JP2015221867A - Prepreg, manufacturing method therefor and carbon fiber reinforced composite material - Google Patents

Prepreg, manufacturing method therefor and carbon fiber reinforced composite material Download PDF

Info

Publication number
JP2015221867A
JP2015221867A JP2014106744A JP2014106744A JP2015221867A JP 2015221867 A JP2015221867 A JP 2015221867A JP 2014106744 A JP2014106744 A JP 2014106744A JP 2014106744 A JP2014106744 A JP 2014106744A JP 2015221867 A JP2015221867 A JP 2015221867A
Authority
JP
Japan
Prior art keywords
prepreg
carbon fiber
resin
single yarn
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014106744A
Other languages
Japanese (ja)
Other versions
JP6384121B2 (en
Inventor
心士 織田
Shinji Oda
心士 織田
裕貴 小関
Yuki Ozeki
裕貴 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014106744A priority Critical patent/JP6384121B2/en
Publication of JP2015221867A publication Critical patent/JP2015221867A/en
Application granted granted Critical
Publication of JP6384121B2 publication Critical patent/JP6384121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a prepreg having quick curing property, less in single yarn fuzz of a carbon fiber on a molded body surface after molding, excellent in designability and good in appearance quality even during clear coating.SOLUTION: There is a prepreg manufactured by impregnating a matrix resin having a minimum viscosity at 90 to 115°C of 1.0 to 5.0 Pa s and curing time when heating the prepreg at 150°C of 1 to 5 minutes into a carbon fiber having knot bundle strength of 100 to 600 MPa and ratio of a major axis and a minor axis of a cross section of a single yarn of 1.10 to 1.30, and having the number of single yarn fuzz with a width of 5 μm or more and a length of 5 mm or more of 50/mor less on a surface of the prepreg, a flow rate of the matrix resin of 10 to 20 mass% and a maximum cross section height Rt of the prepreg of 80 μm or less.

Description

本発明は、炭素繊維強化複合材料の製造に供される炭素繊維プリプレグに関し、特に外観品位が良好な炭素繊維強化複合材料を提供することができる、炭素繊維が一様に均一に引き揃えられた炭素繊維プリプレグに関する。   The present invention relates to a carbon fiber prepreg used for production of a carbon fiber reinforced composite material, and in particular, can provide a carbon fiber reinforced composite material having a good appearance quality, and the carbon fibers are uniformly and uniformly arranged. The present invention relates to a carbon fiber prepreg.

炭素繊維プリプレグは、ゴルフシャフト、釣竿、バトミントンシャフトやテニスラケットのフレームなどの成形品の中間素材として、スポーツ、レジャー用途に広く利用されている他、航空機の構造部材、産業用機器の部材等に利用されている。近年は、優れた力学特性のみならず、炭素繊維が導電性を有し、その複合材料が優れた電磁波遮断性を有することから、ノートパソコンやビデオカメラなどの電子電気機器の筐体などにも使用され、特にプレス成形法などを適用することで、筐体の薄肉化、機器の重量軽減などが達成されている。またさらには得ようとする成形品の高性能化及び軽量化だけでなく、近年ではそれらを満たしながら更に意匠性をも目的とし炭素繊維を外観に見せる用途が注目されている。   Carbon fiber prepreg is widely used in sports and leisure applications as an intermediate material for molded products such as golf shafts, fishing rods, badminton shafts and tennis racket frames, as well as aircraft structural members and industrial equipment members. It's being used. In recent years, not only excellent mechanical properties, but also carbon fibers have electrical conductivity, and the composite material has excellent electromagnetic wave shielding properties, so it can also be used in the case of electronic and electrical equipment such as laptop computers and video cameras. In particular, by applying a press molding method or the like, thinning of the casing, weight reduction of equipment, and the like have been achieved. Further, not only high performance and light weight of the molded product to be obtained, but in recent years, there has been a focus on applications in which carbon fibers are made to appear for the purpose of design while satisfying them.

かかる用途に用いられるプリプレグに要求される諸特性としては、耐熱性、耐衝撃性といった成型物の物性が優れていることはもちろんであるが、同時にプレス成形に適した特性として、室温での貯蔵安定性に優れ、かつ硬化温度での硬化速度が速いことが挙げられる。特に、プリプレグの成形に成形型を使用する場合は、硬化速度が重要である。かかる成形法においてはプリプレグのユーザーにとってプリプレグの硬化時間が半分となれば、成形型を増やすことなく生産量を2倍にすることができ、生産性が向上するためである。また、通常、熱硬化性樹脂は高温になると粘度が低下する。上述した成形型を使用する成形の代表的なものとしてプレス成形法があるが、硬化時間が長ければ、低粘度である時間が長くなり、大型で肉厚の成型品を成形する場合などに、熱硬化性樹脂が不必要に流れすぎ炭素繊維の乱れや寸法精度が悪くなるなどの問題が生じる場合がある。   The properties required for prepregs used in such applications are of course excellent physical properties of molded products such as heat resistance and impact resistance, but at the same time, they are suitable for press molding and are stored at room temperature. It is excellent in stability and has a fast curing speed at the curing temperature. In particular, when a mold is used for forming a prepreg, the curing speed is important. In such a molding method, if the curing time of the prepreg is halved for the prepreg user, the production amount can be doubled without increasing the mold, and the productivity is improved. In general, the viscosity of the thermosetting resin decreases at a high temperature. There is a press molding method as a typical molding using the above-mentioned mold, but if the curing time is long, the time for low viscosity becomes long, and when molding a large and thick molded product, There may be a problem that the thermosetting resin flows unnecessarily too much and the carbon fiber is disturbed and the dimensional accuracy is deteriorated.

また意匠性の目的である炭素繊維を外観に見せるためには、透明な塗装(クリア塗装)が必要であり、炭素繊維束内の炭素繊維の単糸状の毛羽(以下、「単糸毛羽」と称する)、炭素繊維束の部分的な位置のゆらぎ、炭素繊維束内の炭素繊維単糸の部分的なねじれなどがプリプレグ表面に存在し、成形後に成形体の表面に現れるため外観品位が損なわれるという課題があった。このような外観品位不良が発生した場合は外観品位不良を覆い隠すための塗装が必要となるため、炭素繊維の意匠性が発揮できない上、重量が増加するため、これまで一方向性の炭素繊維プリプレグにクリア塗装を施す用途に用いた例は少なく、更なる意匠性改善が望まれていた。   In addition, in order to show the appearance of carbon fiber, which is the purpose of design, transparent coating (clear coating) is necessary, and carbon fiber single yarn fluff (hereinafter referred to as `` single yarn fluff '') in the carbon fiber bundle. ), Partial fluctuation of the position of the carbon fiber bundle, partial twist of the carbon fiber single yarn in the carbon fiber bundle, etc. are present on the surface of the prepreg and appear on the surface of the molded body after molding, so that the appearance quality is impaired. There was a problem. When such poor appearance quality occurs, painting is required to cover up the poor appearance quality, so the design of carbon fiber cannot be demonstrated and the weight increases. Few examples have been used for applications where clear coating is applied to prepregs, and further improvements in designability have been desired.

従来技術について、特許文献1では、酸触媒を用い、ベンゾオキサジン樹脂の開環反応を促進する方法で硬化速度を速める方法が記載されているが、樹脂組成が制限されることによって難燃性及び速硬化性を満たすのみであり、成形品表面の意匠性については何も言及されていない。   Regarding the prior art, Patent Document 1 describes a method of using an acid catalyst and accelerating the ring-opening reaction of a benzoxazine resin to increase the curing speed. However, the flame retardancy and the resin composition are limited. It only satisfies fast curability, and nothing is mentioned about the design of the surface of the molded product.

また特許文献2〜4では、成形時の樹脂フローを規定して樹脂流れ抑制による方法で外観を大きく損なう欠点発生を抑制する成形性の改善について記載されているが、従来から内在している炭素繊維強化複合材料の意匠性向上を目指すものではなく、成形不良の改善に留まっている。   Further, Patent Documents 2 to 4 describe improvement of moldability that regulates the resin flow at the time of molding and suppresses the occurrence of defects that greatly impair the appearance by the method of suppressing resin flow. It is not aimed at improving the design properties of the fiber reinforced composite material, but is limited to the improvement of molding defects.

またプリプレグを製造する工程において、整列部を通過する際に発生する炭素繊維糸の傷付きによる毛羽発生を最小限に抑える方法について、ジグザグコームを上下に振動させることによる抑制方法が特許文献5に記載されている。しかしながら、ここで記載されている毛羽は毛虫状の毛羽を抑制する方法であるため、単糸毛羽の抑制効果は無く、意匠性を十分満足できるものではなかった。   Moreover, in the process of manufacturing a prepreg, as a method for minimizing the occurrence of fluff due to scratches on the carbon fiber yarn that occurs when passing through the alignment portion, Patent Document 5 discloses a suppression method by vibrating the zigzag comb up and down. Have been described. However, since the fluff described here is a method for suppressing caterpillar-like fluff, there is no effect of suppressing single yarn fluff, and the design properties are not sufficiently satisfied.

特許文献6には、炭素繊維束を均一に引き揃え、表面の明度と、光学的な反射を一様なものとして、外観が均一な炭素繊維プリプレグを提供する方法が記載されているが、プリプレグならびに成形体の表面に見られる単糸毛羽の改善方法については言及されておらず、更に高い外観品位を要求される場合には意匠性を十分満足できるものではなかった。   Patent Document 6 describes a method of providing a carbon fiber prepreg having a uniform appearance by uniformly aligning carbon fiber bundles and uniform surface brightness and optical reflection. In addition, there is no mention of a method for improving the single yarn fluff seen on the surface of the molded body, and the design property cannot be sufficiently satisfied when a higher appearance quality is required.

