JP2015221935A - Tungsten-molybdenum alloy electrode material for resistance welding - Google Patents

Tungsten-molybdenum alloy electrode material for resistance welding Download PDF

Info

Publication number
JP2015221935A
JP2015221935A JP2014178253A JP2014178253A JP2015221935A JP 2015221935 A JP2015221935 A JP 2015221935A JP 2014178253 A JP2014178253 A JP 2014178253A JP 2014178253 A JP2014178253 A JP 2014178253A JP 2015221935 A JP2015221935 A JP 2015221935A
Authority
JP
Japan
Prior art keywords
resistance welding
electrode material
welding
tungsten
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014178253A
Other languages
Japanese (ja)
Other versions
JP6331019B2 (en
Inventor
アフマディ・エコ・ワルドヨ
Eko Wardoyo Akhmadi
直樹 力田
Naoki Rikita
直樹 力田
阿部 高志
Takashi Abe
高志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014178253A priority Critical patent/JP6331019B2/en
Publication of JP2015221935A publication Critical patent/JP2015221935A/en
Application granted granted Critical
Publication of JP6331019B2 publication Critical patent/JP6331019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a W-Mo alloy electrode material for resistance welding which allows life extension of electrodes even when welding is conducted with a large current.SOLUTION: A W-Mo alloy electrode material for resistance welding consists of a sintered body formed by blending pure W particle powder and pure Mo particle powder, preferably with a purity of 99.9% and an average particle size of 0.25-50 μm for the individual powders, so as to yield an Mo content of 37.5-87.5 mass% and sintering the resultant blend e.g. at a pressure of 1 GPa or higher and a temperature of 1,000°C or higher for 10 min. The relative density of the sintered body is 98.5% or higher, and the electrode material for resistance welding allows electrification of a large current, e.g. a 10,000A or higher welding current. The electrode material for resistance welding can be sintered by forming raw powders of a fine W particle and a Mo particle, e.g. of an average particle size of 4 μm or smaller, into a pressure powder molding, heat-treating the pressure powder molding in an atmosphere of a vacuum of 10Pa or lower or an atmosphere replaced with N gas, Ar gas, etc. at 450-1,200°C for 30 min or longer prior to sintering to purify the surface of the particle powders and sintering at relatively low pressure and temperatures.

Description

この発明は、抵抗溶接に用いられるタングステン(W)−モリブデン(Mo)合金電極材料に関し、特に、大電流で溶接を行った場合でも、電流衝撃によるクラックや変形発生が抑制されることによって、電極の長寿命化を図った抵抗溶接用W−Mo合金電極材料に関するものである。   The present invention relates to a tungsten (W) -molybdenum (Mo) alloy electrode material used for resistance welding, and in particular, even when welding is performed with a large current, the generation of cracks and deformation due to current impact is suppressed, thereby It is related with the W-Mo alloy electrode material for resistance welding which aimed at lifetime extension.

抵抗溶接は、金属材料からなる被溶接材を重ね合わせ、その重ね合わせた部分を一対の抵抗溶接用電極で挾んで強く加圧しながら電流を流すことで、重ね合わせた被溶接材に発生する電気抵抗熱を熱源として利用し溶接する方法である。この抵抗溶接における発熱量は、主として、電流値、通電時間と材料の比抵抗によって支配される。
抵抗溶接用電極としては、電極間に電流を流し、被溶接材を高温下で加圧することから、高温・高圧で変形しにくいこと、熱伝導性・電気伝導性にすぐれること、熱塑性変形を生じにくいこと、被溶接材料(あるいはこれを被覆するめっき材)と合金化しにくいこと、耐酸化性にすぐれること等の特性が求められている。
そして、これらの要求を満足させるべく、今まで、数多くの抵抗溶接用電極材料が開発されている。
In resistance welding, welding materials made of metal materials are overlapped, and the overlapped portions are sandwiched between a pair of resistance welding electrodes and a current is applied while being strongly pressed, whereby electricity generated in the overlapped welding materials is generated. This is a welding method using resistance heat as a heat source. The amount of heat generated in this resistance welding is mainly governed by the current value, the energization time and the specific resistance of the material.
As resistance welding electrodes, current flows between the electrodes and presses the material to be welded at a high temperature, so it is difficult to be deformed at high temperatures and pressures, has excellent thermal and electrical conductivity, and has thermoplastic deformation. There are demands for properties such as being less likely to occur, being difficult to alloy with the material to be welded (or the plating material covering it), and being excellent in oxidation resistance.
In order to satisfy these requirements, a number of resistance welding electrode materials have been developed so far.

例えば、特許文献1には、熱伝導性と比抵抗にすぐれ、また、亜鉛めっき等との反応性にも優れるが、その反面、脆くて割れを発生し易いというタングステン電極の問題点を解決すべく、タングステン、モリブデンまたはこれらの合金からなるチップ主体を、常温からその最高上昇温度までの温度範囲で比較的高い強度と靭性を有する金属(例えば、析出硬化型ステンレス鋼であるSUS630鋼)からなる保持リングに嵌着した電極チップを備えた抵抗溶接用電極が提案されている。 For example, Patent Document 1 is excellent in thermal conductivity and specific resistance, and excellent in reactivity with galvanizing and the like, but on the other hand, it solves the problem of the tungsten electrode that is brittle and easily cracks. Therefore, a chip main body made of tungsten, molybdenum or an alloy thereof is made of a metal having a relatively high strength and toughness in a temperature range from room temperature to its highest temperature (for example, SUS630 steel which is a precipitation hardening type stainless steel). An electrode for resistance welding provided with an electrode tip fitted to a holding ring has been proposed.

また、特許文献2には、強度を備えた寿命の長い抵抗溶接用電極材料を提供することを目的として、重量比でW5〜95%を有し,残部が実質的にMoからなるW−Mo合金材料によって構成した抵抗溶接用電極において、W−Mo合金材料にカリウムを10〜100ppm含有させることが提案されている。 Patent Document 2 describes W-Mo having a weight ratio of W5 to 95% and the balance being substantially made of Mo for the purpose of providing a long-life resistance welding electrode material having strength. In resistance welding electrodes made of an alloy material, it has been proposed that the W-Mo alloy material contains 10 to 100 ppm of potassium.

