JP2015218313A - Heat medium composition, heat exchange system, and solar thermal power generation device - Google Patents

Heat medium composition, heat exchange system, and solar thermal power generation device Download PDF

Info

Publication number
JP2015218313A
JP2015218313A JP2014104759A JP2014104759A JP2015218313A JP 2015218313 A JP2015218313 A JP 2015218313A JP 2014104759 A JP2014104759 A JP 2014104759A JP 2014104759 A JP2014104759 A JP 2014104759A JP 2015218313 A JP2015218313 A JP 2015218313A
Authority
JP
Japan
Prior art keywords
heat medium
heat
medium composition
mass
biphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014104759A
Other languages
Japanese (ja)
Inventor
貴広 川口
Takahiro Kawaguchi
貴広 川口
務 高嶋
Tsutomu Takashima
務 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2014104759A priority Critical patent/JP2015218313A/en
Priority to PCT/JP2015/062903 priority patent/WO2015178183A1/en
Publication of JP2015218313A publication Critical patent/JP2015218313A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • C09K5/12Molten materials, i.e. materials solid at room temperature, e.g. metals or salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat medium composition that has excellent heat resistance and allows the amount of usage of the composition to be reduced, and a heat exchange method and a solar thermal power generation device.SOLUTION: A heat medium composition according to the present invention comprises at least two polycyclic aromatic compounds, the heat medium composition comprising biphenyl and naphthalene in the amount of 80 mass% or more in total, and having a freezing point of 60°C or less.

Description

本発明は、熱媒体組成物、熱交換システム、および太陽熱発電装置に関するものである。   The present invention relates to a heat medium composition, a heat exchange system, and a solar thermal power generation apparatus.

熱媒体は、高温発熱反応の除熱用や蓄熱体、太陽熱発電などの用途において広く使用され、常温から高温の広い温度領域で安定性があることが望まれている。このような熱媒体として、従来、芳香族炭化水素系熱媒体組成物、例えばビフェニルおよびジフェニルオキサイド(ジフェニルエーテル)を含む熱媒体組成物が開示されている(例えば、特許文献1参照)。   The heat medium is widely used for heat removal of a high temperature exothermic reaction, a heat storage body, solar thermal power generation, and the like, and is desired to be stable in a wide temperature range from room temperature to high temperature. As such a heat medium, conventionally, an aromatic hydrocarbon heat medium composition, for example, a heat medium composition containing biphenyl and diphenyl oxide (diphenyl ether) has been disclosed (for example, see Patent Document 1).

また、高温での安定性に優れる熱媒体として、ジフェニルオキサイド(ジフェニルエーテル)にジフェニレンオキサイドを加えた組成物が提案されている(例えば、特許文献2参照)。特許文献2では、該組成物に使用されるジフェニレンオキサイドの安定化作用は、ジフェニルエーテルにジフェニルまたはナフタレン等を加えた共融混合物にも適用できることが記載されている。   Moreover, as a heat medium excellent in stability at high temperatures, a composition in which diphenylene oxide is added to diphenyl oxide (diphenyl ether) has been proposed (for example, see Patent Document 2). Patent Document 2 describes that the stabilizing action of diphenylene oxide used in the composition can be applied to a eutectic mixture obtained by adding diphenyl or naphthalene or the like to diphenyl ether.

さらに、ジフェニルエーテルおよびベンゾフェノンに、ジベンゾフラン(ジフェニレンオキサイド)およびナフタレンからなる群から選択される少なくとも1成分を所定の割合で混合した熱媒体組成物が開示されている(例えば、特許文献3参照)。特許文献3では、該熱媒体組成物に、さらにビフェニルを配合できることが開示されている。   Furthermore, a heating medium composition is disclosed in which diphenyl ether and benzophenone are mixed with at least one component selected from the group consisting of dibenzofuran (diphenylene oxide) and naphthalene at a predetermined ratio (see, for example, Patent Document 3). Patent Document 3 discloses that biphenyl can be further added to the heat medium composition.

