JP2015222085A - Explosion-proof barrier for contact signal conversion equipment - Google Patents

Explosion-proof barrier for contact signal conversion equipment Download PDF

Info

Publication number
JP2015222085A
JP2015222085A JP2014105928A JP2014105928A JP2015222085A JP 2015222085 A JP2015222085 A JP 2015222085A JP 2014105928 A JP2014105928 A JP 2014105928A JP 2014105928 A JP2014105928 A JP 2014105928A JP 2015222085 A JP2015222085 A JP 2015222085A
Authority
JP
Japan
Prior art keywords
explosion
voltage
valve
proof barrier
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014105928A
Other languages
Japanese (ja)
Other versions
JP6413344B2 (en
Inventor
信宏 金谷
Nobuhiro Kanaya
信宏 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2014105928A priority Critical patent/JP6413344B2/en
Publication of JP2015222085A publication Critical patent/JP2015222085A/en
Application granted granted Critical
Publication of JP6413344B2 publication Critical patent/JP6413344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate an explosion-proof design in contact signal conversion equipment capable of driving a solenoid type electromagnetic valve.SOLUTION: An explosion-proof barrier limits a voltage and an electric current of an operation power source of a solenoid type electromagnetic valve, in contact signal conversion equipment for converting an on-off contact signal to a control signal for operating the solenoid type electromagnetic valve. A current limit component for limiting the electric current is arranged in a rear step of a voltage limit component for limiting the voltage.

Description

本発明は、バルブ動作を指示する接点信号を電磁弁制御信号に変換する接点信号変換装置に係り、特に、ソレノイド型電磁弁を駆動可能な接点信号変換装置における防爆バリアに関する。   The present invention relates to a contact signal conversion device that converts a contact signal that instructs valve operation into an electromagnetic valve control signal, and more particularly to an explosion-proof barrier in a contact signal conversion device that can drive a solenoid type electromagnetic valve.

プラント等においてバルブの開閉を遠隔操作する場合は、操作を行なう端末装置からバルブ駆動装置にバルブの開閉を指示する制御信号が送られる。従来、操作装置とバルブ駆動装置との通信は、端末装置とバルブ駆動装置との間に敷設した制御信号線を介した有線通信で行なわれていたが、近年では無線で通信が行なわれことも多くなっている。   When remotely opening and closing a valve in a plant or the like, a control signal instructing opening and closing of the valve is sent from the terminal device that performs the operation to the valve driving device. Conventionally, communication between the operation device and the valve drive device has been performed by wired communication via a control signal line laid between the terminal device and the valve drive device. However, in recent years, communication has been performed wirelessly. It is increasing.

図6は、無線通信を行なう端末装置とバルブ駆動装置との構成を示す図である。本図に示すように、操作を行なう端末装置51には、端末側無線通信装置52が接続され、バルブ開閉動作を行なうバルブ駆動装置60にはバルブ側無線通信装置53が接続されている。   FIG. 6 is a diagram illustrating a configuration of a terminal device and a valve driving device that perform wireless communication. As shown in the figure, a terminal-side wireless communication device 52 is connected to the terminal device 51 that performs the operation, and a valve-side wireless communication device 53 is connected to the valve drive device 60 that performs the valve opening / closing operation.

ここでは、バルブ開動作を例に説明する。オペレータが端末装置51でバルブ駆動装置60の開動作を指示すると、端末側無線通信装置52からバルブ側無線通信装置53にバルブ開接点信号のオンが無線で送られ、バルブ駆動装置60に伝達される。   Here, the valve opening operation will be described as an example. When the operator instructs the opening operation of the valve driving device 60 with the terminal device 51, the valve opening contact signal ON is wirelessly transmitted from the terminal side wireless communication device 52 to the valve side wireless communication device 53 and transmitted to the valve driving device 60. The

バルブ駆動装置60は、信号変換装置610、電磁弁620、空気圧開閉器630を備えている。信号変換装置610は、バルブ側無線通信装置53から開接点信号のオンが伝達されると、電磁弁620を動作させる開制御信号のオンに変換して、電磁弁620に出力する。電磁弁620が開制御信号のオンにしたがって電磁弁を切り替えると、空気圧開閉器630がバルブ70を駆動し、バルブ70を開にする。電磁弁620、空気圧開閉器630は、バルブ70の個数に対応して複数個設けることができ、信号変換装置610は、バルブ70毎に開制御信号を出力する。   The valve driving device 60 includes a signal conversion device 610, an electromagnetic valve 620, and a pneumatic switch 630. When the opening of the open contact signal is transmitted from the valve-side wireless communication device 53, the signal conversion device 610 converts the opening control signal to operate the electromagnetic valve 620, and outputs it to the electromagnetic valve 620. When the solenoid valve 620 switches the solenoid valve in accordance with the opening control signal being turned on, the pneumatic switch 630 drives the valve 70 and opens the valve 70. A plurality of electromagnetic valves 620 and pneumatic switches 630 can be provided corresponding to the number of valves 70, and the signal conversion device 610 outputs an open control signal for each valve 70.