また、特許文献3には、電極の耐久性を高め、かつ、電極の耐衝撃性、耐破壊性を向上させるために、圧延により繊維状組織を形成したタングステンとモリブデンの何れかの焼結合金で抵抗溶接用電極材料を構成し、この電極材料の繊維状組織の端面を、ワークを挟圧する溶接面とした抵抗溶接用電極が提案されている。 Patent Document 3 discloses a sintered alloy of any of tungsten and molybdenum in which a fibrous structure is formed by rolling in order to enhance the durability of the electrode and improve the impact resistance and fracture resistance of the electrode. A resistance welding electrode is proposed in which an electrode material for resistance welding is formed and the end surface of the fibrous structure of the electrode material is a welding surface that clamps the workpiece.

また、特許文献4には、耐久性にすぐれ、かつ、高強度、高靭性、高再結晶温度の抵抗溶接用電極材料を提供することを目的として、カリウムを10ppm以上200ppm以下含有させ残部が実質的にタングステンであるタングステン合金によって抵抗溶接用電極を構成することが提案されている。 Further, Patent Document 4 contains 10 ppm or more and 200 ppm or less of potassium in order to provide an electrode material for resistance welding having excellent durability and high strength, high toughness, and high recrystallization temperature, and the balance is substantially the same. It has been proposed to form a resistance welding electrode from a tungsten alloy, which is typically tungsten.

また、特許文献5に示されるものはヒュージング溶接用の電極ではあるが、加熱・加圧が繰返し加えられるヒュージング溶接用の電極として、先端部での脱粒損耗,欠損を抑制し、耐久性を安定的に高めるために、Cu又はCu合金からなる電極本体の先端部に、W又はMo若しくはそれらを基材とする合金を基材とする電極芯材を装着した二重構造電極の前記電極芯材として、焼結とスエージング加工、並びに焼きなましの熱処理が施され、横断面平均粒子径が50μm以上であり、かつアスペクト比が1.5以上になるように軸方向に伸びた繊維状組織を有するW又はMo若しくはそれらを基材とする合金をヒュージング溶接用電極材料として用いることが提案されている。 Moreover, although what is shown by patent document 5 is an electrode for fusing welding, as an electrode for fusing welding to which heating and pressurization are repeatedly applied, it suppresses the degranulation wear and loss at the tip, and has durability. In order to stably increase the electrode, the electrode of the dual structure electrode in which an electrode core material based on W or Mo or an alloy based on them is attached to the tip of an electrode body made of Cu or Cu alloy Fibrous structure that has been subjected to sintering, swaging, and annealing heat treatment as the core material, and has an average particle diameter of 50 μm or more and an axial ratio extending to an aspect ratio of 1.5 or more. It has been proposed to use W or Mo having the above or an alloy based on them as an electrode material for fusing welding.

特開昭55−109583号公報Japanese Patent Laid-Open No. 55-109583 特開平10−291078号公報Japanese Patent Laid-Open No. 10-291078 特開2000−158178号公報JP 2000-158178 A 特開2004−277810号公報JP 2004-277810 A 特開2008−73712号公報JP 2008-73712 A

抵抗溶接用電極材料としては、高温・高圧で変形しにくいこと、熱伝導性・電気伝導性にすぐれること、熱塑性変形を生じにくいこと、耐熱衝撃性にすぐれること、被溶接材料あるいはこれを被覆するめっき材と合金化しにくいこと、耐酸化性にすぐれること等の特性が求められているが、近年では、これに加えて、溶接作業の高効率化、生産性向上等のために、大電流を使用した抵抗溶接において、長時間の使用に耐えられる電極材料が求められてきている。
従来から、抵抗溶接用電極材料としてタングステン系材料が好適に用いられているが、従来のタングステン系材料を用いて、例えば、10000A以上(例えば、10000〜55000A)の大電流を流し、被溶接材料に対して長時間の抵抗溶接を行った場合には、加圧条件下での高熱発生による電極材料の変形、熱衝撃による電極材料の割損・欠損、被溶接材料と電極間での溶着現象等のため、電極寿命が非常に短くなり、長時間に亘る継続的な抵抗溶接の実施は困難であった。
そこで、大電流を使用した抵抗溶接においても、電極寿命の長い抵抗溶接用電極材料が求められている。
As electrode materials for resistance welding, it is difficult to deform at high temperatures and high pressures, it has excellent thermal and electrical conductivity, it is difficult to cause thermoplastic deformation, it has excellent thermal shock resistance, and the material to be welded or this In recent years, in addition to this, in order to increase the efficiency of welding work, improve productivity, etc., it is difficult to alloy with the plating material to be coated and it has excellent oxidation resistance. In resistance welding using a large current, an electrode material that can withstand long-time use has been demanded.
Conventionally, a tungsten-based material has been suitably used as a resistance welding electrode material. However, using a conventional tungsten-based material, for example, a large current of 10,000 A or more (for example, 10,000 to 55000 A) is passed to be welded material. When resistance welding is performed for a long time, deformation of electrode material due to generation of high heat under pressure, breakage / defect of electrode material due to thermal shock, welding phenomenon between welded material and electrode For this reason, the life of the electrode becomes very short, and it is difficult to carry out continuous resistance welding for a long time.
Therefore, there is a demand for a resistance welding electrode material having a long electrode life even in resistance welding using a large current.

本発明者らは、大電流を使用した抵抗溶接において、電極寿命の長い抵抗溶接用電極材料を提供すべく、鋭意研究を行ったところ、驚くべきことに、焼結で製造したタングステン(W)とモリブデン(Mo)の合金(以下、「W−Mo合金」で示す場合もある)からなる抵抗溶接用電極材料において、その焼結体構造を適切に調整することにより、熱伝導性・電気伝導性を低下させることなく、耐熱衝撃、耐熱塑性変形にすぐれ、被溶接材料との溶着発生もなく、さらに、10000〜55000Aという大電流条件下であっても長時間に亘って継続的に使用可能である抵抗溶接用W−Mo合金電極材料を得られることを見出したのである。   The inventors of the present invention have conducted extensive research to provide a resistance welding electrode material having a long electrode life in resistance welding using a large current. Surprisingly, tungsten (W) produced by sintering has been surprisingly studied. In an electrode material for resistance welding made of an alloy of molybdenum and molybdenum (Mo) (hereinafter also referred to as “W-Mo alloy”), by appropriately adjusting the structure of the sintered body, thermal conductivity / electric conduction Excellent resistance to thermal shock and plastic deformation, no occurrence of welding with the material to be welded, and continuous use for a long time even under high current conditions of 10,000 to 55000 A It has been found that a W-Mo alloy electrode material for resistance welding can be obtained.

