JP2015222052A - Internal combustion engine control unit - Google Patents

Internal combustion engine control unit Download PDF

Info

Publication number
JP2015222052A
JP2015222052A JP2014107049A JP2014107049A JP2015222052A JP 2015222052 A JP2015222052 A JP 2015222052A JP 2014107049 A JP2014107049 A JP 2014107049A JP 2014107049 A JP2014107049 A JP 2014107049A JP 2015222052 A JP2015222052 A JP 2015222052A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
lean
purification catalyst
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014107049A
Other languages
Japanese (ja)
Inventor
雄士 山口
Yuji Yamaguchi
雄士 山口
中川 徳久
Norihisa Nakagawa
徳久 中川
岡崎 俊太郎
Shuntaro Okazaki
俊太郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014107049A priority Critical patent/JP2015222052A/en
Publication of JP2015222052A publication Critical patent/JP2015222052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep small the sulfur component occlusion quantity of an exhaust purification catalyst.SOLUTION: An internal combustion engine includes: an exhaust purification catalyst 20; a downstream air-fuel ratio sensor 41 disposed downstream of the exhaust purification catalyst 20; and temperature detection means 46 detecting a temperature of the exhaust purification catalyst 20. A control unit executes a feedback control so that an air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst 20 is equal to a target air-fuel ratio. The target air-fuel ratio is alternately set to a rich air-fuel ratio and a lean air-fuel ratio, and a rich degree and a lean degree of the target air-fuel ratio while the target air-fuel ratio is set to the rich air-fuel ratio and to the lean air-fuel ratio, respectively are reduced. A variation difference obtained by subtracting a difference between the rich air-fuel ratio after a rich degree changing period and a stoichiometric air-fuel ratio from a difference between the lean air-fuel ratio after lean degree changing period and the stoichiometric air-fuel ratio if the temperature of the exhaust purification catalyst 20 detected by the temperature detection means 46 is equal to or lower than a preset upper limit temperature is set greater than a variation difference if the temperature is higher than the upper limit temperature.

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

従来から、内燃機関の排気通路に空燃比センサを設け、この空燃比センサの出力に基づいて内燃機関に供給する燃料量を制御する内燃機関の制御装置が広く知られている。斯かる制御装置としては、機関排気通路に設けられた排気浄化触媒の上流側に空燃比センサを設けると共に、下流側に酸素センサを設けたものが知られている(例えば、特許文献1〜4)。   2. Description of the Related Art Conventionally, a control device for an internal combustion engine in which an air-fuel ratio sensor is provided in an exhaust passage of the internal combustion engine and the amount of fuel supplied to the internal combustion engine is controlled based on the output of the air-fuel ratio sensor is widely known. As such a control device, an air-fuel ratio sensor provided on the upstream side of an exhaust purification catalyst provided in an engine exhaust passage and an oxygen sensor provided on the downstream side are known (for example, Patent Documents 1 to 4). ).

特に、特許文献1に記載された制御装置では、上流側の空燃比センサによって検出された空燃比に応じて、この空燃比が目標空燃比となるように内燃機関に供給する燃料量を制御するようにしている。加えて、下流側の酸素センサによって検出された酸素濃度に応じて、目標空燃比を補正するようにしている。特許文献1によれば、これにより、上流側の空燃比センサ等に経年劣化や固体バラツキが存在しても、排気浄化触媒に流入する排気ガスの空燃比を目標値に合致させることができるようになるとされている。   In particular, in the control device described in Patent Document 1, the amount of fuel supplied to the internal combustion engine is controlled according to the air-fuel ratio detected by the upstream air-fuel ratio sensor so that the air-fuel ratio becomes the target air-fuel ratio. I am doing so. In addition, the target air-fuel ratio is corrected according to the oxygen concentration detected by the downstream oxygen sensor. According to Patent Document 1, this enables the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst to be matched with the target value even if the upstream air-fuel ratio sensor or the like has aged deterioration or solid variation. It is supposed to be.

特開平8−232723号公報JP-A-8-232723 特開2005−163614号公報JP 2005-163614 A 特開2006−183636号公報JP 2006-183636 A 特開平6−307271号公報JP-A-6-307271 特開昭62−126234号公報Japanese Patent Laid-Open No. 62-126234

ところで、本願の発明者らによれば、上述した特許文献1に記載された制御装置とは異なる制御を行う制御装置が提案されている。この制御装置では、下流側空燃比センサによって検出された空燃比がリッチ判定空燃比(理論空燃比よりも僅かにリッチな空燃比)以下になったときには、目標空燃比が理論空燃比よりもリーンな空燃比(以下、「リーン空燃比」という)に設定される。加えて、目標空燃比がリーン空燃比に設定されている間に一度そのリーン度合いが小さくされる。一方、下流側空燃比センサによって検出された空燃比がリーン判定空燃比(理論空燃比よりも僅かにリーンな空燃比)以上になったときには、目標空燃比が理論空燃比よりもリッチな空燃比(以下、「リッチ空燃比」という)に設定される。加えて、目標空燃比がリッチ空燃比に設定されている間に一度そのリッチ度合いが小さくされる。すなわち、この制御装置では、目標空燃比がリッチ空燃比とリーン空燃比とに交互に切り替えられる。   By the way, according to the inventors of the present application, a control device that performs control different from the control device described in Patent Document 1 has been proposed. In this control apparatus, when the air-fuel ratio detected by the downstream side air-fuel ratio sensor becomes equal to or less than the rich determination air-fuel ratio (the air-fuel ratio slightly richer than the stoichiometric air-fuel ratio), the target air-fuel ratio is leaner than the stoichiometric air-fuel ratio. The air / fuel ratio is set to a low air / fuel ratio (hereinafter referred to as “lean air / fuel ratio”). In addition, the lean degree is once reduced while the target air-fuel ratio is set to the lean air-fuel ratio. On the other hand, when the air-fuel ratio detected by the downstream air-fuel ratio sensor becomes equal to or higher than the lean determination air-fuel ratio (an air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio), the target air-fuel ratio is richer than the stoichiometric air-fuel ratio. (Hereinafter referred to as “rich air-fuel ratio”). In addition, the rich degree is once reduced while the target air-fuel ratio is set to the rich air-fuel ratio. That is, in this control device, the target air-fuel ratio is switched alternately between the rich air-fuel ratio and the lean air-fuel ratio.

このように、目標空燃比をリッチ空燃比とリーン空燃比とに交互に切り替える制御を行っている場合、排気浄化触媒では酸素の吸放出が行われる。ここで、排気浄化触媒の酸素吸蔵量が最大吸蔵可能酸素量に達すると、排気浄化触媒はそれ以上酸素を吸蔵することができなくなる。このため、排気浄化触媒からは酸素及びNOxが流出することになる。また、排気浄化触媒の酸素吸蔵量がゼロに達すると排気浄化触媒ではそれ以上未燃ガスを浄化することができなくなる。このため、排気浄化触媒からは未燃ガスが流出することになる。したがって、排気浄化触媒からNOxや未燃ガスの流出を抑制するためには、排気浄化触媒の最大吸蔵可能酸素量を多く維持して、排気浄化触媒の酸素吸蔵量が最大吸蔵可能酸素量やゼロに達する頻度を低減させることが必要である。   As described above, when the control for alternately switching the target air-fuel ratio between the rich air-fuel ratio and the lean air-fuel ratio is performed, oxygen is absorbed and released in the exhaust purification catalyst. Here, when the oxygen storage amount of the exhaust purification catalyst reaches the maximum storable oxygen amount, the exhaust purification catalyst can no longer store oxygen. For this reason, oxygen and NOx flow out from the exhaust purification catalyst. Further, when the oxygen storage amount of the exhaust purification catalyst reaches zero, the exhaust purification catalyst can no longer purify unburned gas. For this reason, unburned gas flows out from the exhaust purification catalyst. Therefore, in order to suppress the outflow of NOx and unburned gas from the exhaust purification catalyst, the maximum amount of storable oxygen of the exhaust purification catalyst is maintained, and the oxygen storage amount of the exhaust purification catalyst is reduced to the maximum storable oxygen amount or zero. It is necessary to reduce the frequency of reaching.

ところで、機関本体から排出される排気ガス中にはSOx等の硫黄成分が含まれている。排気浄化触媒に斯かる硫黄成分が吸蔵されると、その分だけ排気浄化触媒の最大吸蔵可能酸素量が減少する。したがって、排気浄化触媒の最大吸蔵可能酸素量を高く維持するという観点からは、排気浄化触媒の硫黄成分吸蔵量を低く維持することが必要となる。   By the way, the exhaust gas discharged from the engine body contains sulfur components such as SOx. When such a sulfur component is stored in the exhaust purification catalyst, the maximum storable oxygen amount of the exhaust purification catalyst is reduced by that amount. Therefore, from the viewpoint of keeping the maximum storable oxygen amount of the exhaust purification catalyst high, it is necessary to keep the sulfur component storage amount of the exhaust purification catalyst low.

したがって、上記問題に鑑みて、本発明の目的は、目標空燃比をリッチ空燃比とリーン空燃比とに交互に切り替える制御を行っている内燃機関の制御装置において、排気浄化触媒の硫黄成分吸蔵量を低く維持することにある。   Therefore, in view of the above problems, an object of the present invention is to provide a sulfur component occlusion amount of an exhaust purification catalyst in a control device for an internal combustion engine that performs control to alternately switch a target air-fuel ratio between a rich air-fuel ratio and a lean air-fuel ratio. Is to keep it low.

上記課題を解決するために、第1の発明では、内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する下流側空燃比センサと、前記排気浄化触媒の温度を検出又は推定する温度検出手段とを具備する内燃機関の制御装置において、前記排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御を行い、前記下流側空燃比センサによって検出された排気空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下になったときに、前記目標空燃比は理論空燃比よりもリーンなリーン設定空燃比に切り替えられ、前記目標空燃比が前記リーン設定空燃比に設定された後であって前記下流側空燃比センサによって検出される排気空燃比が理論空燃比よりもリーンなリーン判定空燃比以上になる前のリーン度合い変更時期から前記下流側空燃比センサによって検出された排気空燃比がリーン判定空燃比以上になるまで、前記目標空燃比は前記リーン設定空燃比よりもリーン度合いの小さいリーン空燃比に設定され、前記下流側空燃比センサによって検出された排気空燃比がリーン判定空燃比以上になったときに、前記目標空燃比は理論空燃比よりもリッチなリッチ設定空燃比に切り替えられ、前記目標空燃比が前記リッチ設定空燃比に設定された後であって前記下流側空燃比センサによって検出される排気空燃比がリッチ判定空燃比以下になる前のリッチ度合い変更時期から前記下流側空燃比センサよって検出された排気空燃比がリッチ判定空燃比以下になるまで、前記目標空燃比は前記リッチ設定空燃比よりもリッチ度合いの小さいリッチ空燃比に設定され、前記温度検出手段によって検出又は推定された前記排気浄化触媒の温度が予め定められた上限温度以下のときには、該上限温度よりも高いときに比べて、前記リーン度合い変更時期以降のリーン空燃比の平均値と理論空燃比との差から、前記リッチ度合い変更時期以降のリッチ空燃比の平均値と理論空燃比との差を減算した変動差を大きくするようにした、内燃機関の制御装置が提供される。   In order to solve the above-described problem, in the first invention, an exhaust purification catalyst that is disposed in an exhaust passage of an internal combustion engine and that can store oxygen, a downstream of the exhaust purification catalyst in the exhaust flow direction, and the above-described In the control device for an internal combustion engine, comprising: a downstream air-fuel ratio sensor that detects an air-fuel ratio of exhaust gas flowing out from the exhaust purification catalyst; and a temperature detection means that detects or estimates the temperature of the exhaust purification catalyst. The feedback control is performed so that the air-fuel ratio of the exhaust gas flowing into the exhaust gas becomes the target air-fuel ratio, and the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor has become less than the rich determination air-fuel ratio that is richer than the stoichiometric air-fuel ratio. Sometimes, the target air-fuel ratio is switched to a lean set air-fuel ratio that is leaner than the stoichiometric air-fuel ratio, and after the target air-fuel ratio is set to the lean set air-fuel ratio, The exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor is lean-determined from the lean degree change timing before the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor becomes more than the lean determination air-fuel ratio leaner than the stoichiometric air-fuel ratio. The target air-fuel ratio is set to a lean air-fuel ratio with a lean degree smaller than the lean set air-fuel ratio until the air-fuel ratio becomes equal to or higher than the air-fuel ratio, and the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor is equal to or higher than the lean determination air-fuel ratio. The target air-fuel ratio is switched to a rich set air-fuel ratio richer than the stoichiometric air-fuel ratio, and after the target air-fuel ratio is set to the rich set air-fuel ratio, the downstream air-fuel ratio sensor Exhaust air detected by the downstream air-fuel ratio sensor from the rich degree change timing before the detected exhaust air-fuel ratio becomes equal to or less than the rich determination air-fuel ratio. The target air-fuel ratio is set to a rich air-fuel ratio that is less rich than the rich set air-fuel ratio until the ratio becomes equal to or less than the rich determination air-fuel ratio, and the temperature of the exhaust purification catalyst detected or estimated by the temperature detecting means Is less than or equal to a predetermined upper limit temperature, compared to when it is higher than the upper limit temperature, the difference between the average value of the lean air-fuel ratio after the lean degree change timing and the stoichiometric air-fuel ratio, and after the rich degree change timing A control device for an internal combustion engine is provided in which the difference in fluctuation obtained by subtracting the difference between the average value of the rich air-fuel ratio and the stoichiometric air-fuel ratio is increased.

本発明によれば、排気浄化触媒の硫黄成分吸蔵量を低く維持することができる。   According to the present invention, the sulfur component storage amount of the exhaust purification catalyst can be kept low.

