JP2015219059A - Position detector and method - Google Patents

Position detector and method Download PDF

Info

Publication number
JP2015219059A
JP2015219059A JP2014101463A JP2014101463A JP2015219059A JP 2015219059 A JP2015219059 A JP 2015219059A JP 2014101463 A JP2014101463 A JP 2014101463A JP 2014101463 A JP2014101463 A JP 2014101463A JP 2015219059 A JP2015219059 A JP 2015219059A
Authority
JP
Japan
Prior art keywords
imu
light receiving
receiving element
laser beam
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014101463A
Other languages
Japanese (ja)
Inventor
伊久間 茂
Shigeru Ikuma
茂 伊久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2014101463A priority Critical patent/JP2015219059A/en
Publication of JP2015219059A publication Critical patent/JP2015219059A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a position inspection device and method capable of easily determining the current position by composing a first position detected using a laser beam and a second position determined by acceleration integral from an inertial sensor of an IMU(inertial measurement unit).SOLUTION: The configuration includes: first and second fixed light receiving elements 4 and 5 disposed at both ends on the diagonal line of a member 1 to be inspected; and a biaxial polygon mirror 3 for scanning the surface with a laser beam 2a. In the method, a first position of an IMU 7 is determined on the basis of the time difference between a first timing at which the first fixed light receiving element 4 receives light and a second timing at which a light receiving element for movement of the IMU 7 receives light, a second position is determined by acceleration integral using an inertia signal from an inertial sensor of the IMU 7, and the current position is determined by composing the first and second positions.

Description

本発明は、位置検出装置及び方法に関し、特に、レーザビームを用いて位置を検出した第1位置と、IMUの慣性センサからの加速度の加速度積分で位置を求めた第2位置と、を合成して現在位置を求めるための新規な改良に関する。   The present invention relates to a position detection apparatus and method, and in particular, combines a first position where a position is detected using a laser beam and a second position where the position is obtained by acceleration integration of acceleration from an inertial sensor of an IMU. The present invention relates to a new improvement for obtaining the current position.

従来、用いられているXY位置の検出方法としては、特許文献等を開示していないが、液晶画面をタッチすることにより、XY位置を検出することは一般に行われている。
また、特許文献1に示されるように、例えば、半導体層の表面状態を短時間で精度良く測定する検出方法は開示されている。
Conventionally, as an XY position detection method that has been used, patent documents and the like are not disclosed, but it is generally performed to detect an XY position by touching a liquid crystal screen.
Further, as disclosed in Patent Document 1, for example, a detection method for measuring the surface state of a semiconductor layer with high accuracy in a short time is disclosed.

特開2011−101049号公報JP 2011-101049 A

従来の位置検出方法は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、前述の液晶画面におけるXY位置検出方法においては、人手やポイント棒を用いて検出するため、人手やポイント棒の当接部分以上の精度は要求することはできず、微細な位置検出を行うことは困難であった。
また、特許文献1に開示された半導体層の検査方法においては、光学スペクトル解析手法によって、表面の微細な状態の検出は行うことができるが、半導体層の位置検出に応用することは不可能であった。
Since the conventional position detecting method is configured as described above, the following problems exist.
That is, in the above-described XY position detection method on the liquid crystal screen, since the detection is performed using a human hand or a point bar, it is not possible to require an accuracy higher than the contact part of the human hand or the point bar, and a fine position detection is performed. It was difficult.
In addition, in the semiconductor layer inspection method disclosed in Patent Document 1, it is possible to detect the fine state of the surface by an optical spectrum analysis method, but it is impossible to apply to the position detection of the semiconductor layer. there were.

本発明は、以上のような課題を解決するためになされたもので、特に、レーザビームを用いて位置を検出した第1位置と、IMUの慣性センサからの加速度の加速度積分で位置を求めた第2位置と、を合成して現在位置を求めるようにした位置検出装置及び方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. In particular, the position is obtained by integrating the first position where the position is detected using a laser beam and the acceleration integral of the acceleration from the inertial sensor of the IMU. It is an object of the present invention to provide a position detection apparatus and method for obtaining a current position by combining a second position.