オペレータが端末装置51でバルブ駆動装置60の動作停止を指示すると、端末側無線通信装置52からバルブ側無線通信装置53に開接点信号のオフが無線で送られ、バルブ駆動装置60に伝達される。バルブ駆動装置60の接点信号変換装置610は、バルブ開接点信号のオフを開制御信号のオフに変換して、電磁弁620に出力する。電磁弁620が開制御信号のオフにしたがって電磁弁を切り替えると、バルブ70の開動作が停止する。   When the operator instructs the terminal device 51 to stop the operation of the valve driving device 60, the terminal-side wireless communication device 52 wirelessly sends an open contact signal OFF to the valve-side wireless communication device 53 and transmits it to the valve driving device 60. . The contact signal conversion device 610 of the valve drive device 60 converts the valve open contact signal OFF to the open control signal OFF and outputs it to the electromagnetic valve 620. When the solenoid valve 620 switches the solenoid valve according to the opening control signal being turned off, the opening operation of the valve 70 is stopped.

電磁弁620は、小電力で動作が可能なピエゾ型電磁弁が広く用いられている。しかしながら、ピエゾ型電磁弁は、一般的でなく、選択の自由度が低い。また、国内では本質安全防爆仕様の認定を受けているものが無いため、使用場所の制約がある。   As the solenoid valve 620, a piezo-type solenoid valve capable of operating with low power is widely used. However, piezo-type solenoid valves are not common and have a low degree of freedom in selection. In addition, there are no restrictions on the place of use because there is no intrinsically safe certification in Japan.

無線通信によるバルブの遠隔操作は、特に、危険場所において有益であるため、一般的で選択の自由度が高く、また、国内で本質安全防爆仕様の認定を受けている製品もあるソレノイド型電磁弁を使用したいという要望がある。   Solenoid solenoid valves that have general and high degree of freedom for selection, and that have been approved as intrinsically safe explosion-proof specifications in Japan because remote control of valves by wireless communication is particularly useful in hazardous locations. There is a request to use.

ただし、ソレノイド型電磁弁は、ピエゾ型電磁弁と比較して動作させるためにより大きな電力が必要である。具体的には、ピエゾ型電磁弁が6V、0.5mAの0.003W程度で動作させることができるのに対し、ソレノイド型電磁弁は、DC12V、34mA、408mW程度の電力が必要となる。したがって、無線通信によるバルブの遠隔操作でソレノイド型電磁弁を用いる場合には、接点信号変換装置において、電力供給と防爆仕様とを両立させなければならない。   However, the solenoid type solenoid valve requires larger electric power to operate as compared with the piezo type solenoid valve. Specifically, the piezo-type solenoid valve can be operated at about 0.003 W of 6 V and 0.5 mA, whereas the solenoid-type solenoid valve requires power of about DC 12 V, 34 mA and 408 mW. Therefore, when a solenoid type solenoid valve is used for remote operation of the valve by wireless communication, the power supply and the explosion-proof specification must be compatible in the contact signal conversion device.

特表2003−528269Special table 2003-528269

図7は、ソレノイド型電磁弁を用いたとした場合のバルブ駆動装置60の接点信号変換装置610の構成例を示している。本例では、2系統のソレノイド型電磁弁620(620a、620b)を動作させるものとする。   FIG. 7 shows a configuration example of the contact signal conversion device 610 of the valve drive device 60 when a solenoid type electromagnetic valve is used. In this example, it is assumed that two solenoid solenoid valves 620 (620a, 620b) are operated.

本図に示すように、接点信号変換装置610は、ソレノイド型電磁弁620の動作電源となる電池611、防爆バリア612、スイッチ613(613a、613b)、ORゲート614を備えている。   As shown in this figure, the contact signal conversion device 610 includes a battery 611 serving as an operation power source for the solenoid type electromagnetic valve 620, an explosion-proof barrier 612, switches 613 (613a and 613b), and an OR gate 614.

電池611は、ソレノイド型電磁弁620を駆動する電力を供給するため、例えば、公称電圧3.6V(最大開路電圧3.9V)の電池を8個直列にして構成する。これにより、公称電圧28.8V(最大開路電圧31.2V)となる。   The battery 611 is configured by, for example, eight batteries having a nominal voltage of 3.6 V (maximum open circuit voltage of 3.9 V) in series in order to supply electric power for driving the solenoid type electromagnetic valve 620. As a result, the nominal voltage becomes 28.8V (maximum open circuit voltage 31.2V).

