JP2015218990A - Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator - Google Patents

Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator Download PDF

Info

Publication number
JP2015218990A
JP2015218990A JP2014104766A JP2014104766A JP2015218990A JP 2015218990 A JP2015218990 A JP 2015218990A JP 2014104766 A JP2014104766 A JP 2014104766A JP 2014104766 A JP2014104766 A JP 2014104766A JP 2015218990 A JP2015218990 A JP 2015218990A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer body
heat
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014104766A
Other languages
Japanese (ja)
Inventor
直毅 鹿園
Naoki Shikazono
直毅 鹿園
山口 良二
Ryoji Yamaguchi
良二 山口
日出年 小暮
Hidetoshi Kogure
日出年 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUKISHIMA MACHINE SALES KK
University of Tokyo NUC
Original Assignee
TSUKISHIMA MACHINE SALES KK
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUKISHIMA MACHINE SALES KK, University of Tokyo NUC filed Critical TSUKISHIMA MACHINE SALES KK
Priority to JP2014104766A priority Critical patent/JP2015218990A/en
Publication of JP2015218990A publication Critical patent/JP2015218990A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a heat transfer member from being elongated and increased in size, release it from restriction in installing space through a compact formation of the device and realize a low cost by a method in which bumping phenomenon is avoided while operation is being carried out near a boiling point where high heat flow rate can be utilized, a high heat efficiency and a high concentration efficiency can be accepted.SOLUTION: This invention relates to a heat transfer body for performing a heat exchanging operation between undiluted solution within a vacuum container dropped in gravity at a flow passage formed with a plurality of grooves on an outer surface of a heat transfer body in a substantial vertical direction that are oppositely spaced apart in a horizontal direction and heat media flowing in the heat transfer body. The heat transfer body constitutes a group of heat transfer bodies in which a plurality of stages are spaced apart and arranged in a vertical direction, each of the upper end and the lower end of each of the heat transfer bodies is provided with an extremity end. A surface flow-down type concentrator using a heat exchanger is operated in such a way that bumping phenomenon is avoided while operation is being carried out near a boiling point and a high heat efficiency, a high concentration efficiency and small-sized formation of the device are pursued.

Description

本発明は、特に濃縮操作の対象になる流体(以下で原液と云う)が熱影響を受けやすい場合や、装置材料の腐食性を有する場合においても、原液の濃縮に用いて好適である伝熱部(受熱又は放熱の機能を担う熱交換器部位を云う)の表面に工夫を施した原液流下式の濃縮操作を行う熱交換器及びその熱交換器を使用する濃縮装置並びに表面流下式濃縮方法及びその装置に関するものである。原液が伝熱部の表面を流下する方式によって濃縮を行う技術は、伝熱部を流下する原液が薄膜を生成することにより、液相全体に速やかに伝熱(加熱や放熱)が行われる為に、伝熱効率に優れ、省エネルギー、CO2削減等の観点で、時代の要請に応える技術である。   The present invention is particularly suitable for use in concentrating undiluted solutions even when the fluid to be concentrated (hereinafter referred to as undiluted solution) is easily affected by heat or when the material of the apparatus is corrosive. Heat exchanger for concentrating a stock solution flow-down type, which has been devised on the surface of a section (referred to as a heat exchanger part that takes on the function of receiving heat or releasing heat), a concentrating device using the heat exchanger, and a surface down-concentration method And an apparatus for the same. The technology of concentrating by the method in which the stock solution flows down the surface of the heat transfer section, because the stock solution flowing down the heat transfer section generates a thin film, so that heat transfer (heating and heat dissipation) is performed quickly throughout the liquid phase. In addition, it has excellent heat transfer efficiency, and is a technology that meets the needs of the times from the viewpoints of energy saving and CO2 reduction.

糖類・エキス類等熱影響を受けやすい原液の濃縮では、短時間に一過性又は濃縮過程を経る回数を制御し品質を管理することが要求され、好ましくは一回の処理プロセスで所定濃度まで濃縮されることが求められる。   In the concentration of undiluted solutions that are susceptible to heat, such as sugars and extracts, it is required to control the quality by controlling the number of times that the process goes through a transient or concentration process in a short period of time, and preferably to a predetermined concentration in a single treatment process It is required to be concentrated.

そのためには、原液の供給量を制御し、薄膜液として供給することによって、薄膜からの溶媒蒸発により効率よく一回のプロセスで所定の濃度まで濃縮することが望まれる。   For this purpose, it is desired that the concentration of the stock solution is controlled and supplied as a thin film solution, whereby the solvent is evaporated from the thin film and efficiently concentrated to a predetermined concentration in a single process.

それ故、表面流下式により僅かな原液を伝熱部に供給し、且つ所定の濃度に到達させるため、伝熱部にできるだけ均一に流下させることが要求されるが、様々の要因により、伝熱部にできるだけ均一に薄膜で流下させることが困難であり、効率的な熱交換ができず、結果として多数の伝熱部材を要したり、伝熱部位が長大にならざるを得ず、装置が大型化し、高コストとなっている。   Therefore, in order to supply a small amount of undiluted solution to the heat transfer unit by the surface flow method and to reach a predetermined concentration, it is required to flow down as uniformly as possible to the heat transfer unit. It is difficult to flow down with a thin film as uniformly as possible to the part, and efficient heat exchange cannot be performed. As a result, a large number of heat transfer members are required, and the heat transfer part has to be long. Larger and more expensive.

その一つの要因が突沸であり、原液が伝熱部において受熱した結果として局所的な過熱状態となった場合には、突沸が生じ、以下の問題点が生ずる。
1) 均等な流下が阻害され、濃縮液の濃縮が不十分となること
2) 突沸現象により飛散する原液又は濃縮中途の濃縮液(以下、後者を半濃縮液と云い、前者後者を総称し処理液という)(以下)は熱せられたまま飛散しその熱は容器内又は容器壁に散逸又は吸収されてしまい熱効率を阻害し、結果として濃縮効率を阻害すること
3) 濃縮が足りないまま容器壁面に衝突液化し落下する原液又は半濃縮液は、濃縮度を希釈化し、全体として濃縮不十分となること
4) 突沸現象により飛散するミスト化した原液又は半濃縮液が溶媒蒸気に混ざり、減圧機構により吸引され容器から排出されること
One factor is bumping, and bumping occurs when the undiluted solution is locally overheated as a result of receiving heat in the heat transfer section, resulting in the following problems.
1) Uniform flow is hindered and concentration of the concentrated solution is insufficient 2) Stock solution or concentrated solution in the middle of concentration due to bumping (hereinafter, the latter is referred to as semi-concentrated solution, the former is collectively referred to as the latter) (Hereinafter referred to as “liquid”) is scattered while being heated, and the heat is dissipated or absorbed in the container or the wall of the container, impairing the thermal efficiency, resulting in the inhibition of the concentration efficiency. 3) The container wall surface with insufficient concentration The stock solution or semi-concentrated liquid that falls into a liquid and collides with the liquid dilutes the concentration, resulting in insufficient concentration as a whole. 4) The mist-formed stock solution or semi-concentrated liquid that is scattered due to bumping phenomenon is mixed with the solvent vapor, and the decompression mechanism Aspirated and discharged from the container

こうした突沸による悪影響を排するため、突沸を回避する手段として考慮できる方法は以下である。
a)加熱に用いる熱媒の温度や流速を低下させる。
b)原液の流量を増加させる。
c)蒸発による潜熱の消費を含む原液の放熱を促進する。
In order to eliminate such an adverse effect caused by bumping, the following methods can be considered as means for avoiding bumping.
a) Decreasing the temperature and flow rate of the heating medium used for heating.
b) Increase the flow rate of the stock solution.
c) Promote heat dissipation of the stock solution including the consumption of latent heat due to evaporation.

ところが、
a)による方法では、加熱側の流体(熱媒)と受熱側の流体(原液)の間の温度差(対数平均温度差)が減少することにより、効率的な熱交換ができず、結果として多数の伝熱部材を要したり、伝熱部位が長大にならざるを得ず、装置が大型化し、高コストとなってしまう悪影響を生じる。
b)による方法は、原液が伝熱部において薄膜を形成して効率的な熱交換を行うという表面流下式の技術の有用性を損なってしまうことになり、結果的にa)と同様に効率的な熱交換ができず、多数の伝熱部材を要したり、伝熱部位が長大にならざるを得ず、装置が大型化し、高コストとなってしまうという悪影響を生じる。
c)による方法は、受熱側の流体(原液)が加熱側の流体(熱媒)から受け取った熱が、受熱側の流体(原液)に滞留することなく、速やかに受熱側の流体(原液)から蒸発によって潜熱に消費されれば、原液温度は過熱状態に至らず突沸を回避することが可能になる。
However,
In the method according to a), the temperature difference (logarithm average temperature difference) between the fluid on the heating side (heating medium) and the fluid on the heat receiving side (stock solution) is reduced, so that efficient heat exchange cannot be performed. A large number of heat transfer members are required, and the heat transfer site is inevitably long, resulting in an adverse effect that increases the size of the device and increases costs.
The method according to b) impairs the usefulness of the surface flow type technology in which the stock solution forms a thin film in the heat transfer section and performs efficient heat exchange. As a result, the efficiency is the same as in a). Heat exchange cannot be performed, a large number of heat transfer members are required, and the heat transfer site has to be long, resulting in an adverse effect that the apparatus becomes large and expensive.
In the method according to c), the heat received by the heat receiving fluid (stock solution) from the heating fluid (heat medium) does not stay in the heat receiving fluid (stock solution), and the heat receiving fluid (stock solution) is promptly collected. If it is consumed in latent heat by evaporation, the stock solution temperature does not reach an overheated state, and bumping can be avoided.

ここで、伝熱部を流下する原液の均一性が高い時、伝熱部において突沸が発生する状況を整理すると、
A)薄膜流れが破断する場合、
B)薄膜流れが維持されていても、加熱速度が過大で濃縮液流の中流又は下流で過熱状態となる場合、
に分類される。A)は、例えば、局所的な原液の流下量過少により生ずる。
Here, when the uniformity of the stock solution flowing down the heat transfer section is high, arranging the situation where bumping occurs in the heat transfer section,
A) When the thin film flow breaks,
B) Even if the thin film flow is maintained, if the heating rate is excessive and overheated in the middle or downstream of the concentrate flow,
are categorized. A) is caused by, for example, a local flow of the stock solution being too small.

ところで、吸収型冷凍機でよく用いられている熱交換方式には、伝熱体群を真空容器内に水平に多数設置し、冷却液を伝熱体群に噴霧流下しその蒸発潜熱により伝熱体内を流れる冷媒を冷やすというものがある。冷却にさほどの動力を要さず、省エネルギーという利点を有する。冷却能力は、伝熱体群のサイズ・数によりスケール性を確保するものであり、濃縮装置にも応用できそうである。この吸収型冷凍機で用いられる流下式熱交換方式は濃縮に用いる伝熱体設計課題に示唆を得られそうである。   By the way, in the heat exchange method often used in absorption refrigerators, a large number of heat transfer bodies are installed horizontally in a vacuum vessel, and the coolant is sprayed down to the heat transfer bodies to transfer heat by the latent heat of evaporation. There is something that cools the refrigerant flowing in the body. It does not require much power for cooling and has the advantage of energy saving. The cooling capacity secures the scale by the size and number of the heat transfer bodies, and seems to be applicable to the concentrator. The flow-down heat exchange system used in this absorption chiller is likely to give suggestions on the design of heat exchangers used for concentration.

さて、突沸が発生する条件のうち上記Aの薄膜流れの破断は、薄膜が管軸方向の膜の拡がりを維持できないときと、薄膜の伝熱体からの剥離落下位置のバラツキによるときの二種に大別される。前者に対しては、例えば、蒸発管では管軸方向のフィンを設け、管軸方向への流れを作り、局所的なドライアウトの発生を防止する提案(特許文献1)がある。特許文献1は、蒸発装置に係る発明であってただ蒸発さへすれば要求は満たされるのであるが、濃縮装置では、所定の濃度にすることが求められ、濃縮の加熱工程もできるだけ均一であることが望ましい。本来であれば、伝熱体全面に原液が行きわたらせるのが濃縮効率の点では最も良いのであるが、濃縮装置では、その上更に均一な薄膜流れを作らないと流れの滞留とドライアウトの発生で析出物が発生してしまい、流下する原液が溶質を欠き所要の量を確保できないことになりかねないという問題などを生起する懸念を生じる。管軸方向にフィンや溝を加工する場合には、原液を水平方向に分配する効果は期待できるものの、水平方向に導かれた原液が、該フィンや溝の水平方向に亘り均等に鉛直方向へ流下することは困難になり、該フィンの近傍や水平方向の溝で原液が液溜りを形成し、伝熱効率を悪化させる懸念も生じる。従って、寧ろ伝熱体の表面全体における均一な薄膜状での原液の流れの維持を優先すべきとの立場に立てば、特許文献1のように管軸方向への薄膜を広げるのは好ましくなく、管の断面に沿った溝により流れの維持を確保することが好ましいものと考えられる。この溝は、一方で伝熱体と外部の接触面積を大きくする効果がある。そのため放熱面積を大きくするための放熱フィンの構成として溝を形成するという提案も古くからあるが(特許文献2)、濃縮装置で溝により流れの維持を確保する際には、溝の設計によっては溝を流れる原液の蒸発は限定されたものになりかねず、ここで相応しい溝は、放熱フィン形成に伴う溝というよりは、溝が開放部に開かれ溝内での蒸気循環を活発とする比較的浅い溝である。   Of the conditions under which bumping occurs, there are two types of breakage of the thin film flow of A, when the thin film cannot maintain the expansion of the film in the tube axis direction, and when the thin film is peeled off from the heat transfer body. It is divided roughly into. For the former, for example, there is a proposal (Patent Document 1) in which an evaporating tube is provided with fins in the tube axis direction to create a flow in the tube axis direction to prevent local dryout. Patent Document 1 is an invention related to an evaporation apparatus, and the requirement is satisfied only by evaporating, but the concentration apparatus is required to have a predetermined concentration, and the heating process of concentration is as uniform as possible. It is desirable. Originally, it is best in terms of concentration efficiency to spread the stock solution over the entire surface of the heat transfer body. However, in the concentrator, if a more uniform thin film flow is not created, the flow stays and dry out. As a result, precipitates are generated, and there is a concern that the stock solution that flows down may lack a solute and cannot secure a required amount. When processing fins and grooves in the tube axis direction, the effect of distributing the stock solution in the horizontal direction can be expected, but the stock solution guided in the horizontal direction is evenly distributed in the vertical direction over the horizontal direction of the fins and grooves. It becomes difficult to flow down, and the stock solution forms a liquid pool in the vicinity of the fins or in the horizontal grooves, and there is a concern that heat transfer efficiency is deteriorated. Accordingly, if priority is given to maintaining the flow of the stock solution in the form of a uniform thin film over the entire surface of the heat transfer body, it is not preferable to widen the thin film in the tube axis direction as in Patent Document 1. It is considered preferable to ensure the maintenance of the flow by grooves along the cross section of the tube. On the other hand, this groove has an effect of increasing the contact area between the heat transfer body and the outside. For this reason, a proposal for forming a groove as a structure of a heat radiating fin for increasing the heat radiating area has also been used for a long time (Patent Document 2). However, depending on the groove design, when maintaining the flow with the groove in the concentrator, Evaporation of undiluted solution flowing through the groove may be limited, and the appropriate groove here is a groove that opens to the open part rather than the groove that accompanies the formation of the radiating fins, and the steam circulation in the groove is active Shallow groove.