本発明による位置検出装置は、X軸方向及びY軸方向に所定の長さを有する表面からなる被測定部材又は被測定領域上に移動用受光素子を有する慣性計測ユニット(以下、IMUと称す)を前記X軸方向及びY軸方向に沿って移動自在とし、前記IMUによってXY位置を検出するようにした位置検出装置において、前記被測定部材又は被測定領域の対角線上の両端に設けられた第1、第2固定受光素子と、前記表面をレーザビームでスキャンするための2軸のポリゴンミラーと、を備え、前記第1固定受光素子はスタート時の前記レーザビームを受光し、前記第1固定受光素子が受光した第1タイミングと前記IMUの移動用受光素子が受光した第2タイミングの時間差より前記IMUの第1位置を求め、前記IMUは、前記IMUが有する慣性センサからの慣性信号を用いて加速度積分で求めた第2位置と前記レーザビームにより求めた前記第1位置との合成により現在位置を求める構成であり、また、前記加速度積分は、2回行う構成であり、また、本発明による位置検出方法は、X軸方向及びY軸方向に所定の長さを有する表面からなる被測定部材又は被測定領域上に移動用受光素子を有する慣性計測ユニット(以下、IMUと称す)を前記X軸方向及びY軸方向に沿って移動自在とし、前記IMUによってXY位置を検出するようにした位置検出装置を用い、前記被測定部材又は被測定領域の対角線上の両端に設けられた第1、第2固定受光素子と、前記表面をレーザビームでスキャンするための2軸のポリゴンミラーと、を備え、前記第1固定受光素子はスタート時の前記レーザビームを受光し、前記第1固定受光素子が受光した第1タイミングと前記IMUの移動用受光素子が受光した第2タイミングの時間差より前記IMUの第1位置を求め、前記IMUは、前記IMUが有する慣性センサからの慣性信号を用いて加速度積分で求めた第2位置と前記レーザビームにより求めた前記第1位置との合成により現在位置を求める方法であり、また、前記加速度積分は、2回行う方法である。   A position detection apparatus according to the present invention includes an inertial measurement unit (hereinafter referred to as IMU) having a light receiving element for movement on a member to be measured or a measurement region having a surface having a predetermined length in the X-axis direction and the Y-axis direction. In the position detecting device that can move along the X-axis direction and the Y-axis direction and detect the XY position by the IMU, the first member provided at both ends on the diagonal line of the member to be measured or the region to be measured 1. A second fixed light receiving element and a biaxial polygon mirror for scanning the surface with a laser beam, wherein the first fixed light receiving element receives the laser beam at the start, and the first fixed light receiving element. A first position of the IMU is obtained from a time difference between a first timing at which the light receiving element receives light and a second timing at which the moving light receiving element of the IMU receives light, and the IMU has the IMU. The present position is obtained by combining the second position obtained by acceleration integration using the inertial signal from the inertial sensor and the first position obtained by the laser beam, and the acceleration integration is performed twice. In addition, the position detection method according to the present invention includes an inertial measurement unit having a moving light receiving element on a member to be measured or a region to be measured having a surface having a predetermined length in the X-axis direction and the Y-axis direction. (Hereinafter referred to as IMU) is movable along the X-axis direction and the Y-axis direction, and a position detection device that detects the XY position by the IMU is used on the diagonal line of the member to be measured or the region to be measured. First and second fixed light receiving elements provided at both ends of the first and second fixed light receiving elements, and a biaxial polygon mirror for scanning the surface with a laser beam. A first position of the IMU is obtained from a time difference between a first timing when the laser beam is received and received by the first fixed light receiving element and a second timing received by the light receiving element for movement of the IMU, and the IMU It is a method of obtaining a current position by combining a second position obtained by acceleration integration using an inertial signal from an inertial sensor of the IMU and the first position obtained by the laser beam, and the acceleration integration is This is a method performed twice.