特開2008−056795号公報JP 2008-056795 A 特開2009−292977号公報JP 2009-292977 A 特開2009−292976号公報JP 2009-292976 A 特開2004−099814号公報JP 2004-099814 A 特開平7−227840号公報JP-A-7-227840 国際公開第2012/051407号International Publication No. 2012/051407

本発明はこのような課題を解決するためのものであって、速硬化性を有しながら、同時に成形後の成形体表面に炭素繊維の単糸毛羽が少なく、意匠性に優れ、クリア塗装時でも外観品位の良好なプリプレグを提供することを目的とする。   The present invention is for solving such problems, while having fast curability, at the same time, there are few carbon fiber single yarn fluffs on the surface of the molded article after molding, excellent design, However, the object is to provide a prepreg with good appearance quality.

上記課題を達成するための本発明は、下記(A)乃至(D)を特徴とするものである。   The present invention for achieving the above object is characterized by the following (A) to (D).

(A)結節束強度が100〜600MPaであり、単糸の断面の長径と短径との比率が1.10〜1.30の炭素繊維に、90〜115℃における最低粘度が1.0〜5.0Pa・sであり、150℃で加熱した時の硬化時間が1〜5分の間であるマトリックス樹脂を含浸させてなるプリプレグであって、前記プリプレグ表面上の幅5μm以上かつ長さ5mm以上の単糸毛羽個数が50個/m以下であり、前記マトリックス樹脂のフロー率が10〜20質量%であり、かつ前記プリプレグの表面の最大断面高さRtが80μm以下であるプリプレグ。 (A) Carbon fiber having a knot bundle strength of 100 to 600 MPa and a ratio of the major axis to the minor axis of the single yarn of 1.10 to 1.30, the minimum viscosity at 90 to 115 ° C. is 1.0 to A prepreg impregnated with a matrix resin that is 5.0 Pa · s and has a curing time of 1 to 5 minutes when heated at 150 ° C., having a width of 5 μm or more on the prepreg surface and a length of 5 mm The prepreg in which the number of single yarn fluffs is 50 / m 2 or less, the flow rate of the matrix resin is 10 to 20% by mass, and the maximum cross-sectional height Rt of the surface of the prepreg is 80 μm or less.

(B)結節束強度が150〜300MPa、繊維目付が50〜200g/m、樹脂質量含有率が20〜40%である前記(A)に記載のプリプレグ。 (B) The prepreg according to (A), wherein the knot bundle strength is 150 to 300 MPa, the fiber basis weight is 50 to 200 g / m 2 , and the resin mass content is 20 to 40%.

(C)結節束強度が100〜600MPaであり、単糸の断面の長径と短径との比率が1.10〜1.30の炭素繊維に、90〜115℃における最低粘度が1.0〜5.0Pa・sであり、150℃で加熱した時の硬化時間が1〜5分の間であるマトリックス樹脂を含浸させるプリプレグの製造方法であって、以下の(1)(2)の工程を有することを特徴とするプリプレグの製造方法。
(1)クリールから炭素繊維1束当たり80〜250gの張力で炭素繊維が引き出された後、梨地加工された自由回転式のパスロールを通じて炭素繊維を開繊部へ導く工程。
(2)一方向に互いに並行するように引き揃えられた炭素繊維に熱を与えつつ、横振動する複数本のラダー形状のロールに炭素繊維を接触させることにより炭素繊維を開繊する工程。
(C) Carbon fiber having a knot bundle strength of 100 to 600 MPa and a ratio of the major axis to the minor axis of the single yarn of 1.10 to 1.30, the minimum viscosity at 90 to 115 ° C. is 1.0 to A method for producing a prepreg that impregnates a matrix resin that is 5.0 Pa · s and has a curing time of 1 to 5 minutes when heated at 150 ° C. The following steps (1) and (2) are performed: A method for producing a prepreg, comprising:
(1) A step of guiding carbon fibers to a fiber opening portion through a free-rotating pass roll subjected to a satin finish after the carbon fibers are drawn from the creel with a tension of 80 to 250 g per bundle of carbon fibers.
(2) A step of opening the carbon fiber by bringing the carbon fiber into contact with a plurality of ladder-shaped rolls that vibrate laterally while applying heat to the carbon fibers that are aligned so as to be parallel to each other in one direction.

(D)前記(A)または(B)に記載のプリプレグ、または前記(C)に記載のプリプレグの製造方法により得られたプリプレグを硬化させて得られる炭素繊維強化複合材料。   (D) A carbon fiber reinforced composite material obtained by curing the prepreg according to (A) or (B) or the prepreg obtained by the prepreg production method according to (C).

本明細書に記載されている特性は、下記の方法によって測定される。   The properties described herein are measured by the following methods.

<単糸断面の長短径比>
炭素繊維単糸25本の断面を走査顕微鏡で観察し、外周におけるもっとも距離の離れた2点間の距離と、その2点を結んだ直線とほぼ直交する直線群と外周の交点でもっとも距離の短い2点間の距離の比を計測し、平均値として長短径比を得る。
<Long and short diameter ratio of single yarn cross section>
A cross section of 25 carbon fiber single yarns is observed with a scanning microscope, and the distance between the two points that are the farthest away from each other on the outer circumference and the intersection between the straight line group that is almost perpendicular to the straight line connecting the two points and the outer circumference The ratio of the distance between two short points is measured, and the long / short diameter ratio is obtained as an average value.

<炭素繊維の強度、弾性率>
JIS R 7601:1986に準じ、ストランド特性の引張強度、弾性率を測定する。
<Strength and elastic modulus of carbon fiber>
According to JIS R 7601: 1986, the tensile strength and elastic modulus of the strand characteristics are measured.

<結節束強度>
JIS L 1013:1981に準じて試料のつかみ間の中央に結節をつくり、引張強度を測定する。測定する試料の両端をチャックに挟み込んで固定する。ここで、チャック間のサンプル長は250mmとし、試料の結び目が、チャック間の中央部に位置するようにして、引張り、最大荷重値を測定する。この最大荷重値を試料の(非結節部の)断面積で除した値を結節束強度とする。なお、ここでは、任意に選択した試料についてn=6(右結びと左結びについて各n=3)の平均値を用いる。
<Nodule bundle strength>
According to JIS L 1013: 1981, a nodule is formed at the center between the grips of the sample, and the tensile strength is measured. Insert and fix both ends of the sample to be measured in the chuck. Here, the sample length between the chucks is 250 mm, and the tension is measured so that the knot of the sample is located at the center between the chucks, and the maximum load value is measured. The value obtained by dividing this maximum load value by the cross-sectional area (of the nodule portion) of the sample is taken as the nodule bundle strength. Here, an average value of n = 6 (each n = 3 for right knot and left knot) is used for arbitrarily selected samples.

<タック>
本発明のプリプレグにおけるタックは次のように測定される。
<Tack>
The tack in the prepreg of the present invention is measured as follows.

温度24±2℃、湿度50±5%RHの測定環境下にて、15〜30分間暴露した後に、(株)東洋精機製作所製PICMAタックテスターIIを用い、18mm×18mmのカバーガラスを3.92Nの荷重で5秒間プリプレグに圧着し、30mm/分の速度にて引き剥がし、剥がれる際の抵抗力の最大値を測定することにより求める。カバーガラスは、顕微鏡測定に使用するものが使用でき、例えば、マイクロカバーガラス 18mm×18mm、厚み:0.12〜0.17mm(MATSUNAMI製)が好適に使用できる。   After exposure for 15 to 30 minutes in a measurement environment of a temperature of 24 ± 2 ° C. and a humidity of 50 ± 5% RH, a cover glass of 18 mm × 18 mm is used with a PICMA Tack Tester II manufactured by Toyo Seiki Seisakusho Co., Ltd. It is obtained by pressure-bonding to a prepreg with a load of 92 N for 5 seconds, peeling off at a speed of 30 mm / min, and measuring the maximum value of the resistance force at the time of peeling. What is used for a microscope measurement can be used for a cover glass, for example, micro cover glass 18mmx18mm and thickness: 0.12-0.17mm (made by MATSUNAMI) can use it conveniently.

<最大断面高さRt>
プリプレグの表面平滑性を現す最大断面高さRtは、JIS B 0601:2001で粗さ曲線の最大断面高さと定義され、以下のように測定される。100mm幅にカットしたプリプレグを試験片とし、それぞれの試験片毎の表面平滑性を接触式表面粗さ測定器にて測定する。接触式表面粗さ測定器としては、例えば、株式会社小坂研究所製表面粗さ測定器SE−3500を用い、検出器としては触針先端半径2μmのダイヤモンド製の針を備え、測定力0.7mNで測定できるものを使用し、測定速度2mm/secで、一方向性プリプレグ繊維方向に直交するように90mm幅で測定する(n=3)。
<Maximum section height Rt>
The maximum cross-sectional height Rt representing the surface smoothness of the prepreg is defined as the maximum cross-sectional height of the roughness curve in JIS B 0601: 2001, and is measured as follows. A prepreg cut to a width of 100 mm is used as a test piece, and the surface smoothness of each test piece is measured with a contact-type surface roughness measuring instrument. As the contact-type surface roughness measuring instrument, for example, a surface roughness measuring instrument SE-3500 manufactured by Kosaka Laboratory Ltd. is used, and a detector is provided with a diamond needle having a stylus tip radius of 2 μm and a measuring force of 0. What can be measured at 7 mN is used, and the measurement is performed at a measurement speed of 2 mm / sec and a width of 90 mm so as to be orthogonal to the unidirectional prepreg fiber direction (n = 3).