図1は、本発明の制御装置が用いられる内燃機関を概略的に示す図である。FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device of the present invention is used. 図2は、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx濃度又はHC、CO濃度との関係を示す図である。FIG. 2 is a graph showing the relationship between the oxygen storage amount of the exhaust purification catalyst and the NOx concentration or HC, CO concentration in the exhaust gas flowing out from the exhaust purification catalyst. 図3は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。FIG. 3 is a diagram showing the relationship between the sensor applied voltage and the output current at each exhaust air-fuel ratio. 図4は、センサ印加電圧を一定にしたときの排気空燃比と出力電流との関係を示す図である。FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current when the sensor applied voltage is made constant. 図5は、本実施形態に係る内燃機関の制御装置による基本的な空燃比制御を行った場合の、目標空燃比等のタイムチャートである。FIG. 5 is a time chart of the target air-fuel ratio and the like when basic air-fuel ratio control is performed by the control device for an internal combustion engine according to the present embodiment. 図6は、本実施形態における弱リーン設定空燃比の変更制御を行った際における、目標空燃比等のタイムチャートである。FIG. 6 is a time chart of the target air-fuel ratio and the like when the weak lean set air-fuel ratio change control is performed in the present embodiment. 図7は、目標空燃比の設定制御における制御ルーチンを示すフローチャートである。FIG. 7 is a flowchart showing a control routine in the target air-fuel ratio setting control. 図8は、弱リッチ設定空燃比の変更制御の制御ルーチンを示すフローチャートである。FIG. 8 is a flowchart showing a control routine for change control of the weak rich set air-fuel ratio. 図9は、1サイクルにおけるリッチ時間の比率に対するCmax比率を表すグラフである。FIG. 9 is a graph showing the Cmax ratio with respect to the rich time ratio in one cycle. 図10は、リーン設定空燃比及び弱リーン設定空燃比の変更制御を行った際における、目標空燃比等のタイムチャートである。FIG. 10 is a time chart of the target air-fuel ratio and the like when changing control of the lean set air-fuel ratio and the weak lean set air-fuel ratio is performed. 図11は、弱リッチ設定空燃比及び弱リーン設定空燃比の変更制御を行った際における、目標空燃比等のタイムチャートである。FIG. 11 is a time chart of the target air-fuel ratio and the like when changing control of the weak rich set air-fuel ratio and the weak lean set air-fuel ratio is performed.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to similar components.

<内燃機関全体の説明>
図1は、本発明の制御装置が用いられる内燃機関を概略的に示す図である。図1において、1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
<Description of the internal combustion engine as a whole>
FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device of the present invention is used. In FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is between the piston 3 and the cylinder head 4. , 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port. The intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.

図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本実施形態の内燃機関は他の燃料を用いても良い。   As shown in FIG. 1, a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4. The spark plug 10 is configured to generate a spark in response to the ignition signal. The fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal. The fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7. In this embodiment, gasoline having a theoretical air-fuel ratio of 14.6 is used as the fuel. However, the internal combustion engine of the present embodiment may use other fuels.

各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。   The intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15. The intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage. A throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.

一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。   On the other hand, the exhaust port 9 of each cylinder is connected to an exhaust manifold 19. The exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled. A collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20. The upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22. The exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.

電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。さらに、上流側排気浄化触媒20には、上流側排気浄化触媒20の温度を検出する上流側温度センサ46が配置され、下流側排気浄化触媒24には、下流側排気浄化触媒24の温度を検出する下流側温度センサ47が配置される。これら温度センサ46、47の出力も対応するAD変換器38を介して入力ポート36に入力される。   An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input. A port 36 and an output port 37 are provided. An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38. Further, an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19. In addition, in the exhaust pipe 22, the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24). An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. Further, an upstream temperature sensor 46 that detects the temperature of the upstream side exhaust purification catalyst 20 is disposed in the upstream side exhaust purification catalyst 20, and the temperature of the downstream side exhaust purification catalyst 24 is detected in the downstream side exhaust purification catalyst 24. A downstream temperature sensor 47 is disposed. The outputs of these temperature sensors 46 and 47 are also input to the input port 36 via the corresponding AD converter 38.

また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、内燃機関の制御を行う制御装置として機能する。   A load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38. The For example, the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36. The CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44. On the other hand, the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45. The ECU 31 functions as a control device that controls the internal combustion engine.

なお、本実施形態に係る内燃機関は、ガソリンを燃料とする無過給内燃機関であるが、本発明に係る内燃機関の構成は、上記構成に限定されるものではない。例えば、本発明に係る内燃機関は、気筒配列、燃料の噴射態様、吸排気系の構成、動弁機構の構成、過給器の有無、及び過給態様等が、上記内燃機関と異なるものであってもよい。   The internal combustion engine according to this embodiment is a non-supercharged internal combustion engine using gasoline as fuel, but the configuration of the internal combustion engine according to the present invention is not limited to the above configuration. For example, an internal combustion engine according to the present invention is different from the above internal combustion engine in terms of cylinder arrangement, fuel injection mode, intake / exhaust system configuration, valve mechanism configuration, presence / absence of a supercharger, and supercharging mode. There may be.

<排気浄化触媒の説明>
上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。排気浄化触媒20、24は、酸素吸蔵能力を有する三元触媒である。具体的には、排気浄化触媒20、24は、セラミックから成る基材に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。排気浄化触媒20、24は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
<Description of exhaust purification catalyst>
Both the upstream side exhaust purification catalyst 20 and the downstream side exhaust purification catalyst 24 have the same configuration. The exhaust purification catalysts 20 and 24 are three-way catalysts having an oxygen storage capacity. Specifically, the exhaust purification catalysts 20 and 24 are made of a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a base material made of ceramic. It is supported. When the exhaust purification catalysts 20 and 24 reach a predetermined activation temperature, the exhaust purification catalysts 20 and 24 exhibit an oxygen storage capability in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).

排気浄化触媒20、24の酸素吸蔵能力によれば、排気浄化触媒20、24は、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりもリーン(リーン空燃比)であるときには排気ガス中の酸素を吸蔵する。一方、排気浄化触媒20、24は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(リッチ空燃比)であるときには、排気浄化触媒20、24に吸蔵されている酸素を放出する。   According to the oxygen storage capacity of the exhaust purification catalysts 20, 24, the exhaust purification catalysts 20, 24 are such that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is leaner than the stoichiometric air-fuel ratio (lean air-fuel ratio). Sometimes it stores oxygen in the exhaust gas. On the other hand, the exhaust purification catalysts 20, 24 release the oxygen stored in the exhaust purification catalysts 20, 24 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (rich air-fuel ratio).

排気浄化触媒20、24は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。すなわち、排気浄化触媒20、24に流入する排気ガスの空燃比がリーン空燃比である場合、図2(A)に示したように、酸素吸蔵量が少ないときには排気浄化触媒20、24により排気ガス中の酸素が吸蔵される。また、これに伴って、排気ガス中のNOxが還元浄化される。一方、酸素吸蔵量が多くなると、最大吸蔵可能酸素量(上限吸蔵量)Cmax近傍の或る吸蔵量(図中のCuplim)を境に排気浄化触媒20、24から流出する排気ガス中の酸素及びNOxの濃度が急激に上昇する。   The exhaust purification catalysts 20 and 24 have a catalytic action and an oxygen storage capacity, and thus have a NOx and unburned gas purification action according to the oxygen storage amount. That is, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is a lean air-fuel ratio, as shown in FIG. 2A, the exhaust gas is exhausted by the exhaust purification catalysts 20, 24 when the oxygen storage amount is small. The oxygen inside is occluded. Along with this, NOx in the exhaust gas is reduced and purified. On the other hand, when the oxygen storage amount increases, the oxygen in the exhaust gas flowing out from the exhaust purification catalysts 20, 24 borders on a certain storage amount (Cuplim in the figure) near the maximum storable oxygen amount (upper limit storage amount) Cmax, and The concentration of NOx increases rapidly.

一方、排気浄化触媒20、24に流入する排気ガスの空燃比がリッチ空燃比である場合、図2(B)に示したように、酸素吸蔵量が多いときには排気浄化触媒20、24に吸蔵されている酸素が放出され、排気ガス中の未燃ガスは酸化浄化される。一方、酸素吸蔵量が少なくなると、ゼロ(下限吸蔵量)近傍の或る吸蔵量(図中のClowlim)を境に排気浄化触媒20、24から流出する排気ガス中の未燃ガスの濃度が急激に上昇する。   On the other hand, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is a rich air-fuel ratio, as shown in FIG. 2B, when the oxygen storage amount is large, the exhaust purification catalysts 20, 24 store the exhaust gas. The released oxygen is released and the unburned gas in the exhaust gas is oxidized and purified. On the other hand, when the oxygen storage amount decreases, the concentration of unburned gas in the exhaust gas flowing out from the exhaust purification catalysts 20 and 24 suddenly increases at a certain storage amount (Clowlim in the figure) near zero (lower limit storage amount). To rise.

以上のように、本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒20、24に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。   As described above, according to the exhaust purification catalysts 20 and 24 used in the present embodiment, NOx and unburned in the exhaust gas according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalysts 20 and 24. Gas purification characteristics change. The exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.

<空燃比センサの出力特性>
次に、図3及び図4を参照して、本実施形態における空燃比センサ40、41の出力特性について説明する。図3は、本実施形態における空燃比センサ40、41の電圧−電流(V−I)特性を示す図であり、図4は、印加電圧を一定に維持したときの、空燃比センサ40、41周りを流通する排気ガスの空燃比(以下、「排気空燃比」という)と出力電流Iとの関係を示す図である。なお、本実施形態では、両空燃比センサ40、41として同一構成の空燃比センサが用いられる。
<Output characteristics of air-fuel ratio sensor>
Next, output characteristics of the air-fuel ratio sensors 40 and 41 in the present embodiment will be described with reference to FIGS. FIG. 3 is a diagram showing the voltage-current (V-I) characteristics of the air-fuel ratio sensors 40 and 41 in the present embodiment, and FIG. 4 shows the air-fuel ratio sensors 40 and 41 when the applied voltage is kept constant. 2 is a diagram showing a relationship between an air-fuel ratio (hereinafter referred to as “exhaust air-fuel ratio”) of exhaust gas flowing around and an output current I. FIG. In the present embodiment, air-fuel ratio sensors having the same configuration are used as the air-fuel ratio sensors 40 and 41.

図3からわかるように、本実施形態の空燃比センサ40、41では、出力電流Iは、排気空燃比が高くなるほど(リーンになるほど)、大きくなる。また、各排気空燃比におけるV−I線には、V軸にほぼ平行な領域、すなわちセンサ印加電圧が変化しても出力電流がほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3では、排気空燃比が18であるときの限界電流領域及び限界電流をそれぞれW18、I18で示している。したがって、空燃比センサ40、41は限界電流式の空燃比センサであるということができる。 As can be seen from FIG. 3, in the air-fuel ratio sensors 40 and 41 of the present embodiment, the output current I increases as the exhaust air-fuel ratio increases (lean). The V-I line at each exhaust air-fuel ratio has a region substantially parallel to the V axis, that is, a region where the output current hardly changes even when the sensor applied voltage changes. This voltage region is referred to as a limiting current region, and the current at this time is referred to as a limiting current. In FIG. 3, the limit current region and limit current when the exhaust air-fuel ratio is 18 are indicated by W 18 and I 18 , respectively. Therefore, it can be said that the air-fuel ratio sensors 40 and 41 are limit current type air-fuel ratio sensors.

図4は、印加電圧を0.45V程度で一定にしたときの、排気空燃比と出力電流Iとの関係を示す図である。図4からわかるように、空燃比センサ40、41では、排気空燃比が高くなるほど(すなわち、リーンになるほど)、空燃比センサ40、41からの出力電流Iが大きくなるように、排気空燃比に対して出力電流がリニアに(比例するように)変化する。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成される。また、排気空燃比が一定以上に大きくなったとき、或いは一定以下に小さくなったときには、排気空燃比の変化に対する出力電流の変化の割合が小さくなる。   FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage is kept constant at about 0.45V. As can be seen from FIG. 4, in the air-fuel ratio sensors 40 and 41, the exhaust air-fuel ratio becomes higher so that the output current I from the air-fuel ratio sensors 40 and 41 becomes larger as the exhaust air-fuel ratio becomes higher (that is, the leaner the air-fuel ratio). On the other hand, the output current changes linearly (in proportion). In addition, the air-fuel ratio sensors 40 and 41 are configured such that the output current I becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio. Further, when the exhaust air-fuel ratio becomes larger than a certain value or when it becomes smaller than a certain value, the ratio of the change in the output current to the change in the exhaust air-fuel ratio becomes smaller.

なお、上記例では、空燃比センサ40、41として限界電流式の空燃比センサを用いている。しかしながら、排気空燃比に対して出力電流がリニアに変化するものであれば、空燃比センサ40、41として、限界電流式ではない空燃比センサ等、如何なる空燃比センサを用いてもよい。また、両空燃比センサ40、41は互いに異なる構造の空燃比センサであってもよい。   In the above example, limit current type air-fuel ratio sensors are used as the air-fuel ratio sensors 40 and 41. However, as long as the output current changes linearly with respect to the exhaust air-fuel ratio, any air-fuel ratio sensor such as an air-fuel ratio sensor that is not a limit current type may be used as the air-fuel ratio sensors 40 and 41. Further, the air-fuel ratio sensors 40 and 41 may be air-fuel ratio sensors having different structures.

<基本的な空燃比制御の概要>
次に、本発明の内燃機関の制御装置における空燃比制御の概要を説明する。本実施形態では、上流側空燃比センサ40の出力空燃比に基づいて上流側空燃比センサ40の出力空燃比が目標空燃比となるように燃料噴射弁11からの燃料噴射量を制御するフィードバック制御が行われる。なお、「出力空燃比」は、空燃比センサの出力値に相当する空燃比を意味する。
<Outline of basic air-fuel ratio control>
Next, an outline of air-fuel ratio control in the control apparatus for an internal combustion engine of the present invention will be described. In the present embodiment, feedback control for controlling the fuel injection amount from the fuel injection valve 11 based on the output air-fuel ratio of the upstream air-fuel ratio sensor 40 so that the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes the target air-fuel ratio. Is done. “Output air-fuel ratio” means an air-fuel ratio corresponding to the output value of the air-fuel ratio sensor.