こうして、剥離を生じず伝熱体と処理液の接触を維持する伝熱体の外周形状設計と溝の配置形状をどのように設計すればよいのかが課題となる。   Thus, the problem is how to design the outer peripheral shape of the heat transfer body and the arrangement of the grooves to maintain the contact between the heat transfer body and the processing liquid without causing separation.

伝熱体の外周形状(以下で伝熱体形状と云う)が適当でなく、伝熱体からの剥離落下位置のバラツキにより薄膜流れが破断すると、すなわち、早期に流れが伝熱体から剥離すれば、剥離後伝熱体からの熱流を受けないため蒸発量は減少するという不都合が発生する。極端な形状で言えば、伝熱体の下半分が下方に凹面形状を向け形成されていれば、上半分の円管面から凹面形状面に転ずる境界で伝熱体を流下する薄膜流れは管から剥離し、下方へ滴下するであろう。そこまで極端な形状の変化でなくとも、溝を流下する液と伝熱体面との表面張力と液に働く重力、伝熱体の外形が真円であれば曲面を流れる液の遠心力との均衡が崩れたときには、伝熱体からの剥離落下位置は最下位位置ではなく最下端に到達する前に剥離滴下することになる。   The outer shape of the heat transfer body (hereinafter referred to as the heat transfer body shape) is not suitable, and if the thin film flow breaks due to variations in the position of separation from the heat transfer body, that is, the flow is separated from the heat transfer body at an early stage. In this case, since the heat flow from the heat transfer body after peeling is not received, the evaporation amount is reduced. In an extreme form, if the lower half of the heat transfer body is formed with a concave shape facing downward, the thin film flow that flows down the heat transfer body at the boundary where the upper half of the circular tube surface rolls into the concave shape surface is the tube. Will peel off and drop downward. Even if there is no extreme change in shape, the surface tension between the liquid flowing down the groove and the surface of the heat transfer body, the gravity acting on the liquid, and the centrifugal force of the liquid flowing on the curved surface if the heat transfer body is a perfect circle When the balance is lost, the peeling drop position from the heat transfer body is peeled and dropped before reaching the lowest end, not the lowest position.

特許文献3の図8A及び図8Bは、流下する液が伝熱円管の最下端から落下するように伝熱体下端を尖状とすることを提案しているが、伝熱体上端では伝熱体の長手方向から見て円周方向左右に流下する流量の制御が困難なため伝熱体上端を凹面とし(図8B)、上段の伝熱体から滴下する液を該凹面で受止め、液だまりからの溢れにより左右円周面へ均等に流下させる提案をしているが、本発明に係る一過性の濃縮により濃縮を行うことを要件とする場合には、液溜まりの液の循環、淀みを解消する制御をすることが困難であるし、流れの滞りによっては、析出物の形成に至りかねず採用できない。   8A and 8B of Patent Document 3 suggest that the lower end of the heat transfer body is pointed so that the flowing liquid falls from the lowermost end of the heat transfer circular tube, but at the upper end of the heat transfer body. Since it is difficult to control the flow rate flowing left and right in the circumferential direction when viewed from the longitudinal direction of the heat body, the upper end of the heat transfer body is a concave surface (FIG. 8B), and the liquid dropped from the upper heat transfer body is received by the concave surface, Although it has been proposed to flow down to the left and right circumferential surfaces evenly due to overflow from the liquid pool, if it is required to perform concentration by temporary concentration according to the present invention, circulation of the liquid in the liquid pool It is difficult to control the stagnation, and depending on the stagnation of the flow, it may lead to the formation of precipitates and cannot be employed.

特許文献4では、図2dに伝熱体形状を長円形の伝熱体断面形状とし上下の伝熱体を互いに密接する構造を開示し、密接部の隙間を0〜2mm程度とすることで密接部に液溜まりを形成することを提案する。しかしながら、伝熱体同士の凸曲面同士の近接で実質的に軸方向の横溝が形成され、表面張力による溝内への滞留作用が生ずるところ、本発明に係る一過性の濃縮により濃縮を行うことを要件とする場合には、液溜まり内での液の循環、淀みを制御することが困難であるし、流れの滞りによっては、析出物の形成の元ともなりかねず採用できない。表面流下式濃縮では、下流への流れを保つことが大切なのである。   In Patent Document 4, FIG. 2d discloses a structure in which the shape of the heat transfer body is an oblong heat transfer body cross section and the upper and lower heat transfer bodies are in close contact with each other, and the close contact portion has a clearance of about 0 to 2 mm. It is proposed to form a liquid pool in the part. However, a lateral groove in the axial direction is formed in the proximity of the convex curved surfaces of the heat transfer bodies, and a retention action in the groove due to surface tension occurs. Concentration is performed by the temporary concentration according to the present invention. If this is a requirement, it is difficult to control the circulation and stagnation of the liquid in the liquid reservoir, and depending on the stagnation of the flow, it may become a source of precipitates and cannot be employed. It is important to maintain the downstream flow in the surface down concentration.

こうして、伝熱体の溝と合わせ伝熱体の形状を、伝熱体からの原液剥離落下位置を伝熱体の最下位点としつつ確実な上方から下方への薄膜流れを維持させるものとする課題が見出され、同時に下方の先細部で薄膜から処理液を受取る側では、伝熱体長手方向から見て左右に均等に処理を振り分けるものとするという課題もパラレルに見出される。   Thus, the shape of the heat transfer body is matched with the groove of the heat transfer body, and the thin film flow from the upper side to the lower side is reliably maintained while the position where the stock solution is separated from the heat transfer body is the lowest point of the heat transfer body. A problem is found, and at the same time, on the side where the processing liquid is received from the thin film with the lower taper, a problem that the processing is equally distributed to the left and right as viewed from the longitudinal direction of the heat transfer body is also found in parallel.

突沸が発生する場合Bについては、原液が受熱する速度を原液が放熱する速度に一致もしくは接近するように低下させること、すなわち加熱源の熱媒温度を低下させることが最も容易である。しかしこの場合には、原液と熱媒との温度差が小さくなるため濃縮に必要な流下距離が大きく伸びてしまい、装置が大型化してしまうという難点があり、そもそもの課題が解消さない。   When bumping occurs, it is easiest to reduce the rate at which the stock solution receives heat so as to match or approach the rate at which the stock solution dissipates heat, that is, to reduce the temperature of the heating medium of the heating source. However, in this case, since the temperature difference between the stock solution and the heat medium becomes small, the flow-down distance necessary for concentration increases greatly, and there is a problem that the apparatus becomes large, and the problem is not solved in the first place.

こうして、装置の小型化を目指すには、何をすればよいか、すなわち、原液が蒸発によって放熱する速度を、原液が受熱する速度に一致もしくは接近するように向上させること、すなわち優れた蒸発放熱機構を提案することが課題となる。   In this way, what should be done to reduce the size of the device, that is, improve the speed at which the stock solution dissipates heat by evaporation to match or approach the speed at which the stock solution receives heat, that is, excellent evaporative heat dissipation Proposing a mechanism is an issue.

以上に示されるように、本発明の課題は、蒸発装置、吸収式冷凍機に用いられる流下式熱交換器の課題とオーバーラップする面もあるが、濃縮装置として水平伝熱体の表面形状と溝化を施そうとする点、従来、認識も示唆もされていないものであり、従来技術とは立ち位置を異にするもので、従来の濃縮装置に用いられる水平伝熱体及びこれを使用する濃縮装置では、取り立ててそのまま採用できる解決策は見出されない。   As described above, the subject of the present invention has a surface that overlaps with the subject of the downflow heat exchanger used in the evaporator and the absorption refrigerator, but the surface shape of the horizontal heat transfer body as the concentrator The point to be grooved, which has not been recognized or suggested in the past, has a different standing position from the prior art, and uses the horizontal heat transfer body used in conventional concentrators and this In such a concentrator, no solution can be found that can be used as it is.

特開10−325689JP-A-10-325689 特開平5−340646JP-A-5-340646 米国特許5645124号US Pat. No. 5,645,124 特開2003−254683JP2003-254683 特開昭57−150798JP-A-57-150798

本発明の主たる課題は、以下のとおりである。
課題1:伝熱体群の配置、伝熱体の形状創意工夫により突沸現象を未然に防止すべく水平伝熱体群での均等な流下を確保し、ドライアウト・析出物を発生させぬこと。
課題2:伝熱体の溝と合わせ伝熱体の形状を工夫し、伝熱体からの原液剥離落下位置を伝熱体の最下位点とする仕組みを提案すること。
課題3:装置の工夫により原液が蒸発によって放熱する速度を、原液が受熱する速度に一致もしくは接近するように向上させた優れた蒸発放熱機構を提案し、装置の小型化を図ること。
以上の課題を解決し、高い加熱速度を維持し、高い熱流束を利用しつつ過熱を避け、高い熱効率と濃縮効率を達成し、もって、伝熱部材の長大化を防止し、装置の小型化により、設置スペースの制約から解放し、低コストを実現する効果を得ることにある。
The main problems of the present invention are as follows.
Problem 1: Ensure uniform flow through horizontal heat transfer body and prevent generation of dryout and precipitates in order to prevent bumping phenomenon by arrangement of heat transfer body and shape of heat transfer body. .
Problem 2: To devise the shape of the heat transfer body in combination with the groove of the heat transfer body, and to propose a mechanism in which the stock solution peeling position from the heat transfer body is the lowest point of the heat transfer body.
Problem 3: To propose a superior evaporative heat dissipation mechanism that improves the speed at which the stock solution dissipates heat by evaporation by matching the device so that it matches or approaches the speed at which the stock solution receives heat, thereby reducing the size of the device.
Solving the above problems, maintaining a high heating rate, avoiding overheating while using a high heat flux, achieving high thermal efficiency and concentration efficiency, thereby preventing the heat transfer member from becoming too long and downsizing the equipment Therefore, it is possible to obtain an effect of realizing low cost by releasing from the restriction of the installation space.

上記課題を解決した本発明は次記のとおりである。   The present invention that has solved the above problems is as follows.

<請求項1記載の発明>
伝熱体外表面上に形成された実質的に鉛直方向の溝が水平方向に離反して複数形成された流路を重力落下する原液と、該伝熱体内部に流れる熱媒との間で熱交換を行う伝熱体であって、
該伝熱体は鉛直方向に複数段離隔配置される伝熱体群を構成し、各伝熱体の上端及び下端には先細部を備えることを特徴とする熱交換器。
<Invention of Claim 1>
Heat is generated between a stock solution that drops by gravity in a flow path formed by a plurality of substantially vertical grooves formed on the outer surface of the heat transfer body and separated in the horizontal direction, and a heat medium that flows inside the heat transfer body. A heat transfer body for exchange,
The heat exchanger comprises a heat transfer body group that is spaced apart by a plurality of stages in the vertical direction, and a heat exchanger having a tapered portion at an upper end and a lower end of each heat transfer body.

(作用効果)
溝付きの表面流下式濃縮方法では、原液が伝熱体表面に加工された溝の中を重力によって流下する際、溝の内部において原液の持つ表面張力が機能し、非常に薄い液膜を形成することによって、熱交換を促進しようとするものである。請求項1に係る発明では、単に伝熱体表面上を流下させる場合に比して、互いに離隔する上段の伝熱体の下端先細部から下段の伝熱体の上端先細部へ滴下させるが、上下段は近接されていれば表面張力作用により伝熱体間に架橋液膜が生成される。この間は伝熱体で温められた原液溶媒は両伝熱体を跨いで流下する間に四方に開放された空間へ蒸発発散することができ、蒸発を促進することができるため、高い濃縮性能を発揮すると共にこの間に蒸発によって冷却され、たとえ、上段伝熱体下部で過熱状態となっていても、流下中に潜熱により冷却され、下段伝熱体で加熱流下する間も突沸が生じる程、過熱状態に達せぬよう調節する途を拓く。
(Function and effect)
In the grooved surface flow type concentration method, when the undiluted solution flows down through the groove processed on the surface of the heat transfer body by gravity, the surface tension of the undiluted solution functions inside the groove to form a very thin liquid film. By doing so, it is intended to promote heat exchange. In the invention according to claim 1, compared with the case of simply flowing down on the surface of the heat transfer body, it is dropped from the lower end of the upper heat transfer body that is separated from the upper end of the lower heat transfer body, If the upper and lower stages are close to each other, a cross-linked liquid film is generated between the heat transfer members by the surface tension effect. During this time, the undiluted solvent warmed by the heat transfer body can evaporate and diverge into the open space on both sides while flowing down across both heat transfer bodies, and it can promote evaporation, so it has high concentration performance. Even if it is cooled by evaporation during this period, even if it is overheated in the lower part of the upper heat transfer body, it is cooled by latent heat while flowing down, and overheating is so high that bumping occurs while it is heated down by the lower heat transfer body. Open up the way to make adjustments so that the situation is not reached.

下段への滴下では、軸方向から見て伝熱体両側から伝熱体外周を実質的に鉛直方向に形成された溝を流下する液は、両側から云わば1点に集められ、両流れが合流し、下段の伝熱体上端の先細部に集中滴下され、下段伝熱体面上左右に均等に分かれ下段の溝に導かれ流下する。溝を流下するときには、溝側壁界面で表面張力により薄膜が生成され、薄膜は蒸発を促進し流下する原液は濃縮される。多段の伝熱体を流下するにつれ、全体として均一な濃縮処理液となり、一過性の濃縮により濃縮を行うという要件に照らし、液溜まりを発生させず、淀みも発生させず、上下段伝熱体の間隔が滴下する液滴の大きさに適合し伝熱体間の滴下又は伝熱体間で液膜の架橋を構成されれば、表面張力の作用による合流作用により液の均一化が図られ、流れの滞りを避け、析出物の形成も排し好適である。ここで先細部とは、先端部が尖ったものは勿論のこと、先に行くに従い細く形成されている部位を指す。   In dropping to the lower stage, the liquid flowing down from the both sides of the heat transfer body as viewed in the axial direction through the grooves formed in the substantially vertical direction on the outer periphery of the heat transfer body is collected at one point from both sides. It merges and is concentrated and dripped onto the tip of the upper end of the lower heat transfer body, and is evenly divided on the left and right sides of the lower heat transfer body surface and led down to the lower groove. When flowing down the groove, a thin film is generated by surface tension at the groove sidewall interface, the thin film promotes evaporation, and the stock solution flowing down is concentrated. As the multi-stage heat transfer material flows down, it becomes a uniform concentration treatment liquid as a whole, and in light of the requirement of concentration by transient concentration, there is no liquid pool, no stagnation, and heat transfer in the upper and lower stages. If the body spacing is adapted to the size of the droplets to be dropped and drops between the heat transfer bodies or the liquid film is bridged between the heat transfer bodies, the liquid can be made uniform by the merging action due to the action of the surface tension. Therefore, it is preferable to avoid the flow stagnation and to eliminate the formation of precipitates. Here, the taper refers to a portion that is formed to become narrower as it goes forward, as well as a pointed tip.

