JP2015222145A - Air cooler, and method for operating the same - Google Patents

Air cooler, and method for operating the same Download PDF

Info

Publication number
JP2015222145A
JP2015222145A JP2014106635A JP2014106635A JP2015222145A JP 2015222145 A JP2015222145 A JP 2015222145A JP 2014106635 A JP2014106635 A JP 2014106635A JP 2014106635 A JP2014106635 A JP 2014106635A JP 2015222145 A JP2015222145 A JP 2015222145A
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
valve
air
cooling chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014106635A
Other languages
Japanese (ja)
Other versions
JP6391148B2 (en
Inventor
豊 新井
Yutaka Arai
豊 新井
宗志 石塚
Muneshi Ishizuka
宗志 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2014106635A priority Critical patent/JP6391148B2/en
Publication of JP2015222145A publication Critical patent/JP2015222145A/en
Application granted granted Critical
Publication of JP6391148B2 publication Critical patent/JP6391148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air cooler which, when a chilled item is stored in a cooling room the air in which is cooled by CO2 refrigerant, eliminate the possibility of a large amount of frost to be attached on a CO2 refrigerant flow passage, and provide a method for operating the air cooler.SOLUTION: An air cooler 21 cools the air in a cooling room 4 by exchanging heat between a CO2 refrigerant flow passage in which CO2 refrigerant liquid in low temperature circulates and the air circulated by an electric fan 45 in the cooling room 4 storing a cooling item. The CO2 refrigerant flow passage includes a first and second refrigerant flow passages constituting a parallel flow passage in which the CO2 refrigerant liquid flows in parallel. The first and second refrigerant flow passages are arranged in different position from each other so as to be oriented in directions opposite to the flow direction of the air flowed by the fan 45 in the cooling room 4. In respective forward passages of the passages, a first open/close valve 29 and a second open/close valve 30 are provided to permit and cut off the flow of the CO2 refrigerant liquid. The first open/close valve 29 and the second open/close valve 30 are configured to flow the CO2 refrigerant liquid at the same time or in an alternate manner by opening and closing the first open/close valve 29 and the second open/close valve 30.

Description

本開示は、CO2を冷媒として循環させる循環路によって冷却されたCO2を、冷却室内に設けられたファンによって流れる空気との間で熱交換して該空気を冷却する空気冷却器及びその運転方法に関する。   The present disclosure relates to an air cooler that cools CO2 cooled by a circulation path that circulates CO2 as a refrigerant with air flowing by a fan provided in a cooling chamber, and cools the air. .

このようなCO2を冷媒として空気を冷却する空気冷却器は、例えば、特許文献1に記載されているように、NH3を冷媒とする一次冷凍サイクル装置と、CO2を冷媒とする二次冷凍サイクル装置とを有して構成されているものがある。二次冷凍サイクル装置は、一次冷凍サイクル装置においてNH3冷媒と熱交換して液化されたCO2冷媒液を貯留するCO2レシーバと、冷却室内に設置されCO2レシーバから供給されたCO2冷媒液と冷却室内の空気とを熱交換させて冷却室内の空気を冷却するCO2冷媒液流路と、空気冷却器に冷却室内の空気を送出するファンとを有して構成される。   Such an air cooler that cools air using CO2 as a refrigerant is, for example, as described in Patent Document 1, a primary refrigeration cycle apparatus using NH3 as a refrigerant and a secondary refrigeration cycle apparatus using CO2 as a refrigerant. There are some which are configured with. The secondary refrigeration cycle apparatus includes a CO2 receiver that stores CO2 refrigerant liquid liquefied by heat exchange with NH3 refrigerant in the primary refrigeration cycle apparatus, a CO2 refrigerant liquid that is installed in the cooling chamber and supplied from the CO2 receiver, A CO2 refrigerant liquid channel that cools the air in the cooling chamber by exchanging heat with the air and a fan that sends the air in the cooling chamber to the air cooler are configured.

CO2レシーバに貯留されたCO2冷媒液は、例えば−32℃で冷却室内の空気冷却器に送られて、ファンによって流れる冷却室内の空気と熱交換し、冷却室内の空気を冷却する(例えば、−25℃)。熱交換した冷媒ガスは、CO2レシーバに戻り、一次冷凍サイクル装置のNH3冷媒で冷却液化されてCO2レシーバに戻る。   The CO2 refrigerant liquid stored in the CO2 receiver is sent to the air cooler in the cooling chamber at −32 ° C., for example, and exchanges heat with the air in the cooling chamber flowing by the fan to cool the air in the cooling chamber (for example, − 25 ° C.). The heat-exchanged refrigerant gas returns to the CO2 receiver, is cooled and liquefied by the NH3 refrigerant of the primary refrigeration cycle apparatus, and returns to the CO2 receiver.

空気冷却器60は、図5に示すように、箱状に形成されたケーシング61と、ケーシング61内に配設され冷却されたCO2冷媒液が流れるCO2冷媒流路62と、を有して構成される。ケーシング61は、電動ファン45によって冷却室4内の空気を取り入れてCO2冷媒流路62に接触させて排出するように形成されている(特許文献1参照)。   As shown in FIG. 5, the air cooler 60 includes a casing 61 formed in a box shape, and a CO2 refrigerant flow path 62 that is disposed in the casing 61 and through which the cooled CO2 refrigerant liquid flows. Is done. The casing 61 is formed so that the air in the cooling chamber 4 is taken in by the electric fan 45, is brought into contact with the CO2 refrigerant flow path 62, and is discharged (see Patent Document 1).

CO2冷媒流路62は、ケーシング61の幅方向一端部からケーシング61の前壁部61aに沿ってケーシング61の幅方向他端部側へ延びて、幅方向他端部において反対方向に折り返して前壁部に沿って延び、幅方向一端部において反対方向に折り返して前壁部61aに沿って延びるように、前壁部61aから後方側に向かって蛇行するように形成されている。ケーシング61の後壁部61bの外側には電動ファン45が配設されている。この電動ファン45によって、冷却室4内の空気がケーシング61の前方からケーシング61内に流入してCO2冷媒流路62の外側を流れてケーシング61の後方から排出される。このケーシング61内を流れる空気とCO2冷媒流路を流れるCO2の冷媒とが熱交換されて、冷却室4内の空気が冷却される。   The CO2 refrigerant flow path 62 extends from one end portion in the width direction of the casing 61 to the other end portion in the width direction of the casing 61 along the front wall portion 61a of the casing 61, and is folded back in the opposite direction at the other end portion in the width direction. It is formed so as to meander from the front wall portion 61a to the rear side so as to extend along the wall portion, bend in the opposite direction at one end portion in the width direction, and extend along the front wall portion 61a. An electric fan 45 is disposed outside the rear wall portion 61 b of the casing 61. With the electric fan 45, the air in the cooling chamber 4 flows into the casing 61 from the front of the casing 61, flows outside the CO 2 refrigerant flow path 62, and is discharged from the rear of the casing 61. The air flowing in the casing 61 and the CO2 refrigerant flowing in the CO2 refrigerant flow path are heat-exchanged to cool the air in the cooling chamber 4.

特開2012−7757号JP2012-7757

この従来のCO2を冷媒として空気を冷却する空気冷却器は、露点温度が低い−25℃以下に冷却室内を維持するもので、冷却室内に保管される物は、冷凍食品等の既に凍った物であり、保管物の水分の含有量は少ない。このため、ファンによって空気冷却器内に送られる空気に含まれる水分量は少ないので、CO2の冷媒と冷却室内の空気との熱交換時に、空気に含まれる水分が凝結してCO2冷媒液流路に付着する霜の量は少ない。   This conventional air cooler that cools air using CO2 as a refrigerant maintains the cooling chamber at a dew point temperature of −25 ° C. or lower, and the items stored in the cooling chamber are already frozen items such as frozen foods. Therefore, the moisture content of the stored items is small. For this reason, since the amount of moisture contained in the air sent into the air cooler by the fan is small, the moisture contained in the air condenses during the heat exchange between the CO2 refrigerant and the air in the cooling chamber, and the CO2 refrigerant liquid flow path. The amount of frost adhering to is small.

一方、冷却室内に、野菜、牛乳、ヨーグルト等のチルド品を保管したいという要望がある。このようなチルド品を保管するには、冷却室内の温度を+10℃〜−5℃の範囲内にする必要があり、また冷却室内の温度を上げるためには、CO2冷媒液の液化温度を高くする必要があるが、例えば、冷却室内の温度を+5℃にする場合には、CO2冷媒の圧力が高くなってCO2冷媒循環路の耐圧圧力を超えてしまう。そこで、CO2冷媒循環路の耐圧圧力を超えない圧力で、許容できる上限の圧力以下になるようにCO2冷媒の圧力を設定することが考えられる。しかしながら、このCO2冷媒の上限の圧力に対応するCO2冷媒液の温度は、冷却室内の温度と比較してかなり低くなり(例えば、−25℃)、冷却室内との温度差が大きくなる。また、冷却室内に保管される野菜等のチルド品は、水分を多く含む物である。このため、冷却室内の空気と温度の低いCO2冷媒とを熱交換させると、CO2冷媒流路に空気内の水分が霜となって多量に付着する。   On the other hand, there is a desire to store chilled products such as vegetables, milk and yogurt in the cooling chamber. In order to store such chilled products, the temperature in the cooling chamber needs to be in the range of + 10 ° C. to −5 ° C., and in order to increase the temperature in the cooling chamber, the liquefaction temperature of the CO 2 refrigerant liquid is increased. For example, when the temperature in the cooling chamber is set to + 5 ° C., the pressure of the CO 2 refrigerant increases and exceeds the pressure resistance of the CO 2 refrigerant circuit. Therefore, it is conceivable to set the pressure of the CO2 refrigerant so that it does not exceed the withstand pressure of the CO2 refrigerant circulation path and is equal to or lower than the allowable upper limit pressure. However, the temperature of the CO 2 refrigerant liquid corresponding to the upper limit pressure of the CO 2 refrigerant is considerably lower than the temperature in the cooling chamber (for example, −25 ° C.), and the temperature difference from the cooling chamber is increased. In addition, chilled products such as vegetables stored in the cooling chamber are rich in water. For this reason, when heat is exchanged between the air in the cooling chamber and the low-temperature CO2 refrigerant, a large amount of moisture in the air becomes frost and adheres to the CO2 refrigerant flow path.