また、フェニル基を2〜5個有するアリール化合物の混合物からなる熱媒体、例えば、ビフェニル、ジフェニルオキサイド(ジフェニルエーテル)、o−ターフェニル、およびm−ターフェニル、またはビフェニル、ナフタレン、o−ターフェニル、およびm−ターフェニル等の四成分混合物が、凝固点降下により低温でのポンプ搬送性に優れることが開示されている(例えば、特許文献4参照)。   Also, a heat medium comprising a mixture of aryl compounds having 2 to 5 phenyl groups, such as biphenyl, diphenyl oxide (diphenyl ether), o-terphenyl, and m-terphenyl, or biphenyl, naphthalene, o-terphenyl, It is disclosed that a quaternary mixture such as m-terphenyl and the like has excellent pumpability at low temperatures due to freezing point depression (see, for example, Patent Document 4).

また、ビフェニル、ジフェニルエーテルおよびジフェニレンオキサイドからなる熱媒体組成物が、耐熱性に優れるとともに、凝固点降下により取り扱い性も容易である旨開示されている(例えば、特許文献5参照)。   Further, it is disclosed that a heat medium composition comprising biphenyl, diphenyl ether and diphenylene oxide is excellent in heat resistance and easy to handle due to a freezing point depression (see, for example, Patent Document 5).

さらにまた、高沸点成分と低融点成分を含む熱伝達流体を用いた熱伝達システムにおいて、熱伝達流体を加熱する際に、熱伝達流体から低融点成分を蒸発等により除去し、熱伝熱流体による熱交換後に低融点成分を再び熱伝達流体に戻すシステムが提案されている(例えば、特許文献6参照)。特許文献6では、高沸点成分としてビフェニル等が例示され、低融点成分としてナフタレン及びビフェニル等が例示されている。   Furthermore, in a heat transfer system using a heat transfer fluid containing a high boiling point component and a low melting point component, when the heat transfer fluid is heated, the low melting point component is removed from the heat transfer fluid by evaporation or the like. There has been proposed a system for returning a low-melting-point component back to a heat transfer fluid after heat exchange by (see, for example, Patent Document 6). In Patent Document 6, biphenyl and the like are exemplified as the high boiling point component, and naphthalene and biphenyl and the like are exemplified as the low melting point component.

米国特許第1882809号明細書U.S. Pat. No. 1,882,809 米国特許第1874258号明細書US Pat. No. 1,874,258 米国特許第H1393号公報US Patent No. H1393 特開平01−261490号公報Japanese Patent Laid-Open No. 01-261490 特開平05−009465号公報JP 05-009465 A 米国特許公開20110146959号明細書US Patent Publication No. 20110146959

近年、太陽熱発電等の用途で、発電効率向上のため、従来使用温度100〜400℃より高温領域で使用可能な熱媒油の開発ニーズがより高まっているが、特許文献1〜5に記載の芳香族化合物を主成分とする熱媒体組成物は、400℃未満では十分な耐熱性を示すものの、400℃以上の温度での使用を目的としたものではなく、実際、400℃付近で使用した場合、熱安定性が十分でないため、より高温領域における熱媒体組成物としての使用は困難であった。また、特許文献6に記載の熱伝達流体は、500℃まで熱的に安定と記載されているが、400℃以上での熱安定性のデータは何ら示されていないものである。   In recent years, in order to improve power generation efficiency in applications such as solar thermal power generation, development needs for heat transfer oil that can be used in a higher temperature range than the conventional use temperature of 100 to 400 ° C. are increasing. Although the heat medium composition which has an aromatic compound as a main component shows sufficient heat resistance at less than 400 ° C., it is not intended for use at a temperature of 400 ° C. or higher, and was actually used at around 400 ° C. In this case, since the thermal stability is not sufficient, it has been difficult to use as a heat medium composition in a higher temperature region. Moreover, although the heat transfer fluid described in Patent Document 6 is described as being thermally stable up to 500 ° C., no data on thermal stability at 400 ° C. or higher is shown.

さらに太陽熱発電では夜間においても発電できるよう、蓄熱槽を有するものが用いられているが、従来使用されている熱媒体組成物は比熱が低いため、一定の熱容量を蓄熱するために多量の熱媒体組成物が使用されていた。   Furthermore, in solar thermal power generation, those having a heat storage tank are used so that they can generate power even at night. However, since the heat medium composition conventionally used has low specific heat, a large amount of heat medium is used to store a certain heat capacity. The composition was used.