また、本実施形態の空燃比制御では、下流側空燃比センサ41の出力空燃比等に基づいて目標空燃比を設定する目標空燃比の設定制御が行われる。目標空燃比の設定制御では、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチなリッチ判定空燃比(例えば、14.55)以下となったときに、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ空燃比になったと判断される。このとき、目標空燃比はリーン設定空燃比に設定される。ここで、リーン設定空燃比は、理論空燃比よりも或る程度リーンである予め定められた空燃比であり、例えば、14.65〜20、好ましくは14.65〜18、より好ましくは14.65〜16程度とされる。   Further, in the air-fuel ratio control of the present embodiment, target air-fuel ratio setting control for setting the target air-fuel ratio based on the output air-fuel ratio of the downstream air-fuel ratio sensor 41 and the like is performed. In the target air-fuel ratio setting control, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes less than the rich air-fuel ratio (for example, 14.55) slightly richer than the theoretical air-fuel ratio, the downstream air-fuel ratio is set. It is determined that the air-fuel ratio of the exhaust gas detected by the sensor 41 has become a rich air-fuel ratio. At this time, the target air-fuel ratio is set to a lean set air-fuel ratio. Here, the lean set air-fuel ratio is a predetermined air-fuel ratio that is somewhat leaner than the stoichiometric air-fuel ratio, and is, for example, 14.65 to 20, preferably 14.65 to 18, and more preferably 14. It is set to about 65 to 16.

その後、目標空燃比をリーン設定空燃比に設定した状態で、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比よりもリーンな空燃比(リッチ判定空燃比よりも理論空燃比に近い空燃比)になると、下流側空燃比センサ41によって検出された排気ガスの空燃比がほぼ理論空燃比になったと判断される。このとき、目標空燃比は、弱リーン設定空燃比に設定される。ここで、弱リーン設定空燃比は、リーン設定空燃比よりもリーン度合いの小さい(理論空燃比からの差が小さい)リーン空燃比であり、例えば、14.62〜15.7、好ましくは14.63〜15.2、より好ましくは14.65〜14.9程度とされる。   Thereafter, in a state where the target air-fuel ratio is set to the lean set air-fuel ratio, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is leaner than the rich judged air-fuel ratio (the air closer to the stoichiometric air-fuel ratio than the rich judged air-fuel ratio). When it is determined that the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 is almost the stoichiometric air-fuel ratio. At this time, the target air-fuel ratio is set to a weak lean set air-fuel ratio. Here, the weak lean set air-fuel ratio is a lean air-fuel ratio with a lean degree smaller than the lean set air-fuel ratio (small difference from the theoretical air-fuel ratio), for example, 14.62 to 15.7, preferably 14. 63 to 15.2, more preferably about 14.65 to 14.9.

一方、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリーンなリーン判定空燃比(例えば、14.65)以上になったときに、下流側空燃比センサ41によって検出された排気ガスの空燃比がリーン空燃比になったと判断される。このとき、目標空燃比はリッチ設定空燃比に設定される。ここで、リッチ設定空燃比は、理論空燃比よりも或る程度リッチである予め定められた空燃比であり、例えば、10〜14.55、好ましくは12〜14.52、より好ましくは13〜14.5程度とされる。   On the other hand, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes equal to or higher than the lean determination air-fuel ratio (for example, 14.65) that is slightly leaner than the theoretical air-fuel ratio, the downstream air-fuel ratio sensor 41 detects it. It is determined that the air-fuel ratio of the exhaust gas has become a lean air-fuel ratio. At this time, the target air-fuel ratio is set to the rich set air-fuel ratio. Here, the rich set air-fuel ratio is a predetermined air-fuel ratio that is somewhat richer than the stoichiometric air-fuel ratio, and is, for example, 10 to 14.55, preferably 12 to 14.52, more preferably 13 to It is about 14.5.

その後、目標空燃比をリッチ設定空燃比に設定した状態で、下流側空燃比センサ41の出力空燃比がリーン判定空燃比よりもリッチな空燃比(リーン判定空燃比よりも理論空燃比に近い空燃比)になると、下流側空燃比センサ41によって検出された排気ガスの空燃比がほぼ理論空燃比になったと判断される。このとき、目標空燃比は、弱リッチ設定空燃比に設定される。ここで、弱リッチ設定空燃比は、リッチ設定空燃比よりもリッチ度合いの小さい(理論空燃比からの差が小さい)リッチ空燃比であり、例えば、13.5〜14.58、好ましくは14〜14.57、より好ましくは14.3〜14.55程度とされる。   Thereafter, with the target air-fuel ratio set to the rich set air-fuel ratio, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is richer than the lean determined air-fuel ratio (the air closer to the stoichiometric air-fuel ratio than the lean determined air-fuel ratio). When it is determined that the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 is almost the stoichiometric air-fuel ratio. At this time, the target air-fuel ratio is set to a slightly rich set air-fuel ratio. Here, the weak rich set air-fuel ratio is a rich air-fuel ratio that is less rich than the rich set air-fuel ratio (small difference from the theoretical air-fuel ratio), and is, for example, 13.5-14.58, preferably 14- It is set to about 14.57, more preferably about 14.3 to 14.55.

この結果、本実施形態では、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下になると、まず、目標空燃比がリーン設定空燃比に設定される。その後、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比よりも大きくなると目標空燃比が弱リーン設定空燃比に設定される。一方、下流側空燃比センサ41の出力空燃比がリーン判定空燃比以上になると、まず、目標空燃比がリッチ設定空燃比に設定される。その後、下流側空燃比センサ41の出力空燃比がリーン判定空燃比よりも小さくなると目標空燃比が弱リッチ設定空燃比に設定される。その後、同様な制御が繰り返される。   As a result, in the present embodiment, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio, first, the target air-fuel ratio is set to the lean set air-fuel ratio. Thereafter, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes larger than the rich determination air-fuel ratio, the target air-fuel ratio is set to the weak lean set air-fuel ratio. On the other hand, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes equal to or higher than the lean determination air-fuel ratio, first, the target air-fuel ratio is set to the rich set air-fuel ratio. Thereafter, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes smaller than the lean determination air-fuel ratio, the target air-fuel ratio is set to the slightly rich set air-fuel ratio. Thereafter, similar control is repeated.

なお、リッチ判定空燃比及びリーン判定空燃比は、理論空燃比の1%以内、好ましくは0.5%以内、より好ましくは0.35%以内の空燃比とされる。したがって、リッチ判定空燃比及びリーン判定空燃比の理論空燃比からの差は、理論空燃比が14.6の場合には、0.15以下、好ましくは0.073以下、より好ましくは0.051以下とされる。また、目標空燃比(例えば、弱リッチ設定空燃比やリーン設定空燃比)の理論空燃比からの差は、上述した差よりも大きくなるように設定される。   Note that the rich determination air-fuel ratio and the lean determination air-fuel ratio are those within 1%, preferably within 0.5%, more preferably within 0.35% of the theoretical air-fuel ratio. Therefore, the difference between the rich determination air-fuel ratio and the lean determination air-fuel ratio from the stoichiometric air-fuel ratio is 0.15 or less, preferably 0.073 or less, more preferably 0.051 when the stoichiometric air-fuel ratio is 14.6. It is as follows. Further, the difference between the target air-fuel ratio (for example, the weak rich set air-fuel ratio and the lean set air-fuel ratio) from the theoretical air-fuel ratio is set to be larger than the above-described difference.

<タイムチャートを用いた制御の説明>
図5を参照して、上述したような操作について具体的に説明する。図5は、本実施形態に係る内燃機関の制御装置による基本的な空燃比制御を行った場合の、目標空燃比AFT、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、上流側排気浄化触媒20に流入する排気ガスにおける積算酸素過不足量ΣOED、及び下流側空燃比センサ41の出力空燃比AFdwnのタイムチャートである。
<Description of control using time chart>
With reference to FIG. 5, the operation as described above will be specifically described. FIG. 5 shows the target air-fuel ratio AFT, the output air-fuel ratio AFup of the upstream air-fuel ratio sensor 40, and the upstream side exhaust purification catalyst 20 when basic air-fuel ratio control is performed by the control device for an internal combustion engine according to the present embodiment. Is a time chart of the oxygen storage amount OSA, the cumulative oxygen excess / deficiency ΣOED in the exhaust gas flowing into the upstream side exhaust purification catalyst 20, and the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41.

図示した例では、時刻t1以前の状態では、目標空燃比AFTが弱リッチ設定空燃比AFTsrに設定されている。これに伴って上流側空燃比センサ40の出力空燃比がリッチ空燃比となっている。上流側排気浄化触媒20に流入する排気ガス中に含まれている未燃ガスは、上流側排気浄化触媒20で浄化され、これに伴って上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に減少していく。一方、上流側排気浄化触媒20における浄化により上流側排気浄化触媒20から流出する排気ガス中には未燃ガスは含まれていないため、下流側空燃比センサ41の出力空燃比AFdwnはほぼ理論空燃比となる。 In the illustrated example, the target air-fuel ratio AFT is set to the weak rich set air-fuel ratio AFTsr before the time t 1 . Accordingly, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes a rich air-fuel ratio. Unburned gas contained in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is purified by the upstream side exhaust purification catalyst 20, and accordingly, the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 gradually increases. It will decrease. On the other hand, since the exhaust gas flowing out of the upstream side exhaust purification catalyst 20 by purification in the upstream side exhaust purification catalyst 20 does not include unburned gas, the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41 is almost theoretically empty. It becomes the fuel ratio.

上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に減少すると、酸素吸蔵量OSAは時刻t1においてゼロに近づく(例えば、図2のClowlim)。これに伴って、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出し始める。これにより、時刻t1以降、下流側空燃比センサ41の出力空燃比AFdwnが徐々に低下する。その結果、図示した例では、時刻t2において、酸素吸蔵量OSAがほぼゼロになると共に、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。 When the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 gradually decreases, the oxygen storage amount OSA approaches zero at time t 1 (for example, Clowlim in FIG. 2). Along with this, a part of the unburned gas flowing into the upstream side exhaust purification catalyst 20 starts to flow out without being purified by the upstream side exhaust purification catalyst 20. As a result, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 gradually decreases after time t 1 . As a result, in the illustrated example, at time t 2, the conjunction will the oxygen storage amount OSA substantially zero, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination air-fuel ratio AFrich.

本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になると、酸素吸蔵量OSAを増大させるべく、目標空燃比AFTがリーン設定空燃比AFTlに切り替えられる。したがって、目標空燃比は、リッチ空燃比からリーン空燃比へと切り替えられる。   In the present embodiment, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio AFrich, the target air-fuel ratio AFT is switched to the lean set air-fuel ratio AFTl in order to increase the oxygen storage amount OSA. Therefore, the target air-fuel ratio is switched from the rich air-fuel ratio to the lean air-fuel ratio.

なお、本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比からリッチ空燃比に変化してすぐではなく、リッチ判定空燃比AFrichに到達してから、目標空燃比AFTの切替を行っている。これは、上流側排気浄化触媒20の酸素吸蔵量OSAが十分であっても、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比から極僅かにずれてしまう場合があるためである。逆に言うと、リッチ判定空燃比は、上流側排気浄化触媒20の酸素吸蔵量が十分であるときには、上流側排気浄化触媒20から流出する排気ガスの空燃比が到達することのないような空燃比とされる。なお、上述したリーン判定空燃比についても同じことがいえる。   In the present embodiment, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is not immediately changed from the stoichiometric air-fuel ratio to the rich air-fuel ratio, but after reaching the rich determination air-fuel ratio AFrich, the target air-fuel ratio AFT Switching is performed. This is because even if the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 is sufficient, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 may slightly deviate from the stoichiometric air-fuel ratio. It is. In other words, the rich determination air-fuel ratio is such that the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not reach when the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient. The fuel ratio is set. The same applies to the above-described lean determination air-fuel ratio.

時刻t2において、目標空燃比をリーン空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比からリーン空燃比に変化する。また、これに伴って、上流側空燃比センサ40の出力空燃比AFupがリーン空燃比となる(実際には、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が変化するまでには遅れが生じるが、図示した例では便宜上同時に変化するものとしている)。時刻t2において上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAは増大していく。 In time t 2, the switch the target air-fuel ratio to the lean air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is changed to a lean air-fuel ratio from the rich air-fuel ratio. Accordingly, the output air-fuel ratio AFup of the upstream side air-fuel ratio sensor 40 becomes a lean air-fuel ratio (actually, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 after switching the target air-fuel ratio) However, in the example shown in the figure, it is assumed that it changes simultaneously for the sake of convenience). When the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is changed to the lean air-fuel ratio at time t 2, the oxygen storage amount of the upstream exhaust purification catalyst 20 OSA is gradually increased.

このように、上流側排気浄化触媒20の酸素吸蔵量OSAが増大していくと、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へ向かって変化する。図5に示した例では、時刻t3において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きな値となる。すなわち、下流側空燃比センサ41の出力空燃比AFdwnがほぼ理論空燃比となる。これは、上流側排気浄化触媒20の酸素吸蔵量OSAが或る程度多くなっていることを意味する。 Thus, as the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 increases, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes toward the stoichiometric air-fuel ratio. In the example shown in FIG. 5, at time t 3 , the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes a value larger than the rich determination air-fuel ratio AFrich. That is, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio. This means that the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 is increased to some extent.

そこで、本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きな値に変化したときには、目標空燃比AFTが弱リーン設定空燃比AFTslに切り替えられる。したがって、時刻t3では目標空燃比のリーン度合いが低下せしめられる。以下では、時刻t3をリーン度合い変更時期と称する。 Therefore, in the present embodiment, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 changes to a value larger than the rich determination air-fuel ratio AFrich, the target air-fuel ratio AFT is switched to the weak lean set air-fuel ratio AFTsl. Thus, the lean degree of the target air-fuel ratio at time t 3 is made to decrease. In the following, it referred to as the time t 3 and the lean degree change time.