従って、ケーシング内のCO2冷媒流路を流通する風路が詰った状態となり、電動ファンによる空気の吸引抵抗が増大して電動ファンを駆動させるモータが過負荷状態となる。その結果、頻繁にデフロスト運転が必要となり、チルド品の冷却時間が短くなって冷却不良が生じる。   Therefore, the air passage that flows through the CO2 refrigerant flow path in the casing becomes clogged, and the air suction resistance by the electric fan increases, and the motor that drives the electric fan becomes overloaded. As a result, frequent defrost operation is required, and the cooling time for chilled products is shortened, resulting in poor cooling.

上述の事情に鑑みて、本発明の少なくとも一つの実施形態は、冷却室内に冷凍品を保管可能な運転と、冷却室内にチルド品を保管可能な運転とが切替可能であり、CO2冷媒と冷却室内の空気との間で熱交換して冷却室内の空気を冷却する場合に、冷却室内にチルド品を保管する際に、空気冷却器のCO2冷媒流路に多量の霜が付着して電動ファンが過負荷状態とならない空気冷却器及びその運転方法を提供することを目的とする。   In view of the above-described circumstances, at least one embodiment of the present invention can switch between an operation capable of storing a frozen product in the cooling chamber and an operation capable of storing a chilled product in the cooling chamber. When cooling the air in the cooling chamber by exchanging heat with the air in the room, when storing the chilled product in the cooling chamber, a large amount of frost adheres to the CO2 refrigerant flow path of the air cooler and the electric fan It is an object of the present invention to provide an air cooler that does not become overloaded and a method of operating the same.

本発明の少なくとも一つの実施形態に係わる空気冷却器は、
低温のCO2冷媒液が循環するCO2冷媒流路と、被冷却品を保管する冷却室内で電動ファンによって循環する空気との間で熱交換して前記冷却室内の空気を冷却する空気冷却器であって、
前記CO2冷媒流路は、CO2冷媒液が並列に流れて並列流路を構成する第1冷媒流路及び第2冷媒流路を含み、
前記第1冷媒流路及び前記第2循環流路は、前記ファンによって流れる前記冷却室内の空気の流れ方向と対向して互いに異なる位置に配置され、
前記第1冷媒流路及び前記第2冷媒流路の夫々に繋がる前記循環路の往路には、CO2冷媒液の流れを許容し及び遮断可能な第1開閉弁及び第2開閉弁が設けられ、
前記第1冷媒流路及び前記第2冷媒流路は、前記第1開閉弁及び前記第2開閉弁の開閉によって、CO2冷媒液が同時に又は交互に流れるように構成されている。
An air cooler according to at least one embodiment of the present invention comprises:
An air cooler that cools the air in the cooling chamber by exchanging heat between the CO2 refrigerant flow path through which the low-temperature CO2 refrigerant liquid circulates and the air circulated by the electric fan in the cooling chamber in which the article to be cooled is stored. And
The CO2 refrigerant flow path includes a first refrigerant flow path and a second refrigerant flow path in which a CO2 refrigerant liquid flows in parallel to form a parallel flow path,
The first refrigerant flow path and the second circulation flow path are arranged at positions different from each other so as to face the flow direction of the air in the cooling chamber flowing by the fan,
A first on-off valve and a second on-off valve that allow and block the flow of the CO2 refrigerant liquid are provided in the forward path of the circulation path connected to each of the first refrigerant path and the second refrigerant path,
The first refrigerant flow path and the second refrigerant flow path are configured such that CO2 refrigerant liquid flows simultaneously or alternately by opening and closing of the first on-off valve and the second on-off valve.

上記空気冷却器によれば、第1冷媒流路及び第2冷媒流路は、ファンによって循環する冷却室内の空気の流れ方向と対向して互いに異なる位置に配置され、第1冷媒流路及び第2冷媒流路は、第1開閉弁及び第2開閉弁の開閉によって、冷却されたCO2冷媒液が同時に又は交互に流れるように構成されている。このため、冷却室内に冷凍品を保管する場合には、第1開閉弁及び第2開閉弁を共に開として第1冷媒流路及び第2循環流路にCO2冷媒液を同時に流し、冷却室内にチルド品を保管する場合には、第1開閉弁及び第2開閉弁を交互に開閉してCO2冷媒液を第1冷媒流路及び第2循環流路に交互に流すことができる。従って、冷却室内に冷凍品を保管可能な運転と、冷却室内にチルド品を保管可能な運転とを切替可能な空気冷却器を実現できる。また、冷却室内にチルド品を保管する場合、低温のCO2冷媒液が第1冷媒流路及び第2循環流路に交互に流れるが、CO2冷媒液が流れる冷媒流路にファンによって流れる冷却室内の空気が接触すると、CO2冷媒液と空気との間で熱交換がされて空気が冷却されるとともに、空気内の水分が霜となってCO2冷媒液が流れる冷媒流路に付着する。一方、CO2冷媒液が流れていない冷媒流路にも、ファンによって流れる冷却室内の空気が接触する。このとき、冷却室内の空気は、チルド品を保管可能な温度(例えば、+5℃)であるので、CO2冷媒液が流れていない冷媒流路に付着する霜を融かすことができる。即ち、CO2冷媒液が流れる冷媒流路によって、冷却室内の空気をチルド品が保管可能な温度にし、CO2冷媒液が流れていない冷媒流路によって、この冷媒流路に付着する霜を融かして除去する。このため、チルド品の保管時に空気冷却器の冷媒流路に多量の霜が付着して電動ファンが過負荷状態とならない空気冷却器を実現することができる。また、チルド品の保管時に、デフロスト運転のために、空気冷却器の運転を停止する必要がなく、空気冷却器の連続運転が可能となって、冷却不良が発生することを無くすことができる。   According to the air cooler, the first refrigerant flow path and the second refrigerant flow path are arranged at positions different from each other so as to face the flow direction of the air in the cooling chamber circulated by the fan. The two refrigerant channels are configured such that the cooled CO2 refrigerant liquid flows simultaneously or alternately by opening and closing the first on-off valve and the second on-off valve. For this reason, when storing a frozen product in the cooling chamber, both the first on-off valve and the second on-off valve are opened, and the CO2 refrigerant liquid is allowed to flow through the first refrigerant passage and the second circulation passage at the same time. When storing the chilled product, the first on-off valve and the second on-off valve can be alternately opened and closed to allow the CO2 refrigerant liquid to flow alternately to the first refrigerant passage and the second circulation passage. Therefore, an air cooler capable of switching between an operation capable of storing a frozen product in the cooling chamber and an operation capable of storing a chilled product in the cooling chamber can be realized. In addition, when storing chilled products in the cooling chamber, the low-temperature CO2 refrigerant liquid alternately flows in the first refrigerant flow path and the second circulation flow path, but the cooling chamber in which the CO2 refrigerant liquid flows flows by the fan. When the air comes into contact, heat is exchanged between the CO2 refrigerant liquid and the air to cool the air, and moisture in the air becomes frost and adheres to the refrigerant flow path through which the CO2 refrigerant liquid flows. On the other hand, the air in the cooling chamber flowing by the fan also contacts the refrigerant flow path where the CO2 refrigerant liquid does not flow. At this time, since the air in the cooling chamber has a temperature (for example, + 5 ° C.) at which the chilled product can be stored, frost adhering to the refrigerant flow path where the CO 2 refrigerant liquid does not flow can be melted. That is, the refrigerant flow path through which the CO2 refrigerant liquid flows makes the air in the cooling chamber a temperature at which the chilled product can be stored, and the frost adhering to this refrigerant flow path is melted by the refrigerant flow path through which the CO2 refrigerant liquid does not flow. To remove. For this reason, an air cooler in which a large amount of frost adheres to the refrigerant flow path of the air cooler during storage of the chilled product and the electric fan is not overloaded can be realized. Further, when storing chilled products, it is not necessary to stop the operation of the air cooler for the defrost operation, and the continuous operation of the air cooler is possible, thereby preventing the occurrence of poor cooling.

また、幾つかの実施形態では、
前記冷却室内の設定温度が冷凍品保管温度帯である場合には、前記第1開閉弁及び前記第2開閉弁を開として、前記第1冷媒流路及び前記第2冷媒流路に低温のCO2冷媒液を同時に流し、前記冷却室内の設定温度がチルド品保管温度帯である場合には、前記第1開閉弁及び前記第2開閉弁を交互に開閉して、前記第1冷媒流路及び前記第2冷媒流路に低温のCO2冷媒液を交互に流すように構成されている。
In some embodiments,
When the set temperature in the cooling chamber is a frozen product storage temperature zone, the first on-off valve and the second on-off valve are opened, and low temperature CO 2 is supplied to the first refrigerant passage and the second refrigerant passage. When the refrigerant liquid flows simultaneously and the set temperature in the cooling chamber is in the chilled product storage temperature zone, the first on-off valve and the second on-off valve are alternately opened and closed, and the first refrigerant flow path and the The low-temperature CO2 refrigerant liquid is configured to alternately flow through the second refrigerant flow path.

この場合、冷却室内の設定温度が冷凍品保管温度帯である場合には、第1開閉弁及び第2開閉弁が開とされる。従って、低温のCO2冷媒液は、第1冷媒流路及び第2冷媒流路に同時に流れ、ファンによって循環する冷却室内の空気は、第1冷媒流路及び第2冷媒流路に接触してCO2冷媒液と空気との間で熱交換されて空気を冷却する。このため、冷却室内の温度を冷凍品保管温度帯に維持することができる。   In this case, when the set temperature in the cooling chamber is the frozen product storage temperature zone, the first on-off valve and the second on-off valve are opened. Accordingly, the low-temperature CO2 refrigerant liquid flows simultaneously in the first refrigerant flow path and the second refrigerant flow path, and the air in the cooling chamber circulated by the fan comes into contact with the first refrigerant flow path and the second refrigerant flow path and comes into CO2. Heat is exchanged between the refrigerant liquid and air to cool the air. For this reason, the temperature in the cooling chamber can be maintained in the frozen product storage temperature zone.