防爆バリア612は、ソレノイド型電磁弁620に供給する電圧と電流とを、それぞれソレノイド型電磁弁620の本安回路最大電圧、本安回路最大電流以下に制限する回路である。   The explosion-proof barrier 612 is a circuit that restricts the voltage and current supplied to the solenoid type electromagnetic valve 620 to be equal to or lower than the main safety circuit maximum voltage and the main safety circuit maximum current of the solenoid type electromagnetic valve 620, respectively.

スイッチ613(613a、613b)は、防爆バリア612の出力とソレノイド型電磁弁620(620a、620b)との間に配置され、バルブ側無線通信装置53からの開接点信号に応じてオンオフが切り替えられる。オンになったスイッチ613に接続されたソレノイド型電磁弁620に、電池611からの電力が防爆バリア612を介して供給される。   The switches 613 (613a, 613b) are arranged between the output of the explosion-proof barrier 612 and the solenoid type electromagnetic valve 620 (620a, 620b), and are switched on / off according to an open contact signal from the valve-side wireless communication device 53. . Electric power from the battery 611 is supplied through the explosion-proof barrier 612 to the solenoid type electromagnetic valve 620 connected to the switch 613 that is turned on.

ORゲート614は、2系統の開接点信号のいずれかがオンになるとハイとなる防爆バリア制御信号を防爆バリア612に出力する。   The OR gate 614 outputs to the explosion-proof barrier 612 an explosion-proof barrier control signal that becomes high when one of the two systems of open contact signals is turned on.

図8は、防爆バリア612の構成例を示している。ここでは、ソレノイド型電磁弁620の本安回路最大電圧が29.4Vであり、本安回路最大電流が93.8mAであるとし、防爆バリア612は、電圧を29.4Vに制限し、電流を93.8mAに制限するものとする。   FIG. 8 shows a configuration example of the explosion-proof barrier 612. Here, the maximum voltage of the safety circuit of the solenoid type solenoid valve 620 is 29.4V, the maximum current of the safety circuit is 93.8mA, the explosion-proof barrier 612 limits the voltage to 29.4V, It shall be limited to 93.8 mA.

本図に示すように防爆バリア612は、電池611側に電流制限部品である抵抗R11とスイッチSW11を配置し、スイッチ613およびソレノイド型電磁弁620側に電圧制限部品であるツェナーダイオードZD11、ZD12を配置している。これは、電流を制限してから電圧を制限した方が、より大きな電力をソレノイド型電磁弁620に供給することができるからである。   As shown in this figure, the explosion-proof barrier 612 has a resistor R11 and a switch SW11 that are current limiting components on the battery 611 side, and Zener diodes ZD11 and ZD12 that are voltage limiting components on the switch 613 and solenoid type solenoid valve 620 side. It is arranged. This is because a larger electric power can be supplied to the solenoid type electromagnetic valve 620 when the voltage is limited after the current is limited.

ツェナーダイオードZD11、ZD12は、本安回路最大電圧Uoを29.4Vに制限するため、例えば、ツェナー電圧Vzが26.7〜28.1Vのものを用いる。抵抗R11は、本安回路最大電流Ioを93.8mAに制限するため、電池611の最大開路電圧31.2V/93.8mA≒333Ω以上の抵抗を用いる。スイッチSW11は、防爆バリア制御信号がハイになるとオンに切り替わるスイッチであり、例えば、FETを用いる。   The zener diodes ZD11 and ZD12 are, for example, those having a zener voltage Vz of 26.7 to 28.1 V in order to limit the safe circuit maximum voltage Uo to 29.4V. The resistor R11 uses a resistor having a maximum open circuit voltage of 31.2 V / 93.8 mA≈333 Ω or more of the battery 611 in order to limit the current safety circuit maximum current Io to 93.8 mA. The switch SW11 is a switch that turns on when the explosion-proof barrier control signal becomes high. For example, an FET is used.

図9は、防爆バリア612の電圧−電流特性を示す図である。防爆バリア612は、電流を制限してから電圧を制限しているため、出力電流が小さい領域で、出力電圧がツェナー電圧Vzで一定に制限され、本図に示すように、電圧−電流特性は非線形となる。   FIG. 9 is a diagram illustrating the voltage-current characteristics of the explosion-proof barrier 612. Since the explosion-proof barrier 612 limits the voltage after limiting the current, the output voltage is limited to a constant zener voltage Vz in a region where the output current is small. As shown in this figure, the voltage-current characteristic is Non-linear.

一般に、防爆バリアを介して供給される電力の電圧−電流特性が線形であれば、既存の計算式を用いて、認証機関の防爆構造規格を満たす防爆設計を容易に行なうことができる。   In general, if the voltage-current characteristic of the power supplied through the explosion-proof barrier is linear, an explosion-proof design that satisfies the explosion-proof structure standard of the certification body can be easily performed using an existing calculation formula.