リーン度合い変更時期である時刻t3において、目標空燃比AFTを弱リーン設定空燃比AFTslに切り替えると、上流側排気浄化触媒20に流入する排気ガスのリーン度合いも小さくなる。これに伴って、上流側空燃比センサ40の出力空燃比AFupは小さくなると共に、上流側排気浄化触媒20の酸素吸蔵量OSAの増加速度が低下する。 At time t 3 is lean degree change timing, switching the target air-fuel ratio AFT to slightly lean set air-fuel ratio AFTsl, leanness of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is also reduced. Along with this, the output air-fuel ratio AFup of the upstream side air-fuel ratio sensor 40 becomes smaller, and the increase rate of the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 decreases.

時刻t3以降においては、上流側排気浄化触媒20の酸素吸蔵量OSAは、その増加速度が遅いながらも、徐々に増加していく。上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に増加すると、酸素吸蔵量OSAはやがて最大吸蔵可能酸素量Cmaxに近づく(例えば、図2のCuplim)。時刻t4において酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxに近づくと、上流側排気浄化触媒20に流入した酸素の一部は上流側排気浄化触媒20で吸蔵されずに流出し始める。これにより、下流側空燃比センサ41の出力空燃比AFdwnが徐々に上昇する。その結果、図示した例では、時刻t5において、酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxに到達すると共に、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanに到達する。 After the time t 3 , the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 gradually increases although its increase rate is slow. When the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 gradually increases, the oxygen storage amount OSA eventually approaches the maximum storable oxygen amount Cmax (for example, Cuplim in FIG. 2). When the oxygen storage amount OSA approaches the maximum storable oxygen amount Cmax at time t 4 , part of the oxygen that has flowed into the upstream side exhaust purification catalyst 20 starts to flow out without being stored in the upstream side exhaust purification catalyst 20. As a result, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 gradually increases. As a result, in the illustrated example, at time t 5 , the oxygen storage amount OSA reaches the maximum storable oxygen amount Cmax, and the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 reaches the lean determination air-fuel ratio AFlean.

本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になると、酸素吸蔵量OSAを減少させるべく、目標空燃比AFTがリッチ設定空燃比AFTrに切り替えられる。したがって、目標空燃比は、リーン空燃比からリッチ空燃比へと切り替えられる。   In the present embodiment, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination air-fuel ratio AFlean, the target air-fuel ratio AFT is switched to the rich set air-fuel ratio AFTr in order to decrease the oxygen storage amount OSA. Therefore, the target air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio.

時刻t5において、目標空燃比をリッチ空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比からリッチ空燃比に変化する。また、これに伴って、上流側空燃比センサ40の出力空燃比AFupがリッチ空燃比となる(実際には、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が変化するまでには遅れが生じるが、図示した例では便宜上同時に変化するものとしている)。時刻t5において上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAは減少していく。 At time t 5, when switching the target air-fuel ratio to a rich air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 changes from a lean air-fuel ratio to a rich air-fuel ratio. Accordingly, the output air-fuel ratio AFup of the upstream side air-fuel ratio sensor 40 becomes a rich air-fuel ratio (actually, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 after switching the target air-fuel ratio) However, in the example shown in the figure, it is assumed that it changes simultaneously for the sake of convenience). When the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 changes to a rich air-fuel ratio at time t 5, the oxygen storage amount of the upstream exhaust purification catalyst 20 OSA decreases.

このように、上流側排気浄化触媒20の酸素吸蔵量OSAが減少していくと、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へ向かって変化する。図5に示した例では、時刻t6において、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも小さな値となる。すなわち、下流側空燃比センサ41の出力空燃比AFdwnがほぼ理論空燃比となる。これは、上流側排気浄化触媒20の酸素吸蔵量OSAが或る程度少なくなっていることを意味する。 Thus, when the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 decreases, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes toward the stoichiometric air-fuel ratio. In the example shown in FIG. 5, at time t 6, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes a value smaller than the lean determining the air-fuel ratio AFlean. That is, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio. This means that the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 is somewhat reduced.

そこで、本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも小さな値に変化したときには、目標空燃比AFTがリッチ設定空燃比から弱リッチ設定空燃比AFTsrに切り替えられる。   Therefore, in the present embodiment, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 changes to a value smaller than the lean determination air-fuel ratio AFlean, the target air-fuel ratio AFT is changed from the rich set air-fuel ratio to the weak rich set air-fuel ratio AFTsr. Can be switched.

時刻t6において、目標空燃比AFTを弱リッチ設定空燃比AFTsrに切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比のリッチ度合いも小さくなる。これに伴って、上流側空燃比センサ40の出力空燃比AFupは増大すると共に、上流側排気浄化触媒20の酸素吸蔵量OSAの減少速度が低下する。 When the target air-fuel ratio AFT is switched to the slightly rich set air-fuel ratio AFTsr at time t 6 , the richness of the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is also reduced. Along with this, the output air-fuel ratio AFup of the upstream side air-fuel ratio sensor 40 increases, and the decrease rate of the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 decreases.

時刻t6以降においては、上流側排気浄化触媒20の酸素吸蔵量OSAは、その減少速度が遅いながらも、徐々に減少していく。上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に減少すると、酸素吸蔵量OSAはやがて時刻t7において、時刻t1と同様に、ゼロに近づき、図2のCdwnlimまで減少する。その後、時刻t8において、時刻t2と同様に、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。その後は、時刻t1〜t6の操作と同様な操作が繰り返される。 After time t 6 , the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 gradually decreases, although the decrease rate is slow. When the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 gradually decreases, the oxygen storage amount OSA eventually approaches zero at time t 7 and decreases to Cdwnlim in FIG. 2 as at time t 1 . Thereafter, at time t 8 , similarly to time t 2 , the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination air-fuel ratio AFrich. Thereafter, an operation similar to the operation at times t 1 to t 6 is repeated.

<基本的な制御における利点>
上述した基本的な空燃比制御によれば、時刻t2において目標空燃比がリッチ空燃比からリーン空燃比に変更された直後、及び時刻t5において目標空燃比がリーン空燃比からリッチ空燃比に変更された直後には、目標空燃比の理論空燃比からの差が大きなものとされる(すなわち、リッチ度合い又はリーン度合いが大きいものとされる)。このため、時刻t2において上流側排気浄化触媒20から流出していた未燃ガス及び時刻t5において上流側排気浄化触媒20から流出していたNOxを迅速に減少させることができる。したがって、上流側排気浄化触媒20からの未燃ガス及びNOxの流出を抑制することができる。
<Advantages in basic control>
According to the basic air-fuel ratio control described above, immediately after the target air-fuel ratio is changed from the rich air-fuel ratio to the lean air-fuel ratio at time t 2, the and the target air-fuel ratio from the lean air-fuel ratio at time t 5 to a rich air-fuel ratio Immediately after the change, the difference between the target air-fuel ratio and the stoichiometric air-fuel ratio is made large (that is, the rich degree or lean degree is made large). Therefore, it is possible to reduce the NOx that has been flowing from the upstream exhaust purification catalyst 20 rapidly in unburned gas and the time t 5 that was flowing out of the upstream exhaust purification catalyst 20 at time t 2. Therefore, the outflow of unburned gas and NOx from the upstream side exhaust purification catalyst 20 can be suppressed.

また、本実施形態の空燃比制御によれば、時刻t2において目標空燃比をリーン設定空燃比に設定した後、上流側排気浄化触媒20からの未燃ガスの流出が止まり且つその酸素吸蔵量OSAがある程度回復してから、時刻t3において目標空燃比が弱リーン設定空燃比に切り替えられる。このように目標空燃比のリッチ度合い(理論空燃比からの差)を小さくすることにより、仮に上流側排気浄化触媒20からNOxが流出したとしても、その単位時間当たりの流出量を減少させることができる。特に、上記空燃比制御によれば、時刻t5において上流側排気浄化触媒20からNOxが流出することになるが、このときの流出量を少なく抑えることができる。 Further, according to the air-fuel ratio control of the present embodiment, after setting the target air-fuel ratio to a lean set air-fuel ratio at time t 2, the stops outflow of unburned gas from the upstream exhaust purification catalyst 20 and the oxygen storage amount from OSA is to some extent recovery, the target air-fuel ratio is switched to the weak lean set air-fuel ratio at time t 3. Thus, by reducing the rich degree of the target air-fuel ratio (difference from the theoretical air-fuel ratio), even if NOx flows out from the upstream side exhaust purification catalyst 20, the outflow amount per unit time can be reduced. it can. In particular, according to the air-fuel ratio control, but NOx from the upstream side exhaust purification catalyst 20 will flow out at the time t 5, it can be suppressed to be small outflow amount at this time.

加えて、本実施形態の空燃比制御によれば、時刻t5において目標空燃比をリッチ設定空燃比に設定した後、上流側排気浄化触媒20からのNOx(酸素)の流出が止まり且つその酸素吸蔵量OSAがある程度減少してから、時刻t6において目標空燃比が弱リッチ設定空燃比に切り替えられる。このように目標空燃比のリッチ度合い(理論空燃比からの差)を小さくすることにより、仮に上流側排気浄化触媒20から未燃ガスが流出したとしても、その単位時間当たりの流出量を減少させることができる。特に、上記空燃比制御によれば、時刻t2、t8において、上流側排気浄化触媒20から未燃ガスが流出することになるが、このときにもその流出量を少なく抑えることができる。 In addition, according to the air-fuel ratio control of the present embodiment, after setting the target air-fuel ratio to a rich set air-fuel ratio at time t 5, it stops the outflow of NOx (oxygen) from the upstream exhaust purification catalyst 20 and the oxygen from storage amount OSA is to some extent reduced, the target air-fuel ratio is switched to the weak rich set air-fuel ratio at time t 6. Thus, by reducing the rich degree of the target air-fuel ratio (difference from the theoretical air-fuel ratio), even if unburned gas flows out from the upstream side exhaust purification catalyst 20, the outflow amount per unit time is reduced. be able to. In particular, according to the above air-fuel ratio control, unburned gas flows out from the upstream side exhaust purification catalyst 20 at times t 2 and t 8 , and at this time, the outflow amount can be reduced.

さらに、本実施形態では、下流側にて排気ガスの空燃比を検出するセンサとして、空燃比センサ41を用いている。この空燃比センサ41は、酸素センサと異なり、ヒステリシスを有さない。このため、空燃比センサ41によれば実際の排気空燃比に対して応答性が高く、上流側排気浄化触媒20からの未燃ガス及び酸素(及びNOx)の流出を迅速に検出することができる。したがって、このことによっても、本実施形態によれば、上流側排気浄化触媒20からの未燃ガス及びNOx(及び酸素)の流出を抑制することができる。   Further, in the present embodiment, an air-fuel ratio sensor 41 is used as a sensor for detecting the air-fuel ratio of the exhaust gas on the downstream side. Unlike the oxygen sensor, the air-fuel ratio sensor 41 does not have hysteresis. Therefore, the air-fuel ratio sensor 41 has high responsiveness to the actual exhaust air-fuel ratio, and can quickly detect the outflow of unburned gas and oxygen (and NOx) from the upstream side exhaust purification catalyst 20. . Therefore, also according to this embodiment, the outflow of unburned gas and NOx (and oxygen) from the upstream side exhaust purification catalyst 20 can be suppressed.

また、酸素を吸蔵可能な排気浄化触媒では、その酸素吸蔵量をほぼ一定に維持すると、その酸素吸蔵能力の低下を招く。したがって、酸素吸蔵能力を可能な限り維持するためには、排気浄化触媒の使用時にその酸素吸蔵量を上下に変化させることが必要になる。本実施形態に係る空燃比制御によれば、上流側排気浄化触媒20の酸素吸蔵量OSAは、ゼロ近傍と最大吸蔵可能酸素量近傍との間で上下に繰り返し変化する。このため、上流側排気浄化触媒20の酸素吸蔵量OSAをできるだけ高く維持することができる。   Further, in an exhaust purification catalyst capable of storing oxygen, maintaining its oxygen storage amount substantially constant leads to a decrease in its oxygen storage capacity. Therefore, in order to maintain the oxygen storage capacity as much as possible, it is necessary to change the oxygen storage amount up and down when the exhaust purification catalyst is used. According to the air-fuel ratio control according to the present embodiment, the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 repeatedly changes up and down between near zero and near the maximum storable oxygen amount. For this reason, the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 can be maintained as high as possible.

なお、上記実施形態では、時刻t3において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きな値になったときに、目標空燃比AFTがリーン設定空燃比AFTlから弱リーン設定空燃比AFTslに切り替えられる。また、上記実施形態では、時刻t6において、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも小さな値になったときに、目標空燃比AFTがリッチ設定空燃比AFTrから弱リッチ設定空燃比AFTsrに切り替えられる。しかしながら、これら目標空燃比AFTを切り替えるタイミングは、必ずしも下流側空燃比センサ41の出力空燃比AFdwnに基づいて設定されなくてもよく、他のパラメータに基づいて決定されてもよい。 In the above embodiment, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes larger than the rich determination air-fuel ratio AFrich at time t 3 , the target air-fuel ratio AFT becomes less than the lean set air-fuel ratio AFTl. It is switched to the weak lean set air-fuel ratio AFTsl. In the above embodiment, at time t 6, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes smaller than a lean determining air AFlean, the target air-fuel ratio AFT from the rich set air-fuel ratio AFTr It is switched to the weak rich set air-fuel ratio AFTsr. However, the timing for switching the target air-fuel ratio AFT does not necessarily need to be set based on the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41, and may be determined based on other parameters.

例えば、これら目標空燃比AFTを切り替えるタイミングは、上流側排気浄化触媒20の酸素吸蔵量OSAに基づいて決定されてもよい。例えば、図5に示したように、時刻t2において目標空燃比をリーン空燃比に切り替えてから上流側排気浄化触媒20の酸素吸蔵量OSAが予め定められた量αに達したときに、目標空燃比AFTが弱リーン設定空燃比AFTslに切り替えられる。また、時刻t5において、目標空燃比をリッチ空燃比に切り替えてから上流側排気浄化触媒20の酸素吸蔵量OSAが予め定められた量αだけ減少したときに、目標空燃比AFTが弱リッチ設定空燃比AFTsrに切り替えられる。 For example, the timing for switching these target air-fuel ratios AFT may be determined based on the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20. For example, as shown in FIG. 5, when the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 reaches a predetermined amount α after the target air-fuel ratio is switched to the lean air-fuel ratio at time t 2 , The air-fuel ratio AFT is switched to the weak lean set air-fuel ratio AFTsl. Further, at time t 5 , when the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 is decreased by a predetermined amount α after switching the target air-fuel ratio to the rich air-fuel ratio, the target air-fuel ratio AFT is set to be slightly rich. The air-fuel ratio is switched to AFTsr.