一方、冷却室内の設定温度がチルド品保管温度である場合には、第1開閉弁及び第2開閉弁が交互に開閉される。従って、低温のCO2冷媒液は、第1冷媒流路及び第2冷媒流路に交互に流れ、CO2冷媒液が流れる冷媒流路にファンによって循環する冷却室内の空気が接触すると、CO2冷媒液と空気との間で熱交換されて循環する空気を冷却するとともに、該空気内の水分が霜となってCO2冷媒液が流れる冷媒流路に付着する。このため、冷却室内の温度を冷凍品保管温度帯より高い温度帯とすることができ、ファンの発停によりチルド品保管温度帯に維持することができる。なお、CO2冷媒液が流れる冷媒流路は、第1冷媒流路及び第2冷媒流路のいずれか一方であるので、第1冷媒流路及び第2冷媒流路の両方にCO2が流れる場合と比較して、冷媒流路の伝熱面積は半分になるが、CO2冷媒と冷却室内の空気との温度差が大きいため、冷却能力が損なわれることは無い。また、CO2冷媒液が流れていない冷媒流路には、ファンによって循環する冷却室内の空気が接触する。このとき、冷却室内の空気は、チルド品を保管可能な温度(例えば、+5℃)であるので、冷却室内の空気によってCO2冷媒液が流れていない冷媒流路に付着する霜を融かすことができる。このため、冷却室内の設定温度がチルド品保管温度である場合には、第1冷媒流路及び第2冷媒流路の一方に霜が付着しても、他方の流路に付着する霜は除去されるので、第1冷媒流路及び第2冷媒流路の両者に霜が付くことはない。従って、チルド品の保管時に空気冷却器の冷媒流路に多量の霜が付着して電動ファンが過負荷状態とならない空気冷却器を実現することができる。また、冷却室内の空気を第1冷媒流路及び第2冷媒流路に流すファンのモータの過負荷を防止することができる。さらに、チルド品の保管時に、デフロスト運転のために、空気冷却器の運転を停止する必要がなく、空気冷却器の連続運転が可能となって、冷却不良が発生することを無くすことができる。   On the other hand, when the set temperature in the cooling chamber is the chilled product storage temperature, the first on-off valve and the second on-off valve are alternately opened and closed. Accordingly, the low-temperature CO2 refrigerant liquid flows alternately to the first refrigerant flow path and the second refrigerant flow path, and when the air in the cooling chamber circulated by the fan contacts the refrigerant flow path through which the CO2 refrigerant liquid flows, the CO2 refrigerant liquid and While the air circulating through heat exchange with the air is cooled, moisture in the air becomes frost and adheres to the refrigerant flow path through which the CO2 refrigerant liquid flows. For this reason, the temperature in the cooling chamber can be set to a temperature range higher than the frozen product storage temperature zone, and can be maintained in the chilled product storage temperature zone by the start and stop of the fan. Since the refrigerant flow path through which the CO2 refrigerant liquid flows is either one of the first refrigerant flow path and the second refrigerant flow path, the case where CO2 flows through both the first refrigerant flow path and the second refrigerant flow path In comparison, the heat transfer area of the refrigerant flow path is halved, but the cooling capacity is not impaired because the temperature difference between the CO2 refrigerant and the air in the cooling chamber is large. In addition, the air in the cooling chamber circulated by the fan comes into contact with the refrigerant flow path through which the CO2 refrigerant liquid does not flow. At this time, since the air in the cooling chamber is at a temperature (for example, + 5 ° C.) at which the chilled product can be stored, the frost adhering to the refrigerant flow path where the CO2 refrigerant liquid does not flow can be melted by the air in the cooling chamber. it can. Therefore, when the set temperature in the cooling chamber is the chilled product storage temperature, even if frost adheres to one of the first refrigerant channel and the second refrigerant channel, the frost adhering to the other channel is removed. Therefore, frost does not attach to both the first refrigerant channel and the second refrigerant channel. Therefore, it is possible to realize an air cooler in which a large amount of frost adheres to the refrigerant flow path of the air cooler during storage of the chilled product and the electric fan is not overloaded. Moreover, it is possible to prevent overload of the motor of the fan that causes the air in the cooling chamber to flow through the first refrigerant channel and the second refrigerant channel. Further, when storing the chilled product, it is not necessary to stop the operation of the air cooler for the defrost operation, the continuous operation of the air cooler is possible, and the occurrence of poor cooling can be eliminated.

また、幾つかの実施形態では、
前記第1開閉弁及び前記第2開閉弁の開閉を制御する制御装置が設けられ、
前記制御装置は、前記冷却室内の設定温度がチルド品保管温度帯である場合に、予め設定された所定時間の経過毎に、前記第1開閉弁及び前記第2開閉弁を交互に開閉するように構成されている。
In some embodiments,
A controller for controlling opening and closing of the first on-off valve and the second on-off valve is provided;
The control device alternately opens and closes the first on-off valve and the second on-off valve at every elapse of a predetermined time when the set temperature in the cooling chamber is in a chilled product storage temperature zone. It is configured.

この場合、制御装置は、冷却室内の設定温度がチルド品保管温度帯である場合に、予め設定された所定時間の経過毎に、前記第1開閉弁及び前記第2開閉弁を交互に開閉するように制御するので、第1開閉弁及び前記第2開閉弁の開閉制御のタイミングを時間で管理するので、デフロストのための開閉制御を容易にすることができる。   In this case, when the set temperature in the cooling chamber is in the chilled product storage temperature zone, the control device alternately opens and closes the first on-off valve and the second on-off valve at every elapse of a predetermined time. Thus, the timing of opening / closing control of the first opening / closing valve and the second opening / closing valve is managed by time, so that the opening / closing control for defrosting can be facilitated.

また、幾つかの実施形態では、
前記第1冷媒流路及び前記第2冷媒流路は、前記ファンによって循環する空気の流れ方向上流側から下流側へ向かって前記空気冷却器内に延在している。
In some embodiments,
The first refrigerant channel and the second refrigerant channel extend into the air cooler from the upstream side to the downstream side in the flow direction of the air circulated by the fan.

この場合、第1冷媒流路及び前記第2冷媒流路は、前記ファンによって循環する空気の流れ方向上流側から下流側へ向かって前記空気冷却器内に延在しているので、設定温度がチルド品保管温度帯である場合、空気の循環時には、第1冷媒流路又は前記第2冷媒流の上流側に霜が多く付着し、下流側に付着する霜の量は少なくなる。このため、第1冷媒流路又は前記第2冷媒流路に付着した霜をファンによって循環する空気によって容易に霜を融かすことができる。   In this case, since the first refrigerant flow path and the second refrigerant flow path extend in the air cooler from the upstream side to the downstream side in the flow direction of the air circulated by the fan, the set temperature is In the chilled product storage temperature zone, during the circulation of air, a large amount of frost adheres to the upstream side of the first refrigerant flow path or the second refrigerant flow, and the amount of frost attached to the downstream side decreases. For this reason, the frost can be easily melted by the air circulating in the first refrigerant flow path or the second refrigerant flow path by the fan.

本発明の少なくとも一つの実施形態に係わる空気冷却器の運転方法は、
低温のCO2冷媒液が循環するCO2冷媒流路と、被冷却品を保管する冷却室内で電動ファンによって循環する空気との間で熱交換して前記冷却室内の空気を冷却する請求項1に記載の空気冷却器の運転方法であって、
前記冷却室内の設定温度がチルド品保管温度帯であるときに、前記第1開閉弁及び前記第2開閉弁のいずれか一方を開とし、前記第1開閉弁及び前記第2開閉弁のいずれか他方を閉として、前記第1冷媒流路及び前記第2循環流路のいずれか一方に前記循環路にCO2冷媒液を流し、前記第1冷媒流路及び前記第2循環流路のいずれか他方に前記冷却されたCO2冷媒液の流通を遮断する第1冷却工程と、
前記第1冷却工程の後に、前記第1開閉弁及び前記第2開閉弁のいずれか他方を開とし、前記第1開閉弁及び前記第2開閉弁のいずれか一方を閉として、前記第1冷媒流路及び前記第2循環流路のいずれか他方にCO2冷媒液を流し、前記第1冷媒流路及び前記第2循環流路のいずれか一方にCO2冷媒液の流通を遮断する第2冷却工程とからなるサイクルを繰り返すように構成される。
An operation method of an air cooler according to at least one embodiment of the present invention includes:
2. The air in the cooling chamber is cooled by exchanging heat between the CO2 refrigerant flow path through which the low-temperature CO2 refrigerant liquid circulates and the air circulated by the electric fan in the cooling chamber in which the article to be cooled is stored. Operating method of the air cooler,
When the set temperature in the cooling chamber is a chilled product storage temperature zone, one of the first on-off valve and the second on-off valve is opened, and one of the first on-off valve and the second on-off valve With the other closed, a CO2 refrigerant liquid is allowed to flow through the circulation path through one of the first refrigerant flow path and the second circulation flow path, and the other of the first refrigerant flow path and the second circulation flow path. A first cooling step for blocking the flow of the cooled CO2 refrigerant liquid;
After the first cooling step, either the first on-off valve or the second on-off valve is opened, and either the first on-off valve or the second on-off valve is closed, and the first refrigerant A second cooling step of flowing a CO2 refrigerant liquid through one of the flow path and the second circulation flow path and blocking the flow of the CO2 refrigerant liquid through either the first refrigerant flow path or the second circulation flow path; It is comprised so that the cycle which consists of may be repeated.

上記空気冷却器の運転方法によれば、冷却室内の設定温度がチルド品保管温度帯であるときには、第1冷媒流路及び第2循環流路の一方にCO2冷媒液を流し、第1冷媒流路及び第2循環流路の他方にCO2冷媒液の流通を遮断する第1冷却工程を行った後に、第1冷媒流路及び第2循環流路の他方に冷却されたCO2冷媒液を流し、第1冷媒流路及び第2循環流路の一方にCO2冷媒液の流通を遮断する第2冷却工程を行うサイクルを繰り返す。第1冷却工程では、CO2冷媒液は、第1冷媒流路及び第2冷媒流路の一方に流れ、CO2冷媒液と熱交換されて冷却室の空気を冷却するとともに、冷却室内の空気中の水分が霜となってCO2冷媒液が流れる冷媒流路に付着する。このため、冷却室内の温度を冷凍品保管温度より高い温度帯とすることができ、ファンの発停によりチルド品保管温度帯に維持することができる。一方、CO2冷媒液が流れていない第1冷媒流路及び第2循環流路の他方には、ファンによって循環する冷却室内の空気が接触する。このとき、冷却室内の空気は、チルド品を保管可能な温度(例えば、+5℃)であるので、冷却室内の空気によってCO2冷媒液が流れていない冷媒流路に付着する霜を融かすことができる。   According to the operation method of the air cooler, when the set temperature in the cooling chamber is in the chilled product storage temperature zone, the CO2 refrigerant liquid is allowed to flow through one of the first refrigerant flow path and the second circulation flow path, and the first refrigerant flow After performing the first cooling step of blocking the flow of the CO2 refrigerant liquid to the other of the passage and the second circulation flow path, the cooled CO2 refrigerant liquid is caused to flow to the other of the first refrigerant flow path and the second circulation flow path, A cycle is repeated in which a second cooling step of blocking the flow of the CO2 refrigerant liquid in one of the first refrigerant channel and the second circulation channel is performed. In the first cooling step, the CO2 refrigerant liquid flows to one of the first refrigerant flow path and the second refrigerant flow path, and heat is exchanged with the CO2 refrigerant liquid to cool the air in the cooling chamber, and in the air in the cooling chamber. Moisture becomes frost and adheres to the refrigerant flow path through which the CO2 refrigerant liquid flows. For this reason, the temperature in the cooling chamber can be set to a temperature zone higher than the frozen product storage temperature, and can be maintained in the chilled product storage temperature zone by the start and stop of the fan. On the other hand, the air in the cooling chamber circulated by the fan is in contact with the other of the first refrigerant flow path and the second circulation flow path where the CO2 refrigerant liquid is not flowing. At this time, since the air in the cooling chamber is at a temperature (for example, + 5 ° C.) at which the chilled product can be stored, the frost adhering to the refrigerant flow path where the CO2 refrigerant liquid does not flow can be melted by the air in the cooling chamber. it can.

