JP2015220871A - Pulse magnetic field generating source - Google Patents

Pulse magnetic field generating source Download PDF

Info

Publication number
JP2015220871A
JP2015220871A JP2014102914A JP2014102914A JP2015220871A JP 2015220871 A JP2015220871 A JP 2015220871A JP 2014102914 A JP2014102914 A JP 2014102914A JP 2014102914 A JP2014102914 A JP 2014102914A JP 2015220871 A JP2015220871 A JP 2015220871A
Authority
JP
Japan
Prior art keywords
magnetic field
voltage
power
current
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014102914A
Other languages
Japanese (ja)
Inventor
嶋田 隆一
Ryuichi Shimada
隆一 嶋田
新一 野村
Shinichi Nomura
新一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014102914A priority Critical patent/JP2015220871A/en
Publication of JP2015220871A publication Critical patent/JP2015220871A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable power received from an external power source to be set to fixed power by a pulse magnetic field generator.SOLUTION: In a highly repetitive magnetic field generator having magnetic energy storage means in which the current of a magnetic energy storage coil is controlled by a low-speed chopper so that the voltage of a voltage source capacitor is fixed and the pulse current of a magnetic field generating coil is controlled with high precision from the voltage source by a high-speed chopper, the voltage of the voltage source capacitor at the intermediate portion is controlled to be fixed, so that the received power can be smoothed by merely connecting a DC power source comprising passive circuits such as a transformer for receiving power from an external power source, a diode rectifier, etc. to the voltage source capacitor in parallel.

Description

本発明は、磁界発生電源に関するものである。   The present invention relates to a magnetic field generating power source.

磁界発生装置には磁気エネルギーが蓄積されており、パルス磁界発生電源は、パルス磁界の発生停止毎に磁気エネルギーの充電・放電が行われる。パルス磁界発生電源は磁界発生装置に電流が流れるに伴うジュール損と磁気エネルギーを併せて供給する必要がある。装置が大型になると,この磁気エネルギーも大きくなり、パルスレートが大きくなると,蓄積されたエネルギーを放電する際,そのエネルギーを蓄積しておき、再度運転する際に再利用することが理想的である。近年の大型の磁界発生装置はコイル電流密度が大きく取れかつ電気抵抗がゼロであることから超電導導体が採用されている。ジュール損に対して磁気エネルギーが大きくなり、磁気エネルギーを毎回捨てては電力料金の点から効率的ではない。また、回生することが可能な電源であっても、電力系統にエネルギーを返すには制約があるので困難である。それには、パルス磁界発生電源はエネルギー蓄積手段を持つことが理想的である。エネルギー蓄積手段には、キャパシター,フライホイール、磁気エネルギー蓄積(SMES:Superconductive Magnetic Energy Storage)コイルなどがある。   Magnetic energy is stored in the magnetic field generator, and the pulsed magnetic field generating power source is charged and discharged with magnetic energy every time generation of the pulsed magnetic field is stopped. The pulse magnetic field generating power source needs to supply both the Joule loss and the magnetic energy as the current flows to the magnetic field generator. When the device becomes larger, this magnetic energy increases, and when the pulse rate increases, it is ideal to store the energy when discharging the stored energy and reuse it when it is restarted. . In recent large-scale magnetic field generators, a superconducting conductor is adopted because the coil current density is large and the electric resistance is zero. Magnetic energy increases with respect to Joule loss, and it is not efficient from the viewpoint of electric power charges if the magnetic energy is discarded every time. Moreover, even a power source that can be regenerated is difficult because there are restrictions on returning energy to the power system. For this purpose, it is ideal that the pulse magnetic field generating power source has energy storage means. Examples of the energy storage means include a capacitor, a flywheel, and a magnetic energy storage (SMES) coil.