この場合、上流側排気浄化触媒20の酸素吸蔵量OSAは、上流側排気浄化触媒20に流入する排気ガスの積算酸素過不足量に基づいて推定される。酸素過不足量は、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比にしようとしたときに過剰となる酸素又は不足する酸素(過剰な未燃ガス等の量)を意味する。特に、目標空燃比がリーン設定空燃比となっているときには上流側排気浄化触媒20に流入する排気ガス中の酸素は過剰となり、この過剰な酸素は上流側排気浄化触媒20に吸蔵される。したがって、酸素過不足量の積算値(以下、「積算酸素過不足量」という)は、上流側排気浄化触媒20の酸素吸蔵量OSAを表しているといえる。図5に示したように、本実施形態では、積算酸素過不足量ΣOEDは、目標空燃比が理論空燃比を越えて変化した時にゼロにリセットされる。   In this case, the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 is estimated based on the cumulative oxygen excess / deficiency of the exhaust gas flowing into the upstream side exhaust purification catalyst 20. The oxygen excess / deficiency means excess oxygen or insufficient oxygen (amount of excess unburned gas, etc.) when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set to the stoichiometric air-fuel ratio. To do. In particular, when the target air-fuel ratio is the lean set air-fuel ratio, oxygen in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes excessive, and this excess oxygen is stored in the upstream side exhaust purification catalyst 20. Therefore, it can be said that the integrated value of oxygen excess / deficiency (hereinafter referred to as “accumulated oxygen excess / deficiency”) represents the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20. As shown in FIG. 5, in this embodiment, the cumulative oxygen excess / deficiency ΣOED is reset to zero when the target air-fuel ratio changes beyond the theoretical air-fuel ratio.

なお、酸素過不足量は、上流側空燃比センサ40の出力空燃比AFup、及びエアフロメータ39等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料供給量等に基づいて行われる。具体的には、酸素過不足量OEDは、例えば、下記式(1)により算出される。
OED=0.23・Qi/(AFup−14.6) …(1)
ここで、0.23は空気中の酸素濃度、Qiは燃料噴射量、AFupは上流側空燃比センサ40の出力空燃比をそれぞれ表している。
Note that the oxygen excess / deficiency is the estimated value of the intake air amount into the combustion chamber 5 calculated based on the output air-fuel ratio AFup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or from the fuel injection valve 11. This is based on the amount of fuel supplied. Specifically, the oxygen excess / deficiency OED is calculated by, for example, the following formula (1).
OED = 0.23 · Qi / (AFup-14.6) (1)
Here, 0.23 represents the oxygen concentration in the air, Qi represents the fuel injection amount, and AFup represents the output air-fuel ratio of the upstream air-fuel ratio sensor 40.

或いは、目標空燃比AFTを弱リーン設定空燃比AFTslに切り替える時期(リーン度合い変更時期)は、目標空燃比をリーン空燃比に切り替えてから(時刻t2)の経過時間や吸入空気量の積算値等に基づいて決定されてもよい。同様に、目標空燃比AFTを弱リッチ設定空燃比AFTsrに切り替える時期(リッチ度合い変更時期)は、目標空燃比をリッチ空燃比に切り替えてから(時刻t5)の経過時間や吸入空気量の積算値等に基づいて決定されてもよい。 Alternatively, when the target air-fuel ratio AFT is switched to the slightly lean set air-fuel ratio AFTsl (lean degree change timing), the elapsed time after switching the target air-fuel ratio to the lean air-fuel ratio (time t 2 ) or the integrated value of the intake air amount Etc. may be determined based on the above. Similarly, when the target air-fuel ratio AFT is switched to the slightly rich set air-fuel ratio AFTsr (rich degree change timing), the elapsed time after switching the target air-fuel ratio to the rich air-fuel ratio (time t 5 ) and the integration of the intake air amount It may be determined based on a value or the like.

このように、リッチ度合い変更時期やリーン度合い変更時期は、様々なパラメータに基づいて決定される。いずれにせよ、リーン度合い変更時期は、目標空燃比がリーン設定空燃比に設定された後であって下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比以上になる前の時期とされる。同様に、リッチ度合い変更時期は、目標空燃比がリッチ設定空燃比に設定された後であって下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比以下になる前の時期とされる。   Thus, the rich degree change time and the lean degree change time are determined based on various parameters. In any case, the lean degree change timing is a timing after the target air-fuel ratio is set to the lean set air-fuel ratio and before the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or higher than the lean determination air-fuel ratio. The Similarly, the rich degree change timing is a timing after the target air-fuel ratio is set to the rich set air-fuel ratio and before the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio. .

また、上記実施形態では、時刻t2〜t3において、目標空燃比AFTはリーン設定空燃比AFTlに一定に維持される。しかしながら、斯かる期間中、目標空燃比AFTは必ずしも一定に維持されなくてもよく、徐々に低下(理論空燃比に近づく)するように変化してもよい。同様に、上記実施形態では、時刻t3〜t5において、目標空燃比AFTは弱リーン設定空燃比AFTslに一定に維持される。しかしながら、斯かる期間中、目標空燃比AFTは必ずしも一定に維持されていなくてもよく、例えば、徐々に低下(理論空燃比に近づく)するように変化してもよい。また、時刻t5〜t6、時刻t6〜t8についても、同じ事がいえる。 In the above embodiment, at time t 2 ~t 3, the target air-fuel ratio AFT is maintained constant at the lean set air-fuel ratio AFTl. However, during such a period, the target air-fuel ratio AFT does not necessarily have to be kept constant, and may change so as to gradually decrease (approach the theoretical air-fuel ratio). Similarly, in the above embodiment, the target air-fuel ratio AFT is kept constant at the weak lean set air-fuel ratio AFTsl at times t 3 to t 5 . However, during such a period, the target air-fuel ratio AFT does not necessarily have to be kept constant, and may change so as to gradually decrease (approach the stoichiometric air-fuel ratio), for example. The same can be said for the times t 5 to t 6 and the times t 6 to t 8 .

<硫黄成分の吸蔵に関する特性>
ところで、上流側排気浄化触媒20の最大吸蔵可能酸素量Cmaxは常に一定ではなく、上流側排気浄化触媒20の劣化等により低下する。このように最大吸蔵可能酸素量Cmaxを低下させる一因として、上流側排気浄化触媒20への硫黄成分の吸蔵が挙げられる。
<Characteristics concerning storage of sulfur component>
By the way, the maximum storable oxygen amount Cmax of the upstream side exhaust purification catalyst 20 is not always constant and decreases due to deterioration of the upstream side exhaust purification catalyst 20 or the like. One reason for reducing the maximum storable oxygen amount Cmax in this manner is the storage of the sulfur component in the upstream side exhaust purification catalyst 20.

一般に、燃焼室5から排出される排気ガス中にはSOx等の少量の硫黄成分が含まれており、よって上流側排気浄化触媒20には斯かる硫黄成分を含んだ排気ガスが流入することになる。上流側排気浄化触媒20では、流入する排気ガス中に硫黄成分が含まれていると、上流側排気浄化触媒20の温度等の条件によっては硫黄成分が吸蔵される。このように、上流側排気浄化触媒20に硫黄成分が吸蔵されると、その分だけ上流側排気浄化触媒20の最大吸蔵可能酸素量Cmaxが減少する。したがって、上流側排気浄化触媒20の最大吸蔵可能酸素量Cmaxを高く維持するためには、上流側排気浄化触媒20の硫黄成分吸蔵量を低く維持することが必要となる。   In general, the exhaust gas discharged from the combustion chamber 5 contains a small amount of sulfur components such as SOx, and therefore, the exhaust gas containing such sulfur components flows into the upstream side exhaust purification catalyst 20. Become. In the upstream side exhaust purification catalyst 20, if the inflowing exhaust gas contains a sulfur component, the sulfur component is occluded depending on conditions such as the temperature of the upstream side exhaust purification catalyst 20. As described above, when the upstream side exhaust purification catalyst 20 stores the sulfur component, the maximum storable oxygen amount Cmax of the upstream side exhaust purification catalyst 20 decreases accordingly. Therefore, in order to keep the maximum storable oxygen amount Cmax of the upstream side exhaust purification catalyst 20 high, it is necessary to keep the sulfur component storage amount of the upstream side exhaust purification catalyst 20 low.

ここで、上流側排気浄化触媒20による硫黄成分の吸蔵の有無は、上流側排気浄化触媒20の温度に応じて大きく変化する。上流側排気浄化触媒20の温度が或る一定の硫黄吸蔵上限温度(例えば、600℃)以下であるときには、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であると、流入する排気ガス中の硫黄成分が上流側排気浄化触媒20に吸蔵せしめられる。他方、このときでも、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であると、流入する排気ガス中に硫黄成分が含まれていても、上流側排気浄化触媒20には硫黄成分はほとんど吸蔵されない。一方、上流側排気浄化触媒20の温度が硫黄吸蔵上限温度以上であるときには、上流側排気浄化触媒20に流入する排気ガスの空燃比にかかわらず、上流側排気浄化触媒20に硫黄成分は吸蔵されない。   Here, the presence or absence of storage of the sulfur component by the upstream side exhaust purification catalyst 20 varies greatly depending on the temperature of the upstream side exhaust purification catalyst 20. When the temperature of the upstream side exhaust purification catalyst 20 is equal to or lower than a certain sulfur storage upper limit temperature (for example, 600 ° C.), the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio. Sulfur components in the inflowing exhaust gas are occluded in the upstream side exhaust purification catalyst 20. On the other hand, even at this time, if the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, even if the inflowing exhaust gas contains a sulfur component, the upstream side exhaust purification catalyst 20 Almost no sulfur component is occluded. On the other hand, when the temperature of the upstream side exhaust purification catalyst 20 is equal to or higher than the sulfur storage upper limit temperature, no sulfur component is stored in the upstream side exhaust purification catalyst 20 regardless of the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20. .

<弱リーン設定空燃比の制御>
そこで、本発明の実施形態では、上流側排気浄化触媒20の温度に応じて、弱リーン設定空燃比の理論空燃比からの差(リーン度合い)を変更するようにしている。
<Control of weak lean air-fuel ratio>
Therefore, in the embodiment of the present invention, the difference (lean degree) of the weak lean set air-fuel ratio from the stoichiometric air-fuel ratio is changed according to the temperature of the upstream side exhaust purification catalyst 20.

図6は、本実施形態におけるリーン設定空燃比の変更制御を行った際における、目標空燃比AFT等のタイムチャートである。図6に示した例においても、基本的に、図5と同様な空燃比制御が行われている。   FIG. 6 is a time chart of the target air-fuel ratio AFT and the like when the lean set air-fuel ratio change control is performed in the present embodiment. In the example shown in FIG. 6 as well, basically the same air-fuel ratio control as in FIG. 5 is performed.

図6に示した例では、時刻t7以前には、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlimよりも高い温度となっている。このときの弱リッチ設定空燃比AFTsr及び弱リーン設定空燃比AFTslは、それぞれ第一弱リッチ設定空燃比AFTsr1及び第一弱リーン設定空燃比AFTsl1に設定されている。ここで、第一弱リッチ設定空燃比AFTsr1の理論空燃比からの差は、第一リッチ度合いΔAFTsr1となっている。また、第一弱リーン設定空燃比AFTsl1の理論空燃比からの差は、第一リーン度合いΔAFTsl1となっている。 In the example shown in FIG. 6, previously at time t 7, the temperature CT of the upstream exhaust purification catalyst 20 becomes higher temperatures than the sulfur storage limit temperature CTLIM. The weak rich set air-fuel ratio AFTsr and the weak lean set air-fuel ratio AFTsl at this time are set to the first weak rich set air-fuel ratio AFTsr 1 and the first weak lean set air-fuel ratio AFTsl 1 , respectively. Here, the difference of the first weak rich set air-fuel ratio AFTsr 1 from the theoretical air-fuel ratio is the first rich degree ΔAFTsr 1 . The difference between the first weak lean set air-fuel ratio AFTsl 1 and the stoichiometric air-fuel ratio is the first lean degree ΔAFTsl 1 .

したがって、時刻t2等において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下からリッチ判定空燃比AFrichよりも大きい空燃比に変化すると、目標空燃比AFTが第一弱リーン設定空燃比AFTsl1に切り替えられる。また、時刻t4等において、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上からリーン判定空燃比AFleanよりも小さい空燃比に変化すると、目標空燃比AFTが第一弱リッチ設定空燃比AFTsr1に切り替えられる。その後、時刻t7までは、斯かるサイクルが繰り返される。 Therefore, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 changes from the rich determination air-fuel ratio AFrich or lower to an air-fuel ratio larger than the rich determination air-fuel ratio AFrich at time t 2 or the like, the target air-fuel ratio AFT becomes the first weak lean air-fuel ratio. The set air-fuel ratio is switched to AFTsl 1 . At time t 4, etc., the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 changes from the lean determination air AFlean more small air-fuel ratio than the lean determination air AFlean, the target air-fuel ratio AFT is first weak rich The set air-fuel ratio is switched to AFTsr 1 . After that, until the time t 7 is, such a cycle is repeated.