<樹脂フロー率>
プリプレグを10cm四方にカットし、0°/90°/90°/0°に4枚積層した積層基材を1試料とする(W1)。その後上下面を穴あきフィルム及びガラスクロスで挟み込んだ後、プレス機において160℃、3.0MPaの圧力で10分間加熱する(W2)。樹脂フロー率(W)は以下式で求めることができる。樹脂フロー測定器としては、例えば、東邦マシナリー株式会社製9tonレバー操作式圧縮成形機が好適に使用できる。
<Resin flow rate>
A laminated base material obtained by cutting a prepreg into 10 cm squares and laminating four sheets at 0 ° / 90 ° / 90 ° / 0 ° is taken as one sample (W1). Thereafter, the upper and lower surfaces are sandwiched between a perforated film and a glass cloth, and then heated in a press machine at 160 ° C. and a pressure of 3.0 MPa for 10 minutes (W2). The resin flow rate (W) can be obtained by the following equation. As the resin flow measuring instrument, for example, a 9 ton lever operation type compression molding machine manufactured by Toho Machinery Co., Ltd. can be suitably used.

ガラスクロスは、樹脂吸収量の点から日東紡社製WE181D100BS6E(181メッシュ)を用いる必要がある。穴あきフィルムとしては、例えばAIRTECH社製型式A400Pが好適に使用できる。
W=(W1−W2)/W1×100。
For the glass cloth, it is necessary to use WE181D100BS6E (181 mesh) manufactured by Nittobo Co., Ltd. in terms of the amount of resin absorption. As the perforated film, for example, model A400P manufactured by AIRTECH can be preferably used.
W = (W1-W2) / W1 × 100.

<硬化時間>
プリプレグを6mm四方にカットし、18mm四方のガラスカバーで上下から挟み込んだ後、硬化測定器に乗せて150℃の温度で硬化させる。棒でガラス表面を押し込み、はみ出してくる樹脂の流動性がなくなった時間を測定する(n=3)。なお、硬化測定器としては、例えば、株式会社ユーカリ技研製ゲル化試験器が好適に使用できる。
<Curing time>
The prepreg is cut into 6 mm squares, sandwiched from above and below by 18 mm square glass covers, and then placed on a curing measuring device and cured at a temperature of 150 ° C. The glass surface is pushed in with a rod, and the time when the fluidity of the protruding resin is lost is measured (n = 3). In addition, as a hardening measuring device, the gelation tester by Eucalyptus Giken Co., Ltd. can be used conveniently, for example.

<毛羽個数>
目視でプリプレグ表面中に発生する幅約5μm以上、長さ5mm以上の単糸毛羽を1m測定して、その毛羽個数(個/m)で表す。
<Number of fuzz>
Width of about 5μm or more occurring in the prepreg surface visually, the single yarn fluff or 5mm long of to 1 m 2 measured, expressed in the fluff number (pieces / m 2).

<樹脂粘度>
本文記載の樹脂粘度は、動的粘弾性法を用いて測定し、測定装置としては、例えば、レオメトリックス社製RDA−II型装置などを用いることができる。本発明における最低粘度とは、温度を常温から上昇させると、樹脂粘度が一旦低下し、その後粘度上昇に転じるが、このプロフィールにおける粘度最小値のことを意味する。また、この最低粘度を示す温度を最低粘度温度と定義する。これらの特性は、かかる装置を用い、振動:3.14ラディアン/秒、昇温速度:1.5℃/分、プレートには半径25mmの平行板、ギャップ:1.0mmの条件にて測定される。
<Resin viscosity>
The resin viscosity described in the text is measured by using a dynamic viscoelasticity method. As a measuring device, for example, an RDA-II type device manufactured by Rheometrics, Inc. can be used. The minimum viscosity in the present invention means that when the temperature is raised from room temperature, the resin viscosity is once lowered and then the viscosity is increased, but this means the minimum viscosity value in this profile. Moreover, the temperature which shows this minimum viscosity is defined as minimum viscosity temperature. These characteristics were measured using such an apparatus under the conditions of vibration: 3.14 radians / second, heating rate: 1.5 ° C./min, parallel plate with a radius of 25 mm, and gap: 1.0 mm. The

本発明に係る炭素繊維プリプレグは、均一性が良好であり、成形表面上の炭素繊維の単糸が極めて少なく、優れた外観意匠性を有する炭素繊維強化複合材料が得られる。成形後の炭素繊維強化複合材料の外観を直に見せる用途においては、製品の商品価値を大幅に高められ、さらに何層にも渡って表面塗装をする必要もなくなるため、製品の軽量化においても有用である。   The carbon fiber prepreg according to the present invention has a good uniformity, a carbon fiber single yarn on the molding surface is extremely small, and a carbon fiber reinforced composite material having an excellent appearance design can be obtained. In applications where the appearance of the carbon fiber reinforced composite material after molding can be seen directly, the product value of the product can be greatly increased, and there is no need to coat the surface over multiple layers, so the weight of the product can be reduced. Useful.

図1は、炭素繊維強化複合材料の外観品位不良状態の一例を示した断面図である。FIG. 1 is a cross-sectional view showing an example of a poor appearance quality state of a carbon fiber reinforced composite material. 図2は、炭素繊維強化複合材料の表面単糸毛羽の一例を示したモデル正面図である。FIG. 2 is a model front view showing an example of a surface single yarn fluff of a carbon fiber reinforced composite material. 図3は、本発明のプリプレグの製造に用いられるプリプレグ製造装置の一実施形態を示した概略図である。FIG. 3 is a schematic view showing an embodiment of a prepreg manufacturing apparatus used for manufacturing the prepreg of the present invention. 図4は、本発明のプリプレグの製造に用いられる開繊装置の一実施形態を示した概略図である。FIG. 4 is a schematic view showing an embodiment of a fiber-spreading device used for manufacturing the prepreg of the present invention.

本発明は、炭素繊維および熱硬化性樹脂を有してなるプリプレグに関する。本発明に使用される炭素繊維は、ポリアクリロニトリル(以下、PANという)系、ピッチ系等のいずれを用いても良く、またそれらが混合したものを用いても良い。本発明に用いる炭素繊維は、一繊維束あたりのフィラメント数が1000〜12000本/糸条の範囲であることが好ましい。フィラメント数を1000本/糸条以上とすることによって、本発明の繊維目付である50〜200g/mのプリプレグを製造するときの生産性を高く保つことができ、12000本/糸条以下とすることによって、炭素繊維を引き揃えた後開繊する際の広がり斑を抑制することで、成形後の広がり斑による表面の濃淡斑が抑制することができる。また3000〜6000本/糸条であれば、その効果が顕著に得られることからより好ましい。 The present invention relates to a prepreg comprising carbon fibers and a thermosetting resin. As the carbon fiber used in the present invention, any of polyacrylonitrile (hereinafter referred to as PAN) system, pitch system, etc. may be used, or a mixture thereof may be used. The carbon fiber used in the present invention preferably has a number of filaments per bundle of 1000 to 12000 / yarn. By setting the number of filaments to 1000 yarns / yarn or more, productivity when producing a prepreg of 50 to 200 g / m 2 that is the basis weight of the present invention can be kept high, and 12000 yarns / yarn or less. By doing so, the spread spots at the time of opening the fibers after arranging the carbon fibers can be suppressed, so that the unevenness of the surface due to the spread spots after molding can be suppressed. Moreover, if it is 3000-6000 piece / yarn, the effect will be acquired notably, but it is more preferable.

本発明のプリプレグの繊維重量は50g/m以上とすることで、プリプレグ上でのワレや表面平滑性が良好なプリプレグを得ることができ、200g/m以下とすることで、成形後の積層体が軽量となる。更に好ましい範囲としては100〜150g/mである。 By setting the fiber weight of the prepreg of the present invention to 50 g / m 2 or more, it is possible to obtain a prepreg with excellent cracking and surface smoothness on the prepreg, and by setting it to 200 g / m 2 or less, The laminate is lightweight. A more preferable range is 100 to 150 g / m 2 .

本発明に使用される炭素繊維のサイジング付着量は、規定されるものではないが0.8%〜2.2%であることが好ましい。サイジング付着量を0.8%以上とすることで、炭素繊維束の収束性が良好になり、毛羽立ちにくくなることによってプリプレグ表面上に単糸毛羽が残らない。また2.2%以下とすることで、炭素繊維束の拡がり性が良好となり、プリプレグの表面平滑性が良好となる。   Although the sizing adhesion amount of the carbon fiber used in the present invention is not specified, it is preferably 0.8% to 2.2%. By adjusting the sizing adhesion amount to 0.8% or more, the convergence property of the carbon fiber bundle is improved and the fluff is less likely to fluff, so that no single yarn fluff remains on the prepreg surface. Moreover, by setting it as 2.2% or less, the expansibility of a carbon fiber bundle becomes favorable and the surface smoothness of a prepreg becomes favorable.