すなわち、本発明の抵抗溶接用W−Mo合金電極材料によれば、被溶接材への熱影響を最小限にとどめるための短時間での溶接が可能であるばかりか、熱伝導性に優れ、熱衝撃による塑性変形が発生しにくく、被溶接材料や被膜や防錆材との反応性に優れ溶着や酸化が発生しづらいことから安定的な溶接を行うことができ、また、連続的に繰り返される高圧/熱衝撃による疲労耐性を有し、連続ショットによる量産が可能であることから、抵抗溶接用電極材料の長寿命化を図ることができることを見出したのである。   That is, according to the W-Mo alloy electrode material for resistance welding of the present invention, not only is it possible to perform welding in a short time to minimize the thermal effect on the workpiece, but also excellent thermal conductivity, Plastic deformation due to thermal shock is unlikely to occur, it has excellent reactivity with materials to be welded, coatings and rust preventives, and it is difficult to generate welding and oxidation, and stable welding can be performed. It has been found that since it has fatigue resistance due to high pressure / thermal shock and can be mass-produced by continuous shots, the life of the electrode material for resistance welding can be extended.

本発明は上記知見に基づいてなされたものであって、
「(1) 純タングステン粒子粉末と純モリブデン粒子粉末とを焼結したタングステンとモリブデンの合金焼結体からなる抵抗溶接用タングステン−モリブデン合金電極材料であって、該合金焼結体におけるMo含有量は37.5〜87.5質量%であり、かつ、該合金焼結体の相対密度が98.5%以上であることを特徴とする抵抗溶接用タングステン−モリブデン合金電極材料。
(2) 前記合金焼結体におけるMo含有量は50〜75質量%であることを特徴とする前記(1)に記載の抵抗溶接用タングステン−モリブデン電極材料。
(3) 前記純タングステン粒子粉末および純モリブデン粒子粉末は、それぞれ、純度99.9質量%以上、かつ、平均粒径0.25〜50μmであることを特徴とする前記(1)、(2)に記載の抵抗溶接用タングステン−モリブデン合金電極材料。
(4) 前記抵抗溶接用タングステン−モリブデン電極材料は、10000A以上の溶接電流が使用される抵抗溶接用電極材料として用いられることを特徴とする前記(1)乃至(3)のいずれかに記載の抵抗溶接用タングステン−モリブデン電極材料。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Tungsten-molybdenum alloy electrode material for resistance welding comprising a tungsten-molybdenum alloy sintered body obtained by sintering pure tungsten particle powder and pure molybdenum particle powder, and the Mo content in the alloy sintered body Is a tungsten-molybdenum alloy electrode material for resistance welding, wherein the alloy sintered body has a relative density of 98.5% or more.
(2) The tungsten-molybdenum electrode material for resistance welding according to (1) above, wherein the Mo content in the alloy sintered body is 50 to 75% by mass.
(3) The pure tungsten particle powder and the pure molybdenum particle powder have a purity of 99.9% by mass or more and an average particle size of 0.25 to 50 μm, respectively (1) and (2) A tungsten-molybdenum alloy electrode material for resistance welding as described in 1.
(4) The tungsten-molybdenum electrode material for resistance welding is used as a resistance welding electrode material in which a welding current of 10000 A or more is used, according to any one of (1) to (3), Tungsten-molybdenum electrode material for resistance welding. "
It has the characteristics.

なお、本発明における「平均粒径」とは、焼結前の粉末についてレーザー回折・散乱法(マイクロトラック法)によって求められた粒度分布における積算値50%での粒径(累積中位径)を意味する。
また、本発明における「相対密度」とは、アルキメデス法により測定されたタングステン−モリブデン合金焼結体の密度の、タングステンとモリブデンの含有比率によって求められる合金の理論密度に対する比率を意味する。
The “average particle size” in the present invention means the particle size (cumulative median diameter) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method (microtrack method) for the powder before sintering. Means.
The “relative density” in the present invention means the ratio of the density of the sintered tungsten-molybdenum alloy measured by the Archimedes method to the theoretical density of the alloy determined by the content ratio of tungsten and molybdenum.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

本発明では、純W粒子粉末と純Mo粒子粉末とを焼結してW−Mo合金焼結体を作製するが、WあるいはMoの純度が99.9質量%未満である場合には、高温焼結温度下におけるW、Mo中に含有される不純物成分により、W−Mo合金焼結体の焼結性にバラツキが生じやすく、また、W−Mo合金焼結体の材質が不均質となりやすいため、これを抵抗溶接用電極材料として使用した際に割損、欠損、被溶接材料の溶着等の不都合を招きやすくなることから、W及びMoの純度は99.9質量%以上とすることが望ましい。
なお、仮に、酸素等の不純物元素がある程度存在したとしても、例えば、後記する真空、もしくは不活性ガス雰囲気中の熱処理によって除去・清浄化することにより、W及びMoの純度を99.9質量%以上に高めることができる。
In the present invention, pure W particle powder and pure Mo particle powder are sintered to produce a W-Mo alloy sintered body. When the purity of W or Mo is less than 99.9% by mass, Due to the impurity components contained in W and Mo under the sintering temperature, the sinterability of the W-Mo alloy sintered body tends to vary, and the material of the W-Mo alloy sintered body tends to be heterogeneous. Therefore, when this is used as an electrode material for resistance welding, it tends to cause inconveniences such as breakage, chipping, and welding of the material to be welded. Therefore, the purity of W and Mo may be 99.9% by mass or more. desirable.
Even if an impurity element such as oxygen is present to some extent, the purity of W and Mo can be reduced to 99.9% by mass by removing and purifying by vacuum or heat treatment in an inert gas atmosphere described later. More than that.