SMESコイルをエネルギー蓄積手段とするには図1に示す2つのチョッパー回路を電圧源コンデンサを挟んで電流・電圧変換する回路が提案されている。1の低速チョッパー回路を用いて電流を中間電圧源コンデンサに充電し,SMESの電流を決められた電圧源コンデンサの電圧に維持するようにオンオフ制御する。そのコンデンサの電圧を第2の高速チョッパー回路で磁界発生装置に電流を流すがその際,磁界発生装置の必要な精度の電流制御を行うことが要求されるので電圧源の電圧は一定であって欲しい。
このダブルのチョッパー回路では、運転により磁界発生装置のジュール損やチョッパー回路内部の損失で全システムのエネルギーが減少する。その減少するエネルギー分のみを外部電源(多くに場合商用電源)から供給する必要がある。外部電源からのエネルギーの補充方法に関して、一般的には、先の出願でも採用しているが、SMESコイルに直列に電圧源を挿入し、エネルギーを補充する方式がある。図1の低速チョッパー回路に直列に接続された補充電圧源が外部電源から損失分を補充する。
In order to use the SMES coil as energy storage means, a circuit has been proposed in which two chopper circuits shown in FIG. 1 are subjected to current / voltage conversion with a voltage source capacitor interposed therebetween. Using a low-speed chopper circuit, the current is charged into the intermediate voltage source capacitor, and the on / off control is performed so as to maintain the SMES current at the voltage of the determined voltage source capacitor. The voltage of the capacitor is passed through the magnetic field generator by the second high-speed chopper circuit. At that time, it is required to control the current with the necessary accuracy of the magnetic field generator, so the voltage of the voltage source is constant. I want.
In this double chopper circuit, the energy of the entire system is reduced by operation due to Joule loss of the magnetic field generator and loss inside the chopper circuit. It is necessary to supply only the decreasing energy from an external power source (in many cases, a commercial power source). Regarding the method of replenishing energy from an external power source, generally, there is a method of replenishing energy by inserting a voltage source in series with the SMES coil, which is also adopted in the previous application. A replenishment voltage source connected in series with the low-speed chopper circuit of FIG. 1 replenishes the loss from the external power source.

外部電源からの受電は、パルス運転に因らず一定電力を受電し電力ピークがないことが好ましいが、そのためには電流がパルス運転に応じて変化するなかで電圧を発生するので電力一定にするには高度な制御が必要である。電源容量は損失分のみであるから   Power reception from an external power source preferably receives constant power regardless of pulse operation and has no power peak, but for that purpose, voltage is generated while the current changes according to pulse operation, so the power is constant. Requires advanced control. Because power supply capacity is only for loss

特許文献の図5にあるように磁界コイルに直列に入れた外部電源の電力一定制御には電流センサ、電圧センサ、演算制御装置とともに可変電圧電流の直流電源が必要である。磁界発生装置の電流制御用の高速高精度チョッパー回路、SMESコイルの電流を電圧源コンデンサの必要電流にするための比較的低速なチョッパー回路、損失分を補充するため外部電源から直流電圧をSMESコイルに注入する回路の3種が必要になる。   As shown in FIG. 5 of the patent document, a constant voltage power control of an external power source placed in series with a magnetic coil requires a variable voltage current DC power source together with a current sensor, a voltage sensor, and an arithmetic and control unit. High-speed and high-precision chopper circuit for current control of magnetic field generator, relatively low-speed chopper circuit to make SMES coil current necessary for voltage source capacitor, DC voltage from external power supply to supplement loss Three types of circuits to be injected into the circuit are required.

「パルス電源装置」特許4382665号"Pulse power supply" Patent 4382665

解決しようとする問題点は、SMESコイルのエネルギー蓄積装置とするパルス磁界発生用電源は3種類の制御を同時に行う電源を必要とするがこれは複雑である。   The problem to be solved is that a pulse magnetic field generating power source as an SMES coil energy storage device requires a power source that simultaneously performs three types of control, but this is complicated.