また炭素繊維束の単糸毛羽量を抑制するため、炭素繊維の引張強度は、3.0GPa〜4.8GPaであることが好ましく、結節束強度は100〜600MPaであることを特徴とする。また、炭素繊維強度は、3.5〜4.3GPa、結節束強度は、150〜300MPaがより好ましい。結節束強度を100MPa以上とすることで、炭素繊維束を引き出す際、通糸されるパスロール上での炭素繊維の耐擦過性が向上し、プリプレグの品位が良好となる。また600MPa以下とすることで、パスロール上で糸が過度に擦過された際、炭素繊維の単糸がプリプレグ表面上に残らない。引張強度を3.0GPa以上とすることで、力学的な特性を高く設定できるようになるため好ましい。また4.8GPa以下とすることによって、プリプレグ製造する工程において、炭素繊維が糸道を通過する際、単糸上の毛羽の発達を防止できる。   In order to suppress the amount of single yarn fluff of the carbon fiber bundle, the carbon fiber preferably has a tensile strength of 3.0 GPa to 4.8 GPa and a knot bundle strength of 100 to 600 MPa. Further, the carbon fiber strength is more preferably 3.5 to 4.3 GPa, and the knot bundle strength is more preferably 150 to 300 MPa. By setting the knot bundle strength to 100 MPa or more, when the carbon fiber bundle is drawn, the abrasion resistance of the carbon fiber on the pass roll to be threaded is improved, and the quality of the prepreg is improved. Further, by setting the pressure to 600 MPa or less, when the yarn is excessively scraped on the pass roll, the carbon fiber single yarn does not remain on the prepreg surface. It is preferable to set the tensile strength to 3.0 GPa or more because dynamic characteristics can be set high. Moreover, by setting it as 4.8 GPa or less, when a carbon fiber passes a yarn path in the process of manufacturing a prepreg, the development of fluff on a single yarn can be prevented.

また本発明に用いる炭素繊維は、上記した方法で測定した単糸断面の長短径比が1.10〜1.30であることを特徴とする。この範囲であれば、炭素繊維束をシート状に引き揃えた際、炭素繊維束の拡がり斑が発生することなく、成形後の炭素繊維目を濃淡斑無く均一に見せることができる。また単糸断面の長短径比は1.15〜1.20の範囲がより好ましい。   Further, the carbon fiber used in the present invention is characterized in that the ratio of the major axis to the minor axis diameter of the single yarn cross section measured by the above method is 1.10 to 1.30. Within this range, when the carbon fiber bundles are arranged in a sheet form, the carbon fiber bundles after forming can be made uniform without appearing unevenness without causing the spread spots of the carbon fiber bundles. Further, the major axis / minor axis ratio of the single yarn cross section is more preferably in the range of 1.15 to 1.20.

本発明の、単糸断面の長径と短径の比が1.10〜1.30の炭素繊維で、結節束強度が100〜600MPaの炭素繊維は、例えばポリアクリロニトリルに5質量%以下の成分を共重合させた重合体を、有機溶媒、好ましくはジメチルスルホキシドを溶媒として湿式紡糸し、その温度、凝固浴の溶媒濃度、引取速度等を所望の値に設定して、定法により、浴延伸・水洗を行い、好ましくはシリコーン成分を含む油剤を付与後、乾燥して、好ましくはスチーム延伸をすることによって、ポリアクリロニトリル系炭素繊維前駆体繊維を得、それを耐炎化、炭化し、表面処理を行い、サイジングを付与することで製造できる。   The carbon fiber having a ratio of the major axis to the minor axis of the single yarn cross-section of the present invention of 1.10 to 1.30 and a knot bundle strength of 100 to 600 MPa includes, for example, a component of 5% by mass or less in polyacrylonitrile. The copolymerized polymer is wet-spun using an organic solvent, preferably dimethyl sulfoxide as a solvent, and the temperature, solvent concentration of the coagulation bath, take-up speed, etc. are set to desired values. Preferably, after applying an oil containing a silicone component, it is dried and preferably subjected to steam drawing to obtain a polyacrylonitrile-based carbon fiber precursor fiber, which is flame-resistant, carbonized, and subjected to a surface treatment. It can be manufactured by applying sizing.

本発明のプリプレグに用いられるマトリックス樹脂は、その種類を特に問わないが、速硬化性を有する熱硬化性樹脂が好ましく使用される。熱硬化性樹脂としては、ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂等が挙げられる。熱硬化性樹脂に使用される硬化剤、増粘剤、収縮防止剤等は適宜用いられ、特に限定するものではない。熱硬化性樹脂としては、エポキシ樹脂が好ましい。   The matrix resin used in the prepreg of the present invention is not particularly limited in type, but a thermosetting resin having a fast curing property is preferably used. Examples of the thermosetting resin include polyester resin, vinyl ester resin, and epoxy resin. Curing agents, thickeners, anti-shrinking agents and the like used for the thermosetting resin are appropriately used and are not particularly limited. As the thermosetting resin, an epoxy resin is preferable.

エポキシ樹脂の具体例としては、ポリオールから得られるグリシジルエーテル、活性水素を複数個有するアミンより得られるグリシジルアミン、ポリカルボン酸より得られるグリシジルエステルや、分子内に複数の二重結合を有する化合物を酸化して得られるポリエポキシド等が挙げられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂等あるいはこれらの組み合わせが好適に用いられる。   Specific examples of the epoxy resin include a glycidyl ether obtained from a polyol, a glycidyl amine obtained from an amine having a plurality of active hydrogens, a glycidyl ester obtained from a polycarboxylic acid, and a compound having a plurality of double bonds in the molecule. Examples include polyepoxide obtained by oxidation. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol type epoxy resin such as tetrabromobisphenol A type epoxy resin, novolac type epoxy such as phenol novolac type epoxy resin, cresol novolac type epoxy resin Resins, glycidylamine type epoxy resins such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, tetraglycidylxylenediamine, and the like, or combinations thereof are preferably used.

かかるエポキシ樹脂組成物に使用される硬化剤としては、エポキシ基と反応し得る活性基を有する化合物であれば用いることができる。例えば、アミン系硬化剤として、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンジアミン、m−キシリレンジアミンのような脂肪族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジエチルジフェニルメタン、ジアミノジエチルジフェニルスルホンなどの芳香族アミン類、ベンジルジメチルアミン、テトラメチルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノールなどの三級アミン類、また、ジシアンジアミドのような塩基性活性水素化合物や、アジピン酸ジヒドラジドなどの有機酸ジヒドラジド、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、などのイミダゾール類が挙げられる。また、酸無水物系硬化剤として、ポリアジビン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリセバシン酸無水物などの脂肪族酸無水物、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの脂環式酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、グリセロールトリストリメリテートなどの芳香族酸無水物、無水ヘット酸、テトラブロモ無水フタル酸などのハロゲン系酸無水物が挙げられる。本発明においては、比較的低温で硬化し、かつ保存安定性が良好なことから、硬化剤としてアミン系硬化剤、中でも塩基性活性水素化合物を好ましく用いることができる。   As a hardening | curing agent used for this epoxy resin composition, if it is a compound which has an active group which can react with an epoxy group, it can be used. For example, as amine-based curing agents, aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenediamine, m-xylylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiethyldiphenylmethane, diaminodiethyldiphenylsulfone, etc. Aromatic amines, tertiary amines such as benzyldimethylamine, tetramethylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, basic active hydrogen compounds such as dicyandiamide, adipic acid dihydrazide, etc. Organic acid dihydrazide, 2-methylimidazole, 2-ethyl-4-methylimidazole, and other imidazoles. In addition, as acid anhydride-based curing agents, aliphatic acid anhydrides such as polyazibic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, polysebacic acid anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene Arocyclic acid anhydrides such as dicarboxylic acid anhydrides, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, aromatic acid anhydrides such as glycerol tristrimellitate, het anhydride, tetrabromophthalic anhydride, etc. Halogen type acid anhydride is mentioned. In the present invention, an amine curing agent, particularly a basic active hydrogen compound can be preferably used as the curing agent because it is cured at a relatively low temperature and has good storage stability.

本発明においては、熱硬化性樹脂の硬化活性を高めるために、これら硬化剤に、適当な硬化促進剤を組み合わせて用いることができる。好ましい具体例としては、硬化剤であるジシアンジアミドなどのアミン系硬化剤に硬化促進剤として尿素誘導体やイミダゾール誘導体を組み合わせる例、硬化剤であるカルボン酸無水物やポリフェノール化合物に、硬化促進剤として三級アミンやイミダゾール誘導体を組み合わせる例などが挙げられる。本発明においては、比較的低温で硬化し、かつ保存安定性が良好なことから、硬化剤としてアミン系硬化剤、中でもジシアンジアミドに、硬化促進剤として尿素誘導体からなる尿素系硬化促進剤を併用することが好ましい。中でも尿素系硬化促進剤として3−フェニル−1,1−ジメチルウレア、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(DCMU)、1,1’−(4−メチル−m−フェニレン)ビス(3,3’−ジメチルウレア)などが好ましく用いられ、その中でも、分子内にウレア基を2個有する化合物、例えば1,1’−(4−メチル−m−フェニレン)ビス(3,3’−ジメチルウレア)が好ましく用いられる。   In the present invention, in order to increase the curing activity of the thermosetting resin, an appropriate curing accelerator can be used in combination with these curing agents. Preferable examples include a combination of an amine curing agent such as dicyandiamide as a curing agent with a urea derivative or an imidazole derivative as a curing accelerator, a carboxylic acid anhydride or a polyphenol compound as a curing agent, and a tertiary as a curing accelerator. Examples include combining amines and imidazole derivatives. In the present invention, since it cures at a relatively low temperature and has good storage stability, an amine curing agent as a curing agent, especially dicyandiamide, and a urea curing accelerator composed of a urea derivative as a curing accelerator are used in combination. It is preferable. Among these, urea-based curing accelerators include 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 1,1 ′-(4-methyl-m- Phenylene) bis (3,3′-dimethylurea) and the like are preferably used. Among them, a compound having two urea groups in the molecule, such as 1,1 ′-(4-methyl-m-phenylene) bis (3 , 3′-dimethylurea) is preferably used.