本発明では、上記純度のW粒子粉末とMo粒子粉末とをMo含有量が37.5〜87.5質量%、好ましくは、50〜75質量%、となるように配合した後焼結して、98.5%以上の相対密度を備えたW−Mo合金焼結体からなる抵抗溶接用W−Mo合金電極材料を製造する。
本発明では上記所定の相対密度を備えた抵抗溶接用W−Mo合金電極材料を製造するためには、原料粉末であるW粒子粉末およびMo粒子粉末の平均粒径はそれぞれ0.25〜50μmであることが望ましい。
In the present invention, the W particle powder having the above purity and the Mo particle powder are blended so that the Mo content is 37.5 to 87.5% by mass, preferably 50 to 75% by mass, and then sintered. W-Mo alloy electrode material for resistance welding made of a W-Mo alloy sintered body having a relative density of 98.5% or more is manufactured.
In the present invention, in order to produce the W-Mo alloy electrode material for resistance welding having the above-mentioned predetermined relative density, the average particle diameters of the W particle powder and the Mo particle powder as the raw material powder are 0.25 to 50 μm, respectively. It is desirable to be.

平均粒径がそれぞれ0.25〜50μmのW粒子粉末およびMo粒子粉末を、或いは、粉末から予め成形したW粒子粉末とMo粒子粉末の混合圧粉成形体を、所定の高圧を付加した状態で所定の温度範囲で焼結した場合には、W粒子粉末相互の接触面あるいはMo粒子粉末相互の接触面での加圧による変形を伴う圧着が生じ、また、W粒子粉末とMo粒子粉末が相互に合金化することによって焼結体の高密度化が図られて、この発明で規定する相対密度のW−Mo合金焼結体が得られる。
W粒子粉末あるいはMo粒子粉末の平均粒径が0.25μm未満である場合には、焼結時の焼結性を高め、焼結体の相対密度を98.5%以上にすることが難しくなり、また反対に平均粒径が50μmを超える場合も粒子間隙が大きくなるため焼結性を高めることが難しくなる。その結果、電極材料として要求される熱伝導性・導電性、耐熱衝撃性、耐熱塑性変形性を十分に満足させるためには、抵抗溶接用タングステン電極材料の製造用原料粉末であるW粒子粉末およびMo粒子粉末の平均粒径は0.25〜50μmとすることが望ましい。
W particle powder and Mo particle powder having an average particle diameter of 0.25 to 50 μm, respectively, or a mixed green compact of W particle powder and Mo particle powder previously formed from powder, with a predetermined high pressure applied When the sintering is performed within a predetermined temperature range, pressure bonding occurs due to pressurization at the contact surfaces of the W particle powders or the contact surfaces of the Mo particle powders, and the W particle powder and the Mo particle powder are mutually bonded. The sintered body is densified by alloying to obtain a W-Mo alloy sintered body having a relative density specified in the present invention.
When the average particle size of the W particle powder or Mo particle powder is less than 0.25 μm, it becomes difficult to improve the sinterability during sintering and to make the relative density of the sintered body 98.5% or more. On the other hand, when the average particle size exceeds 50 μm, it is difficult to improve the sinterability because the particle gap becomes large. As a result, in order to satisfactorily satisfy the thermal conductivity / conductivity, thermal shock resistance, and thermal plastic deformation required for the electrode material, the W particle powder, which is a raw material powder for manufacturing the tungsten electrode material for resistance welding, The average particle size of the Mo particle powder is desirably 0.25 to 50 μm.

本発明では、W−Mo合金焼結体におけるMo含有量を37.5〜87.5質量%と定めたが、Mo含有量が少ない場合(Mo含有量が37.5質量%未満)あるいは多い場合(Mo含有量が87.5質量%超の場合)のいずれの場合でも、大電流(例えば、10000A)の溶接条件下で連続して1000回以上の溶接を行った場合には、電極の変形、クラック発生等がみられるようになる。例えば、Mo含有量が37.5質量%未満の場合には、耐電流衝撃性が低下し、過負荷試験でクラックが発生するようになる。
したがって、本発明では、安定的な溶接を行い、かつ、電極の長寿命化を図るため、W−Mo合金焼結体におけるMo含有量を37.5〜87.5質量%、より好ましくは、50〜75質量%、と定めた。
In the present invention, the Mo content in the W-Mo alloy sintered body is determined to be 37.5 to 87.5% by mass. However, when the Mo content is small (Mo content is less than 37.5% by mass) or high. In any case (when the Mo content exceeds 87.5% by mass), if welding is performed 1000 times or more continuously under welding conditions of a large current (for example, 10000 A), Deformation, crack generation, etc. are observed. For example, when the Mo content is less than 37.5% by mass, the current shock resistance is reduced, and cracks are generated in the overload test.
Therefore, in the present invention, in order to perform stable welding and extend the life of the electrode, the Mo content in the W-Mo alloy sintered body is 37.5 to 87.5 mass%, more preferably, It was determined to be 50 to 75% by mass.