請求項1に係る発明では、複数の伝熱体段を上段から下段へ流下する間に高い温度域の伝熱体外表面の実質的に鉛直方の溝を流路として重力落下する間に処理液に繰返し加熱を与え、高い蒸発性能を発揮し、高濃縮効率を発揮し、かつ伝熱体間を滴下又は架橋流下する間に適度に液冷されるので突沸に至る過熱を避けることができ、突沸を回避しつつ伝熱体面に均一に薄膜で流下させることを可能とし、所定の熱交換を実現し、結果として熱交換器を小型化小容量化し、熱交換器の長大化を回避し、装置を小型化し、低コストの熱交換器を提供する。   In the invention according to claim 1, while the plurality of heat transfer body stages flow down from the upper stage to the lower stage, the treatment liquid is dropped during gravity drop using the substantially vertical groove on the outer surface of the heat transfer body in the high temperature region as a flow path. Is heated repeatedly, exhibits high evaporation performance, exhibits high concentration efficiency, and is appropriately liquid cooled while dropping or bridging between the heat transfer bodies, so that overheating leading to bumping can be avoided, It is possible to flow down the heat transfer surface uniformly with a thin film while avoiding bumping, realizing a predetermined heat exchange, and as a result, downsizing and reducing the capacity of the heat exchanger, avoiding an increase in the length of the heat exchanger, The apparatus is miniaturized and a low-cost heat exchanger is provided.

<請求項2記載の発明>
前記伝熱体が鉛直方向に複数段離隔配置される伝熱体群は、複数離隔配置されていることを特徴とする請求項1記載の熱交換器。
<Invention of Claim 2>
The heat exchanger according to claim 1, wherein the heat transfer body group in which the heat transfer bodies are arranged in a plurality of stages in the vertical direction is arranged in a plurality of positions.

(作用効果)
伝熱体は請求項1記載の構成により鉛直方向に複数段離隔配置され、ひとつの群を形成し、上下の処理液の流下により所定の濃度へ濃縮されるという質的側面を担保し、請求項2記載のように該伝熱管群を複数離隔配置することで、所定の濃縮量を確保するという量的側面を担保する。複数離隔配置の方法として、伝熱体の伝熱面が互いに対向するよう配置すると突沸により液が飛散する場合でも、互いの対向する伝熱面が受けとめ、再熱により蒸発を促すこともできる。
(Function and effect)
The heat transfer body is arranged in a plurality of stages in the vertical direction by the configuration according to claim 1, forms one group, and guarantees the qualitative aspect that it is concentrated to a predetermined concentration by the flow of the upper and lower processing liquids. As described in Item 2, a plurality of the heat transfer tube groups are spaced apart to ensure a quantitative aspect of securing a predetermined enrichment amount. If the heat transfer surfaces of the heat transfer bodies are arranged so as to face each other as a plurality of spaced apart arrangement methods, even when liquid is scattered by bumping, the opposite heat transfer surfaces can be received and evaporation can be promoted by reheating.

<請求項3記載の発明>
前記伝熱体外表面に形成される前記溝の側面が、開口端に向かって開口幅を大きく形成されていることを特徴とする請求項1又は2のいずか一方に記載の熱交換器。
<Invention of Claim 3>
3. The heat exchanger according to claim 1, wherein a side surface of the groove formed on the outer surface of the heat transfer body is formed to have a larger opening width toward the opening end. 4.

(作用効果)
開口部を漸次広く形成し側壁壁面は開口部へ拡がるよう傾き角度が形成されるように溝形状を形成しておけば、開口部へ近付くほど側壁面が開口部へ拡がっているので、この液膜先端付近の膜厚は表面張力の作用がより強く働き、さらに薄くなり、溶媒の蒸発速度が促進され、濃縮効率を高めるという効果が得られる。
(Function and effect)
If the groove shape is formed so that the opening is gradually widened and the side wall surface is inclined so as to expand to the opening, the side wall surface expands to the opening as it approaches the opening. The film thickness in the vicinity of the film tip is more influenced by the surface tension and becomes thinner, the solvent evaporation rate is promoted, and the concentration efficiency is increased.

なお、特許文献5は外表面に軸方向に山谷の繰返し形状を成す溝を有する伝熱体について、山部の液を表面張力により谷部へ引き込み、山部に薄膜を生成する伝熱体を提案するが、本発明は、山部における効率的な伝熱を狙うのではなく(溝間の間隔も規定しない)、むしろ山部ではなく谷部(溝内)に優先的に原液を流下させてやり、溝内における原液の表面張力を利用した薄膜の形成によって効率的な熱交換を行うということを狙ったアプローチを取る点で異なる。   In addition, Patent Document 5 discloses a heat transfer body having a groove having a repetitive shape of peaks and valleys in the axial direction on the outer surface. Although proposed, the present invention does not aim at efficient heat transfer in the peak (the interval between the grooves is not specified), but rather causes the stock solution to flow down preferentially in the valley (in the groove) instead of the peak. However, it differs in that it takes an approach that aims at efficient heat exchange by forming a thin film using the surface tension of the stock solution in the groove.

<請求項4記載の発明>
前記伝熱体外表面に形成される前記溝間は隣接する溝を谷部とする山形に形成されていることを特徴とする請求項1〜3項のいずれか一項に記載の熱交換器。
<Invention of Claim 4>
The heat exchanger according to any one of claims 1 to 3, wherein a gap between the grooves formed on the outer surface of the heat transfer body is formed in a mountain shape having an adjacent groove as a valley.

(作用効果)
請求項1に係る発明では、伝熱体群に処理液を単に流下させる場合に比して、互いに離隔する上段の伝熱体の下端先細部から下段の伝熱体の上端先細部へ滴下させ、上下段伝熱体の間隔が滴下する液滴の大きさに適合し伝熱体間の滴下又は伝熱体間で液膜の架橋が構成されれば、液膜は溝間の先細部にも充填され、条件によっては溝間の前記伝熱体外表面に拡がり流下する場合もあり得る。
(Function and effect)
In the invention according to claim 1, as compared with the case where the treatment liquid is simply allowed to flow down to the heat transfer body group, the lower end of the upper heat transfer body that is separated from the lower end of the heat transfer body is dropped from the upper end of the lower heat transfer body. If the distance between the upper and lower heat transfer bodies is adapted to the size of the drops to be dropped and the liquid film is bridged between the heat transfer bodies or the liquid film is bridged between the heat transfer bodies, Depending on the conditions, the heat transfer body may be spread and flow down to the outer surface of the heat transfer body.

このような場合であっても、再び液が溝に集まり溝側壁界面で薄膜を形成し、活発な蒸発作用を呈する仕組みを本請求項で立てている。すなわち、溝間は隣接する溝を谷部とする山形に形成されていれば、溝間の先細部に生成された液膜から溝間の伝熱体外表面に垂れる液は山形形状部の表面張力により溝間に吸引され、溝に合流する作用を与え、濃縮度を上げた処理は溝を流下する。溝に収まった処理液は、側壁に表面張力の作用により薄膜を形成し、活発に蒸発する。   Even in such a case, the present invention establishes a mechanism in which liquid gathers again in the groove to form a thin film at the groove side wall interface and exhibits an active evaporation action. In other words, if the gap between the grooves is formed in a mountain shape with the adjacent grooves as valleys, the liquid dripping on the outer surface of the heat transfer body between the grooves from the liquid film formed in the fine details between the grooves is the surface tension of the mountain-shaped part. The process of sucking between the grooves and merging into the grooves and increasing the concentration causes the grooves to flow down. The treatment liquid contained in the groove forms a thin film by the action of surface tension on the side wall and actively evaporates.

<請求項5記載の発明>
前記伝熱体は、その伝熱体長手方向に垂直な断面形状が鉛直軸について左右線対称であることを特徴とする請求項1〜4項のいずれか一項に記載の熱交換器。
<Invention of Claim 5>
The heat exchanger according to any one of claims 1 to 4, wherein the heat transfer body has a cross-sectional shape perpendicular to the longitudinal direction of the heat transfer body that is symmetrical with respect to the vertical axis.

(作用効果)
請求項1記載の熱交換器の前記伝熱体は、その長手方向に垂直な断面形状は、必ずしも正多角形、真円、楕円である必要はないが、左右の流下速度は均一であることが好ましく、垂直軸について断面外縁は左右対称であることが好ましい。その断面形状が左右対称でない場合でも、溝の経路長は左右で同一であることが好ましい。
(Function and effect)
The heat exchanger of the heat exchanger according to claim 1, the cross-sectional shape perpendicular to the longitudinal direction does not necessarily have to be a regular polygon, a perfect circle, or an ellipse, but the right and left flow speeds are uniform. It is preferable that the outer edge of the cross section is symmetrical with respect to the vertical axis. Even when the cross-sectional shape is not symmetric, the groove path length is preferably the same on the left and right.

<請求項6記載の発明>
請求項1記載の前記熱交換器の前記伝熱体は、その伝熱体長手方向の鉛直断面形状を菱形とすることを特徴とする請求項1〜5のいずれか一項記載の熱交換器。
<Invention of Claim 6>
The heat exchanger according to any one of claims 1 to 5, wherein the heat exchanger of the heat exchanger according to claim 1 has a rhombic vertical cross-sectional shape in the longitudinal direction of the heat exchanger. .

(作用効果)
請求項1記載の熱交換器の前記伝熱体は、その伝熱体長手方向に垂直な断面形状を菱形とし、菱形の頂点を上端及び下端として配置すれば、互いに離隔する段間を上段の伝熱体の下端先細部から下段の伝熱体の上端先細部へ滴下させる構成を最も単純な形状で実現でき、製作も容易で経済的であり、低コストを目標の一つとする本旨に沿う。流下液の伝熱体からの剥離を避けるため、菱形の長軸を鉛直方向とすることが好ましく、短軸の角は丸みを持たせることが好ましい。
(Function and effect)
In the heat exchanger according to claim 1, if the cross-sectional shape perpendicular to the longitudinal direction of the heat transfer body is a rhombus and the apexes of the rhombus are arranged as an upper end and a lower end, the steps spaced apart from each other are the upper stages. The structure that drops from the lower end tip of the heat transfer body to the upper end tip of the lower heat transfer body can be realized with the simplest shape, is easy to manufacture, is economical, and meets the purpose of low cost. . In order to avoid separation of the falling liquid from the heat transfer body, it is preferable that the major axis of the rhombus is in the vertical direction, and the corner of the minor axis is preferably rounded.

<請求項7記載の発明>
請求項1記載の前記熱交換器の前記伝熱体は、その長手方向に垂直な断面形状の上端下端が先細形を備える円形又は長円形であることを特徴とする請求項1〜5のいずれか一項記載の熱交換器。
<Invention of Claim 7>
The heat transfer body of the heat exchanger according to claim 1, wherein an upper end and a lower end of a cross-sectional shape perpendicular to the longitudinal direction are circular or oval with a tapered shape. A heat exchanger according to claim 1.

(作用効果)
本発明に係る伝熱体群の段間の滴下は、上段先細部の先端から下段先細部の先端に滴下するものと構成される。上段の一方の面を流下する液と他方の面を流下する液は先細部の先端でひとつに合流し、下段の先細部の先端に到達する。流下する流量を調整すれば、原液は、滴下ではなく連続流体として架橋流下し、下段の伝熱体では管軸方向から見て流れは左右に分かれ各左右の伝熱体外周面を単調に流下する(降下する)。このように流下する液は、上下段の伝熱体の対向する先細部で合流と分岐を経ることで伝熱体外周左右面のばらつきが均一化する作用を提供し、伝熱体面に均一に薄膜で流下させる作用を提供する。この点、上端部に何ら形状の工夫を施されていない円形又は長円形を断面とする伝熱体に上段から下段に滴下又は流下しても、滴下後の外周面上左右への分岐は不安定であり、偶然形成された下段伝熱体上端部での液面形状によりいずれかの面下への流下の偏りが生ずる恐れがある。偏りが生じた側では、流量過多で液の昇温が不十分となり、偏りにより流量が少なくなった側では、ドライアウトが発生する可能性もある。このために断面形状が円形又は長円形であっても、前記伝熱体は、その断面形状の上端下端が先細形を備えることが好ましい。この場合も外周面からの剥離を避けるため及び液と伝熱体外周面の接触距離を確保するために長円形の長軸を鉛直方向とすることが好ましい。
(Function and effect)
The dropping between the steps of the heat transfer body group according to the present invention is configured to drop from the tip of the upper step detail to the tip of the lower step detail. The liquid flowing down one side of the upper stage and the liquid flowing down the other side merge together at the tip of the tip, and reach the tip of the tip of the lower stage. By adjusting the flow rate, the undiluted solution flows into the bridge as a continuous fluid instead of dripping, and in the lower heat transfer body, the flow is divided into left and right when viewed from the tube axis direction, and flows down monotonously on the outer peripheral surfaces of the left and right heat transfer bodies. Do (descent). The liquid flowing down in this way provides the effect of uniforming the variation of the left and right sides of the outer periphery of the heat transfer body by joining and branching at the opposite tapered portions of the upper and lower heat transfer bodies, and uniformly on the heat transfer body surface Provides the action of flowing down with a thin film. In this regard, even if the upper end part is dropped or flowed down from the upper stage to the lower part of the heat transfer body having a circular or oval cross section with no shape ingenuity, branching to the left and right on the outer peripheral surface after dropping is not possible. It is stable, and there is a possibility that a deviation in the flow down to any surface may occur due to the liquid surface shape at the upper end of the lower heat transfer body formed by chance. On the side where the bias is generated, the temperature of the liquid becomes insufficient due to an excessive flow rate, and on the side where the flow rate is reduced due to the bias, there is a possibility that dry out may occur. Therefore, even if the cross-sectional shape is circular or oval, it is preferable that the heat transfer body has a tapered shape at the upper and lower ends of the cross-sectional shape. Also in this case, it is preferable that the major axis of the ellipse is the vertical direction in order to avoid peeling from the outer peripheral surface and to secure a contact distance between the liquid and the outer peripheral surface of the heat transfer body.

<請求項8記載の発明>
請求項1記載の熱交換器の前記伝熱体は、その長手方向に垂直な断面形状を辺の数を偶数とする多角形であって、多角形の角を前記先細部とし、角を上下端に配置することを特徴とする請求項1〜5のうちいずれか一項記載の熱交換器。
<Invention of Claim 8>
The heat exchanger according to claim 1, wherein the heat transfer body is a polygon having a cross-sectional shape perpendicular to the longitudinal direction thereof and an even number of sides. It arrange | positions at an end, The heat exchanger as described in any one of Claims 1-5 characterized by the above-mentioned.