その後、時刻t7において、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下になると、弱リーン設定空燃比AFTslの値が変更される。図6に示した例では、時刻t7において、弱リーン設定空燃比AFTslが、第一弱リーン設定空燃比AFTsl1から第二弱リーン設定空燃比AFTsl2へと変更される。第二弱リーン設定空燃比AFTsl2の理論空燃比からの差は、第一リーン度合いΔAFTsl1よりも大きい第二リーン度合いΔAFTsl2となっている。したがって、第二弱リーン設定空燃比AFTsl2は、第一リーン設定空燃比AFTsl1よりも大きい(リーン側の)空燃比となっている。 Then, at time t 7, when the temperature CT of the upstream exhaust purification catalyst 20 becomes less than the sulfur storage limit temperature CTLIM, the value of the weak lean set air-fuel ratio AFTsl is changed. In the example illustrated in FIG. 6, at time t 7 , the weak lean set air-fuel ratio AFTsl is changed from the first weak lean set air-fuel ratio AFTsl 1 to the second weak lean set air-fuel ratio AFTsl 2 . The difference of the second weak lean set air-fuel ratio AFTsl 2 from the stoichiometric air-fuel ratio is a second lean degree ΔAFTsl 2 that is larger than the first lean degree ΔAFTsl 1 . Therefore, the second weak lean set air-fuel ratio AFTsl 2 is larger (lean side) than the first lean set air-fuel ratio AFTsl 1 .

ここで、時刻t7以前の第一リーン度合いΔAFTsl1から第一リッチ度合いΔAFTsr1を減算した値を第一変動差ΔLR1とする(ΔLR1=ΔAFTsl1−ΔAFTsr1)。同様に、時刻t7以降の第二リーン度合いΔAFTsl2から第一リッチ度合いΔAFTsr1を減算した値を第二変動差ΔLR2とする(ΔLR2=ΔAFTsl2−ΔAFTsr1)。この場合、本発明の実施形態では、第二変動差ΔLR2は、第一変動差ΔLR1以上の値とされる(ΔLR2≧ΔLR1)。 Here, a value obtained by subtracting the first richness DerutaAFTsr 1 from the time t 7 the first lean degree DerutaAFTsl 1 before the first variation difference ΔLR 1 (ΔLR 1 = ΔAFTsl 1 -ΔAFTsr 1). Similarly, a value obtained by subtracting the first rich degree ΔAFTsr 1 from the second lean degree ΔAFTsl 2 after time t 7 is set as a second fluctuation difference ΔLR 2 (ΔLR 2 = ΔAFTsl 2 −ΔAFTsr 1 ). In this case, in the embodiment of the present invention, the second variation difference ΔLR 2 is set to a value equal to or larger than the first variation difference ΔLR 1 (ΔLR 2 ≧ ΔLR 1 ).

その後、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下になっている間は、弱リーン設定空燃比AFTslは第二弱リーン設定空燃比AFTsl2に維持される。そして、上流側排気浄化触媒20の温度CTが再び硫黄吸蔵上限温度CTlimよりも高い温度に変化すると、弱リーン設定空燃比AFTslは第一弱リーン設定空燃比AFTsl1に変更される。 Thereafter, while the temperature CT of the upstream exhaust purification catalyst 20 is equal to or less than the sulfur storage limit temperature CTlim is slightly lean set air-fuel ratio AFTsl is maintained at the second weak lean set air-fuel ratio AFTsl 2. When the temperature CT of the upstream side exhaust purification catalyst 20 changes again to a temperature higher than the sulfur storage upper limit temperature CTlim, the weak lean set air-fuel ratio AFTsl is changed to the first weak lean set air-fuel ratio AFTsl 1 .

なお、上記実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以上になってリッチ判定空燃比AFrichよりも大きくなるまでの間(例えば、時刻t1〜t2、t8〜t9)、目標空燃比AFTは一定に維持されている。すなわち、リーン設定空燃比は一定に維持されている。しかしながら、リーン設定空燃比は必ずしも一定でなくてもよく、或る程度変動してもよい。 In the above embodiment, the time until the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or higher than the rich determination air-fuel ratio AFrich and becomes larger than the rich determination air-fuel ratio AFrich (for example, from time t 1 to t 2 , t 8 to t 9 ), the target air-fuel ratio AFT is kept constant. That is, the lean set air-fuel ratio is kept constant. However, the lean set air-fuel ratio is not necessarily constant and may vary to some extent.

また、上記実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きくなってからリーン判定空燃比AFlean以上になるまでの間(例えば、時刻t2〜t3、t9〜t10)、目標空燃比AFTは一定に維持されている。すなわち、弱リーン設定空燃比は一定に維持されている。しかしながら、弱リーン設定空燃比は必ずしも一定でなくてもよく、或る程度変動してもよい。ただし、この場合であっても、時刻t9〜t10における弱リーン設定空燃比の平均値のリーン度合いは、時刻t2〜t3における弱リーン設定空燃比の平均値のリーン度合いよりも大きいものとされる。 In the above-described embodiment, the time from when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is greater than the rich determination air-fuel ratio AFrich to the lean determination air-fuel ratio AFlean or more (for example, time t 2 to t 3 , T 9 to t 10 ), the target air-fuel ratio AFT is kept constant. That is, the weak lean set air-fuel ratio is maintained constant. However, the weak lean set air-fuel ratio is not necessarily constant and may vary to some extent. However, even in this case, the lean degree of the average value of the weak lean set air-fuel ratio at time t 9 ~t 10 is greater than the lean degree of the average value of the weak lean set air-fuel ratio at time t 2 ~t 3 It is supposed to be.

同様に、上記実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になってからリーン判定空燃比AFleanよりも小さくなるまでの間(例えば、時刻t3〜t4、t10〜t11)、目標空燃比AFTは一定に維持されている。すなわち、リッチ設定空燃比は一定に維持されている。しかしながら、リッチ設定空燃比も必ずしも一定でなくてもよく、或る程度変動してもよい。 Similarly, in the above-described embodiment, the time from when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or higher than the lean determination air-fuel ratio AFleen until it becomes smaller than the lean determination air-fuel ratio AFlean (for example, from time t 3 to t 4 , t 10 to t 11 ), the target air-fuel ratio AFT is kept constant. That is, the rich set air-fuel ratio is kept constant. However, the rich set air-fuel ratio is not necessarily constant and may vary to some extent.

また、上記実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも小さくなってからリッチ判定空燃比AFlean以下になるまでの間(例えば、時刻t4〜t5、t11〜t12)、目標空燃比AFTは一定に維持されている。すなわち、弱リッチ設定空燃比は一定に維持されている。しかしながら、弱リッチ設定空燃比は必ずしも一定でなくてもよく、或る程度変動してもよい。 In the above embodiment, during the period from the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is smaller than the lean determining the air-fuel ratio AFlean until less rich determination air AFlean (e.g., time t 4 ~t 5 T 11 to t 12 ), the target air-fuel ratio AFT is kept constant. That is, the weak rich set air-fuel ratio is maintained constant. However, the weak rich set air-fuel ratio is not necessarily constant and may vary to some extent.

また、上記実施形態では、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlimを越えたことを境に、リッチ設定空燃比及びリーン設定空燃比を変更している。しかしながら、設定空燃比を切り替えるための温度は、必ずしも硫黄吸蔵上限温度CTlimでなくてもよく、これよりも低い温度であってもよい。また、上流側排気浄化触媒20の温度は、必ずしも上流側温度センサ46を設けて実際に検出せずに、上流側排気浄化触媒20の温度に関連する他のパラメータ(例えば、機関運転状態や吸入空気量等)に基づいて推定してもよい。この場合、例えば、機関運転状態がアイドル運転状態である場合や、吸入空気量が予め定められた空気量以下である場合に、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下であると判定される。   In the above embodiment, the rich set air-fuel ratio and the lean set air-fuel ratio are changed when the temperature CT of the upstream side exhaust purification catalyst 20 exceeds the sulfur storage upper limit temperature CTlim. However, the temperature for switching the set air-fuel ratio is not necessarily the sulfur storage upper limit temperature CTlim, and may be a temperature lower than this. Further, the temperature of the upstream side exhaust purification catalyst 20 is not necessarily detected by providing the upstream side temperature sensor 46, but other parameters related to the temperature of the upstream side exhaust purification catalyst 20 (for example, the engine operating state and the intake You may estimate based on air quantity etc.). In this case, for example, when the engine operation state is an idle operation state, or when the intake air amount is equal to or less than a predetermined air amount, the temperature CT of the upstream side exhaust purification catalyst 20 is equal to or less than the sulfur storage upper limit temperature CTlim. It is determined that there is.

<フローチャート>
図7は、目標空燃比の算出制御における制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
<Flowchart>
FIG. 7 is a flowchart showing a control routine in target air-fuel ratio calculation control. The illustrated control routine is performed by interruption at regular time intervals.

図7に示したように、まず、ステップS11において目標空燃比AFTの算出条件が成立しているか否かが判定される。目標空燃比AFTの算出条件が成立している場合とは、通常制御中であること、例えば燃料カット制御中ではないこと等が挙げられる。ステップS11において目標空燃比AFTの算出条件が成立していると判定された場合には、ステップS12へと進む。   As shown in FIG. 7, first, in step S11, it is determined whether a calculation condition for the target air-fuel ratio AFT is satisfied. The case where the calculation condition of the target air-fuel ratio AFT is satisfied includes that normal control is being performed, for example, that fuel cut control is not being performed. If it is determined in step S11 that the target air-fuel ratio AFT calculation condition is satisfied, the process proceeds to step S12.

ステップS12では、リーン設定フラグFlがOFFに設定されているか否かが判定される。リーン設定フラグFlは、目標空燃比がリーン空燃比に設定されているときにはONとされ、それ以外のときにはOFFとされるフラグである。ステップS12においてリーン設定フラグFlがOFFに設定されていると判定された場合には、ステップS13へと進む。ステップS13では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下であるか否かが判定される。   In step S12, it is determined whether or not the lean setting flag Fl is set to OFF. The lean setting flag Fl is a flag that is turned on when the target air-fuel ratio is set to the lean air-fuel ratio, and is turned off otherwise. If it is determined in step S12 that the lean setting flag Fl is set to OFF, the process proceeds to step S13. In step S13, it is determined whether or not the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is equal to or less than the rich determination air-fuel ratio AFrich.

ステップS13において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きいと判定された場合には、ステップS14へと進む。ステップS14では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも小さいか否かが判定される。出力空燃比AFdwnがリーン判定空燃比AFlean以上であると判定された場合には、ステップS15へと進む。ステップS15では、目標空燃比AFTがリッチ設定空燃比AFTrに設定され、制御ルーチンが終了せしめられる。   If it is determined in step S13 that the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is greater than the rich determination air-fuel ratio AFrich, the process proceeds to step S14. In step S14, it is determined whether or not the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is smaller than the lean determination air-fuel ratio AFlean. If it is determined that the output air-fuel ratio AFdwn is greater than or equal to the lean determination air-fuel ratio AFlean, the process proceeds to step S15. In step S15, the target air-fuel ratio AFT is set to the rich set air-fuel ratio AFTr, and the control routine is ended.

その後、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比に近づき、リーン判定空燃比AFleanよりも小さくなると、次の制御ルーチンでは、ステップS14からステップS16へと進む。ステップS16では、目標空燃比AFTが弱リッチ設定空燃比AFTsrに設定され、制御ルーチンが終了せしめられる。   Thereafter, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 approaches the stoichiometric air-fuel ratio and becomes smaller than the lean determination air-fuel ratio AFlean, the process proceeds from step S14 to step S16 in the next control routine. In step S16, the target air-fuel ratio AFT is set to the slightly rich set air-fuel ratio AFTsr, and the control routine is ended.

その後、上流側排気浄化触媒20の酸素吸蔵量OSAがほぼゼロになって下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になると、次の制御ルーチンでは、ステップS13からステップS17へと進む。ステップS17では、目標空燃比AFTがリーン設定空燃比AFTlに設定される。次いで、ステップS18では、リーン設定フラグFlがONにセットされ、制御ルーチンが終了せしめられる。   Thereafter, when the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 becomes substantially zero and the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio AFrich, the next control routine starts from step S13 to step S13. Proceed to S17. In step S17, the target air-fuel ratio AFT is set to the lean set air-fuel ratio AFTl. Next, at step S18, the lean setting flag Fl is set to ON, and the control routine is ended.

リーン設定フラグFlがONにセットされると、次の制御ルーチンでは、ステップS12からステップS19へと進む。ステップS19では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上であるか否かが判定される。   When the lean setting flag Fl is set to ON, in the next control routine, the process proceeds from step S12 to step S19. In step S19, it is determined whether or not the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is equal to or greater than the lean determination air-fuel ratio AFlean.

ステップS19において、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも小さいと判定された場合には、ステップS20へと進む。ステップS20では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きいか否かが判定される。出力空燃比AFdwnがリッチ判定空燃比AFrich以下であると判定された場合には、ステップS21へと進む。ステップS21では、目標空燃比AFTが引き続きリーン設定空燃比AFTlに設定され、制御ルーチンが終了せしめられる。   If it is determined in step S19 that the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is smaller than the lean determination air-fuel ratio AFlean, the process proceeds to step S20. In step S20, it is determined whether or not the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is larger than the rich determination air-fuel ratio AFrich. If it is determined that the output air-fuel ratio AFdwn is equal to or less than the rich determination air-fuel ratio AFrich, the process proceeds to step S21. In step S21, the target air-fuel ratio AFT is continuously set to the lean set air-fuel ratio AFT1, and the control routine is ended.

その後、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比に近づき、リッチ判定空燃比AFrichよりも大きくなると、次の制御ルーチンでは、ステップS20からステップS22へと進む。ステップS22では、目標空燃比AFTが弱リーン設定空燃比AFTslに設定され、制御ルーチンが終了せしめられる。   Thereafter, when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 approaches the stoichiometric air-fuel ratio and becomes larger than the rich determination air-fuel ratio AFrich, the process proceeds from step S20 to step S22 in the next control routine. In step S22, the target air-fuel ratio AFT is set to the weak lean set air-fuel ratio AFTsl, and the control routine is ended.