上記所定の相対密度を有するW−Mo合金焼結体からなる本発明の抵抗溶接用W−Mo合金電極材料は、例えば、以下の製造方法によって製造することができる。
前記のとおり、好ましくは、純度は99.9質量%以上で、かつ、平均粒径0.25〜50μmに整粒したW粒子粉末およびMo粒子粉末を、所定の組成になるように配合した混合原料粉末を作製し、この混合原料粉末を加圧焼結装置に装入し、該粉末に1GPa以上の加圧力を付加した状態で、1000℃以上の温度範囲で10min以上焼結することによって、本発明で規定する相対密度を有するW−Mo合金焼結体からなる抵抗溶接用W−Mo合金電極材料を製造することができる。
なお、所定の組成になるようにW粒子粉末とMo粒子粉末を配合した混合原料粉末は、焼結に先立って、予め圧粉成形体として作製しておくこともできる。
また、比表面積が大きい微粒W粒子粉末、微粒Mo粒子粉末(例えば、平均粒径4μm以下程度)を原料粉末として使用する場合には、これを圧粉成形体とし、焼結に先立って、例えば、10−1Pa以下の真空雰囲気中、もしくは熱処理容器を窒素ガスやアルゴンガス等で置換した雰囲気中で、到達温度450〜1200℃で30min以上の熱処理を行うことによって、W粒子表面、Mo粒子表面を清浄化すると、焼結反応が進行しやすくなるために、相対的に低圧条件、低温度領域であっても、短時間で焼結体の高密度化を図ることが可能である。
また、W粒子粉末およびMo粒子粉末のそれぞれの平均粒径は、0.25〜50μmの範囲内であることが望ましいが、それぞれの粒子粉末の粒径分布度数のピークが一つである(単峰ピークの粒度分布を示す)必要はなく、複数の粒径分布度数ピーク(多峰性の頻度粒度分布)を備えたW粒子粉末およびMo粒子粉末を用いることもできる。この場合、粒径の大きな粒子間隙に粒径の小さい粒子が入り込むことによって、空隙を少なくすることができるため、相対的に低圧条件、低温度領域であっても焼結反応が進行し、焼結体のより一層の高密度化が図られるとともに、熱衝撃に耐性を有する焼結体が得られる。
いずれにしても、上記のような条件で焼結し、十分な焼結時間を与えることで、高温・高圧下のW粒子粉末とMo粒子粉末からなる混合原料粉末を塑性変形させ、また、再配列させることで、高密度のタングステンとモリブデンの合金焼結体を得ることができる。
なお、焼結圧力、焼結温度の上限値は特に定めるものでないが、実操業の観点からは、焼結圧力は1〜10GPa、また、焼結温度は1000〜2000℃の範囲内であれば、本発明で規定する特性を備えた焼結体を得ることができる。
The W-Mo alloy electrode material for resistance welding of the present invention comprising the W-Mo alloy sintered body having the predetermined relative density can be manufactured by, for example, the following manufacturing method.
As described above, preferably, the W particle powder and the Mo particle powder having a purity of 99.9% by mass or more and having an average particle size of 0.25 to 50 μm are blended so as to have a predetermined composition. By preparing a raw material powder, charging the mixed raw material powder into a pressure sintering apparatus, and applying a pressing force of 1 GPa or more to the powder, sintering at a temperature range of 1000 ° C. or more for 10 minutes or more, The W-Mo alloy electrode material for resistance welding which consists of a W-Mo alloy sintered compact which has the relative density prescribed | regulated by this invention can be manufactured.
In addition, the mixed raw material powder which mix | blended W particle | grain powder and Mo particle | grain powder so that it might become a predetermined composition can also be produced beforehand as a compacting body before sintering.
In addition, when using a fine W particle powder or a fine Mo particle powder (for example, an average particle size of about 4 μm or less) having a large specific surface area as a raw material powder, this is used as a green compact and prior to sintering, for example, In a vacuum atmosphere of 10 −1 Pa or less, or in an atmosphere in which the heat treatment container is replaced with nitrogen gas, argon gas, or the like, by performing heat treatment at an ultimate temperature of 450 to 1200 ° C. for 30 minutes or more, the surface of W particles, Mo particles When the surface is cleaned, the sintering reaction is likely to proceed. Therefore, it is possible to increase the density of the sintered body in a short time even under relatively low pressure conditions and low temperature regions.
The average particle diameter of each of the W particle powder and the Mo particle powder is preferably in the range of 0.25 to 50 μm, but there is one peak of the particle size distribution frequency of each particle powder (single The particle size distribution of the peak peak is not necessary), and W particle powder and Mo particle powder having a plurality of particle size distribution frequency peaks (multimodal frequency particle size distribution) can also be used. In this case, since the voids can be reduced by entering the small particles between the large particle gaps, the sintering reaction proceeds even under relatively low pressure conditions and low temperature regions, and the sintering is performed. A further increase in density of the bonded body is achieved, and a sintered body having resistance to thermal shock is obtained.
In any case, by sintering under the above conditions and giving a sufficient sintering time, the mixed raw material powder composed of W particle powder and Mo particle powder under high temperature and high pressure is plastically deformed, By arranging, an alloy sintered body of high-density tungsten and molybdenum can be obtained.
In addition, although the upper limit of sintering pressure and sintering temperature is not particularly defined, from the viewpoint of actual operation, if the sintering pressure is in the range of 1 to 10 GPa and the sintering temperature is in the range of 1000 to 2000 ° C. A sintered body having the characteristics defined in the present invention can be obtained.

本発明による抵抗溶接用W−Mo合金電極材料は、相対密度が98.5%以上という焼結体構造を有することにより、熱伝導性・電気伝導性を低下させることなく、耐熱衝撃、耐熱塑性変形にすぐれ、被溶接材料との溶着発生も抑制され、例えば、リチウムイオン電池の電極として利用される多数枚の銅箔やアルミ箔の積層体の抵抗溶接に用いた場合、銅箔またはアルミ箔の積層枚数20〜120枚、積層厚さ420〜1800μm、電極の加圧力350kg/cm、電流10000Aの厳しい溶接条件下でも、特段の溶接不良を生じることなく、連続して1000回以上の打点回数(ショット)の溶接が可能である。 The W-Mo alloy electrode material for resistance welding according to the present invention has a sintered body structure with a relative density of 98.5% or more, so that it does not deteriorate thermal conductivity and electrical conductivity without causing thermal shock and heat plasticity. Excellent deformation and suppression of welding with the material to be welded. For example, when used for resistance welding of multiple copper foils and aluminum foil laminates used as electrodes of lithium ion batteries, copper foil or aluminum foil No. 20 to 120 sheets, lamination thickness 420 to 1800 μm, electrode pressing force 350 kg / cm 2 , current 10000 A, even under severe welding conditions, with 1000 points or more continuously without causing any special welding failure Number of shots can be welded.

本発明の抵抗溶接用W−Mo合金電極材料は、従来に比して大電流条件下で抵抗溶接を行った場合であっても、被溶接材料との溶着、変形、クラック、割損の発生を招くことなく、また、熱伝導性・電気伝導性を低下させることなく、耐熱衝撃、耐熱塑性変形にすぐれ、特段の溶接不良を生じることなく長時間に亘っての連続した溶接が可能となり、抵抗溶接用W−Mo合金電極材料の大幅な長寿命化を図ることができる。   The W-Mo alloy electrode material for resistance welding of the present invention generates welding, deformation, cracks, and breakage with the material to be welded even when resistance welding is performed under conditions of a larger current than conventional. Without incurring heat, without degrading thermal conductivity / electrical conductivity, excellent thermal shock and heat plastic deformation, enabling continuous welding over a long period of time without causing any special welding defects. The life of the W-Mo alloy electrode material for resistance welding can be greatly extended.