(作用効果)
菱形以上の辺数を持つ多角形を断面形状とするときも、菱形同様に頂点を上端及び下端として配置すれば、互いに離隔する段間を上段の伝熱体の下端先細部から下段の伝熱体の上端先細部へ滴下させる構成を最も単純な形状で実現でき、製作も容易で経済的であり、低コストを目標の一つとする本旨に沿うことは請求項3記載の菱形の断面形状を有する熱交換器と同様であり、上端部及び下端部以外の角は丸みを持たせることが好ましいのも同様である。
(Function and effect)
When a polygon with a number of sides equal to or greater than the rhombus is used as the cross-sectional shape, if the vertices are arranged as the upper and lower ends in the same way as the rhombus, the heat transfer from the lower end of the upper heat transfer element to the lower heat transfer between the steps separated from each other It is possible to realize the configuration of dropping onto the upper end details of the body with the simplest shape, which is easy and economical to manufacture, and in line with the main point of aiming at low cost, the rhombic cross-sectional shape according to claim 3 It is the same as that of the heat exchanger which has, and it is the same also that it is preferable to give the corners other than an upper end part and a lower end part roundness.

<請求項9記載の発明>
前記伝熱体群には、伝熱体内の一つ以上の熱媒流路の熱媒温度若しくは流量を変えた伝熱体、伝熱体内の一つ以上の熱媒流路に熱媒を流さない伝熱体又は伝熱体内の一つ以上の流路に冷媒を流す伝熱体のうち少なくとも一つの伝熱体を備えることを特徴とする請求項1〜8のうちいずれか一項記載の熱交換器。
<Invention of Claim 9>
The heat transfer body group includes a heat transfer body in which the heat medium temperature or flow rate of one or more heat transfer passages in the heat transfer body is changed, and a heat transfer medium is passed through the one or more heat transfer passages in the heat transfer body. 9. The heat transfer body according to claim 1, further comprising at least one heat transfer body of a non-heat transfer body or a heat transfer body that causes a refrigerant to flow through one or more flow paths in the heat transfer body. Heat exchanger.

(作用効果)
熱設計によっては、請求項1記載の発明の作用効果に記載したような上段から下段への流下では蒸発潜熱の消費による原液の冷却が十分でなく、下段の伝熱体からの再加熱により流下中に臨界点を超え過熱状態となることもある。このような場合には、上段には熱媒を流すが下段の伝熱体には熱媒を流さず、下段の伝熱体の流下中は再加熱せず、蒸発潜熱による冷却を行い、十分に温度を下げた後にその更に次段において再加熱をするものとし、突沸を回避する。上方伝熱体下部で過熱状態となっていても、伝熱体間の架橋流下中に蒸発潜熱により冷却され、さらに下部伝熱体で流下する間も冷却を続け突沸が生じる程過熱状態に達せぬよう突沸を防止する仕組みを構成する。熱媒を流す伝熱体と熱媒を流さない伝熱体は一つずつに限らず、各々二つ以上の伝熱体を組の要素として構成し、複数の組を鉛直方向に積層してもよし、伝熱体に複数の流路を備え、一部の流路の熱媒温度や流量を変更し、流下する原液の温度を管理する。
(Function and effect)
Depending on the thermal design, the stock solution is not sufficiently cooled due to the consumption of latent heat of vaporization when flowing from the upper stage to the lower stage as described in the operational effect of the invention described in claim 1, and the flow is reduced by reheating from the lower heat transfer body. It may exceed the critical point and become overheated. In such a case, the heating medium is allowed to flow in the upper stage, but the heating medium is not allowed to flow in the lower stage heat transfer body. After the temperature is lowered, reheating is performed in the next stage to avoid bumping. Even if it is overheated at the lower part of the upper heat transfer body, it is cooled by latent heat of vaporization during the flow of the bridge between the heat transfer bodies, and while cooling down, it continues cooling and reaches the overheat state so that bumping occurs. Configure a mechanism to prevent bumping. The number of heat transfer elements that flow the heat medium and the heat transfer element that does not flow the heat medium are not limited to one, but each is composed of two or more heat transfer elements as elements of a set, and multiple sets are stacked in the vertical direction. The heat transfer body is provided with a plurality of channels, and the temperature of the stock solution flowing down is managed by changing the heat medium temperature and flow rate of some channels.

熱に特に弱い物質を含む原液の濃縮に際しては、一部の伝熱体の熱媒流路に冷媒を流し所定濃度への濃縮が完了した後に速やかに冷却することを可能とし、流下する原液の温度をより木目細やかに管理する効果を得る。   When concentrating a stock solution containing a substance that is particularly vulnerable to heat, it is possible to quickly cool after the refrigerant has flowed through the heat medium flow path of some heat transfer bodies to complete the concentration to a predetermined concentration. The effect of controlling the temperature more finely is obtained.

以上のような様々な熱媒温度の組み合わせにより伝熱体の温度を細かく調整する伝熱体の複数段構成で熱交換器を構成する。この熱交換器により、
1)伝熱体群の配置、伝熱体の形状創意工夫により突沸現象を未然に防止すべく水平伝熱体群での均等な流下を確保し、ドライアウト・析出物を発生させない
2)伝熱体の溝と合わせ伝熱体の形状を工夫し、伝熱体からの原液剥離落下位置を伝熱体の最下位点とする仕組みを実現する
3)装置の工夫により原液が蒸発によって放熱する速度を、原液が受熱する速度に一致もしくは接近するように向上させた優れた蒸発放熱機構を実現する
4)原液の物性が熱に弱く、短時間で濃縮した後に速やかに冷却することによって原液の変質を防ぐ機構を実現する
等、高い加熱速度を維持し、高い熱流束を利用しつつ過熱を避け、高い熱効率と濃縮効率を達成し、もって、伝熱部材の長大化を防止し、装置の小型化により、設置スペースの制約から解放し、低コストを実現する効果を提供しているし、原液が長時間高温の状態におかれることにともなって生じる品質劣化(変質)の影響を防止させることも可能となる。
A heat exchanger is comprised by the multistage structure of the heat-transfer body which adjusts the temperature of a heat-transfer body finely by the combination of the above various heat-medium temperature. With this heat exchanger,
1) Arrangement of heat transfer body group and heat transfer body shape ingenuity in order to prevent bumping phenomenon in advance to ensure even flow through horizontal heat transfer body group, and no dryout / precipitate is generated 2) The shape of the heat transfer body is devised in combination with the groove of the heat transfer body to realize a mechanism in which the position where the stock solution is peeled and dropped from the heat transfer body is the lowest point of the heat transfer body. Realizes an evaporative heat release mechanism that improves the speed so that it matches or approaches the speed at which the stock solution receives heat. 4) The physical properties of the stock solution are weak against heat. Maintaining a high heating rate, such as realizing a mechanism to prevent alteration, avoiding overheating while using a high heat flux, achieving high thermal efficiency and concentration efficiency, thereby preventing the heat transfer member from becoming too long, Small size frees you from installation space constraints , To provide an effect of realizing a low cost, it is also possible to prevent the influence of quality degradation occurs with the stock solution is placed in prolonged high-temperature conditions (alteration).

<請求項10記載の発明>
請求項1記載の前記溝は、少なくとも下流で下流方向に漸次拡幅していることを特徴とする請求項1〜9のうちいずれか一項記載の熱交換器。
<Invention of Claim 10>
The heat exchanger according to any one of claims 1 to 9, wherein the groove according to claim 1 is gradually widened in the downstream direction at least downstream.

(作用効果)
表面流下式濃縮方法では、滴下し下流に行くほど液の濃度が増す。多くの場合、液の濃度が増せば粘度が増す関係にある。したがって、このような多くのケースでは、下流に行くほど粘性抵抗が増すのであるから、溶媒の蒸発による体積の現象と下流に行くほど増加する粘性抵抗とのバランスによっては、粘性抵抗を減少させる手当てをしないと液膜が下流に行くほど厚くなり、溝から溢れ流下が不安定になる可能性もある。その弊害を防止するため、溶媒・溶質の特性を考慮し、下流で下流方向に拡幅していることが好ましい。結果として、均等な流下を確保し、濃縮液の所定の濃度への濃縮を可能とする効果を得る。
(Function and effect)
In the surface down concentration method, the concentration of the liquid increases as it drops and goes downstream. In many cases, the viscosity increases as the liquid concentration increases. Therefore, in many of these cases, the viscosity resistance increases toward the downstream. Therefore, depending on the balance between the volume phenomenon due to the evaporation of the solvent and the viscosity resistance that increases toward the downstream, it is necessary to reduce the viscosity resistance. Otherwise, the liquid film becomes thicker as it goes downstream, and it may overflow from the groove and become unstable. In order to prevent the adverse effect, it is preferable that the width is increased in the downstream direction in consideration of the characteristics of the solvent / solute. As a result, it is possible to secure an even flow and to obtain an effect that enables the concentrated liquid to be concentrated to a predetermined concentration.

<請求項11記載の発明>
前記伝熱体外表面に形成される前記溝間は隣接する溝を谷部とする山形に形成されていることを特徴とする請求項1〜10のうちいずれか一項記載の熱交換器。
<Invention of Claim 11>
The heat exchanger according to any one of claims 1 to 10, wherein a gap between the grooves formed on the outer surface of the heat transfer body is formed in a mountain shape having a groove as an adjacent groove.

(作用効果)
請求項1に係る発明では、伝熱体群に処理液を単に流下させる場合に比して、互いに離隔する上段の伝熱体の下端先細部から下段の伝熱体の上端先細部へ滴下させ、上下段伝熱体の間隔が滴下する液滴の大きさに適合し伝熱体間の滴下又は伝熱体間で液膜の架橋が構成されれば、液膜は溝間の先細部にも充填され、条件によっては溝間の伝熱体外表面に拡がり流下する場合もあり得る。
(Function and effect)
In the invention according to claim 1, as compared with the case where the treatment liquid is simply allowed to flow down to the heat transfer body group, the lower end of the upper heat transfer body that is separated from the lower end of the heat transfer body is dropped from the upper end of the lower heat transfer body. If the distance between the upper and lower heat transfer bodies is adapted to the size of the drops to be dropped and the liquid film is bridged between the heat transfer bodies or the liquid film is bridged between the heat transfer bodies, Depending on the conditions, it may spread to the outer surface of the heat transfer body between the grooves and flow down.

このような場合であっても、再び液が溝に集まり溝側壁界面で薄膜を形成し、活発な蒸発作用を呈する仕組みを本請求項で立てている。すなわち、溝間は隣接する溝を谷部とする山形に形成されていれば、溝間の先細部に生成された液膜から溝間の伝熱体外表面に垂れる液は山形形状部の表面張力により溝間に吸引され、溝に合流する作用を与え、濃縮度を上げた処理は溝を流下する。溝に収まった処理液は、側壁に表面張力の作用により薄膜を形成し、活発に蒸発する。   Even in such a case, the present invention establishes a mechanism in which liquid gathers again in the groove to form a thin film at the groove side wall interface and exhibits an active evaporation action. In other words, if the gap between the grooves is formed in a mountain shape with the adjacent grooves as valleys, the liquid dripping on the outer surface of the heat transfer body between the grooves from the liquid film formed in the fine details between the grooves is the surface tension of the mountain-shaped part. The process of sucking between the grooves and merging into the grooves and increasing the concentration causes the grooves to flow down. The treatment liquid contained in the groove forms a thin film by the action of surface tension on the side wall and actively evaporates.

<請求項12記載の発明>
前記伝熱体の本体の上部及び下部には、端部に向かう先細部を備え、この両先細部の間であって、各先細部の基部側と水平方向に延在する液溜まり凹部を介して離隔し、前記流路が、前記伝熱体の本体の両外表面に上に各々形成されていることを特徴とする請求項1〜11のうちいずれか一項記載の熱交換器
<Invention of Claim 12>
The upper and lower portions of the main body of the heat transfer body are provided with tapered portions toward the end portions, and between the tapered portions, via a liquid reservoir recess extending in the horizontal direction with the base side of each tapered detail. The heat exchanger according to any one of claims 1 to 11, wherein the flow paths are formed on both outer surfaces of the main body of the heat transfer body.

<作用効果>
請求項12に係る発明では、伝熱体を伝熱プレート状と伝熱プレートの両外表面には、溝が形成され、溝側壁界面で原液薄膜を形成し、熱媒流路から供給される熱流を元に処理液を蒸発させる。伝熱プレートは互いに離隔する複数段からなる伝熱プレート群を構成し柔軟な配置により濃縮仕様に適合する処理能力を構成することができる。
伝熱体の本体の上部及び下部には、端部に向かう先細部を備え、この両先細部の間であって、各先細部の基部側と水平方向に延在する液溜まり凹部を介して離隔し、この凹部の隙間の毛細管効果で原液を水平方向に引き伸ばして全ての溝に液が行き渡るようにしている。
<Effect>
In the invention which concerns on Claim 12, a groove | channel is formed in both the outer surface of a heat-transfer plate shape and a heat-transfer plate, a stock solution thin film is formed in a groove side wall interface, and it is supplied from a heat-medium flow path. The treatment liquid is evaporated based on the heat flow. The heat transfer plate constitutes a heat transfer plate group composed of a plurality of stages separated from each other, and a processing capacity that meets the concentration specification can be configured by a flexible arrangement.
The upper and lower parts of the main body of the heat transfer body are provided with a taper toward the end, and between these two taper points, through a liquid pool recess extending horizontally with the base side of each taper. The undiluted solution is stretched in the horizontal direction by the capillary effect in the gaps of the recesses, so that the solution spreads in all the grooves.

<請求項13記載の発明>
前記伝熱体は、基材をステンレス鋼よりも熱伝導性の良いセラミックス材料であることを特徴とする請求項1〜12項のうちいずれか一項記載の熱交換器。
<Invention of Claim 13>
The heat exchanger according to any one of claims 1 to 12, wherein the heat transfer body is a ceramic material whose base material has better thermal conductivity than stainless steel.

(作用効果)
伝熱体は、表面張力・基材の濡れ性にもよるが、その表面に1mmないしそれ以下0.5mm程度の幅、深さの溝を形成するものであり、かような溝は金属であれば表面を活性化し易くさせ、突沸の発生により衝撃波も発生するので表面劣化が促進される可能性がある。一方、炭化ケイ素、窒化アルミニウム及びアルミナを主成分とするセラミックスはその表面に1mmないしそれ以下0.5mm程度の幅、深さの溝を形成しつつ押出成形できれば、熱伝導率特性も金属一般よりも優れ、本発明に係る伝熱部材の基材材料として好適である。
(Function and effect)
Depending on the surface tension and wettability of the substrate, the heat transfer body forms grooves with a width and depth of about 1 mm to 0.5 mm on the surface. Such grooves are made of metal. If it exists, the surface can be easily activated, and shock waves are also generated by the occurrence of bumping, which may promote surface deterioration. On the other hand, ceramics mainly composed of silicon carbide, aluminum nitride, and alumina have thermal conductivity characteristics that are generally higher than those of metals in general if they can be extruded while forming grooves with a width and depth of about 1 mm to 0.5 mm on the surface. And is suitable as a base material for the heat transfer member according to the present invention.

<請求項14記載の発明>
前記伝熱体の基材表面を基材よりも伝熱性が高い、ステンレス鋼材、セラミックス材又は高熱伝導性高分子材で被膜することを特徴とする請求項1〜13項のうちのいずれか一項に記載の熱交換器。
<Invention of Claim 14>
The base material surface of the heat transfer body is coated with a stainless steel material, a ceramic material, or a high thermal conductivity polymer material having higher heat conductivity than the base material. The heat exchanger according to item.