本発明は、上記に鑑みてなされたものであって、400℃以上の高温での耐熱性に優れるとともに、比熱が大きいため熱媒体組成物の使用量を低減できる熱媒体組成物、熱交換システム、および太陽熱発電装置を提供することを目的とする。   The present invention has been made in view of the above, and is excellent in heat resistance at a high temperature of 400 ° C. or higher and has a large specific heat, so that the amount of the heat medium composition used can be reduced, and a heat exchange system And it aims at providing a solar thermal power generation device.

本発明者らは、2種類以上の多環芳香族化合物からなる熱媒体組成物において、ビフェニルおよびナフタレンを80質量%以上含み、凝固点が60℃以下である熱媒体油組成物が、400℃以上でも熱安定性に優れると共に、比熱も高いため熱媒体使用量を低減できることを見出し、本発明を完成するに至った。   In the heat medium composition comprising two or more kinds of polycyclic aromatic compounds, the present inventors include a heat medium oil composition containing 80% by mass or more of biphenyl and naphthalene and having a freezing point of 60 ° C. or less, which is 400 ° C. or more. However, the present inventors have found that the heat medium usage can be reduced because of excellent heat stability and high specific heat, and the present invention has been completed.

すなわち本発明の熱媒体組成物は、少なくとも2種類以上の多環芳香族化合物からなる熱媒体組成物であって、ビフェニル及びナフタレンを合計で80質量%以上含み、凝固点は60℃以下であることを特徴とする。   That is, the heat medium composition of the present invention is a heat medium composition composed of at least two kinds of polycyclic aromatic compounds, contains a total of 80% by mass or more of biphenyl and naphthalene, and has a freezing point of 60 ° C. or less. It is characterized by.

また、本発明の熱媒体組成物は、上記発明において、ジフェニルエーテルの含有量が10質量%以下であることを特徴とする。   In the above invention, the heat medium composition of the present invention is characterized in that the content of diphenyl ether is 10% by mass or less.

また、本発明の熱媒体組成物は、上記発明において、ビフェニルのナフタレンに対する質量比が0.60〜4.0であることを特徴とする。   The heat medium composition of the present invention is characterized in that, in the above invention, the mass ratio of biphenyl to naphthalene is 0.60 to 4.0.

また、本発明の熱媒体組成物は、上記発明において、前記多環芳香族化合物は、炭素数が10〜16であることを特徴とする。   In the heat medium composition of the present invention, in the above invention, the polycyclic aromatic compound has 10 to 16 carbon atoms.

また、本発明の熱媒体組成物は、上記発明において、太陽熱発電に使用されることを特徴とする。   Further, the heat medium composition of the present invention is used in the above invention for solar thermal power generation.

また、本発明の熱交換システムは、少なくとも第1の熱媒体と、第2の熱媒体とを有し、前記第1の熱媒体と前記第2の熱媒体との間で熱交換を行う熱交換システムであって、前記第1の熱媒体として、上記のいずれか一つに記載の熱媒体組成物を、400℃以上の温度条件下で、気相が10体積%以下で使用することを特徴とする。   In addition, the heat exchange system of the present invention has at least a first heat medium and a second heat medium, and performs heat exchange between the first heat medium and the second heat medium. In the exchange system, the heat medium composition according to any one of the above is used as the first heat medium under a temperature condition of 400 ° C. or more and a gas phase of 10% by volume or less. Features.

また、本発明の太陽熱発電装置は、上記に記載の熱交換システムを備えることを特徴とする。   Moreover, the solar thermal power generation apparatus of this invention is equipped with the heat exchange system as described above, It is characterized by the above-mentioned.

本発明の熱媒体組成物、熱交換方法および太陽熱発電装置は、400℃以上の高温下でも熱媒体組成物が熱安定性を損なうことがないため、長期間の連続使用が可能である。また、本発明の熱媒体組成物は比熱が高いため、これまでより熱媒体使用量を低減することが出来る。このように有機系熱媒体では最高の耐熱温度を示し、比熱が高いことから高温発熱反応の除熱用や蓄熱体、太陽熱発電熱媒体などに好適に使用することができる。   The heat medium composition, the heat exchange method, and the solar power generation apparatus of the present invention can be used continuously for a long period of time because the heat medium composition does not impair the thermal stability even at a high temperature of 400 ° C. or higher. In addition, since the heat medium composition of the present invention has a high specific heat, the amount of heat medium used can be reduced more than before. As described above, the organic heat medium exhibits the highest heat-resistant temperature and has a high specific heat, so that it can be suitably used for heat removal of a high-temperature exothermic reaction, a heat storage body, a solar thermal power generation heat medium, and the like.