本発明は、SMESコイルのチョッパー回路の電圧制御能力によって、電圧源コンデンサの電圧を制御すれば、外部電源からの注入電力一定も併せて制御することが可能にするシステムである。外部電源からはダイオード整流器のみを並列に電圧源コンデンサに接続するのみで、受電電力一定制御を合理化できることを最も主要な特徴とする。   The present invention is a system that makes it possible to control the constant injection power from an external power source by controlling the voltage of the voltage source capacitor by the voltage control capability of the chopper circuit of the SMES coil. The most important feature is that the constant control of the received power can be rationalized only by connecting only the diode rectifier in parallel to the voltage source capacitor from the external power source.

本発明のパルス磁界発生電源は、SMESコイルと2種類のチョッパー回路のみの制御を行う電源で可能になり、電流×電圧=電力の演算制御を必要としない。
The pulse magnetic field generating power supply of the present invention can be realized by a power supply that controls only the SMES coil and two types of chopper circuits, and does not require calculation control of current × voltage = power.

図1はパルス磁界発生用電源の実施方法を示した説明図である。FIG. 1 is an explanatory diagram showing a method of implementing a power supply for generating a pulse magnetic field. 図2は実施例のシミュレーション回路である。FIG. 2 shows a simulation circuit of the embodiment. 図3は実施例のシミュレーション計算結果である。FIG. 3 shows a simulation calculation result of the example.

SMESコイルは磁界発生コイルと同じインダクタンスLsmであると想定しているが運転に必要なエネルギーは十分に蓄えられていると想定している。 The SMES coil is assumed to have the same inductance Lsm as the magnetic field generating coil, but it is assumed that the energy required for operation is sufficiently stored.

図1は、本発明装置の1実施例の回路図であって、1の高速チョッパーはS1ゲート制御でオンオフされ、2の低速チョッパーはS2ゲート制御でオンオフされる。3の電圧源コンデンサC11は、高速チョッパーの電圧源として安定な電圧を維持するだけの容量が必要でここでは25mFである。4のダイオード電源は外部電源から電圧源コンデンサに電流を送るが電流の大きさは電圧源コンデンサの電圧が変化しなければ一定である。   FIG. 1 is a circuit diagram of an embodiment of the apparatus of the present invention. One high-speed chopper is turned on / off by S1 gate control, and two low-speed choppers are turned on / off by S2 gate control. The voltage source capacitor C11 of No. 3 needs a capacity sufficient to maintain a stable voltage as a voltage source of the high-speed chopper, and is 25 mF here. The diode power supply 4 sends current from the external power supply to the voltage source capacitor, but the magnitude of the current is constant if the voltage of the voltage source capacitor does not change.

電圧センサは電圧源コンデンサの電圧を検出しており、S2ゲート制御の制御によってコンデンサの電圧を上昇させるときはオフ、下げるときはオンする。ここでは電圧指令に対してΔの電圧幅でオン、オフ指令を出力するヒステリシス制御を想定したが、それ以外の電圧制御方法で実施可能なので、電子、制御系の説明は省略する。   The voltage sensor detects the voltage of the voltage source capacitor, and is turned off when the voltage of the capacitor is raised by the control of the S2 gate control, and turned on when lowered. Here, hysteresis control for outputting an on / off command with a voltage width of Δ with respect to the voltage command is assumed. However, since the voltage control method can be implemented by other voltage control methods, description of the electronics and the control system is omitted.

電流センサは磁界発生装置の電流を検出して、S1ゲート制御の制御によって電流を上昇させるときはオン、下げるときはオフする。ここでは電流指令に対して許容偏差の幅でオン、オフ指令を出力するヒステリシス制御を想定したが、それ以外の電流制御方法で実施可能なので、電子、制御系の説明は省略する。 The current sensor detects the current of the magnetic field generator, and is turned on when the current is raised by the control of the S1 gate control, and turned off when the current is lowered. Here, hysteresis control that outputs an on / off command with a width of an allowable deviation with respect to the current command is assumed. However, since it can be implemented by other current control methods, description of the electronic and control systems is omitted.