本発明の熱硬化性樹脂の最低粘度が90〜115℃の温度範囲において1.0〜5.0Pa・sであることを特徴とする。最低粘度を1.0Pa・s以上とすることで、含浸時において炭素繊維束から熱硬化性樹脂がはみ出すことなく含浸させることができ、5.0Pa・s以下とすることで、含浸時においてより良好に炭素繊維束に樹脂を含浸させることができる。1.5〜3.5Pa・sがより好ましい。   The minimum viscosity of the thermosetting resin of the present invention is 1.0 to 5.0 Pa · s in a temperature range of 90 to 115 ° C. By setting the minimum viscosity to 1.0 Pa · s or more, the thermosetting resin can be impregnated without protruding from the carbon fiber bundle at the time of impregnation. By setting the minimum viscosity to 5.0 Pa · s or less, more than at the time of impregnation. The carbon fiber bundle can be satisfactorily impregnated with the resin. 1.5 to 3.5 Pa · s is more preferable.

また、本発明の熱硬化性樹脂は、150℃で加熱した場合、1〜5分で硬化することを特徴とする。1分以上とすることで、金型への積層板のセッティング等、作業効率が維持されるため好ましい。また5分以内に硬化することで、成形時の生産効率が向上するため好ましい。   The thermosetting resin of the present invention is characterized by being cured in 1 to 5 minutes when heated at 150 ° C. It is preferable to set it to 1 minute or longer because work efficiency such as setting of a laminated plate in a mold is maintained. In addition, curing within 5 minutes is preferable because production efficiency during molding is improved.

本発明の最低粘度が1.0〜5.0Pa・sであって、150℃で加熱した際、1〜5分で硬化するマトリクス樹脂は、例えば、ベース樹脂として液状のビスフェノールA型エポキシ樹脂と固形のビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂を一定の温度雰囲気下で加熱・攪拌した後、アミン系の硬化剤及び尿素系の硬化促進剤、好ましくは分子内にウレア基を2個有する尿素系硬化促進剤を添加し、一定の温度条件下で加熱・攪拌することで混合し、冷却した後、樹脂を抜き出すことによって調製樹脂とするが、その配合比を調整することによって本特性を有する樹脂を製造できる。   The matrix resin having a minimum viscosity of 1.0 to 5.0 Pa · s of the present invention and cured in 1 to 5 minutes when heated at 150 ° C. is, for example, a liquid bisphenol A type epoxy resin as a base resin. Solid bisphenol A type epoxy resin and phenol novolak type epoxy resin are heated and stirred under a constant temperature atmosphere, and then amine type curing agent and urea type curing accelerator, preferably having two urea groups in the molecule. Add a urea curing accelerator, mix by heating and stirring under a constant temperature condition, cool, and then extract the resin to make a prepared resin, but this characteristic can be adjusted by adjusting the blending ratio. Can be produced.

また樹脂質量含有率については20〜40%であることが好ましい。樹脂質量含有率を20%以上とすることで、連続繊維の形態保持及び成形時の取り扱いに必要なタック性を保持することができると共に、成形時の表面樹脂量不足に起因する“カスレ”を抑制することができる。ここでいう“カスレ”とは、図1に示すように炭素繊維束の方向が0°方向a及び90°方向bとなるようにシート状プリプレグを積層し硬化させた際、成形体表面の樹脂が流動することによって樹脂欠損部cが発生してしまう現象を指す。また樹脂の質量含有率を40%以下とすることによって、プレス成形時に樹脂がフローして炭素繊維が流動することに起因する“繊維ワレ”dを抑制することができるため好ましい。   The resin mass content is preferably 20 to 40%. By setting the resin mass content to 20% or more, it is possible to maintain the tackiness necessary for maintaining the shape of the continuous fibers and handling during molding, and to “scratch” due to insufficient surface resin amount during molding. Can be suppressed. As used herein, “scratch” refers to a resin on the surface of a molded product when a sheet-like prepreg is laminated and cured so that the direction of the carbon fiber bundle is 0 ° direction a and 90 ° direction b as shown in FIG. Refers to a phenomenon in which the resin deficient portion c occurs due to the fluidization of. Further, it is preferable to set the mass content of the resin to 40% or less because “fiber crack” d caused by the flow of the resin and the flow of the carbon fiber during press molding can be suppressed.

また本発明で得られるプリプレグの樹脂フロー率は10〜20質量%であることを特徴とし、12〜14質量%が好ましい。10質量%以上とすることで樹脂の流動性が良好となり、プリプレグ層内にある未含浸部分にも樹脂が浸透するため好ましい。樹脂フロー率を20質量%以下とすることで、プレス成形時に樹脂がフローして炭素繊維が流動することに起因する“繊維ワレ”を抑制することができる。   Moreover, the resin flow rate of the prepreg obtained by this invention is 10-20 mass%, and 12-14 mass% is preferable. The amount of 10% by mass or more is preferable because the fluidity of the resin is improved and the resin penetrates into the unimpregnated portion in the prepreg layer. By setting the resin flow rate to 20% by mass or less, it is possible to suppress “fiber cracking” caused by the flow of the resin and the flow of carbon fibers during press molding.

また本発明で得られるプリプレグを150℃の温度雰囲気下で加熱した際の硬化時間が1〜5分であることを特徴とする。1分以上とすることで、炭素繊維層内への樹脂の流動性を良好にし、ボイド発生を抑制でき、5分以内とすることで、樹脂フローによる“繊維ワレ”を抑制できる。   Moreover, the curing time when the prepreg obtained by the present invention is heated in a temperature atmosphere of 150 ° C. is 1 to 5 minutes. By setting it as 1 minute or more, the fluidity | liquidity of the resin into a carbon fiber layer is made favorable, a void generation | occurrence | production can be suppressed, and the "fiber crack" by a resin flow can be suppressed by setting it as less than 5 minutes.

また本発明のプリプレグは、得られる粗さ曲線の最大断面高さRtが80μm以下であることを特徴とする。最大断面高さRtが80μm以下であることにより、得られる成形体の外観上に凸凹を残すことなく、成形することが可能となる。   The prepreg of the present invention is characterized in that the maximum cross-sectional height Rt of the obtained roughness curve is 80 μm or less. When the maximum cross-sectional height Rt is 80 μm or less, molding can be performed without leaving irregularities on the appearance of the resulting molded body.

更に、本発明のプリプレグは両表面のタック値が10〜30Nであることが好ましく、15〜20Nがさらに好ましい。10N以上とすることで、プリプレグ同士の貼り付け作業時に、成形品のボイド発生等の品位不良につながる局所的な浮きを抑えることができ、またプリプレグを把持する離型紙に十分に貼り付き、保管や輸送時にプリプレグと離型紙の剥離が抑制され、成形時に良好な取り扱い性を得ることができる。また30N以下とすることで、積層時に貼り付けが悪かった場合でもプリプレグが裂けることなく剥がすことができ、再度貼り直すことができる。   Furthermore, the prepreg of the present invention preferably has a tack value on both surfaces of 10 to 30 N, more preferably 15 to 20 N. By setting it to 10N or more, it is possible to suppress local lifting that leads to poor quality such as generation of voids in the molded product during the pasting work between prepregs, and it can be sufficiently adhered to the release paper that holds the prepreg and stored. Further, peeling of the prepreg and the release paper is suppressed during transportation, and good handleability can be obtained during molding. Moreover, by setting it as 30 N or less, even when sticking is bad at the time of lamination | stacking, it can peel without tearing a prepreg, and it can stick again.

また図2に示すように、得られるプリプレグ3において、幅約5μm以上かつ長さ5mm以上の炭素繊維束単糸毛羽4の個数が50個/m以下、好ましくは30個/mであることを特徴とする。炭素繊維束の単糸毛羽が成形品の表面に現れる場合、その部分の外観品位が悪化するため、塗装を施す必要があるが、50個/m以下とすることで、成形後の外観品位が良好となり意匠性のある成形体を得ることができる。 Further, as shown in FIG. 2, in the obtained prepreg 3, the number of carbon fiber bundle single yarn fluff 4 having a width of about 5 μm or more and a length of 5 mm or more is 50 pieces / m 2 or less, preferably 30 pieces / m 2 . It is characterized by that. When the single yarn fluff of the carbon fiber bundle appears on the surface of the molded product, the appearance quality of the part deteriorates, so it is necessary to apply the coating. However, the appearance quality after molding is reduced to 50 pieces / m 2 or less. Is improved, and a shaped article having a design property can be obtained.