本発明による位置検出装置及び方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、X軸方向及びY軸方向に所定の長さを有する表面からなる被測定部材又は被測定領域上に移動用受光素子を有する慣性計測ユニット(以下、IMUと称す)を前記X軸方向及びY軸方向に沿って移動自在とし、前記IMUによってXY位置を検出するようにした位置検出装置において、前記被測定部材又は被測定領域の対角線上の両端に設けられた第1、第2固定受光素子と、前記表面をレーザビームでスキャンするための2軸のポリゴンミラーと、を備え、前記第1固定受光素子はスタート時の前記レーザビームを受光し、前記第1固定受光素子が受光した第1タイミングと前記IMUの移動用受光素子が受光した第2タイミングの時間差より前記IMUの第1位置を求め、前記IMUは、前記IMUが有する慣性センサからの慣性信号を用いて加速度積分で求めた第2位置と前記レーザビームにより求めた前記第1位置との合成により現在位置を求めることにより、位置ドリフトが小さくなり、安価な加速度計でも高い位置精度が得られる。レーザビーム側はビーム変調は不要のため安価となる。また、受光センサ基準にて位置が計測できるので、レーザビームスキャンの調整は簡単となる。
また、前記加速度積分は、2回行うことにより、時間と共に位置がずれることを防止することができる。
Since the position detection apparatus and method according to the present invention are configured as described above, the following effects can be obtained.
That is, an inertial measurement unit (hereinafter referred to as IMU) having a light receiving element for movement on a measured member or a measured region having a surface having a predetermined length in the X-axis direction and the Y-axis direction, In the position detection apparatus that is movable along the Y-axis direction and detects the XY position by the IMU, first and second fixed light receptions provided at opposite ends of the member to be measured or the region to be measured. An element and a biaxial polygon mirror for scanning the surface with a laser beam, wherein the first fixed light receiving element receives the laser beam at the start, and the first fixed light receiving element receives the first beam A first position of the IMU is obtained from a time difference between one timing and a second timing received by the light receiving element for movement of the IMU, and the IMU receives from an inertial sensor of the IMU. The position drift is reduced by obtaining the current position by combining the second position obtained by acceleration integration using the sex signal and the first position obtained by the laser beam, and high position accuracy can be achieved even with an inexpensive accelerometer. can get. The laser beam side is inexpensive because it does not require beam modulation. Further, since the position can be measured based on the light receiving sensor reference, the adjustment of the laser beam scan becomes simple.
Further, the acceleration integration is performed twice, thereby preventing the position from being shifted with time.

本発明による位置検出装置及び方法を示す構成図である。1 is a configuration diagram illustrating a position detection apparatus and method according to the present invention. 図1における具体的な検出構成を示す説明図である。It is explanatory drawing which shows the specific detection structure in FIG.

本発明による位置検出装置及び方法は、レーザビームを用いて位置を検出した第1位置と、IMUの慣性センサからの加速度の加速度積分で位置を求めた第2位置と、を合成して現在位置を求めることである。   The position detection apparatus and method according to the present invention combine a first position where a position is detected using a laser beam and a second position where the position is obtained by acceleration integration of acceleration from an inertial sensor of the IMU, to obtain a current position. Is to seek.

以下、図面と共に本発明による位置検出装置及び方法の好適な実施の形態について説明する。
図1において、符号1で示されるものは、例えば、板状をなす被測定部材又は被測定領域であり、この被測定部材1又は被測定領域を、以下、被測定部材1とする。
Hereinafter, preferred embodiments of a position detection apparatus and method according to the present invention will be described with reference to the drawings.
In FIG. 1, what is indicated by reference numeral 1 is, for example, a plate-like member to be measured or a region to be measured. This member to be measured 1 or the region to be measured is hereinafter referred to as a member 1 to be measured.