外部電源からの入力は交流電力の単純な整流出力を電圧源コンデンサに並列に接続している。交流の流入電力は、交流側の変圧器も含む直列リアクタンスと、電圧源コンデンサの電圧によって決まるのでコンデンサの電圧が一定であれば、入力電力も一定になることが特徴である。電力の大きさは変圧器の2次電圧タップなど交流側の電圧を選択しておけばよい。   The input from the external power supply has a simple rectified output of AC power connected in parallel to the voltage source capacitor. Since the AC inflow power is determined by the series reactance including the transformer on the AC side and the voltage of the voltage source capacitor, if the capacitor voltage is constant, the input power is also constant. For the magnitude of the electric power, an AC side voltage such as a secondary voltage tap of the transformer may be selected.

高エネルギー粒子加速器の高繰り返し運転時の磁界発生装置ではその磁気エネルギーが数MJ程度で核融合実験装置JT-60のトロイダル磁場コイルのように数GJほど大きくはないが数秒間隔で励磁、消磁を繰り返すので電力のピークは数MWにもなり、大きい。これはこのパルス磁界発生電源では、エネルギー蓄積手段としてSMESコイルを計画している。   In the magnetic field generator during high repetition operation of the high energy particle accelerator, its magnetic energy is about several MJ, and it is not as large as several GJ like the toroidal magnetic field coil of the fusion experimental device JT-60, but it is excited and demagnetized at intervals of several seconds. Since it repeats, the power peak is as large as several MW, which is large. In this pulse magnetic field generating power source, an SMES coil is planned as an energy storage means.

図1の回路を適用する場合をシミュレーションで説明する。加速器では粒子の加速に伴って磁界強度を同期して上昇させる。粒子の速度が規定値に達すれば粒子を吐き出し、つぎの加速の準備のために磁界を元の値に消磁する。磁界コイルは同期しての電流上昇と次回の準備のために電流減少、これを繰り返す。 A case where the circuit of FIG. 1 is applied will be described by simulation. In the accelerator, the magnetic field strength is increased synchronously with the acceleration of the particles. When the velocity of the particle reaches the specified value, the particle is discharged, and the magnetic field is demagnetized to the original value in preparation for the next acceleration. The magnetic field coil synchronously increases the current and decreases for the next preparation, and repeats this.

図2にシミュレーション回路の条件を示す。その1例としてシンクロトロン粒子加速器のMR(メインリング)磁界発生装置6台で構成されるがその1台の電力を概算してみる。インダクタンスL2=1.6[H]で電気抵抗はR=0.7Ωである。電流最大値は1.6kAである。立ち上げ時間は簡単のために1秒を想定した場合、磁気エネルギーは2MJである。この電源のピーク電圧は磁界電流立ち上げ終了の直前で電圧はVmax=R×I+LdI/dt、であるから、Vmax=1120+1.6×1600=3680V=3.6kVである。このときの電力はPmax=3.6kV×1.6kA=5.76MWである。この電力を系統電力系から直接受電するのは無理がある。
そこでSMESコイルをエネルギー蓄積装置としたことで電力ピークは平準化されるとさらに繰り返しスピードを速くすることができる。
FIG. 2 shows the conditions of the simulation circuit. As an example, it is composed of six MR (main ring) magnetic field generators of a synchrotron particle accelerator. Inductance L2 = 1.6 [H] and electrical resistance is R = 0.7Ω. The maximum current value is 1.6 kA. Assuming that the start-up time is 1 second, the magnetic energy is 2 MJ. Since the peak voltage of this power supply is immediately before the end of rising of the magnetic field current and the voltage is Vmax = R × I + LdI / dt, Vmax = 1120 + 1.6 × 1600 = 3680 V = 3.6 kV. The power at this time is Pmax = 3.6 kV × 1.6 kA = 5.76 MW. It is impossible to receive this power directly from the grid power system.
Therefore, by using the SMES coil as an energy storage device, it is possible to further increase the repetition speed when the power peak is leveled.