第2冷却工程では、CO2冷媒液は、第1冷媒流路及び第2冷媒流路の他方に流れ、CO2冷媒液と空気との間で熱交換されて冷却室の空気を冷却するとともに、冷却室内の空気中の水分が霜となってCO2冷媒液が流れる冷媒流路に付着する。このため、冷却室内の温度を冷凍品保管温度より高い温度帯とすることができ、ファンの発停によりチルド品保管温度帯に維持することができる。一方、CO2冷媒液の流れが遮断された第1冷媒流路及び第2冷媒流路の一方には、ファンによって循環する冷却室内の空気が接触する。このとき、冷却室内の空気は、チルド品を保管可能な温度(例えば、+5℃)であるので、冷却室内の空気によってCO2冷媒液が流れていない冷媒流路に付着する霜を融かすことができる。よって、冷却室内の設定温度がチルド品保管温度である場合には、第1冷媒流路及び第2冷媒流路の一方に霜が付着しても、他方の流路に付着する霜は除去されるので、第1冷媒流路及び第2冷媒流路の両者に霜が付くことはない。従って、チルド品の保管時に空気冷却器の冷媒流路に多量の霜が付着して電動ファンが過負荷とならない空気冷却器の運転方法を実現することができる。   In the second cooling step, the CO2 refrigerant liquid flows to the other of the first refrigerant flow path and the second refrigerant flow path, and heat is exchanged between the CO2 refrigerant liquid and the air to cool the cooling chamber air and Moisture in the indoor air becomes frost and adheres to the refrigerant flow path through which the CO2 refrigerant liquid flows. For this reason, the temperature in the cooling chamber can be set to a temperature zone higher than the frozen product storage temperature, and can be maintained in the chilled product storage temperature zone by the start and stop of the fan. On the other hand, the air in the cooling chamber circulated by the fan comes into contact with one of the first refrigerant flow path and the second refrigerant flow path where the flow of the CO2 refrigerant liquid is blocked. At this time, since the air in the cooling chamber is at a temperature (for example, + 5 ° C.) at which the chilled product can be stored, the frost adhering to the refrigerant flow path where the CO2 refrigerant liquid does not flow can be melted by the air in the cooling chamber. it can. Therefore, when the set temperature in the cooling chamber is the chilled product storage temperature, even if frost adheres to one of the first refrigerant channel and the second refrigerant channel, the frost adhering to the other channel is removed. Therefore, frost does not attach to both the first refrigerant channel and the second refrigerant channel. Therefore, it is possible to realize an operation method of the air cooler in which a large amount of frost adheres to the refrigerant flow path of the air cooler during storage of the chilled product and the electric fan is not overloaded.

本発明の少なくとも幾つかの実施形態によれば、冷却室内に冷凍品を保管可能な運転と、冷却室内にチルド品を保管可能な運転とが切替可能であり、CO2冷媒液と冷却室内の空気との間で熱交換して冷却室内の空気を冷却する場合に、冷却室内にチルド品を保管する際に、空気冷却器のCO2冷媒流路に多量の霜が付着して電動ファンが過負荷とならない空気冷却器及びその運転方法を提供することができる。   According to at least some embodiments of the present invention, it is possible to switch between an operation capable of storing a frozen product in the cooling chamber and an operation capable of storing a chilled product in the cooling chamber, the CO2 refrigerant liquid and the air in the cooling chamber. When the chilled product is stored in the cooling chamber by exchanging heat with the cooling chamber, a large amount of frost adheres to the CO2 refrigerant flow path of the air cooler and overloads the electric fan. The air cooler which does not become and its operating method can be provided.

本発明の幾つかの実施形態に係る空気冷却器を含む概略構成図である。It is a schematic block diagram containing the air cooler which concerns on some embodiment of this invention. 本発明の幾つかの実施形態に係る空気冷却器の内部構造を示した概略説明図である。It is the schematic explanatory drawing which showed the internal structure of the air cooler which concerns on some embodiment of this invention. 本発明の幾つかの実施形態に係る制御装置の説明図である。It is explanatory drawing of the control apparatus which concerns on some embodiment of this invention. 本発明の幾つかの実施形態に係る空気冷却器の内部構造を示し、同図(a)及び同図(b)は、冷却室内の設定温度がチルド品保管温度帯である場合における空気冷却器内のCO2冷媒液の循環状態図である。The internal structure of the air cooler which concerns on some embodiment of this invention is shown, The figure (a) and the figure (b) are the air cooler in case the set temperature in a cooling chamber is a chilled goods storage temperature zone It is a circulation state figure of the inside CO2 refrigerant liquid. 従来の空気冷却器の内部構造図である。It is an internal structure figure of the conventional air cooler.

以下、添付図面を参照して本発明の実施形態について、図1〜図4を参照しながら説明する。先ず、本発明の空気冷却器の運転方法の実施形態を説明する前に、空気冷却器の実施形態について説明する。なお、この実施形態として記載されている又は図示されている構成部品の材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。   Embodiments of the present invention will be described below with reference to FIGS. 1 to 4 with reference to the accompanying drawings. First, before describing the embodiment of the operation method of the air cooler of the present invention, the embodiment of the air cooler will be described. It should be noted that the materials, shapes, relative arrangements, and the like of the components described or illustrated in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples.

生鮮食品や冷凍食品等を低温で貯蔵する冷蔵倉庫の冷却温度帯には、C級、F級等の等級があり、これらの等級毎に冷却温度帯が異なっている。例えば、C級冷蔵倉庫は、−10℃〜+5℃の温度帯(以下、「チルド品保管温度帯」と記す)に保持され、F級蔵倉庫は、−30℃〜−20℃の温度帯(以下、「冷凍品保管温度帯」と記す)に保持される。本実施形態では、チルド品保管温度帯と冷凍品保管温度帯に切替可能な空気冷却器を例にして説明する。   Cooling temperature zones of refrigerated warehouses that store fresh foods, frozen foods, etc. at low temperatures include grades such as C grade and F grade, and the cooling temperature zones differ for each grade. For example, a Class C refrigerated warehouse is maintained in a temperature range of −10 ° C. to + 5 ° C. (hereinafter referred to as “chilled product storage temperature range”), and a Class F refrigerated warehouse is in a temperature range of −30 ° C. to −20 ° C. (Hereinafter referred to as “frozen product storage temperature zone”). In the present embodiment, an air cooler that can be switched between a chilled product storage temperature zone and a frozen product storage temperature zone will be described as an example.

図1は、本発明の幾つかの実施形態に係る空気冷却器を含む空気冷却装置1の概略構成図を示している。空気冷却装置1は、図1に示すように、NH3を一次冷媒とする一次冷却回路10と、CO2を二次冷媒とする二次冷却回路20とを有して構成されている。二次冷媒のCO2は、一次冷媒のNH3と熱交換されて冷却される。二次冷却回路20には、冷蔵倉庫3の冷却室4内の空気と二次冷媒であるCO2冷媒液との間で熱交換して冷却室4内の空気を冷却する空気冷却器21が設けられている。冷蔵倉庫3は、冷却室4の隣に、荷解きや梱包等の作業を行う荷捌き室6が設けられている。空気冷却器21の詳細は、後述する。   FIG. 1 shows a schematic configuration diagram of an air cooling device 1 including an air cooler according to some embodiments of the present invention. As shown in FIG. 1, the air cooling device 1 includes a primary cooling circuit 10 using NH3 as a primary refrigerant and a secondary cooling circuit 20 using CO2 as a secondary refrigerant. The secondary refrigerant CO2 is cooled by heat exchange with the primary refrigerant NH3. The secondary cooling circuit 20 is provided with an air cooler 21 that cools the air in the cooling chamber 4 by exchanging heat between the air in the cooling chamber 4 of the refrigerated warehouse 3 and the CO 2 refrigerant liquid that is the secondary refrigerant. It has been. The refrigerated warehouse 3 is provided with a cargo handling chamber 6 next to the cooling chamber 4 for performing operations such as unpacking and packing. Details of the air cooler 21 will be described later.

一次冷却回路10は、圧縮機11、凝縮器12、膨張弁13、カスケードコンデンサ14等の冷凍サイクル構成機器を有して構成されている。凝縮器12には、冷却水循環路15が接続され、凝縮器12で冷却水によって凝縮したNH3は、一旦NH3レシーバ16に貯留された後、カスケードコンデンサ14に送られ、カスケードコンデンサ14で2次冷媒であるCO2と熱交換して蒸発する。カスケードコンデンサ14で蒸発したNH3は、圧縮機11で圧縮された後、凝縮器12に送られる。冷却水循環路15は、屋外に設けられた冷却塔(図示せず)に接続され、凝縮器12でNH3を冷却した冷却水は冷却塔で冷却される。   The primary cooling circuit 10 includes refrigeration cycle components such as a compressor 11, a condenser 12, an expansion valve 13, and a cascade condenser 14. A cooling water circulation path 15 is connected to the condenser 12, and NH 3 condensed by the cooling water in the condenser 12 is temporarily stored in the NH 3 receiver 16, then sent to the cascade condenser 14, and the secondary refrigerant is produced in the cascade condenser 14. It is evaporated by exchanging heat with CO2. NH 3 evaporated by the cascade condenser 14 is compressed by the compressor 11 and then sent to the condenser 12. The cooling water circulation path 15 is connected to a cooling tower (not shown) provided outdoors, and the cooling water that has cooled NH 3 by the condenser 12 is cooled by the cooling tower.