前記被測定部材1は、図1で示されるように、この被測定部材1から離間した位置に設けられたレーザビーム発生器2から発生するレーザビーム2aが2軸のポリゴンミラー3で反射されて前記被測定部材1の表面1aをスキャンすることができるように構成されている。   As shown in FIG. 1, the member 1 to be measured is reflected by a biaxial polygon mirror 3 with a laser beam 2a generated from a laser beam generator 2 provided at a position away from the member 1 to be measured. The surface 1a of the member to be measured 1 can be scanned.

前記被測定部材1は、そのX軸方向X及びY軸方向Yに所定の長さを有する前記表面1aが形成されている。
前記被測定部材1の対角線上の両端には第1、第2固定受光素子4,5が前記レーザビーム2aを受光することができるように構成されている。
The measured member 1 has the surface 1a having a predetermined length in the X-axis direction X and the Y-axis direction Y.
First and second fixed light receiving elements 4 and 5 are configured to receive the laser beam 2a at opposite ends of the member 1 to be measured.

前記被測定部材1上には、例えば、図示しない周知のXY移動機構を介してXY方向に移動することができるように構成され移動用受光素子6を有する周知の慣性計測ユニット(以下、IMUと称す)7が配設されている。
前記IMU7内には、周知の慣性センサである図示しないジャイロと加速度計等が内蔵されている。
On the member 1 to be measured, for example, a well-known inertial measurement unit (hereinafter referred to as IMU) having a light-receiving element 6 configured to move in the XY direction via a well-known XY movement mechanism (not shown). 7) is provided.
The IMU 7 contains a gyro (not shown) and an accelerometer that are well-known inertial sensors.

次に、前述の構成において、位置検出を行う場合について述べる。
前記レーザビーム発生器2からのレーザビーム2aが前記ポリゴンミラー3によって反射され、前記被測定部材1に対して図1の点線にて示されるようにスキャンを行うことができる状態で、前記第1固定受光素子4は、前記スキャンのスタートSt時の前記レーザビーム2aを受光し、前記第1固定受光素子4が受光したレーザビーム2aの第1受光パルス4aは前記IMU7に入力される。
Next, a case where position detection is performed in the above configuration will be described.
The first laser beam 2a from the laser beam generator 2 is reflected by the polygon mirror 3 and can be scanned as shown by the dotted line in FIG. The fixed light receiving element 4 receives the laser beam 2a at the start St of the scan, and the first received light pulse 4a of the laser beam 2a received by the first fixed light receiving element 4 is input to the IMU 7.

前記IMU7は、図2で示されるXY位置に到達した場合、内蔵された移動用受光素子6が前記スタートSt後の前記レーザビーム2aを受光し、前記移動用受光素子6が受光したレーザビーム2aの第2受光パルス6aはXY座標でみると、X軸方向Xで時間TX=Xtとなり、Y軸方向Yで時間TY=Ytとなり、この第2受光パルス6aはIMU7内に取り込まれる。
従って、前記スタートSt時に第1固定受光素子4が受光した第1タイミングXt1,Yt1と、前記移動受光素子6が受光した第2タイミングXt2,Yt2との時間差より、IMU7内の演算部(図示せず)にて前記IMU7のXY位置である第1位置を求める。
When the IMU 7 reaches the XY position shown in FIG. 2, the built-in moving light receiving element 6 receives the laser beam 2a after the start St, and the moving light receiving element 6 receives the laser beam 2a. The second received light pulse 6a in terms of XY coordinates is time TX = Xt in the X-axis direction X, and time TY = Yt in the Y-axis direction Y. This second received light pulse 6a is taken into the IMU 7.
Therefore, the calculation in the IMU 7 is performed based on the time difference between the first timings X t1 and Y t1 received by the first fixed light receiving element 4 at the start St and the second timings X t2 and Y t2 received by the moving light receiving element 6. A first position which is an XY position of the IMU 7 is obtained by a unit (not shown).