以下に本発明の好適な実施の形態について詳細に説明する。なお、下記で説明する実施の形態により本発明が限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present invention is not limited to the embodiments described below.

本発明の熱媒体組成物は、少なくとも2種類以上の多環芳香族化合物からなる熱媒体組成物であって、ビフェニル及びナフタレンを合計で80質量%以上含み、凝固点は60℃以下であることを特徴とする。   The heat medium composition of the present invention is a heat medium composition comprising at least two kinds of polycyclic aromatic compounds, and contains 80% by mass or more of biphenyl and naphthalene in total, and has a freezing point of 60 ° C. or less. Features.

本発明者らは、ビフェニルおよびナフタレンを80質量%以上含み、凝固点が60℃以下である、少なくとも2種類以上の多環芳香族化合物からなる熱媒体組成物が、高温、例えば400℃以上の温度においても熱安定性に優れるとともに、比熱が高いため、熱媒体組成物の使用量を低減でき、さらに若干の加圧により400℃以上の温度条件下においても液相状態を保つことができるため、使用の際の負担を軽減できることを見出し、本発明を完成するに至った。   The inventors of the present invention have a heat medium composition comprising at least two kinds of polycyclic aromatic compounds containing biphenyl and naphthalene of 80% by mass or more and having a freezing point of 60 ° C. or less at a high temperature, for example, 400 ° C. In addition to being excellent in thermal stability, since the specific heat is high, the amount of the heat medium composition can be reduced, and the liquid phase state can be maintained even under temperature conditions of 400 ° C. or more by slight pressurization. It has been found that the burden during use can be reduced, and the present invention has been completed.

本発明の熱媒体組成物は、ビフェニルおよびナフタレンを合計で80質量%、好ましくはくは95質量%以上、より好ましくは98質量%以上含む。ビフェニルおよびナフタレンの含有量が80質量%より少ないと、耐熱性が低下したり、熱媒体使用量が増加したりする。   The heat medium composition of the present invention contains biphenyl and naphthalene in a total of 80% by mass, preferably 95% by mass or more, more preferably 98% by mass or more. When the content of biphenyl and naphthalene is less than 80% by mass, the heat resistance is lowered or the amount of heat medium used is increased.

本発明の熱媒体組成物において、製造法には特に制限はないが、ビフェニルは、一般にパラジウム触媒によりベンゼンを原料として製造される。ベンゼンを用いてビフェニルを製造する場合、ビフェニルに副生するトリフェニル(ターフェニル)、クォーターフェニル、ポリフェニル等が微量含まれても差し支えない。   In the heat medium composition of the present invention, the production method is not particularly limited, but biphenyl is generally produced using benzene as a raw material with a palladium catalyst. When biphenyl is produced using benzene, a small amount of triphenyl (terphenyl), quarterphenyl, polyphenyl and the like by-produced in biphenyl may be contained.

ナフタレンは、コールタールなどに含まれ、蒸留により得ることができる。ナフタレンには、メチルナフタレン、ジメチルナフタレン等が微量含まれても差し支えない。   Naphthalene is contained in coal tar and can be obtained by distillation. Naphthalene may contain trace amounts of methylnaphthalene, dimethylnaphthalene, and the like.

本発明の熱媒体組成物において、ビフェニルのナフタレンに対する質量比は0.60〜4.0であってよく、好ましくは0.6〜3.0、さらに好ましくは0.8〜2.5であってよい。ビフェニルのナフタレンに対する質量比が0.60以下の場合や、4.0以上の場合は凝固点が高くなる。   In the heat medium composition of the present invention, the mass ratio of biphenyl to naphthalene may be 0.60 to 4.0, preferably 0.6 to 3.0, more preferably 0.8 to 2.5. It's okay. When the mass ratio of biphenyl to naphthalene is 0.60 or less, or when it is 4.0 or more, the freezing point becomes high.