二次冷却回路20は、CO2レシーバ23、空気冷却器21等を有して構成されている。CO2レシーバ23は、カスケードコンデンサ14で冷却されて液化したCO2冷媒液を貯留する。二次冷却回路20は、CO2レシーバ23とカスケードコンデンサ14とを接続するCO2循環路24と、CO2レシーバ23と空気冷却器21との間を接続してCO2冷媒液を空気冷却器21に送るCO2冷媒供給路25と、空気冷却器21とCO2レシーバ23との間を接続して空気と熱交換したCO2冷媒液(気液二相状態も含む)をCO2レシーバに戻すCO2冷媒戻し路26とを有してなる。CO2冷媒供給路25には、CO2冷媒供給路25から分岐して空気冷却器21に接続されたCO2冷媒分岐路27が接続されている。   The secondary cooling circuit 20 includes a CO2 receiver 23, an air cooler 21, and the like. The CO2 receiver 23 stores the CO2 refrigerant liquid cooled and liquefied by the cascade condenser 14. The secondary cooling circuit 20 connects the CO2 circuit 24 connecting the CO2 receiver 23 and the cascade capacitor 14, and connects the CO2 receiver 23 and the air cooler 21 to send CO2 refrigerant liquid to the air cooler 21. A refrigerant supply path 25, and a CO2 refrigerant return path 26 that connects the air cooler 21 and the CO2 receiver 23 to return the CO2 refrigerant liquid (including the gas-liquid two-phase state) exchanged with the air to the CO2 receiver. Have. A CO2 refrigerant branch path 27 branched from the CO2 refrigerant supply path 25 and connected to the air cooler 21 is connected to the CO2 refrigerant supply path 25.

CO2冷媒供給路25及びCO2冷媒分岐路27には、CO2冷媒液の循環を許容し及び遮断可能な第1開閉弁29及び第2開閉弁30が設けられている。これら第1開閉弁29及び第2開閉弁30は、電動式又は電磁式の開閉弁であり、制御装置40によって第1開閉弁29及び第2開閉弁30の開閉が制御される。   The CO2 refrigerant supply path 25 and the CO2 refrigerant branch path 27 are provided with a first on-off valve 29 and a second on-off valve 30 that allow and block the circulation of the CO2 refrigerant liquid. The first on-off valve 29 and the second on-off valve 30 are electric or electromagnetic on-off valves, and the controller 40 controls the opening / closing of the first on-off valve 29 and the second on-off valve 30.

図2は、本発明の幾つかの実施形態に係る空気冷却器21の内部構造を示した概略説明図である。空気冷却器21は、図2に示すように、箱状に形成されたケーシング32と、CO2冷媒供給路25に連通して一次冷却回路10(図1参照)の冷凍サイクルによって冷却されたCO2冷媒液が流れる第1冷媒流路33と、CO2冷媒分岐路27に連通して一次冷却回路10の冷凍サイクルによって冷却されたCO2冷媒液が流れる第2冷媒流路34が設けられている。つまり、第1冷媒流路33と第2冷媒流路34は、二次冷却回路20の一部であって、CO2冷媒液が並列に流れる並列流路を構成している。   FIG. 2 is a schematic explanatory view showing the internal structure of the air cooler 21 according to some embodiments of the present invention. As shown in FIG. 2, the air cooler 21 communicates with a casing 32 formed in a box shape and a CO2 refrigerant supply path 25 and is cooled by a refrigeration cycle of the primary cooling circuit 10 (see FIG. 1). A first refrigerant flow path 33 through which the liquid flows and a second refrigerant flow path 34 through which the CO2 refrigerant liquid that is cooled by the refrigeration cycle of the primary cooling circuit 10 communicates with the CO2 refrigerant branch path 27 are provided. That is, the first refrigerant flow path 33 and the second refrigerant flow path 34 are part of the secondary cooling circuit 20 and constitute a parallel flow path through which the CO2 refrigerant liquid flows in parallel.

第1冷媒流路33は、ケーシング32の幅方向一端部からケーシング32の前壁部32aに沿ってケーシング32の幅方向中央部側へ延びて、幅方向中央部において反対方向に折り返して前壁部32aに沿って延び、幅方向一端部において再び反対方向に折り返して前壁部32aに沿って延びるようにして、前壁部32aから後方側に向かって蛇行するように形成されている。また、第2冷媒流路34は、第1冷媒流路33と同様に、ケーシング32の幅方向他端部からケーシング32の前壁部32aに沿ってケーシング32の幅方向中央部側へ延びて、幅方向中央部において反対方向に折り返して前壁部32aに沿って延び、幅方向他端部において再び反対方向に折り返して前壁部32aに沿って延びるようにして、前壁部32aから後方側に向かって蛇行するように形成されている。   The first refrigerant flow path 33 extends from one end of the casing 32 in the width direction along the front wall portion 32a of the casing 32 toward the width direction center portion of the casing 32, and is folded back in the opposite direction at the width direction center portion. It extends along the portion 32a, is folded back in the opposite direction at one end in the width direction, and extends along the front wall portion 32a so as to meander from the front wall portion 32a to the rear side. Similarly to the first refrigerant flow path 33, the second refrigerant flow path 34 extends from the other end in the width direction of the casing 32 along the front wall portion 32 a of the casing 32 toward the center in the width direction of the casing 32. Fold back in the opposite direction at the central portion in the width direction and extend along the front wall portion 32a, fold back in the opposite direction again at the other end portion in the width direction and extend along the front wall portion 32a, and rearward from the front wall portion 32a. It is formed so as to meander toward the side.

ケーシング32の前壁部32a及び後壁部32bには、空気の循環が可能な孔部(図示せず)が設けられている。また、ケーシング32内には、第1冷媒流路33及び第2冷媒流路34との周辺に形成されて前壁部32aの孔部から流入した空気を流す風路35が設けられている。このため、前壁部32aの孔部から流入した空気は、風路35を流れて後壁部32bに設けられた孔部(図示せず)から排出される。   The front wall portion 32a and the rear wall portion 32b of the casing 32 are provided with holes (not shown) through which air can be circulated. In the casing 32, there is provided an air passage 35 that is formed around the first refrigerant passage 33 and the second refrigerant passage 34 and flows the air flowing in from the hole of the front wall portion 32a. For this reason, the air which flowed in from the hole of the front wall part 32a flows through the air path 35, and is discharged | emitted from the hole (not shown) provided in the rear wall part 32b.

ケーシング32の後壁部32bの後方側には、電動ファン45が設けられている。電動ファン45は、図1及び図2に示すように、モータ45aの駆動によって羽根車45bが回転するように構成されている。電動ファン45は、駆動によって冷却室4内の空気を、空気冷却器21を介して吸引して冷却室4内を循環させる。つまり、電動ファン45が駆動すると、冷却室4内の空気は、空気冷却器21の前壁部32aの孔部及び空気冷却器21内の風路35を通って空気冷却器21の後壁部32bの孔部から排出されて冷却室4内を循環する。電動ファン45の作動は、制御装置40によって制御される。   An electric fan 45 is provided on the rear side of the rear wall portion 32 b of the casing 32. As shown in FIGS. 1 and 2, the electric fan 45 is configured such that the impeller 45 b rotates by driving the motor 45 a. The electric fan 45 sucks the air in the cooling chamber 4 through the air cooler 21 and circulates in the cooling chamber 4 by driving. That is, when the electric fan 45 is driven, the air in the cooling chamber 4 passes through the hole portion of the front wall portion 32 a of the air cooler 21 and the air passage 35 in the air cooler 21, and the rear wall portion of the air cooler 21. It is discharged from the hole 32b and circulates in the cooling chamber 4. The operation of the electric fan 45 is controlled by the control device 40.

図3は、本発明の幾つかの実施形態に係る制御装置40の説明図である。制御装置40には、図3に示すように、温度設定スイッチ47、温度センサ48、第1開閉弁29、第2開閉弁30、電動ファン45が電気的に接続されている。温度設定スイッチ47は、冷却室4内の温度を設定するためのスイッチであり、チルド品保管温度帯(−10℃〜+5℃の)のチルドスイッチ47aと、冷凍品保管温度帯(−30℃〜−20℃)の冷凍スイッチ47bが設けられている。   FIG. 3 is an explanatory diagram of the control device 40 according to some embodiments of the present invention. As shown in FIG. 3, a temperature setting switch 47, a temperature sensor 48, a first on-off valve 29, a second on-off valve 30, and an electric fan 45 are electrically connected to the control device 40. The temperature setting switch 47 is a switch for setting the temperature in the cooling chamber 4, and is a chilled switch storage temperature zone (−10 ° C. to + 5 ° C.) and a frozen product storage temperature zone (−30 ° C.). ~ -20 ° C) refrigeration switch 47b is provided.

温度センサ48は、冷却室4内の温度を検出する。制御装置40は、温度設定スイッチ47の冷凍スイッチ47bがON操作されると、第1開閉弁29及び第2開閉弁30を共に開弁させるとともに、電動ファン45のモータ45a(図1参照)を駆動させる。従って、CO2冷媒液は、図2に示すように、第1冷媒流路33及び第2冷媒流路34を流れて、冷却室4内の空気と熱交換する。このため、冷却室4内の空気は冷却されて、冷却室4内が冷凍品保管温度になる。   The temperature sensor 48 detects the temperature in the cooling chamber 4. When the refrigeration switch 47b of the temperature setting switch 47 is turned ON, the control device 40 opens both the first on-off valve 29 and the second on-off valve 30, and also turns on the motor 45a (see FIG. 1) of the electric fan 45. Drive. Therefore, as shown in FIG. 2, the CO 2 refrigerant liquid flows through the first refrigerant flow path 33 and the second refrigerant flow path 34 and exchanges heat with the air in the cooling chamber 4. For this reason, the air in the cooling chamber 4 is cooled, and the inside of the cooling chamber 4 becomes the frozen product storage temperature.