前記IMU7は、前記IMU7が有する前記慣性センサ(図示せず)からの慣性信号(図示せず)を用い、加速度を積分する加速度積分で前記IMU7のXY位置である第2位置を求める。
従って、前記IMU7の演算部(図示せず)では、前記第1、第2位置の合成によって現在位置を求められる。
尚、前述の加速度積分は、検出した加速度を2回積分して位置を求めているため、時間の経過と共に速度オフセットによる位置ずれを防止して演算することができる。
The IMU 7 uses an inertial signal (not shown) from the inertial sensor (not shown) of the IMU 7 to obtain a second position that is the XY position of the IMU 7 by acceleration integration that integrates acceleration.
Therefore, the calculation unit (not shown) of the IMU 7 obtains the current position by combining the first and second positions.
The above-described acceleration integration is obtained by integrating the detected acceleration twice to obtain the position, and can be calculated while preventing position shift due to the speed offset with time.

尚、本発明による位置検出方法及び装置を要約すると、次の通りである。
すなわち、X軸方向X及びびY軸方向Yに所定の長さを有する表面1aからなる被測定部材1又は被測定領域上に移動用受光素子6を有する慣性計測ユニット7(以下、IMUと称す)を前記X軸方向X及びY軸方向Yに沿って移動自在とし、前記IMU7によってXY位置を検出するようにした位置検出装置において、前記被測定部材1又は被測定領域の対角線上の両端に設けられた第1、第2固定受光素子4,5と、前記表面1aをレーザビーム2aでスキャンするための2軸のポリゴンミラー3と、を備え、前記第1固定受光素子4はスタートSt時の前記レーザビーム2aを受光し、前記第1固定受光素子4が受光した第1タイミングXt1,Yt1と前記IMU7の移動用受光素子6が受光した第2タイミングXt2,Yt2の時間差より前記IMU7の第1位置を求め、前記IMU7は、前記IMU7が有する慣性センサからの慣性信号を用いて加速度積分で求めた第2位置と前記レーザビーム2aにより求めた前記第1位置との合成により現在位置を求める構成と方法であり、また、前記加速度積分は、2回行う構成と方法である。
The position detection method and apparatus according to the present invention are summarized as follows.
That is, an inertial measurement unit 7 (hereinafter referred to as an IMU) having a moving light receiving element 6 on a member 1 or a region to be measured, which is made of a surface 1a having a predetermined length in the X-axis direction X and the Y-axis direction Y. ) Is movable along the X-axis direction X and the Y-axis direction Y, and the MU position is detected by the IMU 7 at the opposite ends of the measured member 1 or the measured region on the diagonal line. First and second fixed light receiving elements 4 and 5 provided, and a biaxial polygon mirror 3 for scanning the surface 1a with a laser beam 2a, the first fixed light receiving element 4 at the start St wherein receiving the laser beam 2a, the first fixing light receiving element 4 of the first timing X t1, second timing X moving receiving element 6 of the the Y t1 IMU7 has received t2, Y t2 which received the A first position of the IMU 7 is obtained from the difference, and the IMU 7 obtains a second position obtained by acceleration integration using an inertia signal from an inertial sensor of the IMU 7 and the first position obtained by the laser beam 2a. And the acceleration integration is a configuration and method performed twice.

本発明による位置検出装置は、レーザビームを用いて検出した第1位置と、慣性信号を用いて検出した第2位置とにより位置検出を行うことができるため、小型のものから大型のものまで、あらゆる分野の被測定部材又は被測定領域における位置検出が可能となる。   Since the position detection device according to the present invention can perform position detection based on the first position detected using the laser beam and the second position detected using the inertia signal, from a small one to a large one, It is possible to detect a position in a member to be measured or a region to be measured in any field.