しかしながら、電圧−電流特性が非線形の場合には、計算法が確立されておらず、より厳しい条件で実験的に本質安全性の評価を行なわざるを得ない。このため、防爆設計が複雑で困難な作業となる。   However, when the voltage-current characteristics are non-linear, no calculation method has been established, and the intrinsic safety must be evaluated experimentally under more severe conditions. For this reason, explosion-proof design is a complicated and difficult task.

そこで、本発明は、ソレノイド型電磁弁を駆動可能な接点信号変換装置において防爆設計を容易化することを目的とする。   Therefore, an object of the present invention is to facilitate explosion-proof design in a contact signal conversion device capable of driving a solenoid type electromagnetic valve.

上記課題を解決するため、本発明の防爆バリアは、オンオフの接点信号を、ソレノイド型電磁弁を動作させる制御信号に変換する接点信号変換装置において前記ソレノイド型電磁弁の動作電源の電圧と電流とを制限する防爆バリアであって、電圧を制限する電圧制限部品の後段に、電流を制限する電流制限部品を配置したことを特徴とする。
ここで、前記電圧制限部品の前段に、前記接点信号に基づいてオンオフが切り替えられるスイッチを配置してもよい。
例えば、前記電圧制限部品は、ツェナーダイオードとし、前記電流制限部品は、抵抗とすることができる。
In order to solve the above problems, an explosion-proof barrier according to the present invention is a contact signal conversion device that converts an on / off contact signal into a control signal for operating a solenoid type solenoid valve. An explosion-proof barrier for limiting current, and a current limiting component for limiting current is disposed after a voltage limiting component for limiting voltage.
Here, a switch that can be turned on and off based on the contact signal may be disposed in front of the voltage limiting component.
For example, the voltage limiting component can be a Zener diode, and the current limiting component can be a resistor.

本発明によれば、ソレノイド型電磁弁を駆動可能な接点信号変換装置において防爆設計を容易化することができる。   According to the present invention, an explosion-proof design can be facilitated in a contact signal conversion device capable of driving a solenoid type electromagnetic valve.

本実施形態に係るバルブ駆動装置の接点信号変換装置の構成例を示す図である。It is a figure which shows the structural example of the contact signal converter of the valve drive device which concerns on this embodiment. 本実施形態の防爆バリアの構成例を示す図である。It is a figure which shows the structural example of the explosion-proof barrier of this embodiment. 防爆バリアの電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of an explosion-proof barrier. 本実施形態の防爆バリアの電圧−電流特性と負荷線を示す図である。It is a figure which shows the voltage-current characteristic and load line of the explosion-proof barrier of this embodiment. 本実施形態の変形例の防爆バリアの電圧−電流特性と負荷線を示す図である。It is a figure which shows the voltage-current characteristic and load line of the explosion-proof barrier of the modification of this embodiment. 無線通信を行なう端末装置とバルブ駆動装置との構成を示す図である。It is a figure which shows the structure of the terminal device and valve | bulb drive device which perform radio | wireless communication. ソレノイド型電磁弁を用いたとした場合のバルブ駆動装置の接点信号変換装置610の構成例を示す図である。It is a figure which shows the structural example of the contact signal converter 610 of the valve drive device at the time of using a solenoid type solenoid valve. 防爆バリアの構成例を示す図である。It is a figure which shows the structural example of an explosion-proof barrier. 防爆バリアの電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of an explosion-proof barrier.

本発明の実施の形態について図面を参照して説明する。図1は、本実施形態に係るバルブ駆動装置10の接点信号変換装置110の構成例を示している。本実施例では、2系統のソレノイド型電磁弁120(120a、120b)を動作させるものとする。なお、バルブ駆動装置10は、図6に示した構成と同様に、無線通信でバルブの開閉を遠隔操作する構成において、バルブ側無線通信装置とバルブとの間に配置される。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration example of the contact signal conversion device 110 of the valve drive device 10 according to the present embodiment. In this embodiment, it is assumed that two solenoid solenoid valves 120 (120a, 120b) are operated. Similar to the configuration shown in FIG. 6, the valve driving device 10 is disposed between the valve-side wireless communication device and the valve in a configuration in which the opening and closing of the valve is remotely controlled by wireless communication.

本図に示すように、接点信号変換装置110は、ソレノイド型電磁弁120の動作電源となる電池111、防爆バリア112、スイッチ113(113a、113b)、ORゲート114を備えている。図6に示したように、それぞれのソレノイド型電磁弁120(120a、120b)は、バルブを動作させる空気圧開閉器を駆動する。   As shown in the figure, the contact signal conversion device 110 includes a battery 111 serving as an operation power source for the solenoid type electromagnetic valve 120, an explosion-proof barrier 112, switches 113 (113a and 113b), and an OR gate 114. As shown in FIG. 6, each solenoid type solenoid valve 120 (120a, 120b) drives a pneumatic switch for operating the valve.