また、制御装置40は、温度設定スイッチ47のチルドスイッチ47aがON操作されると、第1開閉弁29及び第2開閉弁30を所定時間毎に交互に開閉させるとともに、電動ファン45のモータ45aを発停駆動させる。従って、CO2冷媒液は、図4(a)及び図4(b)に示すように、第1冷媒流路33及び第2冷媒流路34を所定時間毎に交互に流れて、冷却室4内の空気と熱交換する。このため、冷却室4内の空気は冷却されて、ファンの発停により冷却室4内がチルド品保管温度に維持される。なお、第1開閉弁29及び第2開閉弁30の開閉の切替時期を所定時間の経過時としたが、電動ファン45のモータ45a(図1参照)に流れる電流値を検出し、検出された電流値が所定値を超えると、第1開閉弁29及び第2開閉弁30の開閉の切り替えるようにしてもよい。   In addition, when the chilled switch 47a of the temperature setting switch 47 is turned on, the control device 40 alternately opens and closes the first on-off valve 29 and the second on-off valve 30 at predetermined time intervals, and also the motor 45a of the electric fan 45. Is started and stopped. Therefore, as shown in FIGS. 4A and 4B, the CO 2 refrigerant liquid flows alternately through the first refrigerant flow path 33 and the second refrigerant flow path 34 every predetermined time, and enters the cooling chamber 4. Exchange heat with air. For this reason, the air in the cooling chamber 4 is cooled, and the inside of the cooling chamber 4 is maintained at the chilled product storage temperature by the start and stop of the fan. The switching timing of opening and closing of the first on-off valve 29 and the second on-off valve 30 is set to the time when a predetermined time has elapsed, but the value of the current flowing through the motor 45a (see FIG. 1) of the electric fan 45 is detected and detected. When the current value exceeds a predetermined value, the opening / closing of the first opening / closing valve 29 and the second opening / closing valve 30 may be switched.

次に、空気冷却器21の運転方法について、図2、図3、図4を参照しながら説明する。図4(a)は冷却室4内の設定温度がチルド品保管温度帯である場合における空気冷却器21の第1冷媒流路33にCO2が流れている状態を示し、図4(b)は、冷却室4内の設定温度がチルド品保管温度帯である場合における空気冷却器21の第2冷媒流路34にCO2が流れている状態を示している。   Next, an operation method of the air cooler 21 will be described with reference to FIGS. 2, 3, and 4. FIG. 4A shows a state in which CO2 is flowing through the first refrigerant flow path 33 of the air cooler 21 when the set temperature in the cooling chamber 4 is in the chilled product storage temperature zone, and FIG. The state where CO2 is flowing through the second refrigerant flow path 34 of the air cooler 21 when the set temperature in the cooling chamber 4 is in the chilled product storage temperature zone is shown.

先ず、冷却室4内を冷凍品保管温度(例えば、−25℃)にするための空気冷却器21の運転方法について説明する。図1、図2、図3に示すように、温度設定スイッチ47の冷凍スイッチ47bがON操作されると、制御装置40は、第1開閉弁29及び第2開閉弁30を共に開くとともに、電動ファン45のモータ45aを駆動させる。従って、一次冷却回路10でCO2冷媒液は、CO2冷媒供給路25を通って第1冷媒流路33及び第2冷媒流路34を流れる。   First, an operation method of the air cooler 21 for setting the inside of the cooling chamber 4 to a frozen product storage temperature (for example, −25 ° C.) will be described. As shown in FIGS. 1, 2, and 3, when the refrigeration switch 47b of the temperature setting switch 47 is turned ON, the control device 40 opens both the first on-off valve 29 and the second on-off valve 30, and electrically The motor 45a of the fan 45 is driven. Accordingly, in the primary cooling circuit 10, the CO 2 refrigerant liquid flows through the CO 2 refrigerant supply path 25 through the first refrigerant flow path 33 and the second refrigerant flow path 34.

従って、CO2冷媒液は、第1冷媒流路33及び第2冷媒流路34の循環時に、電動ファン45によって吸引されて空気冷却器21内を流れる空気と熱交換する。熱交換された空気は冷却されて冷却室4内に排出され、冷却室4内に排出された空気は、冷却室4内を循環して再び空気冷却器21内に流入して冷却される。このような空気の循環によって、冷却室4内は冷凍品保管温度(例えば、−25℃)に維持される。   Therefore, the CO 2 refrigerant liquid exchanges heat with the air that is sucked by the electric fan 45 and flows through the air cooler 21 during the circulation of the first refrigerant flow path 33 and the second refrigerant flow path 34. The heat-exchanged air is cooled and discharged into the cooling chamber 4, and the air discharged into the cooling chamber 4 circulates within the cooling chamber 4 and flows into the air cooler 21 again to be cooled. By such air circulation, the inside of the cooling chamber 4 is maintained at a frozen product storage temperature (for example, −25 ° C.).

なお、冷却室4内の温度を冷凍品保管温度、例えば、−25℃に維持するためには、CO2冷媒液の温度を約−32℃にする必要があり、この場合の冷却室4内の露点温度は低い。また、冷却室4内に保管される物は、冷凍食品等の既に凍った物であるので、水分の含有量は少ない。このため、電動ファン45によって空気冷却器21内に送られる空気に含まれる水分量は少ない。従って、CO2冷媒液と空気との熱交換時に、第1冷媒流路33及び第2冷媒流路34の上流側に付着する霜の量は少ない。従って、電動ファン45による空気の吸引抵抗の増大が抑制されて、電動ファン45のモータ45aが過負荷となることはない。   In order to maintain the temperature in the cooling chamber 4 at the frozen product storage temperature, for example, −25 ° C., the temperature of the CO 2 refrigerant liquid needs to be about −32 ° C. In this case, the temperature in the cooling chamber 4 The dew point temperature is low. Moreover, since the thing stored in the cooling chamber 4 is already frozen things, such as frozen food, there is little moisture content. For this reason, the moisture content contained in the air sent into the air cooler 21 by the electric fan 45 is small. Therefore, the amount of frost adhering to the upstream side of the first refrigerant flow path 33 and the second refrigerant flow path 34 is small during heat exchange between the CO2 refrigerant liquid and air. Therefore, an increase in air suction resistance by the electric fan 45 is suppressed, and the motor 45a of the electric fan 45 is not overloaded.

次に、冷却室4内をチルド品保管温度(例えば、+5℃)にするための空気冷却器21の運転方法について説明する。図1、図3、図4(a)に示すように、温度設定スイッチ47のチルドスイッチ47aがON操作されると、制御装置40は、第1開閉弁29を開とし、第2開閉弁30を閉とし、電動ファン45のモータ45aを駆動させる。従って、一次冷却回路10からのCO2冷媒液は、CO2冷媒供給路25を通って第1冷媒流路33を流れる。   Next, an operation method of the air cooler 21 for setting the inside of the cooling chamber 4 to a chilled product storage temperature (for example, + 5 ° C.) will be described. As shown in FIGS. 1, 3, and 4 (a), when the chilled switch 47 a of the temperature setting switch 47 is turned on, the control device 40 opens the first on-off valve 29 and opens the second on-off valve 30. Is closed and the motor 45a of the electric fan 45 is driven. Accordingly, the CO 2 refrigerant liquid from the primary cooling circuit 10 flows through the first refrigerant flow path 33 through the CO 2 refrigerant supply path 25.

従って、CO2冷媒液は、第1冷媒流路33の循環時に、電動ファン45によって吸引されて空気冷却器21内を流れる空気と熱交換して、冷却室4からの空気を冷却する。冷却された空気は冷却室4内に排出され、冷却室4内を循環して再び空気冷却器21内に流入して冷却される。ここで、空気冷却器21は、第1冷媒流路33と第2冷媒流路34にCO2冷媒液を流すことで、冷却室4内を冷凍品保管温度にすることが可能な冷却能力を有している。このため、第1冷媒流路33のみにCO2冷媒液を流すと、その冷媒能力は、第1冷媒流路33及び第2冷媒流路34にCO2の冷媒を流した場合と比較して、約半分になる。このため、第1冷媒流路33にのみCO2冷媒液を循環させることで、冷却室4内を冷凍品保管温度より高い温度にすることができ、電動ファン45を発停させることでチルド品保管温度(例えば、+5℃)にすることができる。   Therefore, the CO 2 refrigerant liquid exchanges heat with the air sucked by the electric fan 45 and flowing in the air cooler 21 during the circulation of the first refrigerant flow path 33, thereby cooling the air from the cooling chamber 4. The cooled air is discharged into the cooling chamber 4, circulated through the cooling chamber 4, flows into the air cooler 21 again, and is cooled. Here, the air cooler 21 has a cooling capacity capable of bringing the inside of the cooling chamber 4 to the frozen product storage temperature by flowing the CO2 refrigerant liquid through the first refrigerant flow path 33 and the second refrigerant flow path 34. doing. For this reason, when the CO2 refrigerant liquid is allowed to flow only in the first refrigerant flow path 33, the refrigerant capacity is approximately compared to the case where the CO2 refrigerant is allowed to flow in the first refrigerant flow path 33 and the second refrigerant flow path 34. Halved. Therefore, by circulating the CO2 refrigerant liquid only through the first refrigerant flow path 33, the inside of the cooling chamber 4 can be set to a temperature higher than the frozen product storage temperature, and the electric fan 45 is started and stopped to store chilled products. It can be at a temperature (eg, + 5 ° C.).

さて、第1冷媒流路33を流れるCO2冷媒液の温度は、約−32℃であり、冷却室4内には、水分量が多い野菜等のチルド品が収容される場合がある。このため、冷却室4内の空気の絶対湿度は高くなり、電動ファン45によって空気冷却器21内に送られる空気に含まれる水分量は多くなる。従って、CO2冷媒液と冷却室4内の空気との熱交換時に、空気に含まれる水分は、CO2冷媒液の流れる第1冷媒流路33の上流側に霜として付着し、この付着する霜の量は多くなる。   The temperature of the CO 2 refrigerant liquid flowing through the first refrigerant flow path 33 is about −32 ° C., and chilled products such as vegetables with a large amount of water may be accommodated in the cooling chamber 4. For this reason, the absolute humidity of the air in the cooling chamber 4 increases, and the amount of moisture contained in the air sent into the air cooler 21 by the electric fan 45 increases. Therefore, when heat is exchanged between the CO2 refrigerant liquid and the air in the cooling chamber 4, the moisture contained in the air adheres as frost to the upstream side of the first refrigerant flow path 33 through which the CO2 refrigerant liquid flows. The amount increases.