1 被測定部材
1a 表面
1b XY面
2 レーザビーム発生器
2a レーザビーム
3 ポリゴンミラー
4 第1固定受光素子
4a 第1受光パルス
5 第2固定受光素子
6 移動用受光素子
6a 第2受光パルス
7 IMU(慣性計測ユニット)
X X軸方向
Y Y軸方向
t1,Yt1 第1タイミング
t2,Yt2 第2タイミング
Xt 時間X
Yt 時間Y
DESCRIPTION OF SYMBOLS 1 Measured member 1a Surface 1b XY plane 2 Laser beam generator 2a Laser beam 3 Polygon mirror 4 First fixed light receiving element 4a First light receiving pulse 5 Second fixed light receiving element 6 Moving light receiving element 6a Second light receiving pulse 7 IMU ( Inertial measurement unit)
X X-axis direction Y Y-axis direction X t1 , Y t1 first timing X t2 , Y t2 second timing Xt time X
Yt Time Y

Claims (4)

X軸方向(X)及びY軸方向(Y)に所定の長さを有する表面(1a)からなる被測定部材(1)又は被測定領域上に移動用受光素子(6)を有する慣性計測ユニット(7)(以下、IMUと称す)を前記X軸方向(X)及びY軸方向(Y)に沿って移動自在とし、前記IMU(7)によってXY位置を検出するようにした位置検出装置において、
前記被測定部材(1)又は被測定領域の対角線上の両端に設けられた第1、第2固定受光素子(4,5)と、前記表面(1a)をレーザビーム(2a)でスキャンするための2軸のポリゴンミラー(3)と、を備え、
前記第1固定受光素子(4)はスタート(St)時の前記レーザビーム(2a) を受光し、前記第1固定受光素子(4)が受光した第1タイミング(Xt1,Yt1)と前記IMU(7)の移動用受光素子(6)が受光した第2タイミング(Xt2,Yt2)の時間差より前記IMU(7)の第1位置を求め、
前記IMU(7)は、前記IMU(7)が有する慣性センサからの慣性信号を用いて加速度積分で求めた第2位置と前記レーザビーム(2a)により求めた前記第1位置との合成により現在位置を求めることを特徴とする位置検出装置。
Inertial measurement unit having a member to be measured (1) having a surface (1a) having a predetermined length in the X-axis direction (X) and the Y-axis direction (Y) or a moving light-receiving element (6) on the measurement region (7) In a position detection apparatus in which an IMU (7) can detect an XY position by allowing movement along the X-axis direction (X) and the Y-axis direction (Y) (hereinafter referred to as IMU). ,
In order to scan the first and second fixed light receiving elements (4, 5) provided at the opposite ends of the member to be measured (1) or the region to be measured and the surface (1a) with a laser beam (2a) 2 axis polygon mirror (3)
The first fixed light receiving element (4) receives the laser beam (2a) at the start (St), and receives the first timing (X t1 , Y t1 ) when the first fixed light receiving element (4) receives the light. The first position of the IMU (7) is obtained from the time difference of the second timing (X t2 , Y t2 ) received by the moving light receiving element (6) of the IMU (7),
The IMU (7) is obtained by combining the second position obtained by acceleration integration using the inertia signal from the inertial sensor of the IMU (7) and the first position obtained by the laser beam (2a). A position detection device characterized by obtaining a position.
前記加速度積分は、2回行うことを特徴とする請求項1記載の位置検出装置。   The position detection apparatus according to claim 1, wherein the acceleration integration is performed twice. X軸方向(X)及びY軸方向(Y)に所定の長さを有する表面(1a)からなる被測定部材(1)又は被測定領域上に移動用受光素子(6)を有する慣性計測ユニット(7)(以下、IMUと称す)を前記X軸方向(X)及びY軸方向(Y)に沿って移動自在とし、前記IMU(7)によってXY位置を検出するようにした位置検出装置を用い、
前記被測定部材(1)又は被測定領域の対角線上の両端に設けられた第1、第2固定受光素子(4,5)と、前記表面(1a)をレーザビーム(2a)でスキャンするための2軸のポリゴンミラー(3)と、を備え、
前記第1固定受光素子(4)はスタート(St)時の前記レーザビーム(2a)を受光し、前記第1固定受光素子(4)が受光した第1タイミング(Xt1,Yt1)と前記IMU(7)の移動用受光素子(6)が受光した第2タイミング(Xt2,Yt2)の時間差より前記IMU(7)の第1位置を求め、
前記IMU(7)は、前記IMU(7)が有する慣性センサからの慣性信号を用いて加速度積分で求めた第2位置と前記レーザビーム(2a)により求めた前記第1位置との合成により現在位置を求めることを特徴とする位置検出方法。
Inertial measurement unit having a member to be measured (1) having a surface (1a) having a predetermined length in the X-axis direction (X) and the Y-axis direction (Y) or a moving light-receiving element (6) on the measurement region (7) A position detecting device that is movable along the X-axis direction (X) and the Y-axis direction (Y) (hereinafter referred to as IMU) and detects the XY position by the IMU (7). Use
In order to scan the first and second fixed light receiving elements (4, 5) provided at the opposite ends of the member to be measured (1) or the region to be measured and the surface (1a) with a laser beam (2a) 2 axis polygon mirror (3)
The first fixed light receiving element (4) receives the laser beam (2a) at the start (St), and the first timing (X t1 , Y t1 ) when the first fixed light receiving element (4) receives light and the The first position of the IMU (7) is obtained from the time difference of the second timing (X t2 , Y t2 ) received by the moving light receiving element (6) of the IMU (7),
The IMU (7) is obtained by combining the second position obtained by acceleration integration using the inertia signal from the inertial sensor of the IMU (7) and the first position obtained by the laser beam (2a). A position detection method characterized by obtaining a position.
前記加速度積分は、2回行うことを特徴とする請求項3記載の位置検出方法。   The position detection method according to claim 3, wherein the acceleration integration is performed twice.
JP2014101463A 2014-05-15 2014-05-15 Position detector and method Pending JP2015219059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101463A JP2015219059A (en) 2014-05-15 2014-05-15 Position detector and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101463A JP2015219059A (en) 2014-05-15 2014-05-15 Position detector and method