図3に実施例のシミュレーション計算結果を示す。磁界発生コイル電流は直性的に上昇する電流参照値Vrfに従って電流制御用チョッパー回路で追従、上昇させる。電圧源コンデンサは、低速チョッパーの制御のより6kVに保たれる。よって外部電力は一定である。
上段のグラフはIcoil:磁界発生コイルの電流、I(Lsm):超電導コイルの電流、Vrf:コイル電流目標値をしめしている。
中段のグラフはVc:電圧源コンデンサの電圧(6kVに制御されている)、Vcoil:コイル印加電圧(激しく上下している)
下段のグラフはW1:外部電源からの電力(1MW以下の一定値)、W3:高速チョッパーからの出力電力、最大値は7.5MW、マイナスは7MW程度になる。
FIG. 3 shows the simulation calculation results of the example. The magnetic field generating coil current is tracked and increased by the current control chopper circuit in accordance with the current reference value Vrf that increases linearly. The voltage source capacitor is kept at 6 kV under the control of the low speed chopper. Therefore, the external power is constant.
The upper graph shows Icoil: current of the magnetic field generating coil, I (Lsm): current of the superconducting coil, and Vrf: target coil current value.
The middle graph shows Vc: Voltage of the voltage source capacitor (controlled to 6 kV), Vcoil: Coil applied voltage (moves up and down violently)
The lower graph shows W1: power from the external power supply (a constant value of 1 MW or less), W3: output power from the high-speed chopper, the maximum value is 7.5 MW, and minus is about 7 MW.

パルス磁界発生装置の代表である加速器において、数MWのプラス、マイナスの電力変動が磁気エネルギー蓄積装置を併設し、そのチョッパー電源の電圧源コンデンサへ、給電することで一定電力の受電で連続運転することが可能になる。 In an accelerator, which is a representative of a pulsed magnetic field generator, a plus or minus power fluctuation of several MW is provided with a magnetic energy storage device, and the chopper power supply voltage source capacitor is powered to continuously operate with constant power reception. It becomes possible.

パルス運転される磁界発生装置において、外部電源から一定の電力を受電するために高度な電力一定制御を行わずにダイオード整流器と変圧器のタップ切り換えで実現でき、フリッカ、高調波、力率の変化の問題なくパルス運転の高速繰り返しが可能になる。本方式によれば、医療用粒子加速器などのパルス磁界応用装置の運転電力ピークと電力料金を削減し、電力環境への擾乱を無くすることができる。
In a pulsed magnetic field generator, it can be realized by switching taps between a diode rectifier and a transformer without performing advanced constant power control to receive constant power from an external power supply, and changes in flicker, harmonics, and power factor High speed repetition of pulse operation is possible without any problem. According to this method, it is possible to reduce operating power peaks and power charges of pulsed magnetic field application devices such as medical particle accelerators, and to eliminate disturbance to the power environment.

1 高速チョッパー
2 低速チョッパー
3 電圧源コンデンサC
4 ダイオード電源
5 ゲート制御装置
1 High-speed chopper 2 Low-speed chopper 3 Voltage source capacitor C
4 Diode power supply 5 Gate control device

Claims (2)