その後、上流側排気浄化触媒20の酸素吸蔵量OSAがほぼ最大吸蔵可能酸素量になって下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になると、次の制御ルーチンでは、ステップS19からステップS23へと進む。ステップS23では、目標空燃比AFTがリッチ設定空燃比AFTrに設定される。次いで、ステップS24では、リーン設定フラグFlがOFFにリセットされ、制御ルーチンが終了せしめられる。   Thereafter, when the oxygen storage amount OSA of the upstream side exhaust purification catalyst 20 becomes substantially the maximum storable oxygen amount and the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or greater than the lean determination air-fuel ratio AFlean, the following control routine: The process proceeds from step S19 to step S23. In step S23, the target air-fuel ratio AFT is set to the rich set air-fuel ratio AFTr. Next, in step S24, the lean setting flag Fl is reset to OFF, and the control routine is ended.

図8は、弱リーン設定空燃比の設定制御における制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。   FIG. 8 is a flowchart showing a control routine in the setting control of the weak lean set air-fuel ratio. The illustrated control routine is performed by interruption at regular time intervals.

まず、ステップS31において、上流側温度センサ46によって検出された上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下であるか否かが判定される。温度CTが硫黄吸蔵上限温度CTlimよりも高いと判定された場合には、ステップS32へと進む。ステップS32では、弱リーン設定空燃比AFTslが第一弱リーン設定空燃比AFTsl1に設定され、制御ルーチンが終了せしめられる。一方、ステップS31において、温度CTが硫黄吸蔵上限温度CTlim以下であると判定された場合には、ステップS33へと進む。ステップS33では、弱リーン設定空燃比AFTslが第二弱リーン設定空燃比AFTsl2に設定され、制御ルーチンが終了せしめられる。 First, in step S31, it is determined whether or not the temperature CT of the upstream side exhaust purification catalyst 20 detected by the upstream side temperature sensor 46 is equal to or lower than the sulfur storage upper limit temperature CTlim. When it is determined that the temperature CT is higher than the sulfur storage upper limit temperature CTlim, the process proceeds to step S32. In step S32, the weak lean set air-fuel ratio AFTsl is set to the first weak lean set air-fuel ratio AFTsl 1 , and the control routine is ended. On the other hand, if it is determined in step S31 that the temperature CT is equal to or lower than the sulfur storage upper limit temperature CTlim, the process proceeds to step S33. In step S33, the weak lean set air-fuel ratio AFTsl is set to the second weak lean set air-fuel ratio AFTsl 2, the control routine is ended.

<設定空燃比制御の効果>
このように、本実施形態では、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下のときには、硫黄吸蔵上限温度CTlimよりも高いときに比べて、弱リーン設定空燃比のリーン度合いから弱リッチ設定空燃比のリッチ度合いを減算した変動差ΔLRが大きくされる(特に、弱リーン設定空燃比や弱リッチ設定空燃比が変動することを考慮すると、本実施形態では、リーン度合い変更時期以降のリーン空燃比の平均値のリーン度合いから、リッチ度合い変更時期以降のリッチ空燃比の平均値のリッチ度合いを減算した変動差が大きくされるといえる)。以下では、弱リッチ設定空燃比及び弱リーン設定空燃比をこのように制御することの効果について説明する。
<Effect of set air-fuel ratio control>
Thus, in the present embodiment, when the temperature CT of the upstream side exhaust purification catalyst 20 is equal to or lower than the sulfur storage upper limit temperature CTlim, compared to when the temperature is higher than the sulfur storage upper limit temperature CTlim, from the lean degree of the weak lean set air-fuel ratio. The fluctuation difference ΔLR obtained by subtracting the rich degree of the weak rich set air-fuel ratio is increased (particularly, in consideration of fluctuations in the weak lean set air fuel ratio and the weak rich set air fuel ratio, in this embodiment, after the lean degree change timing It can be said that the fluctuation difference obtained by subtracting the rich degree of the average value of the rich air-fuel ratio after the rich degree change timing is increased from the lean degree of the average value of the lean air-fuel ratio. Hereinafter, the effect of controlling the weak rich set air-fuel ratio and the weak lean set air-fuel ratio in this way will be described.

図6に示したように、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlimよりも高いときに、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になってからリーン判定空燃比AFlean以上になるまでの時間をT1とする(例えば、時刻t1〜t3)。同様に、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になってからリッチ判定空燃比AFrich以下になるまでの時間をT2とする(例えば、時刻t3〜t5)。したがって、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに達してから再度リッチ判定空燃比AFrichに達するまでの1サイクルにかかる時間はT1+T2で表せる(例えば、時刻t1〜t5)。 As shown in FIG. 6, when the temperature CT of the upstream side exhaust purification catalyst 20 is higher than the sulfur storage upper limit temperature CTlim, the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or lower than the rich determination air-fuel ratio AFrich. the time until more lean determination air AFlean and T 1 from (e.g., time t 1 ~t 3). Similarly, the time from when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or higher than the lean determination air-fuel ratio AFlean to when it becomes equal to or lower than the rich determination air-fuel ratio AFrich is defined as T 2 (for example, time t 3 to t 5 ). Therefore, the time taken for one cycle from when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination air-fuel ratio AFrich to when it reaches the rich determination air-fuel ratio AFrich again can be expressed as T 1 + T 2 (for example, time t 1 ~t 5).

一方、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下のときに、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になってからリーン判定空燃比AFlean以上になるまでの時間をT3とする(例えば、時刻t8〜t10)。同様に、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になってからリッチ判定空燃比AFrich以下になるまでの時間をT4とする(例えば、時刻t10〜t12)。したがって、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに達してから再度リッチ判定空燃比AFrichに達するまでの1サイクルにかかる時間はT3+T4で表せる(例えば、時刻t8〜t12)。 On the other hand, when the temperature CT of the upstream side exhaust purification catalyst 20 is equal to or lower than the sulfur storage upper limit temperature CTlim, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 becomes equal to or higher than the lean determined air-fuel ratio AFlean after the output air-fuel ratio AFdwn becomes lower than the rich determined air-fuel ratio AFrich. the time until the T 3 (e.g., time t 8 ~t 10). Similarly, the time from when the output air-fuel ratio AFdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or higher than the lean determination air-fuel ratio AFlean to when it becomes equal to or lower than the rich determination air-fuel ratio AFrich is defined as T 4 (for example, time t 10 to t 12 ). Therefore, the time required for one cycle from when the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination air-fuel ratio AFrich to when it reaches the rich determination air-fuel ratio AFrich again can be expressed as T 3 + T 4 (for example, time t 8 ~t 12).

図6からわかるように、本実施形態では、上流側排気浄化触媒20の温度が高いとき(図中の時刻t7以前)には、1サイクルの時間(T1+T2)における時間T1の比率はそれほど低くない。すなわち、1サイクルの時間のうち上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である時間(以下、「リーン時間」という)はそれほど短くない。これに対して、上流側排気浄化触媒20の温度が低いとき(図中の時刻t7以降)には、1サイクルの時間(T3+T4)における時間T3の比率は低くなる。すなわち、1サイクルの時間のうちリーン時間が短くなる。これは、上流側排気浄化触媒20の温度CTが低いときに変動差ΔLRが大きくされるためである。 As can be seen from FIG. 6, in the present embodiment, when the temperature of the upstream exhaust purification catalyst 20 is high (time t 7 earlier in the figure), the cycle time (T 1 + T 2) at the time T 1 The ratio is not so low. That is, the time during which the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the lean air-fuel ratio (hereinafter referred to as “lean time”) in one cycle time is not so short. On the other hand, when the temperature of the upstream side exhaust purification catalyst 20 is low (after time t 7 in the figure), the ratio of the time T 3 to the time of one cycle (T 3 + T 4 ) is low. That is, the lean time becomes shorter in one cycle time. This is because the variation difference ΔLR is increased when the temperature CT of the upstream side exhaust purification catalyst 20 is low.

ここで、上述したように、上流側排気浄化触媒20では、その温度CTが硫黄吸蔵上限温度CTlim以下になると、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比のときに硫黄成分が吸蔵される。本実施形態では、上流側排気浄化触媒20の温度が低いときには、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である時間が短くなるため、上流側排気浄化触媒20に硫黄成分が吸蔵されるのが抑制される。   Here, as described above, in the upstream side exhaust purification catalyst 20, when the temperature CT becomes equal to or lower than the sulfur storage upper limit temperature CTlim, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the lean air-fuel ratio. The sulfur component is occluded. In the present embodiment, when the temperature of the upstream side exhaust purification catalyst 20 is low, the time during which the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio is shortened. Occlusion of sulfur components is suppressed.

一方、本実施形態では、上流側排気浄化触媒20の温度が高いときには、1サイクルの時間のうちリーン時間はそれほど短くない。しかしながら、上述したように、上流側排気浄化触媒20では、その温度CTが硫黄吸蔵上限温度CTlimよりも高い場合には、排気ガスの空燃比がリーン空燃比であっても上流側排気浄化触媒20には硫黄成分はほとんど吸蔵されない。したがって、排気ガスの空燃比がリーン空燃比である時間がそれほど短くなくても、上流側排気浄化触媒20には硫黄成分はほとんど吸蔵されない。以上より、本実施形態によれば、上流側排気浄化触媒20への硫黄成分の吸蔵を抑制することができ、よって上流側排気浄化触媒20の硫黄成分吸蔵量を低く維持することができる。   On the other hand, in this embodiment, when the temperature of the upstream side exhaust purification catalyst 20 is high, the lean time in one cycle time is not so short. However, as described above, in the upstream side exhaust purification catalyst 20, when the temperature CT is higher than the sulfur storage upper limit temperature CTlim, the upstream side exhaust purification catalyst 20 even if the air-fuel ratio of the exhaust gas is the lean air-fuel ratio. Almost no sulfur component is occluded. Therefore, even if the time during which the air-fuel ratio of the exhaust gas is the lean air-fuel ratio is not so short, the upstream side exhaust purification catalyst 20 hardly stores the sulfur component. As described above, according to the present embodiment, the storage of the sulfur component in the upstream side exhaust purification catalyst 20 can be suppressed, and thus the sulfur component storage amount of the upstream side exhaust purification catalyst 20 can be kept low.

これに関する実験結果を、図9に示す。図9は、1サイクルの時間におけるリッチ時間の比率(例えば、T2/(T1+T2)、T4/(T3+T4))とCmax比率との関係を表すグラフである。図9に示したグラフは、新触の排気浄化触媒を用いて1サイクルにおけるリッチ時間の比率を一定に維持して内燃機関の運転を行い、その結果、最大吸蔵可能酸素量Cmaxがどのように変化したかを表している。図中のCmax比率は、排気浄化触媒が新品である場合の最大吸蔵可能酸素量Cmaxを1としたときの最大吸蔵可能酸素量Cmaxの比率を表している。 The experimental result regarding this is shown in FIG. FIG. 9 is a graph showing the relationship between the ratio of rich time in one cycle time (for example, T 2 / (T 1 + T 2 ), T 4 / (T 3 + T 4 )) and the Cmax ratio. The graph shown in FIG. 9 shows how the maximum storable oxygen amount Cmax is obtained by operating the internal combustion engine while maintaining the ratio of the rich time in one cycle constant using a new exhaust purification catalyst. It shows how it has changed. The Cmax ratio in the figure represents the ratio of the maximum storable oxygen amount Cmax when the maximum storable oxygen amount Cmax is 1 when the exhaust purification catalyst is new.

図9からわかるように、排気浄化触媒の温度が低いとき(400℃)には、リッチ時間の比率が大きくなると、すなわちリーン時間の比率が小さくなるとCmax比率が増大する。これは、リーン時間の比率が小さくなるほど、排気浄化触媒に硫黄成分が吸蔵されにくくなっていることを裏付けるものである。一方、排気浄化触媒の温度が高いとき(700℃)には、Cmax比率は、排気浄化触媒の温度が低いときに比べて高いと共に、リッチ時間の比率に無関係にほぼ一定となっている。したがって、図9に示したグラフからも、本実施形態によれば、上流側排気浄化触媒20への硫黄成分の吸蔵を抑制することができることが裏付けられる。   As can be seen from FIG. 9, when the temperature of the exhaust purification catalyst is low (400 ° C.), the Cmax ratio increases as the rich time ratio increases, that is, as the lean time ratio decreases. This confirms that the sulfur component is less likely to be stored in the exhaust purification catalyst as the lean time ratio decreases. On the other hand, when the temperature of the exhaust purification catalyst is high (700 ° C.), the Cmax ratio is higher than when the temperature of the exhaust purification catalyst is low, and is almost constant regardless of the ratio of the rich time. Therefore, the graph shown in FIG. 9 also supports that according to the present embodiment, the storage of the sulfur component in the upstream side exhaust purification catalyst 20 can be suppressed.

また、図6に示した実施形態では、上流側排気浄化触媒20の温度が低いときには、実質的に弱リーン設定空燃比AFTslのみを変更している。したがって、排気浄化触媒の温度が低くても、リーン設定空燃比AFTl及びリッチ設定空燃比AFTrは変更していない。   Further, in the embodiment shown in FIG. 6, when the temperature of the upstream side exhaust purification catalyst 20 is low, only the weak lean set air-fuel ratio AFTsl is substantially changed. Therefore, even if the temperature of the exhaust purification catalyst is low, the lean set air-fuel ratio AFTl and the rich set air-fuel ratio AFTr are not changed.

ここで、上述したように、リッチ設定空燃比AFTrやリーン設定空燃比AFTlは、弱リッチ設定空燃比AFTsrや弱リーン設定空燃比AFTslに比べて、そのリッチ度合いやリーン度合いが比較的大きなものとされる。これは上述したように、図6の時刻t1及び時刻t3において上流側排気浄化触媒20から流出していた未燃ガス及びNOxを迅速に減少させるためである。このため、仮に上流側排気浄化触媒20の温度が低下したときにリッチ設定空燃比AFTrのリッチ度合い及びリーン設定空燃比AFTlのリーン度合いを小さくすると、上流側排気浄化触媒20から流出していた未燃ガス及びNOxを迅速に減少させることができなくなってしまう。 Here, as described above, the rich set air-fuel ratio AFTr and the lean set air-fuel ratio AFTl have a relatively large richness and lean degree compared to the weak rich set air-fuel ratio AFTsr and the weak lean set air-fuel ratio AFTsl. Is done. This is because the unburned gas and NOx flowing out from the upstream side exhaust purification catalyst 20 at time t 1 and time t 3 in FIG. 6 are rapidly reduced as described above. For this reason, if the rich degree of the rich set air-fuel ratio AFTr and the lean degree of the lean set air-fuel ratio AFTl are reduced when the temperature of the upstream side exhaust purification catalyst 20 is lowered, It becomes impossible to reduce fuel gas and NOx quickly.