電池111は、ソレノイド型電磁弁120を駆動する電力を供給するため、例えば、公称電圧3.6V(最大開路電圧3.9V)の電池を8個直列にして構成する。これにより、公称電圧28.8V(最大開路電圧31.2V)となる。ただし、ソレノイド型電磁弁120を動作させる電力を供給可能な外部供給電源を用いるようにしてもよい。   The battery 111 is configured by, for example, eight batteries having a nominal voltage of 3.6 V (maximum open circuit voltage of 3.9 V) in series in order to supply power for driving the solenoid type electromagnetic valve 120. As a result, the nominal voltage becomes 28.8V (maximum open circuit voltage 31.2V). However, an external power supply capable of supplying electric power for operating the solenoid type solenoid valve 120 may be used.

防爆バリア112は、ソレノイド型電磁弁120に供給する電圧と電流とを、それぞれソレノイド型電磁弁120の本安回路最大電圧、本安回路最大電流以下に制限する回路である。   The explosion-proof barrier 112 is a circuit that limits the voltage and current supplied to the solenoid type electromagnetic valve 120 to the maximum voltage of the solenoid circuit 120 and the maximum current of the solenoid circuit 120, respectively.

スイッチ113(113a、113b)は、防爆バリア112の出力とソレノイド型電磁弁120(120a、120b)との間に配置され、バルブ側無線通信装置からの開接点信号に応じてオンオフが切り替えられる。オンになったスイッチ113に接続されたソレノイド型電磁弁120に、電池111からの電力が防爆バリア112を介して供給される。   The switch 113 (113a, 113b) is disposed between the output of the explosion-proof barrier 112 and the solenoid type electromagnetic valve 120 (120a, 120b), and is switched on / off according to an open contact signal from the valve-side wireless communication device. Electric power from the battery 111 is supplied through the explosion-proof barrier 112 to the solenoid type solenoid valve 120 connected to the switch 113 that is turned on.

ORゲート114は、2系統の開接点信号のいずれかがオンになるとハイとなる防爆バリア制御信号を防爆バリア112に出力する。開接点信号の系統数に対応した入力数を有するものとし、開接点信号が1系統の場合は不要である。   The OR gate 114 outputs an explosion-proof barrier control signal to the explosion-proof barrier 112 that becomes high when one of the two systems of open contact signals is turned on. The number of inputs corresponding to the number of systems of open contact signals is assumed, and this is not necessary when the number of open contact signals is one system.

図2は、本実施形態の防爆バリア112の構成例を示している。ここでは、ソレノイド型電磁弁120の本安回路最大電圧が29.4Vであり、本安回路最大電流が93.8mAであるとし、防爆バリア112は、電圧を29.4Vに制限し、電流を93.8mAに制限するものとする。   FIG. 2 shows a configuration example of the explosion-proof barrier 112 of the present embodiment. Here, it is assumed that the maximum voltage of the safety circuit of the solenoid type solenoid valve 120 is 29.4 V, the maximum current of the safety circuit is 93.8 mA, the explosion-proof barrier 112 limits the voltage to 29.4 V, It shall be limited to 93.8 mA.

本図に示すように防爆バリア112は、電池111側にスイッチSW1と電圧制限部品であるツェナーダイオードZD1、ZD2を配置し、スイッチ113およびソレノイド型電磁弁120側に電流制限部品である抵抗R1を配置している。すなわち、電圧制限部品の後段に電流制限部品である抵抗R1を配置しているため、
スイッチSW1は、防爆バリア制御信号がハイになるとオンに切り替わるスイッチであり、例えば、FETを用いる。トランジスタ、フォトカプラ等を用いてもよい。スイッチSW1により、いずれかの接点信号がオンになって防爆バリア制御信号がハイとなった場合にのみ、電池111から電流が流れるため、電池111の寿命を伸ばすことができる。
As shown in this figure, the explosion-proof barrier 112 includes a switch SW1 and Zener diodes ZD1 and ZD2 that are voltage limiting components on the battery 111 side, and a resistor R1 that is a current limiting component on the switch 113 and solenoid type solenoid valve 120 side. It is arranged. That is, since the resistor R1 which is a current limiting component is arranged at the subsequent stage of the voltage limiting component,
The switch SW1 is a switch that turns on when the explosion-proof barrier control signal becomes high, and uses, for example, an FET. A transistor, a photocoupler, or the like may be used. Since the current flows from the battery 111 only when one of the contact signals is turned on by the switch SW1 and the explosion-proof barrier control signal becomes high, the life of the battery 111 can be extended.