Publications (1)

Publication Number Publication Date
JP2015219059A true JP2015219059A (en) 2015-12-07

Family

ID=54778558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101463A Pending JP2015219059A (en) 2014-05-15 2014-05-15 Position detector and method

Country Status (1)

Country Link
JP (1) JP2015219059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672097A (en) * 2019-11-25 2020-01-10 北京中科深智科技有限公司 Indoor positioning and tracking method, device and system based on laser radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672097A (en) * 2019-11-25 2020-01-10 北京中科深智科技有限公司 Indoor positioning and tracking method, device and system based on laser radar

Similar Documents

Publication Publication Date Title
US9829579B2 (en) Electronic apparatus and method for measuring direction of output laser light
US9228878B2 (en) Dual beam non-contact displacement sensor
WO2018091640A3 (en) Detector for optically detecting at least one object
JP6315268B2 (en) Laser range finder
US20110134079A1 (en) Touch screen device
TWI420081B (en) Distance measuring system and distance measuring method
JP2004286598A (en) Displacement gauge and displacement measuring method
DE50309811D1 (en) MEASURING AND STABILIZATION SYSTEM FOR MASCHINELL CONTROLLED VEH IKEL
US8411278B2 (en) Measurement of small accelerations by optical weak value amplification
JP2009222616A (en) Method and apparatus for measuring azimuth
KR20160147760A (en) Device for detecting objects
JP2017003461A (en) Distance measurement device
MX2017015177A (en) Optical device for detecting an internal flaw of a transparent substrate and method for the same.
WO2015075723A3 (en) Optical knife-edge detector with large dynamic range
JP2015219059A (en) Position detector and method
JP2008256465A (en) Measurement apparatus
JP2014204868A (en) Photoacoustic wave measuring device, method, program and recording medium
JP4534877B2 (en) Optical sensor device
KR101423829B1 (en) 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating
JP7329943B2 (en) Detection device and movement device
JP2008175803A5 (en)
JP6386954B2 (en) Surface shape measuring apparatus and surface shape measuring method
KR20210083297A (en) Electronic devices, calibration methods and programs
JP4265786B2 (en) Height measuring method, height measuring apparatus, and signal processing method
WO2019181512A1 (en) Detection device