(作用効果)
基材は、熱媒体、例えば温水との耐食性と熱伝導性、耐久性等の相性と加工性、組立製作面、コスト等の特性から選択される一方で、原液との熱交換を実施する伝熱体表面は、原液との耐食性、熱伝導性を考慮し最適な被膜材量を選択することで、濡れ性の最適化も含め選択することが好ましい。
(Function and effect)
The substrate is selected from characteristics such as corrosion resistance and thermal conductivity with hot water, for example, hot water, compatibility and workability such as durability, assembly and manufacturing, and cost, while conducting heat exchange with the stock solution. It is preferable to select the surface of the thermal body, including optimization of wettability, by selecting an optimal amount of coating material in consideration of corrosion resistance with the stock solution and thermal conductivity.

<請求項15記載の発明>
前記セラミックス材は、炭化ケイ素、窒化アルミニウム又はアルミナを主成分とすることを特徴とする請求項13又は14のいずれか一方に記載の熱交換器。
<Invention of Claim 15>
The heat exchanger according to claim 13, wherein the ceramic material is mainly composed of silicon carbide, aluminum nitride, or alumina.

(作用効果)
炭化ケイ素、窒化アルミニウム又はアルミナは、セラミックスの中でも熱伝導率が高いもので伝熱部材の材料として好適である。ここでいう主成分とは、前記セラミックスを構成する全成分100質量%に対して、50質量%以上を占める成分をいう。主成分の同定については、X線回折法を用い、主成分の含有量については蛍光X線分析法またはICP発光分析法により求めればよい。
(Function and effect)
Silicon carbide, aluminum nitride, or alumina has a high thermal conductivity among ceramics and is suitable as a material for the heat transfer member. The main component here means a component occupying 50% by mass or more with respect to 100% by mass of all components constituting the ceramic. The main component may be identified by using an X-ray diffraction method, and the content of the main component may be determined by a fluorescent X-ray analysis method or an ICP emission analysis method.

<請求項16記載の発明>
真空化手段に連結された真空容器内に、設置される蒸発器に請求項1〜15記載の熱交換器のうち少なくともいずれか一つを用いたことを特徴とする表面流下式濃縮装置。
<Invention of Claim 16>
A surface flow type concentrator using at least one of the heat exchangers according to claims 1 to 15 as an evaporator installed in a vacuum vessel connected to a vacuum means.

(作用効果)
本発明に係る表面流下式熱交換機を用いて原液の濃縮液を製造する装置についての発明である。
(Function and effect)
It is invention about the apparatus which manufactures the concentrate of a stock solution using the surface flow type heat exchanger which concerns on this invention.

<請求項17記載の発明>
下段へ流下する程、伝熱器外面に形成される流下路溝数が減ずることを特徴とする請求項16記載の濃縮装置。
<Invention of Claim 17>
The concentration device according to claim 16, wherein the number of flow path grooves formed on the outer surface of the heat transfer device decreases as it flows down to the lower stage.

(作用効果)
請求項17記載の表面流下式濃縮装置で積層構造の伝熱体群の上方には原液の分配手段を有し、ここから各伝熱体へ原液が流下される多段構成とするが下段へ下りる程液は濃縮され、体積が減少する。したがって、流路数がそのままであると流下する液が途切れ、ドライアウトや突沸の恐れが生ずるし、濃度が高くなれば粘度が高くなる性質の液だと粘性抵抗が大きくなり、ますますドライアウトや突沸の恐れが強くなる。そこで、下段へ行く程、溝を合流させ、溝を流れる流量を確保し、突沸現象を未然に防止し水平伝熱体群での均等な流下を確保し、ドライアウト・析出物を発生させない機構としている。
(Function and effect)
18. A surface-flow type concentrator according to claim 17, wherein a stock solution distribution means is provided above the heat transfer body group having a laminated structure, and a multi-stage configuration is provided in which the stock solution flows down to each heat transfer body. The liquid is concentrated and the volume decreases. Therefore, if the number of channels remains the same, the flowing liquid will be interrupted, causing dryout and bumping. If the concentration is high, the viscosity will increase and the viscosity resistance will increase. The risk of sudden boiling is increased. Therefore, as it goes to the lower stage, the grooves are merged, the flow rate through the grooves is secured, the bumping phenomenon is prevented in advance, the uniform flow down in the horizontal heat transfer body group is ensured, and dryout / precipitate is not generated It is said.

<請求項18記載の発明>
前記伝熱体に超音波振動を加える手段を備えたことを特徴とする請求項16又は17のうちいずれか一方に記載の濃縮装置。
<Invention of Claim 18>
The concentrating device according to any one of claims 16 and 17, further comprising means for applying ultrasonic vibration to the heat transfer body.

(作用効果)
伝熱体に超音波振動子で定常振動を加えると、適度な振動は均一な流下を促し、蒸発を促す作用を期待でき、液の流下と蒸発の安定化に寄与する。
(Function and effect)
When steady vibration is applied to the heat transfer body with an ultrasonic vibrator, moderate vibration promotes uniform flow and can be expected to promote evaporation, contributing to liquid flow and stabilization of evaporation.

<請求項19記載の発明>
真空化手段に連結された真空容器内に複数段の伝熱体群を用いる表面流下式濃縮方法であって、
該伝熱体最上端に形成された先細部に原液が滴下又は流下される段階と、
該伝熱体に形成される溝を流路として流れる原液が、流下液と溝側壁との界面で薄膜を生成し蒸発する段階と、
上段の伝熱体外表面から原液液膜が剥離せず該伝熱体最下端に形成された先細部に合流する段階と、
上段伝熱体最下端に流下した原液は、伝熱体最下端の先細部からその下段に位置する下段伝熱体最上端の先細部へ滴下又は流下する段階を、
液が上段から下段への伝熱体を順次流下し真空容器底部へ滴下するまで繰返すことを特徴とする表面流下式濃縮方法。
<Invention of Claim 19>
A surface flow type concentration method using a plurality of stages of heat transfer bodies in a vacuum vessel connected to a vacuum means,
A step in which the stock solution is dropped or flowed down on the tapered portion formed at the uppermost end of the heat transfer body;
A step in which a stock solution flowing through a groove formed in the heat transfer body forms a thin film at the interface between the falling liquid and the groove side wall and evaporates;
The stock solution liquid film does not peel off from the outer surface of the upper heat transfer body and joins the tapered portion formed at the lowermost end of the heat transfer body; and
The stock solution that has flowed down to the lowermost end of the upper heat transfer body drops or flows down from the lower end of the lower end of the heat transfer body to the upper end of the lower end of the lower heat transfer body.
A surface flow type concentration method characterized in that the liquid is repeated until the heat transfer material from the upper stage to the lower stage flows down and drops to the bottom of the vacuum vessel.

(作用効果)
本発明に係る表面流下式熱交換機を用いて原液の濃縮方法についての発明である。
(Function and effect)
It is invention about the concentration method of undiluted | stock solution using the surface-flow type heat exchanger which concerns on this invention.

<請求項20記載の発明>
突沸発生状況を検知する手段と、
予め設定されてルールにより突沸を判定制御する手段と、
運転条件を制御する手段を備え、
突沸の発生状況と前記ルールに照らし蒸発を促進する判定であれば、
蒸発を促進する運転制御をし、
突沸の発生状況と前記ルールに照らし突沸を抑制する判定であれば、
蒸発を抑制する運転制御をすることを特徴とする突沸制御手段を備えたことを特徴とする
請求項19項記載の濃縮方法。
<Invention of Claim 20>
Means for detecting the occurrence of bumping;
Means for determining and controlling bumping according to a rule set in advance;
Means for controlling operating conditions,
If it is a decision to promote evaporation in light of the occurrence of bumping and the above rules,
Control the operation to promote evaporation,
If it is determined to suppress bumping in light of the occurrence of bumping and the above rules,
The concentration method according to claim 19, further comprising a bumping control unit that controls operation to suppress evaporation.

(作用効果)
突沸は、液過熱状態、液の粘度・熱特性、伝熱面での流れ、伝熱面の濡れ性及び伝熱面の局所温度等が複雑に絡む確率過程と認識すべきであり、本発明に係る表面流下式濃縮方法では、液膜という僅かな流量の液を加熱するものであり、小型化を目指せば、局所的な過熱が生ずる運転条件と成らざるを得ないし、そのような限界的な条件下であれば、運転条件により過熱を避ける制御を追求するよりも、むしろ、局所的に生ずる突沸をモニターし、この発生を運転条件に反映させることが得策である。
(Function and effect)
Bumping should be recognized as a stochastic process that involves complicatedly the liquid overheating state, the viscosity and heat characteristics of the liquid, the flow on the heat transfer surface, the wettability of the heat transfer surface, and the local temperature of the heat transfer surface. In the surface flow type concentration method according to the method, a liquid with a small flow rate called a liquid film is heated, and if it is aimed at miniaturization, it must be the operating condition that causes local overheating, and such a limit Under such conditions, it is better to monitor locally generated bumping and reflect this occurrence in the operating conditions rather than pursuing control to avoid overheating depending on the operating conditions.

この考え方の元、請求項20記載の発明では、運転条件を制御する手段と突沸発生状況を検知する手段を備え、後者により突沸の発生を検知し、突沸の発生から運転状況を把握し、予め設定されているルールにより突沸を判定制御する手段を備え、この手段により前記運転状況を入力として、過熱により突沸が僅かでも発生すれば抑制すべきと評価判定すれば、運転条件を制御する手段により、突沸を抑制する運転条件、例えば、熱媒体流量の抑制、熱交換器収納容器内の圧力を上げる等の変更をしたり、全体として蒸発量が不足で未だ所定の突沸が発生する程の加熱域に達していないものであり、蒸発量を促進すべきと評価判定する場合には、運転条件を制御する手段により、蒸発を促進する条件、例えば、熱媒体流量の増加、熱交換器収納容器内の減圧等の運転条件の変更をする。   Based on this concept, the invention according to claim 20 includes means for controlling operating conditions and means for detecting the occurrence of bumping, detecting the occurrence of bumping by the latter, grasping the driving situation from the occurrence of bumping, By means of determining and controlling bumping according to the set rule, and by means of this means, the operation status is input, and if it is evaluated and determined that even if bumping occurs even slightly due to overheating, the means for controlling the operating condition The operating conditions for suppressing bumping, for example, the heating medium flow rate, the pressure in the heat exchanger container, etc. are changed, or the amount of evaporation is not sufficient as a whole, and heating to the extent that predetermined bumping still occurs If it is determined that the amount of evaporation should be promoted, the conditions for promoting evaporation, such as an increase in the flow rate of the heat medium, the heat exchanger To change the operating conditions of reduced pressure such as in the container.

突沸発生状況を検知する手段は、温度・流量・圧力等の間接的な手段よりも突沸は物理現象であるという特性を活かし、超音波センサーによる突沸発生の音波の検知やカメラによる伝熱面、容器内雰囲気の直接監視が有効であり、好ましい。   The means to detect the bumping occurrence situation is based on the fact that bumping is a physical phenomenon rather than indirect means such as temperature, flow rate, pressure, etc., detecting the sound wave of bumping occurrence by an ultrasonic sensor, the heat transfer surface by a camera, Direct monitoring of the atmosphere in the container is effective and preferable.

<請求項21記載の発明>
請求項19又は20のいずれか一方に記載の表面流下式濃縮方法を使用する濃縮装置。
<Invention of Claim 21>
A concentrator using the surface flow type concentrating method according to any one of claims 19 and 20.

(作用効果)
本発明に係る表面流下式濃縮方法を用いて原液の濃縮液を製造する装置についての発明である。請求項21項記載の濃縮装置は請求項19又は20のいずれか一方に記載の表面流下式濃縮方法を具現化した製造設備に相当するものである。該製造方法を用いて原液の濃縮液を製造する装置は、本発明の生産方法の発明の製造装置に該当する。
(Function and effect)
It is invention about the apparatus which manufactures the concentrate of a stock solution using the surface flow type | formula concentration method which concerns on this invention. The concentration apparatus according to a twenty-first aspect corresponds to a manufacturing facility that embodies the surface-flow type concentration method according to any one of the nineteenth and twentieth aspects. An apparatus for producing a concentrate of a stock solution using the production method corresponds to the production apparatus of the invention of the production method of the present invention.

<請求項22記載の発明>
前記セラミックス材を用いた前記伝熱体は、押出し成形又は加圧成形により形成することを特徴とする請求項13〜15のうちいずれかの一項に記載の熱交換器。
<Invention of Claim 22>
The heat exchanger according to any one of claims 13 to 15, wherein the heat transfer body using the ceramic material is formed by extrusion molding or pressure molding.

(作用効果)
セラミックス材は、金属材料と異なり、押出しや加圧成型によって溝を形成でき、切削などの加工による溝の形成がなくなれば、コストを抑える効果を得られる。本方式であれば、溝の加工によって材料の変形を生じてしまったり、残留応力によって加熱した場合に変形したりする可能性もない。さらにセラミックス材は、腐食に非常に強いという特性がある。セラミックスは、熱膨張もステンレスより小さいので、精密に焼結する技術を確立できれば、メリットは大きい。特に、押出し方向に同一の溝形を備えるプレート型の伝熱体の製造には、押出し成形が好適である。溝が斜行するもの等、押出し方向に同一の溝形をもたないものは、加圧成形によるのが好適であり、金属加工を要さず、量産に向く成形法を利用できることがセラミックス材の利点である。
(Function and effect)
Unlike a metal material, a ceramic material can form a groove by extrusion or pressure molding. If the groove is not formed by a process such as cutting, the cost can be reduced. With this method, there is no possibility of deformation of the material due to the processing of the grooves or deformation when heated by residual stress. Furthermore, ceramic materials have the property of being extremely resistant to corrosion. Ceramics also have a large merit if a technology for precise sintering can be established because thermal expansion is smaller than that of stainless steel. In particular, extrusion molding is suitable for manufacturing a plate-type heat transfer body having the same groove shape in the extrusion direction. Ceramic materials that do not have the same groove shape in the extrusion direction, such as those in which the grooves are skewed, are preferably formed by pressure forming, and do not require metal processing, and can use a forming method suitable for mass production. Is the advantage.