抵抗溶接用電極の性能評価のために実施した抵抗溶接の概略説明図である。It is a schematic explanatory drawing of the resistance welding implemented for the performance evaluation of the electrode for resistance welding.

以下に、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

原料として、表1に示す純度、平均粒径を有するW粒子粉末およびMo粒子粉末を用意し、これを、表1に示すMo含有量になるように配合して混合原料粉末を作製し、この混合原料粉末を表1に示す焼結条件で加圧焼結することにより、同じく表1に示す相対密度を有する本発明のW−Mo合金焼結体1〜19(以下、「本発明焼結体1〜19」という)を作製した。
なお、本発明焼結体16〜18の作製に当たっては、原料粉末として、表1に示す複数の粒径分布度数ピーク(多峰性の頻度粒度分布)を備えたW粒子粉末およびMo粒子粉末を用いた。
ついで、これらの焼結体を加工し直径8(mm)×長さ50(mm)の抵抗溶接用W−Mo合金電極1〜19(以下、「本発明電極1〜19」という)を作製した。
As a raw material, W particle powder and Mo particle powder having the purity and average particle diameter shown in Table 1 are prepared, and this is blended so as to have the Mo content shown in Table 1 to produce a mixed raw material powder. By pressure-sintering the mixed raw material powder under the sintering conditions shown in Table 1, the W-Mo alloy sintered bodies 1 to 19 of the present invention having the relative densities shown in Table 1 (hereinafter referred to as “the present invention sintering”). Body 1-19 ").
In preparing the sintered bodies 16 to 18 of the present invention, as raw material powder, W particle powder and Mo particle powder having a plurality of particle size distribution frequency peaks (multimodal frequency particle size distribution) shown in Table 1 are used. Using.
Subsequently, these sintered bodies were processed to produce W-Mo alloy electrodes 1 to 19 (hereinafter referred to as “present invention electrodes 1 to 19”) having a diameter of 8 (mm) × a length of 50 (mm). .

また、比較のために、表2に示す純度、平均粒径を有するW粒子粉末およびMo粒子粉末を用意し、これを、表2に示すMo含有量になるように配合して混合原料粉末を作製し、この混合原料粉末を表2に示す焼結条件で加圧焼結することにより、同じく表2に示す相対密度を有する比較例のW−Mo合金焼結体1〜13(以下、「比較例焼結体1〜13」という)を作製した。
なお、比較例焼結体12,13の作製に当たっては、原料粉末として、表2に示す複数の粒径分布度数ピーク(多峰性の頻度粒度分布)を備えたW粒子粉末およびMo粒子粉末を用いた。
ついで、これらの焼結体を加工し直径8(mm)×長さ50(mm)の抵抗溶接用W−Mo合金電極1〜13(以下、「比較例電極1〜13」という)を作製した。
なお、比較例焼結体1、2、7〜10、12、13、比較例電極1、2、7〜10、12、13は、Mo含有量が本発明範囲外であり、また、比較例焼結体3〜6、8、11、比較例電極3〜6、811は、相対密度が本発明範囲外の数値となっている。
For comparison, W particle powder and Mo particle powder having the purity and average particle diameter shown in Table 2 are prepared, and this is mixed so that the Mo content shown in Table 2 is obtained. By producing and pressure-sintering the mixed raw material powder under the sintering conditions shown in Table 2, W-Mo alloy sintered bodies 1 to 13 (hereinafter referred to as “ Comparative example sintered bodies 1 to 13 ") were prepared.
In preparation of the comparative sintered bodies 12 and 13, as the raw material powder, W particle powder and Mo particle powder having a plurality of particle size distribution frequency peaks (multimodal frequency particle size distribution) shown in Table 2 were used. Using.
Next, these sintered bodies were processed to prepare W-Mo alloy electrodes 1 to 13 for resistance welding (hereinafter referred to as “Comparative Example electrodes 1 to 13”) having a diameter of 8 (mm) × length of 50 (mm). .
In addition, comparative example sintered compact 1,2,7-10,12,13 and comparative example electrode 1,2,7-10,12,13 have Mo content outside this invention range, and are comparative examples The relative density of the sintered bodies 3-6, 8, 11 and comparative example electrodes 3-6, 811 is a numerical value outside the range of the present invention.

さらに、参考のために、表3に示す純度、平均粒径を有するW粒子粉末を、表3に示す焼結条件で加圧焼結することにより、同じく表3に示す相対密度を有する参考例のW焼結体1〜6(以下、「参考例焼結体1〜6」という)を作製した。
ついで、これらの焼結体を加工し直径8(mm)×長さ50(mm)の抵抗溶接用W電極1〜6(以下、「参考例電極1〜6」という)を作製した。
なお、参考例焼結体1〜6、参考例電極1〜6は、Moを全く含有しないW焼結体、W電極である。
Further, for reference, a reference example having the relative density shown in Table 3 by pressure-sintering the W particle powder having the purity and average particle diameter shown in Table 3 under the sintering conditions shown in Table 3. W sintered bodies 1 to 6 (hereinafter referred to as “reference example sintered bodies 1 to 6”) were prepared.
Subsequently, these sintered bodies were processed to prepare W electrodes 1 to 6 for resistance welding (hereinafter referred to as “reference example electrodes 1 to 6”) having a diameter of 8 (mm) × a length of 50 (mm).
Reference example sintered bodies 1 to 6 and reference example electrodes 1 to 6 are W sintered bodies and W electrodes that do not contain Mo at all.