これに対して、上記実施形態によれば、上流側排気浄化触媒20の温度が低いときであっても、リーン設定空燃比AFTl及びリッチ設定空燃比AFTrは変更されない。このため、本実施形態によれば、上流側排気浄化触媒20から流出していた未燃ガス及びNOxを迅速に減少させることができる。   On the other hand, according to the above embodiment, even when the temperature of the upstream side exhaust purification catalyst 20 is low, the lean set air-fuel ratio AFTl and the rich set air-fuel ratio AFTr are not changed. For this reason, according to this embodiment, the unburned gas and NOx which have flowed out of the upstream side exhaust purification catalyst 20 can be rapidly reduced.

なお、上流側排気浄化触媒20の温度が低いときには、リーン設定空燃比AFTl及びリッチ設定空燃比AFTrを変更するようにしてもよい。この場合、例えば、図10に示したように、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlimよりも高いときには、リーン設定空燃比AFTlが第一リーン設定空燃比AFTl1に設定される。加えて、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下のときには、リーン設定空燃比AFTlは第二リーン設定空燃比AFTl2に設定される。ここで、第二リーン設定空燃比AFTl2の理論空燃比からの差(リッチ度合い)は、第一リーン設定空燃比AFTl1の理論空燃比からの差(リッチ度合い)よりも大きなものとなっている。 Note that when the temperature of the upstream side exhaust purification catalyst 20 is low, the lean set air-fuel ratio AFTl and the rich set air-fuel ratio AFTr may be changed. In this case, for example, as shown in FIG. 10, when the temperature CT of the upstream side exhaust purification catalyst 20 is higher than the sulfur storage upper limit temperature CTlim, the lean set air-fuel ratio AFTl is set to the first lean set air-fuel ratio AFTl 1. The In addition, when the temperature CT of the upstream exhaust purification catalyst 20 is less than the sulfur storage limit temperature CTlim is lean set air-fuel ratio AFTl is set to the second lean set air-fuel ratio AFTl 2. Here, the difference (rich degree) of the second lean set air-fuel ratio AFTl 2 from the stoichiometric air-fuel ratio is larger than the difference (rich degree) of the first lean set air-fuel ratio AFTl 1 from the stoichiometric air-fuel ratio. Yes.

したがって、図10に示した例では、リーン設定空燃比AFTlと理論空燃比との差からリッチ設定空燃比AFTrと理論空燃比との差を減算したものを変動差とすると、時刻t7以前に比べて時刻t7以降の方が変動差が大きくされているといえる。上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下であるときには、これよりも高いときに比べて、斯かる変動差を大きくすることができれば、リッチ設定空燃比AFTr及びリーン設定空燃比AFTlはどのように変更してもよい。 Thus, in the example shown in FIG. 10, when the minus the difference between the rich set air-fuel ratio AFTr and the theoretical air-fuel ratio from the difference between the lean set air-fuel ratio AFTl and the theoretical air-fuel ratio variation difference, time t 7 the previously In comparison, it can be said that the fluctuation difference after time t 7 is larger. When the temperature CT of the upstream side exhaust purification catalyst 20 is equal to or lower than the sulfur storage upper limit temperature CTlim, if such a difference in difference can be made larger than when it is higher than this, the rich set air-fuel ratio AFTr and the lean set air-fuel ratio AFTl may be changed in any way.

さらに、図6に示した実施形態では、上流側排気浄化触媒20の温度が低いときには、温度が高いときに比べて、弱リーン設定空燃比AFTslのリーン度合いを大きくしている。しかしながら、弱リッチ設定空燃比AFTsrのリッチ度合いは、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlimを越えて変化しても、そのまま維持される。   Further, in the embodiment shown in FIG. 6, when the temperature of the upstream side exhaust purification catalyst 20 is low, the lean degree of the weak lean set air-fuel ratio AFTsl is made larger than when the temperature is high. However, the rich degree of the weak rich set air-fuel ratio AFTsr is maintained as it is even when the temperature CT of the upstream side exhaust purification catalyst 20 changes beyond the sulfur storage upper limit temperature CTlim.

ここで、上述したように、第二変動差ΔLR2を第一変動差ΔLR1以上の値にするという観点からは、上流側排気浄化触媒20の温度が低いときには、温度が高いときに比べて、弱リッチ設定空燃比AFTsrのリッチ度合いを小さくすることが考えられる。しかしながら、例えば上流側空燃比センサ40の出力空燃比に僅かながら誤差がある場合、弱リッチ設定空燃比AFTsrのリッチ度合いを必要以上に小さくすると、目標空燃比がリッチ空燃比であるのに実際に上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比やリーン空燃比になってしまう可能性がある。そこで、上記実施形態では、弱リッチ設定空燃比AFTsrのリッチ度合いは、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlimを越えて変化しても、そのまま維持される。 Here, as described above, from the viewpoint of setting the second fluctuation difference ΔLR 2 to a value equal to or larger than the first fluctuation difference ΔLR 1 , the temperature of the upstream side exhaust purification catalyst 20 is lower than that when the temperature is high. It is conceivable to reduce the rich degree of the weak rich set air-fuel ratio AFTsr. However, for example, when there is a slight error in the output air-fuel ratio of the upstream air-fuel ratio sensor 40, if the rich degree of the weak rich set air-fuel ratio AFTsr is made smaller than necessary, the target air-fuel ratio is actually the rich air-fuel ratio. There is a possibility that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the stoichiometric air-fuel ratio or the lean air-fuel ratio. Therefore, in the above embodiment, the rich degree of the weak rich set air-fuel ratio AFTsr is maintained as it is even if the temperature CT of the upstream side exhaust purification catalyst 20 changes beyond the sulfur storage upper limit temperature CTlim.

なお、図11に示したように、上流側排気浄化触媒20の温度が高いときの弱リッチ設定空燃比AFTsr1のリッチ度合いが比較的大きいような場合、上流側排気浄化触媒20の温度CTが硫黄吸蔵上限温度CTlim以下であるときには、硫黄吸蔵上限温度CTlimよりも高いときに比べて、弱リッチ設定空燃比AFTsrのリッチ度合いを小さくしてもよい(図11中の弱リッチ設定空燃比AFTsr2)。 As shown in FIG. 11, when the rich degree of the weak rich set air-fuel ratio AFTsr 1 when the temperature of the upstream side exhaust purification catalyst 20 is high, the temperature CT of the upstream side exhaust purification catalyst 20 is high. When the sulfur storage upper limit temperature CTlim is lower than or equal to the sulfur storage upper limit temperature CTlim, the degree of richness of the weak rich set air-fuel ratio AFTsr may be smaller than when it is higher than the sulfur storage upper limit temperature CTlim (weak rich set air-fuel ratio AFTsr 2 in FIG. 11). ).

1 機関本体
5 燃焼室
7 吸気ポート
9 排気ポート
19 排気マニホルド
20 上流側排気浄化触媒
24 下流側排気浄化触媒
31 ECU
40 上流側空燃比センサ
41 下流側空燃比センサ
46 温度センサ
47 温度センサ
DESCRIPTION OF SYMBOLS 1 Engine body 5 Combustion chamber 7 Intake port 9 Exhaust port 19 Exhaust manifold 20 Upstream exhaust purification catalyst 24 Downstream exhaust purification catalyst 31 ECU
40 upstream air-fuel ratio sensor 41 downstream air-fuel ratio sensor 46 temperature sensor 47 temperature sensor

Claims (1)

内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する下流側空燃比センサと、前記排気浄化触媒の温度を検出又は推定する温度検出手段とを具備する内燃機関の制御装置において、
前記排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御を行い、
前記下流側空燃比センサによって検出された排気空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下になったときに、前記目標空燃比は理論空燃比よりもリーンなリーン設定空燃比に切り替えられ、
前記目標空燃比が前記リーン設定空燃比に設定された後であって前記下流側空燃比センサによって検出される排気空燃比が理論空燃比よりもリーンなリーン判定空燃比以上になる前のリーン度合い変更時期から前記下流側空燃比センサによって検出された排気空燃比がリーン判定空燃比以上になるまで、前記目標空燃比は前記リーン設定空燃比よりもリーン度合いの小さいリーン空燃比に設定され、
前記下流側空燃比センサによって検出された排気空燃比がリーン判定空燃比以上になったときに、前記目標空燃比は理論空燃比よりもリッチなリッチ設定空燃比に切り替えられ、
前記目標空燃比が前記リッチ設定空燃比に設定された後であって前記下流側空燃比センサによって検出される排気空燃比がリッチ判定空燃比以下になる前のリッチ度合い変更時期から前記下流側空燃比センサよって検出された排気空燃比がリッチ判定空燃比以下になるまで、前記目標空燃比は前記リッチ設定空燃比よりもリッチ度合いの小さいリッチ空燃比に設定され、
前記温度検出手段によって検出又は推定された前記排気浄化触媒の温度が予め定められた上限温度以下のときには、該上限温度よりも高いときに比べて、前記リーン度合い変更時期以降のリーン空燃比の平均値と理論空燃比との差から、前記リッチ度合い変更時期以降のリッチ空燃比の平均値と理論空燃比との差を減算した変動差を大きくするようにした、内燃機関の制御装置。
An exhaust purification catalyst that is disposed in the exhaust passage of the internal combustion engine and can store oxygen, and an air-fuel ratio of the exhaust gas that is disposed downstream of the exhaust purification catalyst in the exhaust flow direction and flows out of the exhaust purification catalyst. In a control device for an internal combustion engine comprising a downstream air-fuel ratio sensor and temperature detection means for detecting or estimating the temperature of the exhaust purification catalyst,
Perform feedback control so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio,
When the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor becomes equal to or less than the rich determination air-fuel ratio richer than the stoichiometric air-fuel ratio, the target air-fuel ratio is switched to a lean set air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. And
The degree of lean after the target air-fuel ratio is set to the lean set air-fuel ratio and before the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor becomes equal to or higher than the lean determination air-fuel ratio leaner than the stoichiometric air-fuel ratio The target air-fuel ratio is set to a lean air-fuel ratio that is smaller than the lean set air-fuel ratio until the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor becomes equal to or higher than the lean determination air-fuel ratio from the change timing,
When the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor becomes equal to or higher than the lean determination air-fuel ratio, the target air-fuel ratio is switched to a rich set air-fuel ratio that is richer than the stoichiometric air-fuel ratio,
After the target air-fuel ratio is set to the rich set air-fuel ratio, the downstream air-fuel ratio is changed from the rich degree change timing before the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor becomes equal to or less than the rich determination air-fuel ratio. The target air-fuel ratio is set to a rich air-fuel ratio that is less rich than the rich set air-fuel ratio until the exhaust air-fuel ratio detected by the fuel ratio sensor becomes equal to or less than the rich determination air-fuel ratio,
When the temperature of the exhaust purification catalyst detected or estimated by the temperature detection means is equal to or lower than a predetermined upper limit temperature, the average of the lean air-fuel ratio after the lean degree change timing is higher than when the temperature is higher than the upper limit temperature. A control device for an internal combustion engine, wherein a fluctuation difference obtained by subtracting a difference between an average value of the rich air-fuel ratio after the rich degree change timing and the theoretical air-fuel ratio from the difference between the value and the theoretical air-fuel ratio is increased.
JP2014107049A 2014-05-23 2014-05-23 Internal combustion engine control unit Pending JP2015222052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107049A JP2015222052A (en) 2014-05-23 2014-05-23 Internal combustion engine control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107049A JP2015222052A (en) 2014-05-23 2014-05-23 Internal combustion engine control unit

Publications (1)

Publication Number Publication Date
JP2015222052A true JP2015222052A (en) 2015-12-10

Family

ID=54785198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107049A Pending JP2015222052A (en) 2014-05-23 2014-05-23 Internal combustion engine control unit

Country Status (1)

Country Link
JP (1) JP2015222052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855368A (en) * 2019-11-28 2021-05-28 罗伯特·博世有限公司 Method for diagnosing a plurality of oxygen sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855368A (en) * 2019-11-28 2021-05-28 罗伯特·博世有限公司 Method for diagnosing a plurality of oxygen sensors

Similar Documents

Publication Publication Date Title
JP6237460B2 (en) Abnormality diagnosis device for internal combustion engine
JP6107586B2 (en) Control device for internal combustion engine
JP6256240B2 (en) Control device for internal combustion engine
JP6323281B2 (en) Control device for internal combustion engine
WO2014118889A1 (en) Control device for internal combustion engine
WO2014118890A1 (en) Control device for internal combustion engine
JP6107674B2 (en) Control device for internal combustion engine
JP6834917B2 (en) Exhaust purification device for internal combustion engine
JP6252357B2 (en) Control device for internal combustion engine
JP6296019B2 (en) Internal combustion engine
JP2018204533A (en) Exhaust emission control device of internal combustion engine
JP6268976B2 (en) Control device for internal combustion engine
JP6056726B2 (en) Control device for internal combustion engine
JP6361699B2 (en) Control device for internal combustion engine
JP6260452B2 (en) Control device for internal combustion engine
JP6287939B2 (en) Exhaust gas purification device for internal combustion engine
JP2018003777A (en) Control device of internal combustion engine
JP6361591B2 (en) Control device for internal combustion engine
JP6156278B2 (en) Control device for internal combustion engine
JP2015229995A (en) Internal combustion engine control device
JP6201765B2 (en) Control device for internal combustion engine
JP2015222052A (en) Internal combustion engine control unit
JP2015172356A (en) Control device for internal combustion engine
JP2015209818A (en) Control device of internal combustion engine
JP2019065797A (en) Exhaust emission control device of internal combustion engine