本発明のプリプレグ表面の最大断面高さRtが80μm以下で、樹脂フロー量が10〜20質量%で、かつ150℃で加熱した時の硬化時間が1〜5分の間に硬化し、かつプリプレグ表面上に幅5μm以上かつ長さ5mm以上の炭素繊維単糸個数が50個/m以下であるプリプレグを製造する方法は例えば以下のようなものである。 The maximum cross-sectional height Rt of the prepreg surface of the present invention is 80 μm or less, the resin flow amount is 10 to 20% by mass, and the curing time is 1 to 5 minutes when heated at 150 ° C., and the prepreg A method for producing a prepreg having a number of carbon fiber yarns of 50 μm / m 2 or less having a width of 5 μm or more and a length of 5 mm or more on the surface is as follows.

一方向性プリプレグを製造するために、図3に示すようにクリール5から炭素繊維束6を引き出した後、予め開繊手段によって炭素繊維を均一に開繊し炭素繊維シート10を作製し、マトリックス樹脂をコーティングした樹脂フィルムシート12、15を樹脂をシート状の炭素繊維の上下から挟みこみ、含浸ロール20、21でニップすることで炭素繊維内に樹脂を含浸せしめた後、上面の離型紙24を回収し、下面の離型紙と合わさった状態26で一方向性プリプレグ27を巻き取る。クリールから炭素繊維束を引き出す方法としては、炭素繊維1束あたり80〜250gの張力で炭素繊維を引き出すことを特徴とし、梨地加工された自由回転式のパスロール上を通じて開繊部に導いて炭素繊維シートを開繊する。パスロールを梨地加工かつ自由回転とすることで、炭素繊維の擦過性が抑制できる。また炭素繊維1束あたりの張力は90〜150gがより好ましい。80g以上とすることで、炭素繊維の弛みがなく、均一に引き揃えることができ、また250g以下とすることで、梨地加工されたパスロールを通糸させる際、過度な接触が抑制されるため、炭素繊維の擦過が抑制される。   In order to manufacture the unidirectional prepreg, as shown in FIG. 3, after pulling out the carbon fiber bundle 6 from the creel 5, the carbon fiber is uniformly opened in advance by a fiber opening means to produce the carbon fiber sheet 10, and the matrix The resin film sheets 12 and 15 coated with the resin are sandwiched between the top and bottom of the sheet-like carbon fiber, and impregnated with impregnation rolls 20 and 21 to impregnate the resin into the carbon fiber, and then the release paper 24 on the upper surface. Then, the unidirectional prepreg 27 is wound up in a state 26 where it is combined with the release paper on the lower surface. The carbon fiber bundle is drawn from the creel by drawing the carbon fiber with a tension of 80 to 250 g per bundle of carbon fiber, and is guided to the opening portion through a satin-processed free-rotating pass roll and carbon fiber. Open the sheet. By making the pass roll satin-finished and freely rotating, the carbon fibers can be prevented from being scratched. Further, the tension per bundle of carbon fibers is more preferably 90 to 150 g. By making it 80 g or more, there is no slackness of carbon fibers, and it can be evenly aligned, and by making it 250 g or less, when passing a satin-finished pass roll, excessive contact is suppressed, Scratching of the carbon fiber is suppressed.

炭素繊維シートの開繊方法としては、図4に示すように一方向に互いに並行するように繰り出された炭素繊維28を一定の張力下コーム31を通すことで引き揃え、加熱装置34によって加熱し、かつ横振動する複数本のラダー形状のロール33上を接触させながら開繊することで達成できる。炭素繊維シートの開繊装置は、連続的に供給される一方向に互いに並行するように引き揃えられた複数本の炭素繊維束の走行方向に沿って多段に配置された開繊部材を有する。この開繊部材は、少なくとも6本以上のロールの軸方向に振動する開繊ロールを有する。また各開繊ロールは、走行方向に対し、上下方向に交互に配置されており、下段の開繊振動ロール33a、33bのみが振動するものであり、上段のフリーロール33cは炭素繊維束を把持する目的でその位置を適宜調整することができる。また、炭素繊維束との擦過性を最小限に抑えることから、ロール表面上はラダー形状であることが好ましい。   As a method of opening the carbon fiber sheet, as shown in FIG. 4, the carbon fibers 28 drawn out so as to be parallel to each other in one direction are aligned by passing through a comb 31 under a certain tension, and heated by a heating device 34. Further, this can be achieved by opening the fibers while making contact with a plurality of ladder-shaped rolls 33 that vibrate laterally. The opening device for carbon fiber sheets has opening members arranged in multiple stages along the running direction of a plurality of carbon fiber bundles aligned so as to be parallel to each other in a continuously supplied direction. This spread member has a spread roll that vibrates in the axial direction of at least six or more rolls. Each spread roll is alternately arranged in the vertical direction with respect to the traveling direction, and only the lower spread vibration rolls 33a and 33b vibrate, and the upper free roll 33c grips the carbon fiber bundle. The position can be adjusted as appropriate for the purpose. Moreover, it is preferable that the roll surface has a ladder shape in order to minimize scratching with the carbon fiber bundle.

また、開繊部材は、必要に応じて、必要な段の開繊部材を加熱するのが好ましい。特に、サイジング剤の付着した炭素繊維束であれば、開繊ロールを加熱状態で振動させると加熱されたロールによりサイズ剤が軟化され、開繊作用が向上する。例えば、軸方向に振動する開繊部材を備えた開繊手段であると、炭素繊維束を均一に拡幅でき、炭素繊維束が扁平化することによって、表面平滑性を向上させることができる。   Moreover, it is preferable that the opening member heats the opening member of a required step as needed. In particular, in the case of a carbon fiber bundle to which a sizing agent is adhered, when the opening roll is vibrated in a heated state, the sizing agent is softened by the heated roll and the opening action is improved. For example, when the opening means includes an opening member that vibrates in the axial direction, the carbon fiber bundle can be uniformly widened, and the surface smoothness can be improved by flattening the carbon fiber bundle.

本発明の炭素繊維、熱硬化性樹脂組成物、炭素繊維プリプレグおよび炭素繊維強化複合材料について、以下実施例を挙げて説明する。なお、各実施例の炭素繊維、樹脂組成物、プリプレグ、炭素繊維強化複合材料の特性は表1にまとめて示す。   The carbon fiber, thermosetting resin composition, carbon fiber prepreg and carbon fiber reinforced composite material of the present invention will be described below with reference to examples. The properties of the carbon fiber, resin composition, prepreg, and carbon fiber reinforced composite material of each example are summarized in Table 1.

(実施例1)
<炭素繊維の作製>
アクリロニトリル99.5モル%、イタコン酸0.5モル%からなる固有粘度[η]が1.80のアクリロニトリル系重合体を3000ホールの口金を用いて、ジメチルスルホキシド水溶液から成る凝固浴に導入して凝固糸を得た。この際、凝固の温度、引取速度、凝固溶媒の濃度を調整して、炭素繊維にしたときの単糸断面の長径と短径の比が1.18になるように調整した。該凝固糸を水洗・延伸し、界面活性剤を付与した後、乾燥緻密化を行い、スチーム延伸し、3000フィラメントのプリカーサを得た。
Example 1
<Production of carbon fiber>
An acrylonitrile polymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid and having an intrinsic viscosity [η] of 1.80 was introduced into a coagulation bath comprising a dimethyl sulfoxide aqueous solution using a 3000-hole die. A coagulated yarn was obtained. At this time, the coagulation temperature, the take-up speed, and the concentration of the coagulation solvent were adjusted so that the ratio of the major axis to the minor axis of the single yarn cross section when the carbon fiber was made was 1.18. The coagulated yarn was washed and drawn with water, and a surfactant was added, followed by drying and densification, and steam drawing to obtain a 3000 filament precursor.

このプリカーサを炭化工程に供し、クリールから解舒する時に加撚しながら解舒して、耐炎化し、最高温度1400℃で炭化した。その後、同張力で連続して陽極酸化してマトリックスとのなじみ性を付与した後、エポキシ化合物を含むサイジング剤を1.4質量%付着させ、乾燥することによって、繊度200tex、フィラメント数3000、ストランド強度3500MPa、弾性率230GPaの炭素繊維を得た。この炭素繊維を焼成時に付与したより数で反対の方向に解撚し、無撚りの炭素繊維を得た。この炭素繊維の表面平滑度Raは30.0nmであった。また単糸断面の長短径比は1.18であった。   The precursor was subjected to a carbonization step, unwound while twisting when unwinding from the creel, made flame resistant, and carbonized at a maximum temperature of 1400 ° C. Then, after anodizing continuously with the same tension to impart conformity with the matrix, 1.4% by mass of a sizing agent containing an epoxy compound is adhered and dried to obtain a fineness of 200 tex, a filament number of 3000, a strand. A carbon fiber having a strength of 3500 MPa and an elastic modulus of 230 GPa was obtained. Untwisted carbon fibers were obtained by untwisting the carbon fibers in the opposite direction than the number given during firing. The carbon fiber had a surface smoothness Ra of 30.0 nm. The major-minor diameter ratio of the single yarn cross section was 1.18.