しかしながら、第2冷媒流路34にはCO2冷媒液が流れていないので、電動ファン45によって空気冷却器21内に吸引された空気は、その温度が0℃以上であれば、第2冷媒流路34に付着する霜を融かすことができる。このため、第2冷媒流路34の周りの風路35が確保され、電動ファン45による空気の吸引抵抗の増大による過負荷を防止することができる。   However, since the CO2 refrigerant liquid does not flow through the second refrigerant flow path 34, the air sucked into the air cooler 21 by the electric fan 45 is the second refrigerant flow path if the temperature is 0 ° C. or higher. The frost adhering to 34 can be melted. For this reason, the air path 35 around the 2nd refrigerant | coolant flow path 34 is ensured, and the overload by the increase in the attraction | suction resistance of the air by the electric fan 45 can be prevented.

第1冷媒流路33へのCO2冷媒液の循環が所定時間を経過すると、制御装置40は、第1開閉弁29を閉とし、第2開閉弁30を開とする。電動ファン45のモータ45aは駆動状態に維持される。従って、一次冷却回路10からのCO2冷媒液は、CO2冷媒供給路25、CO2冷媒分岐路27を通って第2冷媒流路34を流れる一方、第1冷媒流路33へのCO2冷媒液の循環は遮断される。   When the circulation of the CO 2 refrigerant liquid to the first refrigerant flow path 33 has passed a predetermined time, the control device 40 closes the first on-off valve 29 and opens the second on-off valve 30. The motor 45a of the electric fan 45 is maintained in a driving state. Accordingly, the CO2 refrigerant liquid from the primary cooling circuit 10 flows through the second refrigerant flow path 34 through the CO2 refrigerant supply path 25 and the CO2 refrigerant branch path 27, while circulating the CO2 refrigerant liquid to the first refrigerant flow path 33. Is cut off.

従って、CO2冷媒液は、第2冷媒流路34の循環時に、電動ファン45によって吸引されて空気冷却器21内を流れる空気と熱交換して、空気を冷却する。この冷却された空気は冷却室4内に排出され、冷却室4内を循環して再び空気冷却器21内に流入して冷却される。ここで、前述したように、空気冷却器21は、第1冷媒流路33及び第2冷媒流路34の両流路にCO2冷媒液を流すことで、冷却室4内を冷凍品保管温度にすることが可能な冷却能力を有しているので、第2冷媒流路34のみにCO2冷媒液を流すと、その冷媒能力は、第1冷媒流路33及び第2冷媒流路34にCO2冷媒液を流した場合の約半分になる。このため、第2冷媒流路34にのみCO2冷媒液を流すことで、冷却室4内を冷凍品保管温度より高い温度にすることができ、電動ファン45を発停させることでチルド品保管温度(例えば、+5℃)にすることができる。   Accordingly, the CO2 refrigerant liquid exchanges heat with the air sucked by the electric fan 45 and flowing in the air cooler 21 during the circulation of the second refrigerant flow path 34, thereby cooling the air. This cooled air is discharged into the cooling chamber 4, circulates in the cooling chamber 4, flows into the air cooler 21 again, and is cooled. Here, as described above, the air cooler 21 causes the inside of the cooling chamber 4 to reach the frozen product storage temperature by flowing the CO2 refrigerant liquid through both the first refrigerant flow path 33 and the second refrigerant flow path 34. Therefore, when the CO2 refrigerant liquid is allowed to flow only in the second refrigerant flow path 34, the refrigerant capacity is reduced to the CO2 refrigerant in the first refrigerant flow path 33 and the second refrigerant flow path 34. It will be about half that of the liquid flow. For this reason, by flowing the CO2 refrigerant liquid only through the second refrigerant flow path 34, the inside of the cooling chamber 4 can be set to a temperature higher than the frozen product storage temperature, and the chilled product storage temperature can be established by starting and stopping the electric fan 45. (For example, + 5 ° C.).

また、第2冷媒流路34を流れるCO2冷媒液の温度は、約−32℃であり、冷却室4内には、水分量が多い野菜等のチルド品が収容されている。このため、冷却室4内の空気の絶対湿度は高くなり、電動ファン45によって空気冷却器内に送られる空気に含まれる水分量は多くなる。従って、CO2冷媒液との熱交換時に、空気に含まれる水分は、第2冷媒流路34の上流側に霜として付着し、この付着する霜の量は多くなる。   The temperature of the CO 2 refrigerant liquid flowing through the second refrigerant flow path 34 is about −32 ° C., and the cooling chamber 4 contains chilled products such as vegetables with a large amount of water. For this reason, the absolute humidity of the air in the cooling chamber 4 increases, and the amount of moisture contained in the air sent into the air cooler by the electric fan 45 increases. Therefore, at the time of heat exchange with the CO 2 refrigerant liquid, moisture contained in the air adheres as frost on the upstream side of the second refrigerant flow path 34, and the amount of the attached frost increases.

しかしながら、第1冷媒流路33にはCO2冷媒液が流れていないので、電動ファン45によって空気冷却器21内に吸引された空気は、その温度が0℃以上であれば、第1冷媒流路33に付着する霜を融かすことができる。このため、第1冷媒流路33の周りの風路35が確保され、電動ファン45による空気の吸引抵抗の増大による過負荷を防止することができる。   However, since the CO2 refrigerant liquid does not flow through the first refrigerant flow path 33, the air sucked into the air cooler 21 by the electric fan 45 is the first refrigerant flow path if the temperature is 0 ° C. or higher. The frost adhering to 33 can be melted. For this reason, the air path 35 around the 1st refrigerant | coolant flow path 33 is ensured, and the overload by the increase in the attraction | suction resistance of the air by the electric fan 45 can be prevented.

このように、所定時間が経過する毎に、制御装置40は、第1開閉弁29及び第2開閉弁30の開閉を、一方を開き他方を閉じるように制御するので、第1冷媒流路33及び第2冷媒流路34の一方によって、冷却室4内の空気の温度をチルド品保管温度に冷却することができ、また第1冷媒流路33及び第2冷媒流路34の他方に付着する霜が冷却室4内の空気によって融かされる。このため、チルド品の保管時に空気冷却器21の冷媒流路に多量の霜が付着して、電動ファン45のモータ45aが過負荷とならない空気冷却器21を実現することができる。従って、チルド品の保管時に、デフロスト運転のために、空気冷却器21の運転及びCO2冷媒液の循環を停止する必要がなく、空気冷却器21の連続運転が可能となって、冷却不良が発生することを無くすことができる。   Thus, whenever the predetermined time elapses, the control device 40 controls the opening and closing of the first on-off valve 29 and the second on-off valve 30 so that one is opened and the other is closed. The temperature of the air in the cooling chamber 4 can be cooled to the chilled product storage temperature by one of the second refrigerant flow path 34 and the other one of the second refrigerant flow path 34 and adhere to the other of the first refrigerant flow path 33 and the second refrigerant flow path 34. Frost is melted by the air in the cooling chamber 4. Therefore, it is possible to realize the air cooler 21 in which a large amount of frost adheres to the refrigerant flow path of the air cooler 21 during storage of the chilled product and the motor 45a of the electric fan 45 is not overloaded. Therefore, when storing chilled products, it is not necessary to stop the operation of the air cooler 21 and the circulation of the CO2 refrigerant liquid for the defrost operation, and the air cooler 21 can be continuously operated, resulting in poor cooling. Can be eliminated.

以上、本発明の実施形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲での種々の変更が可能である。例えば、上述した各種実施形態を適宜組み合わせてもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the object of the present invention. For example, the various embodiments described above may be combined as appropriate.

1 空気冷却装置
3 冷蔵倉庫
4 冷却室
6 荷捌き室
10 一次冷却回路
11 圧縮機
12 凝縮器
13 膨張弁
14 カスケードコンデンサ
15 冷却水循環路
16 NH3レシーバ
20 二次冷却回路(循環路)
21、60 空気冷却器
23 CO2レシーバ
24 CO2循環路
25 CO2冷媒供給路
26 CO2冷媒戻し路
27 CO2冷媒分岐路
29 第1開閉弁
30 第2開閉弁
32、61 ケーシング
32a、61a 前壁部
32b、61b 後壁部
33 第1冷媒流路
34 第2冷媒流路
35 風路
40 制御装置
45 電動ファン(ファン)
45a モータ
45b 羽根車
47 温度設定スイッチ
47a チルドスイッチ
47b 冷凍スイッチ
48 温度センサ
62 CO2冷媒流路
DESCRIPTION OF SYMBOLS 1 Air cooling device 3 Refrigerated warehouse 4 Cooling room 6 Handling room 10 Primary cooling circuit 11 Compressor 12 Condenser 13 Expansion valve 14 Cascade capacitor 15 Cooling water circulation path 16 NH3 receiver 20 Secondary cooling circuit (circulation path)
21, 60 Air cooler 23 CO2 receiver 24 CO2 circulation path 25 CO2 refrigerant supply path 26 CO2 refrigerant return path 27 CO2 refrigerant branch path 29 First on-off valve 30 Second on-off valve 32, 61 Casing 32a, 61a Front wall 32b, 61b Rear wall 33 First refrigerant flow path 34 Second refrigerant flow path 35 Air flow path 40 Control device 45 Electric fan (fan)
45a Motor 45b Impeller 47 Temperature setting switch 47a Chilled switch 47b Refrigeration switch 48 Temperature sensor 62 CO2 refrigerant flow path

Claims (5)