ツェナーダイオードZD1、ZD2は、本安回路最大電圧Uoを29.4Vに制限するため、例えば、ツェナー電圧Vzが26.7〜28.1Vのものを用いる。もちろん、複数個のツェナーダイオードを直列に接続して本安回路最大電圧Uoを29.4Vに制限するようにしてもよい。   The Zener diodes ZD1 and ZD2 are, for example, those having a Zener voltage Vz of 26.7 to 28.1 V in order to limit the safe circuit maximum voltage Uo to 29.4 V. Of course, a plurality of Zener diodes may be connected in series to limit the maximum voltage Uo of the safety circuit to 29.4V.

抵抗R1は、本安回路最大電流Ioを93.8mAに制限するため、電圧制限部品の最大電圧28.1V/93.8mA≒300Ω以上の抵抗を用いる。本実施形態では、電圧制限部品の後段に電流制限部品である抵抗R1を配置しているため、電池111の最大開路電圧31.2Vではなく、電圧制限部品の最大電圧28.1Vに基づいて抵抗R1の下限値が定められる。もちろん、複数個の抵抗を用いて300Ω以上の電流制限部品を構成してもよい。   The resistor R1 uses a resistor having a maximum voltage of 28.1 V / 93.8 mA≈300Ω or more of the voltage limiting component in order to limit the maximum current Io of the safety circuit to 93.8 mA. In the present embodiment, since the resistor R1, which is a current limiting component, is arranged after the voltage limiting component, the resistance is not based on the maximum open circuit voltage 31.2V of the battery 111 but the maximum voltage 28.1V of the voltage limiting component. A lower limit value of R1 is determined. Of course, a current limiting component of 300Ω or more may be configured using a plurality of resistors.

なお、スイッチSW1のオン抵抗や電池111の内部抵抗が極めて小さい場合には、電圧制限部品と電池111との間に小さな抵抗を挿入することが望ましい。   When the on-resistance of the switch SW1 and the internal resistance of the battery 111 are extremely small, it is desirable to insert a small resistance between the voltage limiting component and the battery 111.

図3は、防爆バリアの電圧−電流特性を示す図である。本図における実線が本実施形態の防爆バリア112の電圧−電流特性であり、破線が電流を制限してから電圧を制限する防爆バリア612の電圧−電流特性である。   FIG. 3 is a diagram showing voltage-current characteristics of the explosion-proof barrier. The solid line in this figure is the voltage-current characteristic of the explosion-proof barrier 112 of this embodiment, and the broken line is the voltage-current characteristic of the explosion-proof barrier 612 that limits the current after limiting the current.

本実施形態の防爆バリア112は、電圧を制限してから電流を制限しているため、本図に示すように、電圧−電流特性は線形となる。このため、既存の計算式を用いて、認証機関の防爆構造規格を満たす防爆設計を容易に行なうことができる。   Since the explosion-proof barrier 112 of the present embodiment limits the current after limiting the voltage, the voltage-current characteristic is linear as shown in the figure. For this reason, an explosion-proof design that satisfies the explosion-proof structure standard of the certification body can be easily performed using the existing calculation formula.

また、本実施形態の防爆バリア112において、電流制限部品である抵抗R1の値は、300Ω以上の範囲で選択することができる。これは、電流を制限してから電圧を制限する防爆バリア612の電流制限部品の下限値333Ωよりも小さい値である。このため抵抗値の選択範囲が広くなり、回路設計の自由度が増すことになる。   Further, in the explosion-proof barrier 112 of the present embodiment, the value of the resistor R1, which is a current limiting component, can be selected within a range of 300Ω or more. This is a value smaller than the lower limit value 333Ω of the current limiting component of the explosion-proof barrier 612 that limits the voltage after limiting the current. For this reason, the selection range of the resistance value is widened, and the degree of freedom in circuit design is increased.

ただし、本図に示すように、本実施形態の防爆バリア112は、同一の出力電流での出力電圧は、電流を制限してから電圧を制限する防爆バリア612に比べて低くいため、出力できる電力は小さくなる。   However, as shown in the figure, the explosion-proof barrier 112 of the present embodiment has an output voltage at the same output current, which is lower than the explosion-proof barrier 612 that limits the voltage after limiting the current. Becomes smaller.

しかしながら、図4に示す、電力が408mWとなる負荷線と本実施形態の防爆バリア112の電圧−電流特性との関係から分かるように、本実施形態の防爆バリア112でも、ソレノイド型電磁弁120の動作に必要な408mW以上の電力を出力することができる。このため、無線によるバルブの遠隔操作システムにおけるソレノイド型電磁弁を駆動可能な接点信号変換装置の防爆バリアとして用いることが可能である。   However, as can be seen from the relationship between the load line where the electric power is 408 mW and the voltage-current characteristics of the explosion-proof barrier 112 of this embodiment shown in FIG. 4, the solenoid valve 120 of the solenoid-type solenoid valve 120 also has the explosion-proof barrier 112 of this embodiment. The power of 408 mW or more necessary for operation can be output. For this reason, it can be used as an explosion-proof barrier for a contact signal conversion device capable of driving a solenoid type electromagnetic valve in a wireless valve remote control system.

