinet
JP2015224454A (en) Mounting structure for solar battery panel
JP2016158379A (en) Panel material support structure
JP2011149185A (en) Sound-absorbing panel
JP2017066753A (en) Ventilation unit for curtain wall and curtain wall
JP2017002656A (en) Frame for fitting solar power generation panel, and solar power generation device
CN213093637U (en) Electrical cabinet capable of effectively delaying aging of electrical element
CN211530184U (en) Square cylindrical antenna housing
JP2013076307A (en) Photovoltaic power generation device and installation method thereof
KR101476584B1 (en) A sunshade device for buildings
CN112040702A (en) Network rack convenient to heat dissipation
CN103850603A (en) Shutters for motor
CN208113118U (en) A kind of modular data center cabinet
CN207095053U (en) Wall-mounted solar heat collecting plate
JP2016011564A (en) Fitting structure of photovoltaic power generation panel
CN110557090A (en) Solar energy device
CN211007455U (en) Raised floor and floor module
CN211424614U (en) Ground ventilation device for sports house
TWM509828U (en) Roof ventilation structure
KR200481480Y1 (en) Solar Module Fixing Apparatus
JP2016033297A (en) Heat collection system
RU2013117718A (en) METHOD FOR INSTALLING AN ENERGY EXCHANGE UNIT AND DESIGN FOR INTEGRATING THIS UNIT IN THE BUILDING ROOF CONSTRUCTION
CN209786553U (en) Outdoor rainproof distribution box

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160808