低温のCO2冷媒液が循環するCO2冷媒流路と、被冷却品を保管する冷却室内で電動ファンによって循環する空気との間で熱交換して前記冷却室内の空気を冷却する空気冷却器であって、
前記CO2冷媒流路は、CO2冷媒液が並列に流れて並列流路を構成する第1冷媒流路及び第2冷媒流路を含み、
前記第1冷媒流路及び前記第2循環流路は、前記ファンによって流れる前記冷却室内の空気の流れ方向と対向して互いに異なる位置に配置され、
前記第1冷媒流路及び前記第2冷媒流路の夫々に繋がる前記循環路の往路には、CO2冷媒液の流れを許容し及び遮断可能な第1開閉弁及び第2開閉弁が設けられ、
前記第1冷媒流路及び前記第2冷媒流路は、前記第1開閉弁及び前記第2開閉弁の開閉によって、CO2冷媒液が同時に又は交互に流れるように構成されている
ことを特徴とする空気冷却器。
An air cooler that cools the air in the cooling chamber by exchanging heat between the CO2 refrigerant flow path through which the low-temperature CO2 refrigerant liquid circulates and the air circulated by the electric fan in the cooling chamber in which the article to be cooled is stored. And
The CO2 refrigerant flow path includes a first refrigerant flow path and a second refrigerant flow path in which a CO2 refrigerant liquid flows in parallel to form a parallel flow path,
The first refrigerant flow path and the second circulation flow path are arranged at positions different from each other so as to face the flow direction of the air in the cooling chamber flowing by the fan,
A first on-off valve and a second on-off valve that allow and block the flow of the CO2 refrigerant liquid are provided in the forward path of the circulation path connected to each of the first refrigerant path and the second refrigerant path,
The first refrigerant channel and the second refrigerant channel are configured such that CO2 refrigerant liquid flows simultaneously or alternately by opening and closing of the first on-off valve and the second on-off valve. Air cooler.
前記冷却室内の設定温度が冷凍品保管温度帯である場合には、前記第1開閉弁及び前記第2開閉弁を開として、前記第1冷媒流路及び前記第2冷媒流路に低温のCO2冷媒液を同時に流し、前記冷却室内の設定温度がチルド品保管温度帯である場合には、前記第1開閉弁及び前記第2開閉弁を交互に開閉して、前記第1冷媒流路及び前記第2冷媒流路に低温のCO2冷媒液を交互に流すように構成されている
ことを特徴とする請求項1に記載の空気冷却器。
When the set temperature in the cooling chamber is a frozen product storage temperature zone, the first on-off valve and the second on-off valve are opened, and low temperature CO 2 is supplied to the first refrigerant passage and the second refrigerant passage. When the refrigerant liquid flows simultaneously and the set temperature in the cooling chamber is in the chilled product storage temperature zone, the first on-off valve and the second on-off valve are alternately opened and closed, and the first refrigerant flow path and the The air cooler according to claim 1, wherein a low-temperature CO2 refrigerant liquid is alternately flowed through the second refrigerant flow path.
前記第1開閉弁及び前記第2開閉弁の開閉を制御する制御装置が設けられ、
前記制御装置は、前記冷却室内の設定温度がチルド品保管温度帯である場合に、予め設定された所定時間の経過毎に、前記第1開閉弁及び前記第2開閉弁を交互に開閉するように構成されている
ことを特徴とする請求項2に記載の空気冷却器。
A controller for controlling opening and closing of the first on-off valve and the second on-off valve is provided;
The control device alternately opens and closes the first on-off valve and the second on-off valve at every elapse of a predetermined time when the set temperature in the cooling chamber is in a chilled product storage temperature zone. It is comprised by these. The air cooler of Claim 2 characterized by the above-mentioned.
前記第1冷媒流路及び前記第2冷媒流路は、前記ファンによって循環する空気の流れ方向上流側から下流側へ向かって前記空気冷却器内に延在している
ことを特徴とする請求項1から3のいずれかに記載の空気冷却器。
The said 1st refrigerant flow path and the said 2nd refrigerant flow path are extended in the said air cooler toward the downstream from the flow direction upstream of the air circulated by the said fan. The air cooler according to any one of 1 to 3.
低温のCO2冷媒液が循環するCO2冷媒流路と、被冷却品を保管する冷却室内で電動ファンによって循環する空気との間で熱交換して前記冷却室内の空気を冷却する請求項1に記載の空気冷却器の運転方法であって、
前記冷却室内の設定温度がチルド品保管温度帯であるときに、前記第1開閉弁及び前記第2開閉弁のいずれか一方を開とし、前記第1開閉弁及び前記第2開閉弁のいずれか他方を閉として、前記第1冷媒流路及び前記第2循環流路のいずれか一方に前記循環路にCO2冷媒液を流し、前記第1冷媒流路及び前記第2循環流路のいずれか他方に前記冷却されたCO2冷媒液の流通を遮断する第1冷却工程と、
前記第1冷却工程の後に、前記第1開閉弁及び前記第2開閉弁のいずれか他方を開とし、前記第1開閉弁及び前記第2開閉弁のいずれか一方を閉として、前記第1冷媒流路及び前記第2循環流路のいずれか他方にCO2冷媒液を流し、前記第1冷媒流路及び前記第2循環流路のいずれか一方にCO2冷媒液の流通を遮断する第2冷却工程とからなるサイクルを繰り返す
ことを特徴とする空気冷却器の運転方法。

2. The air in the cooling chamber is cooled by exchanging heat between the CO2 refrigerant flow path through which the low-temperature CO2 refrigerant liquid circulates and the air circulated by the electric fan in the cooling chamber in which the article to be cooled is stored. Operating method of the air cooler,
When the set temperature in the cooling chamber is a chilled product storage temperature zone, one of the first on-off valve and the second on-off valve is opened, and one of the first on-off valve and the second on-off valve With the other closed, a CO2 refrigerant liquid is allowed to flow through the circulation path through one of the first refrigerant flow path and the second circulation flow path, and the other of the first refrigerant flow path and the second circulation flow path. A first cooling step for blocking the flow of the cooled CO2 refrigerant liquid;
After the first cooling step, either the first on-off valve or the second on-off valve is opened, and either the first on-off valve or the second on-off valve is closed, and the first refrigerant A second cooling step of flowing a CO2 refrigerant liquid through one of the flow path and the second circulation flow path and blocking the flow of the CO2 refrigerant liquid through either the first refrigerant flow path or the second circulation flow path; A method of operating an air cooler characterized by repeating a cycle consisting of:

JP2014106635A 2014-05-23 2014-05-23 Air cooler and operation method thereof Active JP6391148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106635A JP6391148B2 (en) 2014-05-23 2014-05-23 Air cooler and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106635A JP6391148B2 (en) 2014-05-23 2014-05-23 Air cooler and operation method thereof

Publications (2)

Publication Number Publication Date
JP2015222145A true JP2015222145A (en) 2015-12-10
JP6391148B2 JP6391148B2 (en) 2018-09-19

Family

ID=54785251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106635A Active JP6391148B2 (en) 2014-05-23 2014-05-23 Air cooler and operation method thereof

Country Status (1)

Country Link
JP (1) JP6391148B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442060U (en) * 1977-08-29 1979-03-20
JPS5767771A (en) * 1980-10-16 1982-04-24 Fuji Electric Co Ltd Refrigerated show case
JPS58110969A (en) * 1981-12-24 1983-07-01 株式会社ヤマダ技研 Freezing refrigerating device
JPS61128079A (en) * 1984-11-26 1986-06-16 サンデン株式会社 Showcase
JPH0371733U (en) * 1989-11-16 1991-07-19
JPH0682129A (en) * 1992-09-07 1994-03-22 Daikin Ind Ltd Refrigerating apparatus
JPH0791792A (en) * 1993-09-28 1995-04-04 Toshiba Corp Refrigeration stocker
JPH08210757A (en) * 1995-02-01 1996-08-20 Orion Mach Co Ltd Defrosting structure in condenser
JP2004537023A (en) * 2001-05-04 2004-12-09 キャリア コーポレイション Evaporator for medium temperature frozen display shelf
JP2009103394A (en) * 2007-10-25 2009-05-14 Mitsubishi Heavy Ind Ltd Refrigerator for land transportation, and operation control method of refrigerator for land transportation
US20110024083A1 (en) * 2009-07-31 2011-02-03 Steimel John C Heat exchanger
JP2012007757A (en) * 2010-06-22 2012-01-12 Mayekawa Mfg Co Ltd Freezer device and operation control method for the same
JP2012093046A (en) * 2010-10-28 2012-05-17 Mayekawa Mfg Co Ltd Cooling method and cooling equipment by co2 brine
JP2013104574A (en) * 2011-11-10 2013-05-30 Mayekawa Mfg Co Ltd Refrigeration device for fishing boat

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442060U (en) * 1977-08-29 1979-03-20
JPS5767771A (en) * 1980-10-16 1982-04-24 Fuji Electric Co Ltd Refrigerated show case
JPS58110969A (en) * 1981-12-24 1983-07-01 株式会社ヤマダ技研 Freezing refrigerating device
JPS61128079A (en) * 1984-11-26 1986-06-16 サンデン株式会社 Showcase
JPH0371733U (en) * 1989-11-16 1991-07-19
JPH0682129A (en) * 1992-09-07 1994-03-22 Daikin Ind Ltd Refrigerating apparatus
JPH0791792A (en) * 1993-09-28 1995-04-04 Toshiba Corp Refrigeration stocker
JPH08210757A (en) * 1995-02-01 1996-08-20 Orion Mach Co Ltd Defrosting structure in condenser
JP2004537023A (en) * 2001-05-04 2004-12-09 キャリア コーポレイション Evaporator for medium temperature frozen display shelf
JP2009103394A (en) * 2007-10-25 2009-05-14 Mitsubishi Heavy Ind Ltd Refrigerator for land transportation, and operation control method of refrigerator for land transportation
US20110024083A1 (en) * 2009-07-31 2011-02-03 Steimel John C Heat exchanger
JP2012007757A (en) * 2010-06-22 2012-01-12 Mayekawa Mfg Co Ltd Freezer device and operation control method for the same
JP2012093046A (en) * 2010-10-28 2012-05-17 Mayekawa Mfg Co Ltd Cooling method and cooling equipment by co2 brine
JP2013104574A (en) * 2011-11-10 2013-05-30 Mayekawa Mfg Co Ltd Refrigeration device for fishing boat

Also Published As

Publication number Publication date
JP6391148B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
US10465946B2 (en) Refrigerator and a method controlling the same
JP6478544B2 (en) vending machine
CN103175364B (en) Refrigerator
EP2889550A1 (en) Cooling apparatus for refrigerator and control method thereof
JP4068390B2 (en) Defrosting operation method of refrigerator equipped with two evaporators
EP3502597B1 (en) Refrigerator
US20150354860A1 (en) A cooling device
EP3499157B1 (en) Refrigerator
US9814326B2 (en) Refrigeration system having a common air plenum
JP2005107764A (en) Automatic vending machine
JP6391148B2 (en) Air cooler and operation method thereof
KR20150145852A (en) A refrigerator
JP6615354B2 (en) Freezer refrigerator
CN102506538A (en) Direct cooling type super-cooling refrigerator
JPH02143074A (en) Cold heat accumulating type cold reserving case
JP2014059092A (en) Refrigerator
WO2009061120A3 (en) Control method of refrigerator
JP2003207250A (en) Refrigerator
JP2005016777A (en) Refrigerator
JP2003287331A (en) Refrigerator
KR100379403B1 (en) defrosting method in the refrigerator with 2 evaporators
JP2015155776A (en) cooling system
JP2016169900A (en) Freezing refrigerator
JPH02171574A (en) Heat storage type cold storage bin
KR101045188B1 (en) Thawing apparatus in cryogenic refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6391148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250