上記本発明電極1〜19、比較例電極1〜13および参考例電極1〜6の性能を調査するため、銅箔(厚さ:7μm)やアルミ箔(厚さ:15μm)をそれぞれ60〜120枚重ね合わせた全体厚み420〜1800μmの銅やアルミの積層被溶接材に対して、図1に概略を示す溶接装置で、溶接電流は銅箔の場合18000〜55000A,アルミ箔の場合8000〜20000A、加圧力:350kg/cmの条件で、電気抵抗溶接を行い、電極とワークとの溶着が発生してナゲットが形成されなくなるまで、あるいは、電極のクラック、割損、変形等により電極が使用不能となるまでの抵抗溶接打点(ショット)回数を測定し、その結果を表4、表5に示した。
また、抵抗溶接打点(ショット)回数を測定した際の電極の状態、損傷の形態等を備考欄に記した。
In order to investigate the performance of the present invention electrodes 1 to 19, comparative example electrodes 1 to 13, and reference example electrodes 1 to 6, copper foil (thickness: 7 μm) and aluminum foil (thickness: 15 μm) were respectively 60 to 120. A welding apparatus schematically shown in FIG. 1 is applied to a laminated welded material of copper or aluminum having a total thickness of 420 to 1800 μm, and the welding current is 18000 to 55000A in the case of copper foil, and 8000 to 20000A in the case of aluminum foil. Electrode resistance welding is performed under the conditions of 350 kg / cm 2 , and the electrode is used until the electrode and workpiece are welded and no nugget is formed, or the electrode is cracked, broken, deformed, etc. The number of resistance welding hit points (shots) until it became impossible was measured, and the results are shown in Tables 4 and 5.
In addition, the state of the electrode when the number of resistance welding hit points (shots) was measured, the form of damage, etc. were noted in the remarks column.






表4、表5に示される結果によれば、本発明電極1〜4、7〜10は、変形、クラックの発生等によって電極寿命に至るものの、いずれもの抵抗溶接打点(ショット)回数は、少なくとも、1000回以上を示している。
また、本発明電極5、6、11〜19については、変形、クラック、溶着の発生等もなく200回以上の抵抗溶接打点(ショット)回数を示すばかりか、さらに継続使用も可能である。
そして、溶接電流値の大きさ、抵抗溶接打点(ショット)回数、電極損傷状況を総合的に判断すると、本発明電極の中でも、Mo含有量が50〜75質量%であり、また、純タングステン粒子粉末と純モリブデン粒子粉末の純度が99.9質量%以上、かつ、平均粒径0.5〜20μmである本発明電極2、4〜6は、極めて優れた電極特性を備えるといえる。
これに対して、Mo含有量、相対密度の少なくともいずれかが本発明範囲外の数値となっている比較例電極1〜13については、変形、クラック、割損、溶着の発生によって、抵抗溶接打点(ショット)回数が680回以下であり、いずれも電極寿命が短命であり、また、参考例電極1〜6として示したW電極については、クラック、割損、溶着発生のために、抵抗溶接打点(ショット)回数はせいぜい15回までであった。
つまり、本発明で規定する要件を備える本発明のW−Mo合金焼結体からなる抵抗溶接用W−Mo合金電極は、大電流条件下で使用した場合であっても、優れた特性を発揮し、長寿命を有するものであることが分かる。
According to the results shown in Tables 4 and 5, although the present invention electrodes 1 to 4 and 7 to 10 reach the electrode life due to deformation, generation of cracks, etc., the number of resistance welding hit points (shots) is at least , 1000 times or more.
Moreover, about this invention electrode 5, 6, 11-19, not only deformation | transformation, a crack, generation | occurrence | production of welding, etc., but the resistance welding hit point (shot) frequency | count of 200 times or more is shown, Furthermore, a continuous use is also possible.
And when judging comprehensively the magnitude of the welding current value, the number of resistance welding points (shots), and the electrode damage status, among the electrodes of the present invention, the Mo content is 50 to 75% by mass, and the pure tungsten particles It can be said that the electrodes 2 and 4 to 6 of the present invention in which the purity of the powder and the pure molybdenum particle powder is 99.9% by mass or more and the average particle size is 0.5 to 20 μm have extremely excellent electrode characteristics.
On the other hand, with respect to Comparative Examples 1 to 13 in which at least one of the Mo content and the relative density is a numerical value outside the range of the present invention, resistance welding hit points are caused by the occurrence of deformation, cracks, breakage, and welding. The number of shots is 680 times or less, all of which have a short life, and the W electrodes shown as Reference Example Electrodes 1 to 6 have resistance welding points due to cracks, breakage, and welding. The number of shots was at most 15 times.
That is, the W-Mo alloy electrode for resistance welding made of the W-Mo alloy sintered body of the present invention having the requirements specified in the present invention exhibits excellent characteristics even when used under a large current condition. And it turns out that it has a long lifetime.

この発明の抵抗溶接用W−Mo合金電極材料は、被溶接材が銅とアルミの積層体である場合に限られず、亜鉛めっき鋼板、銅線等のあらゆる被溶接材料の抵抗溶接用電極として用いることができるばかりか、長時間に亘り連続的な使用が可能であり、電極寿命の長寿命化が図られる。




The W-Mo alloy electrode material for resistance welding according to the present invention is not limited to the case where the material to be welded is a laminate of copper and aluminum, but is used as a resistance welding electrode for any material to be welded such as a galvanized steel sheet and a copper wire. In addition, it can be used continuously for a long time, and the life of the electrode can be extended.




Claims (4)

純タングステン粒子粉末と純モリブデン粒子粉末とを焼結したタングステンとモリブデンの合金焼結体からなる抵抗溶接用タングステン−モリブデン合金電極材料であって、該合金焼結体におけるモリブデン含有量は37.5〜87.5質量%であり、かつ、該合金焼結体の相対密度が98.5%以上であることを特徴とする抵抗溶接用タングステン−モリブデン合金電極材料。   A tungsten-molybdenum alloy electrode material for resistance welding comprising a tungsten-molybdenum alloy sintered body obtained by sintering pure tungsten particle powder and pure molybdenum particle powder, and the molybdenum content in the alloy sintered body is 37.5. A tungsten-molybdenum alloy electrode material for resistance welding, wherein the alloy sintered body has a relative density of 98.5% or more. 前記合金焼結体におけるモリブデン含有量は50〜75質量%であることを特徴とする請求項1に記載の抵抗溶接用タングステン−モリブデン電極材料。   The tungsten-molybdenum electrode material for resistance welding according to claim 1, wherein the molybdenum content in the alloy sintered body is 50 to 75 mass%. 前記純タングステン粒子粉末および純モリブデン粒子粉末は、それぞれ、純度99.9質量%以上、かつ、平均粒径0.25〜50μmであることを特徴とする請求項1または2に記載の抵抗溶接用タングステン−モリブデン合金電極材料。   3. The resistance welding according to claim 1, wherein each of the pure tungsten particle powder and the pure molybdenum particle powder has a purity of 99.9% by mass or more and an average particle size of 0.25 to 50 μm. Tungsten-molybdenum alloy electrode material. 前記抵抗溶接用タングステン−モリブデン電極材料は、10000A以上の溶接電流が使用される抵抗溶接用電極材料として用いられることを特徴とする請求項1乃至3のいずれか一項に記載の抵抗溶接用タングステン−モリブデン電極材料。






The tungsten for resistance welding according to any one of claims 1 to 3, wherein the tungsten-molybdenum electrode material for resistance welding is used as an electrode material for resistance welding in which a welding current of 10,000 A or more is used. -Molybdenum electrode material.