なお、上記の実施形態では、電圧制限部品により本安回路最大電圧Uoを29.4Vに制限するようにしていたが、本安回路最大電圧Uoを24V以下に制限することにより、点火限界曲線による本質安全性の評価を行なうことができるようになるため、一層防爆設計が容易となる。   In the above embodiment, the safety circuit maximum voltage Uo is limited to 29.4V by the voltage limiting component. However, by limiting the safety circuit maximum voltage Uo to 24V or less, the ignition limit curve is used. Since the intrinsic safety can be evaluated, the explosion-proof design is further facilitated.

この場合、図2におけるツェナーダイオードZD1、ZD2として、例えば、ツェナー電圧Vzが20.9〜23.1Vのものを用いればよい。このとき、抵抗R1は、本安回路最大電流Ioを93.8mAに制限するため、電圧制限部品の最大電圧23.1V/93.8mA≒256Ω以上の抵抗を用いるようにする。   In this case, as the Zener diodes ZD1 and ZD2 in FIG. 2, for example, those having a Zener voltage Vz of 20.9 to 23.1 V may be used. At this time, the resistor R1 uses a resistor having a maximum voltage of 23.1 V / 93.8 mA≈256Ω or more of the voltage limiting component in order to limit the safe circuit maximum current Io to 93.8 mA.

これにより、本安回路最大電圧Uoが24V以下に制限されるため、点火限界曲線による本質安全性の評価を行なうことができるようになる。すなわち、点火限界曲線で本質安全性の評価を行なうことで、接点信号変換装置110内部キャパシタンスおよび内部インダクタンスによっては、試験装置を用いた評価を省略することができる。   As a result, the maximum voltage Uo of the safety circuit is limited to 24V or less, and the intrinsic safety can be evaluated by the ignition limit curve. That is, by evaluating the intrinsic safety with the ignition limit curve, the evaluation using the test device can be omitted depending on the internal capacitance and the internal inductance of the contact signal conversion device 110.

なお、本安回路最大電圧Uoを24V以下に制限した場合であっても、図5に示すように、ソレノイド型電磁弁120の動作に必要な408mW以上の電力を出力可能な動作点が存在する。このため、無線によるバルブの遠隔操作システムにおけるソレノイド型電磁弁を駆動可能な接点信号変換装置の防爆バリアとして用いることが可能である。   Even when the maximum voltage Uo of the safety circuit is limited to 24 V or less, there is an operating point that can output 408 mW or more of electric power necessary for the operation of the solenoid type solenoid valve 120 as shown in FIG. . For this reason, it can be used as an explosion-proof barrier for a contact signal conversion device capable of driving a solenoid type electromagnetic valve in a wireless valve remote control system.

10…バルブ駆動装置
110…接点信号変換装置
111…電池
112…防爆バリア
113…スイッチ
114…ORゲート
120…ソレノイド型電磁弁
DESCRIPTION OF SYMBOLS 10 ... Valve drive device 110 ... Contact signal converter 111 ... Battery 112 ... Explosion-proof barrier 113 ... Switch 114 ... OR gate 120 ... Solenoid type solenoid valve

Claims (3)

オンオフの接点信号を、ソレノイド型電磁弁を動作させる制御信号に変換する接点信号変換装置において前記ソレノイド型電磁弁の動作電源の電圧と電流とを制限する防爆バリアであって、
電圧を制限する電圧制限部品の後段に、電流を制限する電流制限部品を配置したことを特徴とする防爆バリア。
An explosion-proof barrier that limits the voltage and current of the operating power supply of the solenoid type solenoid valve in a contact signal conversion device that converts an on / off contact signal into a control signal for operating the solenoid type solenoid valve,
An explosion-proof barrier, characterized in that a current limiting component that limits current is disposed after a voltage limiting component that limits voltage.
前記電圧制限部品の前段に、前記接点信号に基づいてオンオフが切り替えられるスイッチを配置したことを特徴とする請求項1に記載の防爆バリア。   The explosion-proof barrier according to claim 1, wherein a switch that can be switched on and off based on the contact signal is disposed in front of the voltage limiting component. 前記電圧制限部品は、ツェナーダイオードであり、前記電流制限部品は、抵抗であることを特徴とする請求項1または2に記載の防爆バリア。   The explosion-proof barrier according to claim 1 or 2, wherein the voltage limiting component is a Zener diode, and the current limiting component is a resistor.
JP2014105928A 2014-05-22 2014-05-22 Explosion-proof barrier in contact signal converter Active JP6413344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105928A JP6413344B2 (en) 2014-05-22 2014-05-22 Explosion-proof barrier in contact signal converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105928A JP6413344B2 (en) 2014-05-22 2014-05-22 Explosion-proof barrier in contact signal converter