磁気エネルギーをエネルギー貯蔵源として駆動されるパルス磁界発生装置において、外部電源からの電力受電方法として、電流制御用チョッパーの電圧源コンデンサに、外部電源から変圧器とダイオード整流器からなる直流電源を並列に接続して運転に必要な電力を脈動すくなく補充することを特徴とするパルス磁界発生電源。 In a pulse magnetic field generator driven by magnetic energy as an energy storage source, as a method of receiving power from an external power source, a DC power source consisting of a transformer and a diode rectifier is connected in parallel to the voltage source capacitor of the current control chopper from the external power source. A pulsed magnetic field generating power source characterized in that it is connected and replenished without pulsating power necessary for operation. 磁気エネルギーをエネルギー貯蔵源として駆動されるパルス磁界発生装置において、磁界発生用コイルの電流制御用には高速オンオフのチョッパー回路で高精度で制御するが、磁気エネルギー蓄積コイルでは低速オンオフのチョッパー回路で電圧源コンデンサの電圧制御を行うことを特徴とするパルス磁界発生電源。 In a pulsed magnetic field generator driven by using magnetic energy as an energy storage source, a high-speed on / off chopper circuit is used to control the current of the magnetic field generating coil with high accuracy, while a low-speed on / off chopper circuit is used for the magnetic energy storage coil. A pulse magnetic field generating power source characterized by performing voltage control of a voltage source capacitor.
JP2014102914A 2014-05-17 2014-05-17 Pulse magnetic field generating source Pending JP2015220871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014102914A JP2015220871A (en) 2014-05-17 2014-05-17 Pulse magnetic field generating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102914A JP2015220871A (en) 2014-05-17 2014-05-17 Pulse magnetic field generating source

Publications (1)

Publication Number Publication Date
JP2015220871A true JP2015220871A (en) 2015-12-07

Family

ID=54779860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102914A Pending JP2015220871A (en) 2014-05-17 2014-05-17 Pulse magnetic field generating source

Country Status (1)

Country Link
JP (1) JP2015220871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687739A (en) * 2019-01-03 2019-04-26 国网四川省电力公司成都供电公司 A kind of ZSC-SMES topological structure and its AC/DC side control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687739A (en) * 2019-01-03 2019-04-26 国网四川省电力公司成都供电公司 A kind of ZSC-SMES topological structure and its AC/DC side control method

Similar Documents

Publication Publication Date Title
Elsayed et al. Modeling and control of a low-speed flywheel driving system for pulsed-load mitigation in DC distribution networks
CN112713798B (en) Pulse power supply, GW-level power traveling wave magnetic field generation device and method
Kim et al. High-voltage power supply using series-connected full-bridge PWM converter for pulsed power applications
Fridman et al. A 0.5-MJ 18-kV module of capacitive energy storage
Dong et al. Analysis of critical inductance and capacitor voltage ripple for a bidirectional Z-source inverter
Chung et al. Integration of a bi-directional dc-dc converter model into a large-scale system simulation of a shipboard MVDC power system
Li et al. A repetitive inductive pulsed power supply circuit topology based on HTSPPT
Lampasi et al. Compact power supply with integrated energy storage and recovery capabilities for arbitrary currents up to 2 kA
Zhang et al. Design and simulation of a multimodule superconducting inductive pulsed-power supply model for a railgun system
Liu et al. High-voltage high-frequency charging power supply based on voltage feedback and phase-shift control
JP2015220871A (en) Pulse magnetic field generating source
Takayanagi et al. Design and preliminary performance of the new injection shift bump power supply at the J-PARC 3-GeV RCS
Al-Ramadhan et al. Design and simulation of supercapacitor Energy Storage System
Li et al. Modeling and simulation of railgun system driven by multiple HTSPPT modules
Rakhi et al. Simulation analysis of half bridge series parallel resonant converter based battery charger for photovoltaic system
Ise et al. Magnet power supply with power fluctuation compensating function using SMES for high intensity synchrotron
Bortis et al. Optimal design of a two-winding inductor bouncer circuit
Fan et al. Research on energy recovery system based on HTSM for the synchronous induction electromagnetic launcher system
Fu et al. Research of linear charging for repetition-frequency pulse power supply
Li et al. A flexible waveform conditioning strategy of an air-core pulsed alternator
Lixing et al. Electromagnetic lifting control system based on BAS+ PID algorithm
Choi et al. Superconducting Magnet Power Supply System for the KSTAR 2 nd Plasma Experiment and Operation
Bordry et al. Cern-ps main power converter renovation: How to provide and control the large flow of energy for a rapid cycling machine
Bajon et al. Booster main magnet power supply, present operation and potential future upgrades
Giesselmann et al. New developments in high power capacitor charging technology