本発明に係る濃縮装置の一実施態様を示す模式側面図である。It is a schematic side view which shows one embodiment of the concentration apparatus which concerns on this invention. 本発明に係る熱交換器の一実施形態のうち菱形断面形状の伝熱体溝から滴下する処理液を示す模式図である。It is a schematic diagram which shows the process liquid dripped from the heat exchanger groove | channel of a rhombus cross-section among one Embodiment of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の一実施形態における伝熱体の積層スタック構造を示す模式図である。It is a schematic diagram which shows the laminated stack structure of the heat exchanger in one Embodiment of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の伝熱体積層構造の第二の実施態様を示す模式図である。It is a schematic diagram which shows the 2nd embodiment of the heat exchanger laminated structure of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の伝熱体積層構造の第三の実施態様を示す模式図である。It is a schematic diagram which shows the 3rd embodiment of the heat exchanger laminated structure of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の伝熱体の第四の実施態様を示す突状端を備える真円断面形状示す模式断面図である。It is a schematic cross section which shows the perfect circular cross-section provided with the projecting end which shows the 4th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の伝熱体の第五の実施態様を示す突状端を備える長円断面形状示す模式断面図である。It is a schematic cross section which shows the ellipse cross-sectional shape provided with the projecting end which shows the 5th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の伝熱体の第六の実施態様を示す伝熱体内面にフィンを設けたもの断面形状を示す模式断面図である。It is a schematic cross section which shows the cross-sectional shape which provided the fin in the heat exchanger inner surface which shows the 6th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の伝熱体の第七の実施態様を示す伝熱体内面にフィンを設けたもの断面形状を示す模式断面図である。It is a schematic cross section which shows the cross-sectional shape which provided the fin in the heat exchanger inner surface which shows the 7th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. 対向する突状端に形成される架橋液を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the bridge | crosslinking liquid formed in the opposing projecting end. 第八の実施形態に係る突沸制御手段を備えた濃縮装置の機能連携説明図である。It is functional cooperation explanatory drawing of the concentration apparatus provided with the bump boiling control means which concerns on 8th embodiment. 伝熱体の溝部の詳細を示す水平断面図である。It is a horizontal sectional view which shows the detail of the groove part of a heat exchanger. 本発明に係る熱交換器の第九の実施形態における伝熱体構造の積層スタック構成を示す模式図である。It is a schematic diagram which shows the laminated stack structure of the heat-transfer body structure in 9th embodiment of the heat exchanger which concerns on this invention.

以下、本発明の一実施形態について添付図面を参照しながら詳説する。
図1は、本発明に係る濃縮装置の一実施態様を示す模式側面図であり、図2は、本発明に係る熱交換器の一実施形態のうち菱形断面形状の伝熱体溝から滴下する処理液を示す模式図であり、図3は、本発明に係る熱交換器の一実施形態における伝熱体の積層スタック構造を示す模式図である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic side view showing an embodiment of a concentrating device according to the present invention, and FIG. 2 is dropped from a heat transfer body groove having a rhombic cross section in one embodiment of a heat exchanger according to the present invention. FIG. 3 is a schematic view showing a treatment liquid, and FIG. 3 is a schematic view showing a laminated stack structure of heat transfer bodies in an embodiment of a heat exchanger according to the present invention.

図1に示されるように、本発明に係る濃縮装置1で使用する熱交換器2は液の蒸発機能を担い真空容器内41に設置される。熱交換器の伝熱体10は真空容器内に水平に積層設置され端板42,47で支持されている。真空手段により真空容器は排気口45から吸引され、処理圧力に設定される。原液は、原液投入口44から投入され、原液分配器46を経由し原液スプリッター43より熱交換器2の最上部に設置されている伝熱体10の溝11(図2参照)へ滴下される。伝熱体は図2に示すように内部流路には熱媒である温水が流され、伝熱体外表面に形成されている溝11を流路として流下する処理液と熱交換し、処理液の溶媒を蒸発させ液を濃縮する。水平に設置されている伝熱体10は上下方向に多段にスタックされている。図2に示されるように伝熱体10は、その上端及び下端に先細形状14,15を呈する菱形であり、断面から見れば左右対称の形状とし、左右の流路となすその外周に形成される溝の行程長さは左右で同一とし、左右で均等の流れを実現する。菱形の角度は緩やかな縦長と形成されており、水平端では、淀みを避けるため丸められ、かつ、外表面を流下する処理液が途中で重力及び流れの遠心力で剥離しないように丸みが形成されている。   As shown in FIG. 1, the heat exchanger 2 used in the concentration apparatus 1 according to the present invention has a liquid evaporation function and is installed in a vacuum container 41. The heat exchanger 10 of the heat exchanger is horizontally stacked in a vacuum vessel and supported by end plates 42 and 47. The vacuum vessel is sucked from the exhaust port 45 by the vacuum means and set to the processing pressure. The stock solution is introduced from the stock solution inlet 44 and dropped into the groove 11 (see FIG. 2) of the heat transfer body 10 installed at the top of the heat exchanger 2 from the stock solution splitter 43 via the stock solution distributor 46. . As shown in FIG. 2, in the heat transfer body, hot water as a heat medium is flowed in the internal flow path, and heat exchange is performed with the processing liquid flowing down using the groove 11 formed on the outer surface of the heat transfer body as the flow path. The solvent is evaporated and the liquid is concentrated. The heat transfer bodies 10 installed horizontally are stacked in multiple stages in the vertical direction. As shown in FIG. 2, the heat transfer body 10 is a rhombus that has tapered shapes 14 and 15 at the upper and lower ends thereof, and has a symmetrical shape when viewed from the cross section, and is formed on the outer periphery that forms the left and right flow paths. The stroke length of the groove is the same on the left and right, and an equal flow is realized on the left and right. The angle of the rhombus is formed as a moderately long shape, and at the horizontal end, it is rounded to avoid stagnation, and roundness is formed so that the processing liquid flowing down the outer surface does not peel off due to gravity and flow centrifugal force. Has been.

上段の伝熱体10の下端は先細14に形成され先端からは、離隔距離が大きければ、左右から流下される処理液が均等に下段の伝熱体10へ滴12のように滴下されるが、本発明では滴下すべき原液は、十分に近接する下段の伝熱体の上端に形成される先細部15に受け止められて、両者は近接配置されているために、表面張力の作用により液の架橋を生成し、流量が盛んなときには、溝間を跨る架橋17が形成され、下段の伝熱体10の外周に形成されている溝11へ導かれ、この溝を流路として再び伝熱体の外周部を重力の作用により流下し、以下、これを繰返し、下段の伝熱体10に液滴13を滴下する。熱交換器2の最下段の伝熱体10から滴下し終えると濃縮工程S0を完了し、濃縮液は液出口48から排出される。熱交換器2には超音波振動子50が据えられ、熱交換器を振動子させ、原液スプリッター43からの原液の流出を促し、伝熱体からの液滴下を促進し、合わせて伝熱体面からの蒸発を促進し、汚れの付着も防止する。図3に示すように、熱交換器2内の伝熱体10は上方にも水平方向にも積層されコンパクトな空間で熱交換処理を行い、経済的な構成を実現する。   The lower end of the upper heat transfer body 10 is formed in a taper 14, and if the separation distance is large from the tip, the treatment liquid flowing down from the left and right is evenly dropped onto the lower heat transfer body 10 as drops 12. In the present invention, the stock solution to be dripped is received by the tapered portion 15 formed at the upper end of the lower heat transfer member sufficiently close to each other, and the two are disposed close to each other. When bridging is generated and the flow rate is high, the bridging 17 is formed across the grooves and is led to the grooves 11 formed on the outer periphery of the lower heat transfer body 10. The outer peripheral portion of the liquid is caused to flow down by the action of gravity, and thereafter, this is repeated, and the droplet 13 is dropped on the lower heat transfer body 10. When dripping from the lowermost heat transfer body 10 of the heat exchanger 2 is completed, the concentration step S0 is completed, and the concentrated liquid is discharged from the liquid outlet 48. An ultrasonic vibrator 50 is installed in the heat exchanger 2, and the heat exchanger is vibrated to promote the outflow of the stock solution from the stock solution splitter 43, promote the dropping of liquid droplets from the heat transfer body, and the heat transfer body surface. Accelerates evaporation and prevents dirt from sticking. As shown in FIG. 3, the heat transfer body 10 in the heat exchanger 2 is stacked both vertically and horizontally, and performs heat exchange processing in a compact space to realize an economical configuration.

図1で原液スプリッター43より熱交換器2の最上部に設置されている伝熱体10へ滴下される際にも、上記と同じ原理を働かせ、溝間を跨る架橋17を形成し、溝間に均等に液が配分され均一な濃縮を実現する。   In FIG. 1, when dropping from the stock solution splitter 43 to the heat transfer body 10 installed at the top of the heat exchanger 2, the same principle as described above is used to form a bridge 17 across the grooves, The liquid is evenly distributed to achieve uniform concentration.

図4は、本発明に係る熱交換器の伝熱体積層構造の第二の実施態様を示す模式図である。図4の最上部の伝熱体10で熱せられた処理液は、続けて次段の伝熱体20で続けて熱せられると過熱域に達し突沸を招きかねないので、本実施例では、次段の伝熱体20は温水は流さず、処理液は余熱で外表面の溝を流下する間に蒸発し、放熱する。次段の伝熱体10には、伝熱体内部に温水が通され再び処理液は加熱され、活発に蒸発をし、温水が流されない次段の伝熱体20に滴下し、再び放熱し冷まされ、過熱による突沸を防止する。このように、管内に熱媒体を流す加熱・蒸発ゾーンと管内に熱媒を流さない蒸発液冷ゾーンとを交互に構成し、全体として適切な温度制御を実現する。この多段構成を活用し、流路に熱媒を流さない代わりに温度を下げた熱媒を流し、温度調整をよりきめ細かく管理することもできるし、また、流路には熱媒の代わりに冷媒を流し、原液の種類によっては、液を速やかに冷却し温度による改質を低減させることもできる。   FIG. 4 is a schematic view showing a second embodiment of the heat transfer body laminated structure of the heat exchanger according to the present invention. The processing liquid heated by the uppermost heat transfer body 10 in FIG. 4 reaches the overheating region and may cause bumping if it is continuously heated by the heat transfer body 20 at the next stage. The stage heat transfer body 20 does not flow hot water, and the processing liquid evaporates and radiates heat while flowing down the grooves on the outer surface due to residual heat. In the next-stage heat transfer body 10, hot water is passed through the heat transfer body, the treatment liquid is heated again, actively evaporates, drops on the next-stage heat transfer body 20 where hot water is not passed, and again radiates heat. Cooled to prevent bumping due to overheating. In this way, the heating / evaporation zone in which the heat medium flows in the pipe and the evaporative liquid cooling zone in which the heat medium does not flow in the pipe are alternately configured to realize appropriate temperature control as a whole. By utilizing this multi-stage configuration, instead of flowing a heat medium through the flow path, a heat medium with a lowered temperature can be flowed so that the temperature adjustment can be managed more finely. Depending on the type of the undiluted solution, the solution can be cooled quickly to reduce the reforming due to temperature.

図5は、本発明に係る熱交換器の伝熱体積層構造の第三の実施態様を示す模式図である。伝熱体10上段から下段に向けて流下する処理液は、下段に向かうにつれて濃度が高まり、処理容量が減少する。したがって、上段部と同様の熱流で熱交換処理を行うと、流れが途絶えてオーバーヒート状態となり、ドライアウトにより析出物が出るなど不都合が発生する場合もある。本実施例では、上段から下段に下がるにつれて、処理液の体積の減少に連れて流路を24本から12本へ、さらに6本へと減少させ、常に流路に一定の処理液を流し、ある程度の流下速度を確保し均一な処理を実現する。伝熱体10の溝数は伝熱体21へ行けば半減し、伝熱体31へ下りればさらに半減する構成となっている。伝熱体10と21の間には近接する先細部間に処理液の架橋23が生成され、下段の伝熱体21へ流下される。下段の伝熱体の溝からそれて溝間に垂れてしまった液も溝間の外表面は隣接する溝との間に山が形成されているので、表面張力の作用により、溢れて垂れた処理液22も溝11引き込まれる。自動的に溝に処理液が合流する仕組みが組み込まれている。
伝熱体内部を流れる熱媒である温水は、最上段の伝熱体11は高温水に、中段の伝熱体21は中温水に、最下段の31は低温水が流され、処理内容により各伝熱体の温度制御を伝熱体毎に細やかに行う。最下段の31は低温水とし、濃縮済みの液温を早く下げ、濃縮液の温度による変質を防止する作用も与えることができる。
FIG. 5 is a schematic view showing a third embodiment of the heat transfer body laminated structure of the heat exchanger according to the present invention. The concentration of the processing liquid flowing down from the upper stage to the lower stage of the heat transfer body 10 increases and the processing capacity decreases as it goes to the lower stage. Therefore, when the heat exchange treatment is performed with the same heat flow as that of the upper stage portion, the flow may be interrupted and an overheating state may occur, and inconveniences such as precipitation may occur due to dryout. In this embodiment, as the volume of the processing liquid decreases from the upper stage to the lower stage, the flow path is reduced from 24 to 12 and further to 6, and a constant processing liquid is always passed through the flow path. A certain amount of flow speed is secured to achieve uniform processing. The number of grooves of the heat transfer body 10 is halved when going to the heat transfer body 21, and further reduced by half when going down to the heat transfer body 31. Between the heat transfer bodies 10 and 21, a cross-linking 23 of the treatment liquid is generated between the adjacent details, and flows down to the lower heat transfer body 21. The liquid that has dropped from the groove of the lower heat transfer body and dripped between the grooves also overflowed due to the effect of surface tension because the outer surface between the grooves was crested between adjacent grooves. The treatment liquid 22 is also drawn into the groove 11. A mechanism for automatically merging the processing liquid into the groove is incorporated.
In the hot water that is a heat medium flowing inside the heat transfer body, the uppermost heat transfer body 11 is flowed to the high temperature water, the middle heat transfer body 21 is flowed to the medium temperature water, and the lowermost stage 31 is flowed to the low temperature water. The temperature control of each heat transfer body is performed finely for each heat transfer body. The lowermost portion 31 is low-temperature water, and can lower the temperature of the concentrated liquid quickly, and can also provide an effect of preventing alteration due to the temperature of the concentrated liquid.

図6は、本発明に係る熱交換器の伝熱体の第四の実施態様のうち突状端を備える真円断面形状を示す模式断面図である。この実施例では、伝熱体10の断面形状を真円とし、上下端に先細部を設けている。シンプルな形状である。
図7は、本発明に係る熱交換器の伝熱体の第五の実施態様のうち突状端を備える長円断面形状を示す模式断面図である。断面形状を長円とし、外表面の溝を流下するに際して、真円断面形状に比べて中途で液が剥離落下しにくい形状として、合わせて流路長をより長く構成し熱交換を促進する。
図8は、本発明に係る熱交換器の伝熱体の第六の実施態様のうち伝熱体内面にフィンを設けたものの断面形状を示す模式断面図である。伝熱体内面にフィンを設け温水との熱交換効率を向上させている。
図9は、本発明に係る熱交換器の伝熱体の第七の実施態様のうち伝熱体内面にフィンを設けたものの断面形状を示す模式断面図である。伝熱体内面にフィンを設け温水との熱交換効率を向上させている。
図10は、対向する突状端に形成される架橋液16を説明する断面模式図である。伝熱体の上下端は先細状に構成されているので、先細部14,15間に滴下時に表面張力が働き、処理液による架橋16が構成され、下段でも左右に等しく処理液が振り分けられ、均一な濃縮工程を実現する。
FIG. 6: is a schematic cross section which shows the perfect circular cross-sectional shape provided with a projecting end among the 4th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. In this embodiment, the cross-sectional shape of the heat transfer body 10 is a perfect circle, and details are provided at the upper and lower ends. It is a simple shape.
FIG. 7: is a schematic cross section which shows the ellipse cross-sectional shape provided with a projecting end among the 5th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. The cross-sectional shape is an ellipse, and when flowing down the groove on the outer surface, the liquid is less likely to be peeled and dropped midway than the perfect circular cross-sectional shape.
FIG. 8: is a schematic cross section which shows the cross-sectional shape of what provided the fin in the heat exchanger inner surface among the 6th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. Fins are provided on the inner surface of the heat transfer body to improve the efficiency of heat exchange with hot water.
FIG. 9: is a schematic cross section which shows the cross-sectional shape of what provided the fin in the heat exchanger inner surface among the 7th embodiment of the heat exchanger of the heat exchanger which concerns on this invention. Fins are provided on the inner surface of the heat transfer body to improve the efficiency of heat exchange with hot water.
FIG. 10 is a schematic cross-sectional view for explaining the cross-linking liquid 16 formed at the opposing protruding ends. Since the upper and lower ends of the heat transfer body are tapered, surface tension acts between the tapered portions 14 and 15 when dropped, a bridge 16 is formed by the processing liquid, and the processing liquid is equally distributed to the left and right in the lower stage, A uniform concentration process is realized.