Publications (2)

Publication Number Publication Date
JP2015222085A true JP2015222085A (en) 2015-12-10
JP6413344B2 JP6413344B2 (en) 2018-10-31

Family

ID=54785212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105928A Active JP6413344B2 (en) 2014-05-22 2014-05-22 Explosion-proof barrier in contact signal converter

Country Status (1)

Country Link
JP (1) JP6413344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718558B2 (en) 2017-12-11 2020-07-21 Global Cooling, Inc. Independent auxiliary thermosiphon for inexpensively extending active cooling to additional freezer interior walls
JP2022151234A (en) * 2021-03-26 2022-10-07 横河電機株式会社 State detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117552A (en) * 1974-08-06 1976-02-12 Fuji Electric Co Ltd
JPS5950408U (en) * 1982-09-25 1984-04-03 エナジーサポート株式会社 Display control circuit in overcurrent indicator
JPS59165397U (en) * 1983-04-20 1984-11-06 トキコ株式会社 Ground-mounted refueling device
JPS602070U (en) * 1983-06-17 1985-01-09 太陽鉄工株式会社 valve device
JPS63164677U (en) * 1987-03-07 1988-10-26
JPH0965441A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Low impedance intrinsic safety explosion proof barrier
JP5545511B2 (en) * 2012-05-23 2014-07-09 横河電機株式会社 Valve remote control device
JP6007922B2 (en) * 2014-01-07 2016-10-19 横河電機株式会社 Contact signal converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117552A (en) * 1974-08-06 1976-02-12 Fuji Electric Co Ltd
JPS5950408U (en) * 1982-09-25 1984-04-03 エナジーサポート株式会社 Display control circuit in overcurrent indicator
JPS59165397U (en) * 1983-04-20 1984-11-06 トキコ株式会社 Ground-mounted refueling device
JPS602070U (en) * 1983-06-17 1985-01-09 太陽鉄工株式会社 valve device
JPS63164677U (en) * 1987-03-07 1988-10-26
JPH0965441A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Low impedance intrinsic safety explosion proof barrier
JP5545511B2 (en) * 2012-05-23 2014-07-09 横河電機株式会社 Valve remote control device
JP6007922B2 (en) * 2014-01-07 2016-10-19 横河電機株式会社 Contact signal converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718558B2 (en) 2017-12-11 2020-07-21 Global Cooling, Inc. Independent auxiliary thermosiphon for inexpensively extending active cooling to additional freezer interior walls
JP2022151234A (en) * 2021-03-26 2022-10-07 横河電機株式会社 State detection device
JP7287413B2 (en) 2021-03-26 2023-06-06 横河電機株式会社 State detection device
US11977101B2 (en) 2021-03-26 2024-05-07 Yokogawa Electric Corporation State detection apparatus

Also Published As

Publication number Publication date
JP6413344B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6007922B2 (en) Contact signal converter
EP3018687A3 (en) Operator coil parameter based electromagnetic switching
EP3048712A3 (en) Power supply with self-diagnosis and protection switch
JP6759852B2 (en) I / O module
MX2018000516A (en) Device for managing gas appliances, and corresponding systems and methods.
JP6413344B2 (en) Explosion-proof barrier in contact signal converter
EP3376652A3 (en) Diagnosing device of three phase inverter
JP6476835B2 (en) Signal converter
EP2418762A3 (en) Switching mode power supply and method of controlling the same
US9909679B2 (en) Valve having electro-mechanical actuator and a control device with a delay circuit
CA2858451A1 (en) Procedure for controlling a multicoloured signal arrangement as well as multicoloured signal arrangements
EP3073625A3 (en) Voltage regulator including a buck converter pass switch
US20180012718A1 (en) Pulse solenoid control circuit
CN104369688A (en) Potential-PWM regulating circuit and automotive lamp with same
CN209879289U (en) Automatic switching-on and switching-off circuit system applied to test tool equipment
CN203099057U (en) Equipment for monitoring fluid control device
KR102221815B1 (en) Lamp switch device controlling with remote controller and smartphone
US20180212536A1 (en) Communication Device and System
CN203632643U (en) Photoelectric isolation input and output circuit
CN213473015U (en) Control device
EP3646465B1 (en) Pre-driver
CN104765301A (en) Switching value output self-protection circuit
KR20170043186A (en) Position control method for a heating valve actuator using AC voltage
RU97327U1 (en) RESERVED SYSTEM FOR CONTROL OF THE MOTOR ELECTRIC MOTOR DRIVE
CN204226165U (en) A kind of constant-voltage equipment of air compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150