JP2014178253A 2014-04-28 2014-09-02 Tungsten-molybdenum alloy electrode material for resistance welding Active JP6331019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178253A JP6331019B2 (en) 2014-04-28 2014-09-02 Tungsten-molybdenum alloy electrode material for resistance welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014092231 2014-04-28
JP2014092231 2014-04-28
JP2014178253A JP6331019B2 (en) 2014-04-28 2014-09-02 Tungsten-molybdenum alloy electrode material for resistance welding

Publications (2)

Publication Number Publication Date
JP2015221935A true JP2015221935A (en) 2015-12-10
JP6331019B2 JP6331019B2 (en) 2018-05-30

Family

ID=54785110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178253A Active JP6331019B2 (en) 2014-04-28 2014-09-02 Tungsten-molybdenum alloy electrode material for resistance welding

Country Status (1)

Country Link
JP (1) JP6331019B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152780A1 (en) * 2015-03-23 2016-09-29 三菱マテリアル株式会社 Polycrystalline tungsten, tungsten alloy sintered compact, and method for manufacturing same
CN108422071A (en) * 2018-01-17 2018-08-21 宁国市顺鑫金属制品有限公司 A kind of spot welding cutter and its manufacturing process of mash welder
CN111763862A (en) * 2020-06-29 2020-10-13 自贡硬质合金有限责任公司 Tungsten-molybdenum alloy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305456A (en) * 1992-04-24 1993-11-19 Sumitomo Metal Ind Ltd Spot welding electrode excelient in continuous spotability
JPH0734174A (en) * 1993-07-21 1995-02-03 Nippon Tungsten Co Ltd Electrical contact material and production thereof
JPH10314957A (en) * 1997-05-15 1998-12-02 Tokyo Tungsten Co Ltd Electrode for resistance welding and its manufacture
JP2011127150A (en) * 2009-12-15 2011-06-30 Toshiba Corp Crucible made of tungsten molybdenum alloy, method for producing it and method for producing sapphire single crystal
JP2011214112A (en) * 2010-04-01 2011-10-27 Sanyo Special Steel Co Ltd Molybdenum alloy and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305456A (en) * 1992-04-24 1993-11-19 Sumitomo Metal Ind Ltd Spot welding electrode excelient in continuous spotability
JPH0734174A (en) * 1993-07-21 1995-02-03 Nippon Tungsten Co Ltd Electrical contact material and production thereof
JPH10314957A (en) * 1997-05-15 1998-12-02 Tokyo Tungsten Co Ltd Electrode for resistance welding and its manufacture
JP2011127150A (en) * 2009-12-15 2011-06-30 Toshiba Corp Crucible made of tungsten molybdenum alloy, method for producing it and method for producing sapphire single crystal
JP2011214112A (en) * 2010-04-01 2011-10-27 Sanyo Special Steel Co Ltd Molybdenum alloy and process for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152780A1 (en) * 2015-03-23 2016-09-29 三菱マテリアル株式会社 Polycrystalline tungsten, tungsten alloy sintered compact, and method for manufacturing same
CN108422071A (en) * 2018-01-17 2018-08-21 宁国市顺鑫金属制品有限公司 A kind of spot welding cutter and its manufacturing process of mash welder
CN111763862A (en) * 2020-06-29 2020-10-13 自贡硬质合金有限责任公司 Tungsten-molybdenum alloy and preparation method thereof
CN111763862B (en) * 2020-06-29 2022-03-29 自贡硬质合金有限责任公司 Tungsten-molybdenum alloy and preparation method thereof

Also Published As

Publication number Publication date
JP6331019B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
Alizadeh et al. Fabrication of Al/Cup composite by accumulative roll bonding process and investigation of mechanical properties
JP6860484B2 (en) Brazing alloy
CN102059449B (en) Diffusion welding method of tungsten alloy and tantalum alloy at low temperature
CN106735207B (en) A kind of preparation method of high-compactness Cu/CuCr gradient composites
JP5231486B2 (en) Electrode wire for electric discharge machining
JP6331019B2 (en) Tungsten-molybdenum alloy electrode material for resistance welding
WO2017018514A1 (en) Titanium composite material, and titanium material for hot rolling
WO2017018513A1 (en) Titanium composite material, and titanium material for use in hot rolling
US20140356646A1 (en) Method for producing a semifinished product for electrical contacts and contact piece
KR20130061189A (en) High-strength magnesium alloy wire and method for manufacturing same, high-strength magnesium alloy product, and high-strength magnesium alloy spring
JP2014162965A (en) Tungsten electrode material for resistance welding
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JP6128289B1 (en) Titanium composite and titanium material for hot rolling
JP6006846B1 (en) Conductive member, conductive member for gas insulated switchgear, and manufacturing method of conductive member for gas insulated switchgear
CN114535603B (en) Method for improving plasticity and toughness of weak area of additive manufacturing metal layered composite material
JP2016049562A (en) Tungsten electrode material for resistance welding
KR101417999B1 (en) Manufacturing method of copper clad aluminum wire
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
JP6073924B2 (en) Electrode material for thermal fuse and method for manufacturing the same
JP6848991B2 (en) Titanium material for hot rolling
WO2014136168A1 (en) Current collector, lead storage battery, and method for manufacturing current collector
JP6453653B2 (en) Resistance welding electrode
JP6678374B2 (en) Joint structure and electronic member joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R150 Certificate of patent or registration of utility model

Ref document number: 6331019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250