図11は、第八の実施形態に係る突沸制御手段を備えた濃縮装置の機能連携説明図である。第一の実施形態で示す濃縮工程S0に突沸制御工程S15を加えた濃縮方法の工程間連携図である。 突出制御工程S15は、突出発生検知工程と突沸判定工程及び運転制御工程の各サブ工程からなる。   FIG. 11 is a functional linkage explanatory diagram of the concentrating device including the bumping control means according to the eighth embodiment. It is an inter-process linkage diagram of a concentration method in which a bumping control step S15 is added to the concentration step S0 shown in the first embodiment. The protrusion control step S15 includes substeps of a protrusion occurrence detection step, a bump boiling determination step, and an operation control step.

突出発生検知工程S1は、超音波信号レベルを測定時間間隔毎に超音波センサーにより突沸の発生に伴う超音波を信号変換し、アナログデジタル信号変換の後、運転制御装置へ入力する。   In the protrusion occurrence detection step S1, the ultrasonic signal level is converted into an ultrasonic signal generated by bump generation by an ultrasonic sensor at every measurement time interval, and is input to the operation control device after analog-digital signal conversion.

突沸判定工程S2は、濃縮原液の種類、要求される濃縮度、伝熱面温度等の諸要素に依存するが、伝熱面の20%に突沸が発生している状況であると判断される超音波信号レベルを受け取れば、予め設定されている突沸判定ルールS3を参照し、突沸を抑制すべき処理を運転制御工程に命ずる。   The bumping determination step S2 depends on various factors such as the type of concentrated concentrate, the required concentration, and the heat transfer surface temperature, but it is determined that bumping has occurred on 20% of the heat transfer surface. If the ultrasonic signal level is received, the operation control process is instructed to refer to the bumping determination rule S3 set in advance and to suppress bumping.

運転制御工程S4は、突沸判定工程から指示される条件により、運転条件を変更し、予め設定されている運転モードを実行する。突沸を抑制すべき運転モードであれば、突沸を抑制する運転条件、例えば、熱媒体流量の抑制、熱交換器収納容器内の圧力を上げる等の変更を指示し、自動運転により又はマニュアル運転により運転条件を変更する。   Operation control process S4 changes an operation condition with the conditions instruct | indicated from a bumping determination process, and performs the preset operation mode. If it is an operation mode in which bumping should be suppressed, an operating condition for suppressing bumping is instructed, for example, a change such as suppression of the heat medium flow rate, increase of the pressure in the heat exchanger storage container, etc., by automatic operation or by manual operation Change operating conditions.

蒸発量を促進すべきと評価判定する場合には、運転条件を制御する手段により、蒸発を促進する条件、熱媒体流量の増加、熱交換器収納容器内の減圧等の変更をする。   When evaluating that the amount of evaporation should be promoted, the conditions for promoting evaporation, the increase in the flow rate of the heat medium, the pressure reduction in the heat exchanger container, etc. are changed by means for controlling the operating conditions.

この濃縮方法を使用すれば、濃縮条件を最適化し過度の運転上による溶質の析出を防止し、熱収支の無駄を排するともに所要の濃縮能力を確保することができる。   By using this concentration method, it is possible to optimize the concentration conditions, prevent solute precipitation due to excessive operation, eliminate waste of heat balance, and ensure the required concentration capacity.

本発明の、複数の伝熱体形状や多段構成の伝熱体構成は、熱交換器内すべてに同一のものである必要はなく、これらを組み合わせても、その一部を各該当する請求項に係る発明によるものとしてもいずれの構成でもよい。   The heat transfer body configuration of a plurality of heat transfer body shapes and multistage configurations of the present invention need not be the same in all of the heat exchangers, and even if they are combined, a part thereof corresponds to each claim. Any configuration may be adopted as the invention according to the invention.

図12は、本発明の実施態様における溝の断面形状を示す図である。伝熱体10表面には複数の溝19が形成されている。流路として作用する溝内の形状は、溝の側面が、開口端に向かって開口幅を大きく形成されていることを特徴としており、開口部を漸次広く形成し側壁壁面70は開口部へ拡がるよう傾き角度が形成されるように溝形状を形成しておけば、開口部へ近付くほど側壁面70が開口部へ拡がり、溝内では、開口端へは同一の傾斜角を与え、この液膜先端付近の膜厚は表面張力の作用がより強く働き、薄膜71が生成されさらに薄くなり、溶媒の蒸発は促され、濃縮効率を高めるという効果が得られる。   FIG. 12 is a diagram showing a cross-sectional shape of the groove in the embodiment of the present invention. A plurality of grooves 19 are formed on the surface of the heat transfer body 10. The shape of the groove acting as a flow path is characterized in that the side surface of the groove is formed to have a larger opening width toward the opening end, and the opening is gradually widened so that the side wall surface 70 extends to the opening. If the groove shape is formed so that the inclination angle is formed, the side wall surface 70 expands to the opening as it gets closer to the opening. In the groove, the same inclination angle is given to the opening end. The film thickness in the vicinity of the tip is more affected by the surface tension, and the thin film 71 is generated and further thinned. The evaporation of the solvent is promoted, and the concentration efficiency is increased.

伝熱体11外表面に形成される溝間は隣接する溝11を谷部とする山形72に形成されている。 伝熱体上段から滴下される条件によっては下段の溝間の伝熱体外表面に処理液73が拡がり流下する場合もあり得る。   Between the grooves formed on the outer surface of the heat transfer body 11, a chevron 72 is formed with the adjacent grooves 11 as valleys. Depending on the conditions of dripping from the upper stage of the heat transfer body, the treatment liquid 73 may spread and flow down on the outer surface of the heat transfer body between the lower grooves.

このような場合であっても、再び処理液73は表面張力の作用により図の矢印で示すように山から落ち、再度集まり溝側壁界面70で薄膜71を形成し、活発な蒸発作用を呈する。溝間は隣接する溝を谷部とする山形72に形成されていれば、溝間の先細部に生成された液膜から溝間の伝熱体外表面に垂れる液73は山形形状部の表面張力により溝間に吸引され、溝内に合流する作用を与え、濃縮度を上げた処理液は溝を流下する。溝に収まった処理液は、側壁に表面張力の作用により薄膜71を形成し、活発に蒸発する。   Even in such a case, the treatment liquid 73 falls again from the peak as shown by the arrow in the figure due to the action of surface tension, and gathers again to form the thin film 71 at the groove side wall interface 70, thereby exhibiting an active evaporation action. If the gap between the grooves is formed in a chevron 72 having a trough in the adjacent groove, the liquid 73 dripping on the outer surface of the heat transfer body between the grooves from the liquid film generated in the tapered detail between the grooves is the surface tension of the chevron shaped part. The processing liquid that is sucked between the grooves and joined into the grooves is given, and the processing liquid having increased concentration flows down the grooves. The treatment liquid contained in the groove forms a thin film 71 on the side wall by the action of surface tension, and actively evaporates.

図13は、本発明に係る第九の実施形態である伝熱体の積層スタック構成5を示す模式図である。真空化手段に連結された真空容器内に鉛直設置される伝熱体81は伝熱体コア80に貼り合わせ伝熱体構造を形成し支持孔を通じて積層スタック構成に設置されている。伝熱体81の鉛直両面上に設けられている溝11に流下され、溝が開口部に向かい開かれて形成されている溝側壁界面で重力により落下しつつ薄膜を形成する原液と、伝熱体コア80内部に複数設けた熱媒流路84を流れる熱媒との間で熱交換し原液の濃縮を行う表面流下式プレート濃縮装置である。   FIG. 13: is a schematic diagram which shows the laminated stack structure 5 of the heat exchanger which is 9th embodiment which concerns on this invention. A heat transfer body 81 vertically installed in a vacuum vessel connected to a vacuum means is bonded to the heat transfer body core 80 to form a heat transfer body structure, and is installed in a stacked stack configuration through a support hole. A stock solution that flows down into grooves 11 provided on both vertical surfaces of the heat transfer body 81 and forms a thin film while falling by gravity at the groove side wall interface formed by opening the grooves toward the opening, and heat transfer This is a surface downflow type plate concentrator for exchanging heat with a heat medium flowing through a plurality of heat medium channels 84 provided inside the body core 80 to concentrate the stock solution.

該伝熱体構造は互いの伝熱体81を離隔させ複数段のスタック、複数列の積層からなる伝熱体構造群を構成し、各伝熱体構造の上端及び下端は先細部14,15を備え、上段の伝熱体構造から下段の伝熱体構造への液流下では、上段伝熱体構造最下端の先細部14と下段伝熱体構造最上段の先細部15間に液滴又は液膜が生成される多段流下構成とし、隣接する伝熱体82,83は、複数列離隔して列方向に積層設置され、上段の伝熱体構造から下段の伝熱体構造へ順次原液が前記先細部14,15を経由し滴下又は流下され、前記伝熱体構造各段を流下する原液が最下段まで滴下又は流下処理され真空容器底部で濃縮液となる。   The heat transfer member structure separates the heat transfer members 81 to form a heat transfer member structure group composed of a plurality of stacks and a plurality of rows, and the upper end and the lower end of each heat transfer member structure are tapered 14 and 15. In the liquid flow from the upper heat transfer body structure to the lower heat transfer body structure, there is a drop of liquid droplets between the taper 14 at the lowermost end of the upper heat transfer body structure and the taper 15 at the uppermost stage of the lower heat transfer body structure. Adjacent heat transfer bodies 82 and 83 are stacked in the row direction with a plurality of rows separated from each other so that a liquid film is generated. The stock solution is sequentially transferred from the upper heat transfer member structure to the lower heat transfer member structure. The stock solution which is dropped or flowed down through the tapered portions 14 and 15 and flows down each stage of the heat transfer body structure is dropped or flowed down to the lowest stage to be concentrated at the bottom of the vacuum vessel.

伝熱体構造のトップに流下される原液は、トップが先細部で形成されているため、原液は両面に分配される。原液は、伝熱体コア外面を流下し、伝熱体と伝熱体コアで形成されている僅かな隙間86に流入すると表面張力の作用で伝熱体幅一杯に均等な膜を生成する。均等な膜は溝11に吸引され、均等に流下する。万一、溝間に原液が垂れてしまっても、伝熱体81の溝間は山形72に形成され、溝間に原液が垂れてしまっても山形部分の表面張力により、液は溝に落とし込まれる。   The stock solution flowing down to the top of the heat transfer structure is formed with a tapered top so that the stock solution is distributed on both sides. When the undiluted solution flows down the outer surface of the heat transfer body core and flows into a small gap 86 formed by the heat transfer body and the heat transfer body core, a uniform film is formed to the full width of the heat transfer body by the action of surface tension. The uniform film is sucked into the grooves 11 and flows down evenly. Even if the stock solution drips between the grooves, the gap between the grooves of the heat transfer body 81 is formed in the chevron 72, and even if the stock solution drips between the grooves, the liquid drops into the groove due to the surface tension of the chevron. Is included.

1) 処理液が伝熱体構造の下端14に達すると、下段の伝熱体構造の上端15に形成されている先細部との間に液膜が生成される。両面で濃縮された液がこの架橋膜で一体となり、エッジを境に再び両面の伝熱体へ流下する。
2) 本実施態様では、以下の効果が得られる。
3) 伝熱体構造の積層スタック構成により、伝熱体構造のスタック段数を変更することで濃縮度を変更することができる
4) 伝熱体構造をユニット単位として、装置構成を標準化でき、伝熱体構造のスタック段数、水平積層行列数の増加により容易に大型化設計ができる。
5) 伝熱体構造の段毎に熱媒を変えたり、伝熱体コア内部を流れる熱媒孔毎に熱媒温度を変えたり、これらの単位で加熱を行わなかったりと精密な温度制御ができる。
6) 原液が溝に集まる仕組みが組込まれ、効率的な濃縮と均一な濃縮液を提供することができる。
7) 伝熱体構造は、積層スタックの構成に便宜であり、装置の省スペースが図られ、省エネルギー化に貢献でき、発明の目的に沿うものである。
1) When the processing liquid reaches the lower end 14 of the heat transfer body structure, a liquid film is formed between the tip formed on the upper end 15 of the lower heat transfer body structure. The liquid concentrated on both sides is united by this cross-linked film, and flows down to the heat transfer bodies on both sides again at the edge.
2) In the present embodiment, the following effects can be obtained.
3) Concentration can be changed by changing the number of stack stages of the heat transfer structure by using the stacked stack structure of the heat transfer structure. 4) The equipment configuration can be standardized for each heat transfer structure as a unit, Larger designs can be easily made by increasing the number of stacks and the number of horizontal stacking matrices in the thermal structure.
5) Precise temperature control such as changing the heat medium for each stage of the heat transfer body structure, changing the heat medium temperature for each heat medium hole flowing inside the heat transfer body core, or not heating in these units. it can.
6) A mechanism for collecting the stock solution in the groove is incorporated, and an efficient concentration and a uniform concentrated solution can be provided.
7) The heat transfer structure is convenient for the configuration of the laminated stack, saves space in the apparatus, contributes to energy saving, and meets the object of the invention.

以上、本発明に係る実施の形態を説明したが、本発明は係る実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。   The embodiment according to the present invention has been described above, but the present invention is not limited to the embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明は、表面流下式濃縮方法に関するもので、特に熱影響を受けやすい原液の濃縮に用いて好適であり、小型の省エネルギー装置で実施可能とし、低温で一流下による高純度の濃縮液を提供する。   The present invention relates to a surface flow-type concentration method, and is particularly suitable for use in concentrating a stock solution that is easily affected by heat, and can be implemented with a small energy-saving device, and provides a high-purity concentrate by a single flow at a low temperature. To do.