<樹脂組成物の調製>
ビスフェノールA型液状エポキシ樹脂、ビスフェノールA型固形エポキシ樹脂、フェノールノボラック型エポキシ樹脂からなるエポキシ樹脂に熱可塑性樹脂としてポリビニルホルマール、硬化剤としてジシアンジアミド、2,4−トルエンビス(ジメチルウレア)混合物からなる樹脂組成物を調製した。この際、これらのうち、主として硬化剤の配合量と割合を調整することによって150℃の硬化時間を1〜5分に調整した。また、エポキシ樹脂の固形と液状の配合比やポリビニルホルマールの量を調整して、90〜115℃における最低粘度が2.2Pa・sの樹脂組成物を得た。
<Preparation of resin composition>
Resin consisting of a mixture of bisphenol A type liquid epoxy resin, bisphenol A type solid epoxy resin, phenol novolac type epoxy resin, polyvinyl formal as thermoplastic resin, dicyandiamide as curing agent, and 2,4-toluenebis (dimethylurea) mixture A composition was prepared. Under the present circumstances, the 150 degreeC hardening time was adjusted to 1 to 5 minutes mainly by adjusting the compounding quantity and ratio of a hardening | curing agent among these. Moreover, the solid and liquid compounding ratio of the epoxy resin and the amount of polyvinyl formal were adjusted to obtain a resin composition having a minimum viscosity of 2.2 Pa · s at 90 to 115 ° C.

<プリプレグの作製>
調製した樹脂組成物をリバースロールコータを用いて離型紙上に塗布して樹脂シートを作製した。樹脂シートの樹脂目付は36.5g/mとした。次に、作製した炭素繊維を、炭素繊維の目付が148g/mとなるようにシート状に一方向に整列させ、開繊部にて6本のラダー形状のロール上で開繊した後、樹脂シートを炭素繊維の両面から重ね、加熱加圧して樹脂組成物を含浸させ、一方向プリプレグを作製した。上記方法でプリプレグを製作し、プリプレグ表面上の単糸毛羽個数を測定した結果、20個/mと良好な結果であった。
<Preparation of prepreg>
The prepared resin composition was applied onto release paper using a reverse roll coater to prepare a resin sheet. The resin basis weight of the resin sheet was 36.5 g / m 2 . Next, the produced carbon fibers are aligned in one direction in a sheet shape so that the basis weight of the carbon fibers is 148 g / m 2, and opened on six ladder-shaped rolls at the opening portion, The resin sheet was piled up from both sides of the carbon fiber, heated and pressed to impregnate the resin composition, and a unidirectional prepreg was produced. A prepreg was produced by the above method, and the number of single yarn fluffs on the prepreg surface was measured. As a result, the result was 20 / m 2 .

<炭素繊維強化複合材料板の作製>
作製したプリプレグを300mm×200mmのサイズにカットし、炭素繊維の繊維軸方向を0°としたときに、0°/90°/90°/0°となるように合計4層積層させた。この積層体を離型フィルムで挟んだものを、積層体中の空気を抜く目的で5分間真空引きを行った後、金型温度160℃、圧力3.0MPa、硬化時間3分でプレス成形した後、130℃の温度雰囲気下で2時間静置することで炭素繊維強化複合材料板を得た。
<Production of carbon fiber reinforced composite material plate>
The produced prepreg was cut into a size of 300 mm × 200 mm, and a total of four layers were laminated so that the fiber axis direction of the carbon fibers was 0 ° / 0 ° / 90 ° / 90 ° / 0 °. The laminate sandwiched between release films was evacuated for 5 minutes in order to remove air from the laminate, and then press molded at a mold temperature of 160 ° C., a pressure of 3.0 MPa, and a curing time of 3 minutes. Then, the carbon fiber reinforced composite material board was obtained by leaving still at 130 degreeC temperature atmosphere for 2 hours.

<炭素繊維強化複合材料板の外観検査>
上記方法にて30枚の炭素繊維強化複合材料板を製作し、複合材料板の表面について、2人の検査者が繊維ワレ・カスレ等の外観不良の有無を検査した結果、外観不良は無く、良好な結果であった。
<Appearance inspection of carbon fiber reinforced composite material plate>
As a result of producing 30 carbon fiber reinforced composite plates by the above method, and two inspectors on the surface of the composite plate for the presence or absence of appearance defects such as fiber cracks and scrapes, there is no appearance failure. It was a good result.

(実施例2)
実施例1から、紡糸・延伸条件と、付与油剤を調整して単糸断面の長短径比1.28、強度4400MPa、弾性率240GPaの炭素繊維を得た。実施例1のとおり成形した結果、単糸毛羽個数40個/m、繊維ワレ・カスレ等の外観不良は無く、良好な結果であった。
(Example 2)
From Example 1, the spinning / drawing conditions and the imparting oil agent were adjusted to obtain a carbon fiber having a long / short diameter ratio of 1.28, a strength of 4400 MPa, and an elastic modulus of 240 GPa. As a result of molding as in Example 1, the number of single yarn fluffs was 40 pieces / m 2 , and there were no appearance defects such as fiber cracks and scrapes, and the results were good.

(比較例1)
実施例1からポリマを一旦空気中に押出し、直ちに凝固液中に導入し、紡糸・延伸条件と、付与油剤を調整することによって長短径比1.04、強度4900MPa、弾性率230GPaの炭素繊維を得た。実施例1のとおり成形した結果、単糸毛羽個数280個/mと成形表面上の炭素繊維単糸毛羽が多く外観品位が劣る結果であった。
(Comparative Example 1)
The polymer from Example 1 was once extruded into the air, immediately introduced into the coagulation liquid, and the carbon fiber having a major axis ratio of 1.04, a strength of 4900 MPa, and an elastic modulus of 230 GPa was obtained by adjusting the spinning / drawing conditions and the imparting oil agent. Obtained. As a result of molding as in Example 1, the number of single yarn fluffs was 280 / m 2, and there were many carbon fiber single yarn fluffs on the molding surface, resulting in poor appearance quality.

(比較例2)
実施例1と同じ方法で炭素繊維を作製し、実施例1からポリビニルホルマールの配合量を変更した以外は実施例1と同様に樹脂組成物を調製し、最低粘度0.85Pa・sの樹脂組成物を得た。実施例1のとおり成形した結果、単糸毛羽個数20個/mと問題なかったものの、成形表面上にカスレが発生し外観品位に劣る結果であった。
(Comparative Example 2)
A carbon fiber was prepared in the same manner as in Example 1, and a resin composition was prepared in the same manner as in Example 1 except that the amount of polyvinyl formal was changed from Example 1. A resin composition having a minimum viscosity of 0.85 Pa · s. I got a thing. As a result of molding as in Example 1, there was no problem with the number of single yarn fluffs of 20 / m 2 , but the result was inferior in appearance quality due to scumming on the molding surface.

(比較例3)
実施例1と同じ方法で炭素繊維を作製し、実施例1からポリビニルホルマールの配合量を変更した以外は実施例1と同様に樹脂組成物を調製し、最低粘度6.5Pa・sの樹脂組成物を得た。実施例1のとおり成形した結果、単糸毛羽個数20個/mと問題なかったものの、表面樹脂流れに伴う繊維ワレが発生し外観品位に劣る成形体であった。
(Comparative Example 3)
A carbon fiber was prepared by the same method as in Example 1, and a resin composition was prepared in the same manner as in Example 1 except that the blending amount of polyvinyl formal was changed from Example 1. A resin composition having a minimum viscosity of 6.5 Pa · s. I got a thing. As a result of molding as in Example 1, there was no problem with the number of single yarn fluffs of 20 / m 2 , but the molded product was inferior in appearance quality due to occurrence of fiber cracking due to the surface resin flow.

(比較例4)
実施例1と同じ方法で炭素繊維及び樹脂を作製し、プリプレグを製造する工程で炭素繊維を開繊させなかった結果、単糸毛羽個数は15個/mと問題なかったものの、表面平滑性が悪化し、成形外観に凹凸のある成形体であった。
(Comparative Example 4)
As a result of producing carbon fiber and resin by the same method as in Example 1 and not opening the carbon fiber in the process of producing the prepreg, the number of single yarn fluffs was 15 / m 2 , but there was no problem. As a result, the molded product had irregularities in the molded appearance.

Figure 2015221867
Figure 2015221867

本発明は、軽量化や高剛性化、また外観の意匠性を目的としたクリア塗装炭素繊維強化複合材料を用いるパソコン筐体に応用することができる。またその応用範囲はこれらに限られるものではない。   The present invention can be applied to a personal computer casing that uses a clear-coated carbon fiber reinforced composite material for the purpose of weight reduction, high rigidity, and appearance design. Moreover, the application range is not limited to these.

1:炭素繊維単糸(0°)
2:炭素繊維単糸(90°)
a:炭素繊維強化複合材料(最表層)
b:炭素繊維強化複合材料(2層目)
c:樹脂カスレ
d:繊維ワレ
3:一方向炭素繊維プリプレグシート
4:炭素繊維単糸毛羽
5:炭素繊維ボビン
6:炭素繊維束
7:パスロール
8:ガイドロール
9:コーム
10:炭素繊維シート
11:樹脂フィルムロール(上側)
12:樹脂フィルムシート
13:導入ロール
14:樹脂フィルムロール(下側)
15:樹脂フィルムシート
16:導入ロール
17:ニップロール
18:ニップロール
19:加熱装置
20:含浸ロール
21:含浸ロール
22:ニップロール
23:ニップロール
24:回収離型紙ロール
25:回収離型紙
26:一方向性炭素繊維プリプレグ
27:一方向性炭素繊維プリプレグロール
28:炭素繊維束
29:パスロール
30:ガイドロール
31:コーム
32:ガイドロール
33a:開繊振動ロール
33b:開繊振動ロール
33c:フリーロール
34:加熱装置
35:炭素繊維束
1: Carbon fiber single yarn (0 °)
2: Carbon fiber single yarn (90 °)
a: Carbon fiber reinforced composite material (outermost layer)
b: Carbon fiber reinforced composite material (second layer)
c: Resin waste d: Fiber crack 3: Unidirectional carbon fiber prepreg sheet 4: Carbon fiber single yarn fluff 5: Carbon fiber bobbin 6: Carbon fiber bundle 7: Pass roll 8: Guide roll 9: Comb 10: Carbon fiber sheet 11: Resin film roll (upper side)
12: Resin film sheet 13: Introduction roll 14: Resin film roll (lower side)
15: resin film sheet 16: introduction roll 17: nip roll 18: nip roll 19: heating device 20: impregnation roll 21: impregnation roll 22: nip roll 23: nip roll 24: recovered release paper roll 25: recovered release paper 26: unidirectional carbon Fiber prepreg 27: Unidirectional carbon fiber prepreg roll 28: Carbon fiber bundle 29: Pass roll 30: Guide roll 31: Comb 32: Guide roll 33a: Opening vibration roll 33b: Opening vibration roll 33c: Free roll 34: Heating device 35: Carbon fiber bundle

Claims (4)

結節束強度が100〜600MPaであり、単糸の断面の長径と短径との比率が1.10〜1.30の炭素繊維に、90〜115℃における最低粘度が1.0〜5.0Pa・sであり、150℃で加熱した時の硬化時間が1〜5分の間であるマトリックス樹脂を含浸させてなるプリプレグであって、前記プリプレグ表面上の幅5μm以上かつ長さ5mm以上の単糸毛羽個数が50個/m以下であり、前記マトリックス樹脂のフロー率が10〜20質量%であり、かつ前記プリプレグの表面の最大断面高さRtが80μm以下であるプリプレグ。 Carbon fiber having a knot bundle strength of 100 to 600 MPa and a ratio of the major axis to the minor axis of the single yarn of 1.10 to 1.30, the minimum viscosity at 90 to 115 ° C. is 1.0 to 5.0 Pa. A prepreg impregnated with a matrix resin that is s and has a curing time of 1 to 5 minutes when heated at 150 ° C., having a width of 5 μm or more on the prepreg surface and a length of 5 mm or more. A prepreg having a number of yarn fluffs of 50 pieces / m 2 or less, a flow rate of the matrix resin of 10 to 20% by mass, and a maximum cross-sectional height Rt of the surface of the prepreg of 80 μm or less. 結節束強度が150〜300MPa、繊維目付が50〜200g/m、樹脂質量含有率が20〜40%である請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the knot bundle strength is 150 to 300 MPa, the fiber basis weight is 50 to 200 g / m 2 , and the resin mass content is 20 to 40%. 結節束強度が100〜600MPaであり、単糸の断面の長径と短径との比率が1.10〜1.30の炭素繊維に、90〜115℃における最低粘度が1.0〜5.0Pa・sであり、150℃で加熱した時の硬化時間が1〜5分の間であるマトリックス樹脂を含浸させるプリプレグの製造方法であって、以下の(1)(2)の工程を有することを特徴とするプリプレグの製造方法。
(1)クリールから炭素繊維1束当たり80〜250gの張力で炭素繊維が引き出された後、梨地加工された自由回転式のパスロールを通じて炭素繊維を開繊部へ導く工程。
(2)一方向に互いに並行するように引き揃えられた炭素繊維に熱を与えつつ、横振動する複数本のラダー形状のロールに炭素繊維を接触させることにより炭素繊維を開繊する工程。
Carbon fiber having a knot bundle strength of 100 to 600 MPa and a ratio of the major axis to the minor axis of the single yarn of 1.10 to 1.30, the minimum viscosity at 90 to 115 ° C. is 1.0 to 5.0 Pa. S, a method for producing a prepreg impregnated with a matrix resin having a curing time of 1 to 5 minutes when heated at 150 ° C., which comprises the following steps (1) and (2) A manufacturing method of a prepreg characterized.
(1) A step of guiding carbon fibers to a fiber opening portion through a free-rotating pass roll subjected to a satin finish after the carbon fibers are drawn from the creel with a tension of 80 to 250 g per bundle of carbon fibers.
(2) A step of opening the carbon fiber by bringing the carbon fiber into contact with a plurality of ladder-shaped rolls that vibrate laterally while applying heat to the carbon fibers that are aligned so as to be parallel to each other in one direction.
請求項1または2に記載のプリプレグ、または請求項3に記載のプリプレグの製造方法により得られたプリプレグを硬化させて得られる炭素繊維強化複合材料。

A carbon fiber reinforced composite material obtained by curing the prepreg according to claim 1 or 2 or the prepreg obtained by the method for producing a prepreg according to claim 3.

JP2014106744A 2014-05-23 2014-05-23 Prepreg, method for producing the same, and carbon fiber reinforced composite material Active JP6384121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106744A JP6384121B2 (en) 2014-05-23 2014-05-23 Prepreg, method for producing the same, and carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106744A JP6384121B2 (en) 2014-05-23 2014-05-23 Prepreg, method for producing the same, and carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2015221867A true JP2015221867A (en) 2015-12-10
JP6384121B2 JP6384121B2 (en) 2018-09-05

Family

ID=54785066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106744A Active JP6384121B2 (en) 2014-05-23 2014-05-23 Prepreg, method for producing the same, and carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP6384121B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154780A (en) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 Prepreg and carbon fiber-reinforced composite material
WO2019124203A1 (en) * 2017-12-22 2019-06-27 東レ株式会社 Tape-shaped prepreg and production method therefor
WO2020137442A1 (en) 2018-12-28 2020-07-02 倉敷紡績株式会社 Resin-integrated reinforced fiber sheet and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053666A1 (en) * 1999-03-05 2000-09-14 Dsm N.V. Sheet prepreg
JP2005163223A (en) * 2003-12-03 2005-06-23 Toray Ind Inc Method and apparatus for opening reinforcing fiber bundle
JP2010285710A (en) * 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle and method for producing the same
JP2013159723A (en) * 2012-02-07 2013-08-19 Toray Ind Inc Prepreg and method for producing the same
WO2013157613A1 (en) * 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fiber bundle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053666A1 (en) * 1999-03-05 2000-09-14 Dsm N.V. Sheet prepreg
JP2005163223A (en) * 2003-12-03 2005-06-23 Toray Ind Inc Method and apparatus for opening reinforcing fiber bundle
JP2010285710A (en) * 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle and method for producing the same
JP2013159723A (en) * 2012-02-07 2013-08-19 Toray Ind Inc Prepreg and method for producing the same
WO2013157613A1 (en) * 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fiber bundle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154780A (en) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 Prepreg and carbon fiber-reinforced composite material
WO2019124203A1 (en) * 2017-12-22 2019-06-27 東レ株式会社 Tape-shaped prepreg and production method therefor
KR20200098551A (en) * 2017-12-22 2020-08-20 도레이 카부시키가이샤 Tape-type prepreg and its manufacturing method
JPWO2019124203A1 (en) * 2017-12-22 2020-10-22 東レ株式会社 Tape-shaped prepreg and its manufacturing method
KR102621342B1 (en) 2017-12-22 2024-01-08 도레이 카부시키가이샤 Tape-type prepreg and its manufacturing method
US11938655B2 (en) 2017-12-22 2024-03-26 Toray Industries, Inc. Tape-shaped prepreg and a method for production thereof
WO2020137442A1 (en) 2018-12-28 2020-07-02 倉敷紡績株式会社 Resin-integrated reinforced fiber sheet and production method therefor
KR20210107669A (en) 2018-12-28 2021-09-01 구라시키 보세키 가부시키가이샤 Resin-integrated reinforcing fiber sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP6384121B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
US9074064B2 (en) Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
US20090162653A1 (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite
KR20070009570A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP5614187B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP6003224B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
WO2016157933A1 (en) Tubular body made of carbon fiber-reinforced composite material and golf club shaft
WO2016117422A1 (en) Sizing agent-coated carbon fiber bundle, method for manufacturing same, prepreg, and carbon fiber-reinforced composite material
JP6384121B2 (en) Prepreg, method for producing the same, and carbon fiber reinforced composite material
JP6115461B2 (en) Carbon fiber coated with sizing agent and method for producing the same, carbon fiber reinforced thermoplastic resin composition
JP5330073B2 (en) Manufacturing method of conveying shaft
JP5929270B2 (en) Prepreg and manufacturing method thereof, slit prepreg, carbon fiber reinforced composite material
JP2014173053A (en) Prepreg for press molding and fiber reinforced composite material
JP2008095222A (en) Carbon fiber strand and prepreg
JP6048235B2 (en) Sizing agent-coated carbon fiber and method for producing sizing agent-coated carbon fiber
JP4671890B2 (en) Prepreg
JP2015028147A (en) Sizing agent-applied carbon fiber, production method thereof, prepreg, and carbon fiber-reinforced composite material
JP4437420B2 (en) Carbon fiber strands
JP2007145963A (en) Intermediate for producing carbon fiber-reinforced composite material and carbon fiber-reinforced composite material
JP2013202803A (en) Carbon fiber reinforced composite material
KR20160037256A (en) Method of coating carbon-fiber with sizing agent, apparatus thereof, and complex materials manufactured by the same
JP2012052279A (en) Method for producing sizing agent coated carbon fiber
EP4257624A1 (en) Fiber-reinforced pultrusion-molded article
JP2004149721A (en) Carbon fiber strand
JP2006188782A (en) Carbon fiber strand and method for producing the same
JP2011219514A (en) Prepreg, carbon fiber composite material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R151 Written notification of patent or utility model registration

Ref document number: 6384121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151