1…濃縮装置、2…熱交換器、10…伝熱体、11…溝、12、13…液滴、14…最下端先細部、15…最上端先細部、19…伝熱面溝群、23…架橋液膜、22…液ダレ、40…熱媒流路(冷媒流路)、41…真空容器、42…端板、43…原液スプリッター、44…原液入口、45…排出口、46…原液分配器、48…濃縮液出口、70…溝側壁、71…薄膜液、72…溝間山形、73…液ダレ、80…伝熱体コア、81…伝熱体、82,83…対向する伝熱体、84…熱媒口、85…伝熱体コア支持孔、86…処理液分配スプリッタ、S0…濃縮工程、S15…突沸制御工程、S1…突沸発生検知工程、S2…突沸判定、S3…突沸判定ルール、S4…運転制御工程   DESCRIPTION OF SYMBOLS 1 ... Concentrator, 2 ... Heat exchanger, 10 ... Heat transfer body, 11 ... Groove, 12, 13 ... Droplet, 14 ... Bottom end tip detail, 15 ... Top end tip detail, 19 ... Heat-transfer surface groove group, DESCRIPTION OF SYMBOLS 23 ... Crosslinked liquid film, 22 ... Liquid dripping, 40 ... Heat-medium flow path (refrigerant flow path), 41 ... Vacuum container, 42 ... End plate, 43 ... Stock solution splitter, 44 ... Stock solution inlet, 45 ... Discharge port, 46 ... Stock solution distributor, 48 ... Concentrate outlet, 70 ... Groove side wall, 71 ... Thin film liquid, 72 ... Inter-groove mountain shape, 73 ... Liquid sag, 80 ... Heat transfer core, 81 ... Heat transfer, 82, 83 ... Opposing Heat transfer body, 84 ... Heat transfer medium port, 85 ... Heat transfer body core support hole, 86 ... Treatment liquid distribution splitter, S0 ... Concentration process, S15 ... Bump control process, S1 ... Bump generation detection process, S2 ... Bump determination, S3 ... Sudden boiling judgment rule, S4 ... Operation control process

Claims (22)

伝熱体外表面上に形成された実質的に鉛直方向の溝が水平方向に離反して複数形成された流路を重力落下する原液と、該伝熱体内部に流れる熱媒との間で熱交換を行う伝熱体であって、
該伝熱体は鉛直方向に複数段離隔配置される伝熱体群を構成し、各伝熱体の上端及び下端には先細部を備えることを特徴とする熱交換器。
Heat is generated between a stock solution that drops by gravity in a flow path formed by a plurality of substantially vertical grooves formed on the outer surface of the heat transfer body and separated in the horizontal direction, and a heat medium that flows inside the heat transfer body. A heat transfer body for exchange,
The heat exchanger comprises a heat transfer body group that is spaced apart by a plurality of stages in the vertical direction, and a heat exchanger having a tapered portion at an upper end and a lower end of each heat transfer body.
前記伝熱体が鉛直方向に複数段離隔配置される伝熱体群は、複数離隔配置されていることを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the heat transfer body group in which the heat transfer bodies are arranged in a plurality of stages in the vertical direction is arranged in a plurality of positions. 前記伝熱体外表面に形成される前記溝の側面が、開口端に向かって開口幅を大きく形成されていることを特徴とする請求項1又は2のいずか一方に記載の熱交換器。   3. The heat exchanger according to claim 1, wherein a side surface of the groove formed on the outer surface of the heat transfer body is formed to have a larger opening width toward the opening end. 4. 前記伝熱体外表面に形成される前記溝間は隣接する溝を谷部とする山形に形成されていることを特徴とする請求項1〜3項のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein a gap between the grooves formed on the outer surface of the heat transfer body is formed in a mountain shape having an adjacent groove as a valley. 前記伝熱体は、その伝熱体長手方向に垂直な断面形状が鉛直軸について左右線対称であることを特徴とする請求項1〜4項のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the heat transfer body has a cross-sectional shape perpendicular to the longitudinal direction of the heat transfer body that is symmetrical with respect to the vertical axis. 請求項1記載の前記熱交換器の前記伝熱体は、その伝熱体長手方向の鉛直断面形状を菱形とすることを特徴とする請求項1〜5のいずれか一項記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein the heat exchanger of the heat exchanger according to claim 1 has a rhombic vertical cross-sectional shape in the longitudinal direction of the heat exchanger. . 請求項1記載の前記熱交換器の前記伝熱体は、その長手方向に垂直な断面形状の上端下端が先細形を備える円形又は長円形であることを特徴とする請求項1〜5のいずれか一項記載の熱交換器。   The heat transfer body of the heat exchanger according to claim 1, wherein an upper end and a lower end of a cross-sectional shape perpendicular to the longitudinal direction are circular or oval with a tapered shape. A heat exchanger according to claim 1. 請求項1記載の熱交換器の前記伝熱体は、その長手方向に垂直な断面形状を辺の数を偶数とする多角形であって、多角形の角を前記先細部とし、角を上下端に配置することを特徴とする請求項1〜5のうちいずれか一項記載の熱交換器。   The heat exchanger according to claim 1, wherein the heat transfer body is a polygon having a cross-sectional shape perpendicular to the longitudinal direction thereof and an even number of sides. It arrange | positions at an end, The heat exchanger as described in any one of Claims 1-5 characterized by the above-mentioned. 前記伝熱体群には、伝熱体内の一つ以上の熱媒流路の熱媒温度若しくは流量を変えた伝熱体、伝熱体内の一つ以上の熱媒流路に熱媒を流さない伝熱体又は伝熱体内の一つ以上の流路に冷媒を流す伝熱体のうち少なくとも一つの伝熱体を備えることを特徴とする請求項1〜8のうちいずれか一項記載の熱交換器。     The heat transfer body group includes a heat transfer body in which the heat medium temperature or flow rate of one or more heat transfer passages in the heat transfer body is changed, and a heat transfer medium is passed through the one or more heat transfer passages in the heat transfer body. 9. The heat transfer body according to claim 1, further comprising at least one heat transfer body of a non-heat transfer body or a heat transfer body that causes a refrigerant to flow through one or more flow paths in the heat transfer body. Heat exchanger. 請求項1記載の前記溝は、少なくとも下流で下流方向に漸次拡幅していることを特徴とする請求項1〜9のうちいずれか一項記載の熱交換器。   The heat exchanger according to any one of claims 1 to 9, wherein the groove according to claim 1 is gradually widened in the downstream direction at least downstream. 前記伝熱体外表面に形成される前記溝間は隣接する溝を谷部とする山形に形成されていることを特徴とする請求項1〜10のうちいずれか一項記載の熱交換器。 The heat exchanger according to any one of claims 1 to 10, wherein a gap between the grooves formed on the outer surface of the heat transfer body is formed in a mountain shape having a groove as an adjacent groove. 前記伝熱体の本体の上部及び下部には、端部に向かう先細部を備え、この両先細部の間であって、各先細部の基部側と水平方向に延在する液溜まり凹部を介して離隔し、前記流路が、前記伝熱体の本体の両外表面に上に各々形成されていることを特徴とする請求項1〜11のうちいずれか一項記載の熱交換器   The upper and lower portions of the main body of the heat transfer body are provided with tapered portions toward the end portions, and between the tapered portions, via a liquid reservoir recess extending in the horizontal direction with the base side of each tapered detail. The heat exchanger according to any one of claims 1 to 11, wherein the flow paths are formed on both outer surfaces of the main body of the heat transfer body. 前記伝熱体は、基材をステンレス鋼よりも熱伝導性の良いセラミックス材料であることを特徴とする請求項1〜12項のうちいずれか一項記載の熱交換器   The heat exchanger according to any one of claims 1 to 12, wherein the heat transfer body is a ceramic material whose base material has better thermal conductivity than stainless steel. 前記伝熱体の基材表面を基材よりも伝熱性が高い、ステンレス鋼材、セラミックス材又は高熱伝導性高分子材で被膜することを特徴とする請求項1〜13項のうちのいずれか一項に記載の熱交換器。   The base material surface of the heat transfer body is coated with a stainless steel material, a ceramic material, or a high thermal conductivity polymer material having higher heat conductivity than the base material. The heat exchanger according to item. 前記セラミックス材は、炭化ケイ素、窒化アルミニウム又はアルミナを主成分とすることを特徴とする請求項13又は14のいずれか一方に記載の熱交換器。   The heat exchanger according to claim 13, wherein the ceramic material is mainly composed of silicon carbide, aluminum nitride, or alumina. 真空化手段に連結された真空容器内に、設置される蒸発器に請求項1〜15記載の熱交換器のうち少なくともいずれか一つを用いたことを特徴とする表面流下式濃縮装置。   A surface flow type concentrator using at least one of the heat exchangers according to claims 1 to 15 as an evaporator installed in a vacuum vessel connected to a vacuum means. 下段へ流下する程、伝熱器外面に形成される流下路溝数が減ずることを特徴とする請求項16記載の濃縮装置。   The concentration device according to claim 16, wherein the number of flow path grooves formed on the outer surface of the heat transfer device decreases as it flows down to the lower stage. 前記伝熱体に超音波振動を加える手段を備えたことを特徴とする請求項16又は17のうちいずれか一方に記載の濃縮装置。   The concentrating device according to any one of claims 16 and 17, further comprising means for applying ultrasonic vibration to the heat transfer body. 真空化手段に連結された真空容器内に複数段の伝熱体群を用いる表面流下式濃縮方法であって、
該伝熱体最上端に形成された先細部に原液が滴下又は流下される段階と、
該伝熱体に形成される溝を流路として流れる原液が、流下液と溝側壁との界面で薄膜を生成し蒸発する段階と、
上段の伝熱体外表面から原液液膜が剥離せず該伝熱体最下端に形成された先細部に合流する段階と、
上段伝熱体最下端に流下した原液は、伝熱体最下端の先細部からその下段に位置する下段伝熱体最上端の先細部へ滴下又は流下する段階を、
液が上段から下段への伝熱体を順次流下し真空容器底部へ滴下するまで繰返すことを特徴とする表面流下式濃縮方法。
A surface flow type concentration method using a plurality of stages of heat transfer bodies in a vacuum vessel connected to a vacuum means,
A step in which the stock solution is dropped or flowed down on the tapered portion formed at the uppermost end of the heat transfer body;
A step in which a stock solution flowing through a groove formed in the heat transfer body forms a thin film at the interface between the falling liquid and the groove side wall and evaporates;
The stock solution liquid film does not peel off from the outer surface of the upper heat transfer body and joins the tapered portion formed at the lowermost end of the heat transfer body; and
The stock solution that has flowed down to the lowermost end of the upper heat transfer body drops or flows down from the lower end of the lower end of the heat transfer body to the upper end of the lower end of the lower heat transfer body.
A surface flow type concentration method characterized in that the liquid is repeated until the heat transfer material from the upper stage to the lower stage flows down and drops to the bottom of the vacuum vessel.
突沸発生状況を検知する手段と、
予め設定されてルールにより突沸を判定制御する手段と、
運転条件を制御する手段を備え、
突沸の発生状況と前記ルールに照らし蒸発を促進する判定であれば、
蒸発を促進する運転制御をし、
突沸の発生状況と前記ルールに照らし突沸を抑制する判定であれば、
蒸発を抑制する運転制御をすることを特徴とする突沸制御手段を備えたことを特徴とする
請求項19項記載の濃縮方法。
Means for detecting the occurrence of bumping;
Means for determining and controlling bumping according to a rule set in advance;
Means for controlling operating conditions,
If it is a decision to promote evaporation in light of the occurrence of bumping and the above rules,
Control the operation to promote evaporation,
If it is determined to suppress bumping in light of the occurrence of bumping and the above rules,
The concentration method according to claim 19, further comprising a bumping control unit that controls operation to suppress evaporation.
請求項19又は20のいずれか一方に記載の表面流下式濃縮方法を使用する濃縮装置。   A concentrator using the surface flow type concentrating method according to any one of claims 19 and 20. 前記セラミックス材を用いた前記伝熱体は、押出し成形又は加圧成形により形成することを特徴とする請求項13〜15のうちいずれかの一項に記載の熱交換器。   The heat exchanger according to any one of claims 13 to 15, wherein the heat transfer body using the ceramic material is formed by extrusion molding or pressure molding.
JP2014104766A 2014-05-20 2014-05-20 Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator Pending JP2015218990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104766A JP2015218990A (en) 2014-05-20 2014-05-20 Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104766A JP2015218990A (en) 2014-05-20 2014-05-20 Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator

Publications (1)

Publication Number Publication Date
JP2015218990A true JP2015218990A (en) 2015-12-07

Family

ID=54778508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104766A Pending JP2015218990A (en) 2014-05-20 2014-05-20 Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator

Country Status (1)

Country Link
JP (1) JP2015218990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217371A (en) * 2014-05-20 2015-12-07 国立大学法人 東京大学 Surface flow-down type concentration device and surface flow-down type concentration method, and device using the method
CN106247694A (en) * 2016-08-30 2016-12-21 哈尔滨汽轮机厂辅机工程有限公司 A kind of photo-thermal power generation autoclave vaporizer
CN115448398A (en) * 2022-10-08 2022-12-09 杭州佰斯维环境科技有限公司 Treatment device for metal processing wastewater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217371A (en) * 2014-05-20 2015-12-07 国立大学法人 東京大学 Surface flow-down type concentration device and surface flow-down type concentration method, and device using the method
CN106247694A (en) * 2016-08-30 2016-12-21 哈尔滨汽轮机厂辅机工程有限公司 A kind of photo-thermal power generation autoclave vaporizer
CN115448398A (en) * 2022-10-08 2022-12-09 杭州佰斯维环境科技有限公司 Treatment device for metal processing wastewater
CN115448398B (en) * 2022-10-08 2023-10-10 杭州佰斯维环境科技有限公司 A processing apparatus for metalworking waste water

Similar Documents

Publication Publication Date Title
JP5117101B2 (en) Evaporator and circulating cooling device using the same
US10612859B2 (en) Heat exchanger
JP6408572B2 (en) Heat exchanger
US20080149311A1 (en) Spray type heat exchange device
US9291398B2 (en) Micro vapor chamber
US9658003B2 (en) Heat exchanger
JP4376276B2 (en) Heat exchange coil
US20020195230A1 (en) Heat exchange structure of loop type heat pipe
JP2015218990A (en) Heat exchanger used for surface flow-down type concentration, concentrator using heat exchanger, surface flow-down type concentration method and surface flow-down type concentrator
WO2013118869A1 (en) Semiconductor cooling device
JP2010107153A (en) Evaporator and circulation type cooling device using the same
KR101848151B1 (en) Small heatsink
JP6616213B2 (en) Heat exchange system
WO2010104080A1 (en) Ebullient cooling device
JP2011108685A (en) Natural circulation type boiling cooler
US9683791B2 (en) Condensation enhancement heat transfer pipe
JP2019135418A (en) Shell-and-tube heat exchanger
US9314802B2 (en) Spraying tube device and heat exchanger using the same
JP6532193B2 (en) Surface flow down concentration apparatus and surface flow down concentration method
JP4553777B2 (en) Soaking equipment
JP6658259B2 (en) Separation device
JPH0961080A (en) Turbo freezer
JP2017211094A (en) Heat exchanger
JP2019024028A (en) Cooler for electronic equipment
JP2004003733A (en) Heat transfer pipe and heat exchanger, and method of manufacture of heat transfer pipe