本発明の熱媒体組成物の凝固点は60℃以下であり、好ましくは50℃以下である。凝固点が60℃より大きくなると、熱媒体としての使用の際、または輸送時において、温度管理のための大掛かりな設備が必要となったり、運転管理の負担も増大するおそれがある。   The freezing point of the heat medium composition of the present invention is 60 ° C. or lower, preferably 50 ° C. or lower. If the freezing point is higher than 60 ° C., a large facility for temperature management may be required during use as a heating medium or during transportation, and the burden of operation management may increase.

本発明の熱媒体組成物の凝固点は、密閉型容器に熱媒体組成物を投入し、温度調整可能な装置で5時間静置して測定した。   The freezing point of the heat medium composition of the present invention was measured by putting the heat medium composition into a sealed container and allowing it to stand for 5 hours with an apparatus capable of adjusting temperature.

本発明の熱媒体組成物は、ジフェニルエーテルの含有量が10質量%以下であることが好ましく、5質量%以下であることがさらに好ましい。本発明の熱媒体組成物において、ジフェニルエーテルの含有量が10質量%を超えると、熱媒体組成物を400℃以上の温度で連続使用した場合、分解フェノールが発生し、金属腐食が誘発される可能性がある。   In the heat medium composition of the present invention, the content of diphenyl ether is preferably 10% by mass or less, and more preferably 5% by mass or less. In the heat medium composition of the present invention, when the content of diphenyl ether exceeds 10% by mass, when the heat medium composition is continuously used at a temperature of 400 ° C. or higher, decomposed phenol is generated and metal corrosion may be induced. There is sex.

本発明の熱媒体組成物は、炭素数が10〜16である多環芳香族化合物からなることが好ましい。本発明の熱媒体組成物において、ビフェニル及びナフタレンを合計で80質量%以上含めば、本発明の熱媒体組成物に含まれるその他の多環芳香族化合物の炭素数は限定されるものではないが、炭素数が10〜16である多環芳香族化合物であることが好ましい。多環芳香族化合物の炭素数が10未満であると、蒸気圧が高くなる傾向があり、16を超えると粘度が高くなるため扱い難い傾向がある。   The heat medium composition of the present invention preferably comprises a polycyclic aromatic compound having 10 to 16 carbon atoms. If the total amount of biphenyl and naphthalene is 80% by mass or more in the heat medium composition of the present invention, the number of carbon atoms of other polycyclic aromatic compounds contained in the heat medium composition of the present invention is not limited. A polycyclic aromatic compound having 10 to 16 carbon atoms is preferred. If the polycyclic aromatic compound has less than 10 carbon atoms, the vapor pressure tends to be high, and if it exceeds 16, the viscosity tends to be high, which tends to be difficult to handle.

炭素数が10〜16である多環芳香族化合物としては、例えば、アントラセン、フェナントレン、ピレン、フルオレン、アセナフテン、ジフェニルメタン、ジフェニルエタン、ベンゾフェノン、ジフェニレンオキサイド、ジベンゾチオフェン、カルバゾール等のほか、炭素数が10〜16であれば、メチルナフタレン、ジメチルナフタレン、メチルフェナントレン等の置換基を有する多環芳香族化合物であってもよい。   Examples of the polycyclic aromatic compound having 10 to 16 carbon atoms include anthracene, phenanthrene, pyrene, fluorene, acenaphthene, diphenylmethane, diphenylethane, benzophenone, diphenylene oxide, dibenzothiophene, and carbazole. If it is 10 to 16, it may be a polycyclic aromatic compound having a substituent such as methylnaphthalene, dimethylnaphthalene, or methylphenanthrene.

本発明の熱媒体組成物は、400℃以上の高温下で熱安定性を損なうことなく、連続使用が可能である。熱媒体組成物の耐熱性は、例えば425℃の熱安定性試験で評価することができる。熱媒体組成物の熱安定性試験は、熱媒体組成物を密閉可能な容器内に投入し、容器内を窒素で封入して容器内圧力を7MPa(室温)に調整した後、熱媒体組成物を投入した容器を425℃で96時間保持する。熱媒体組成物の耐熱性は、熱媒体組成物の分解率で評価した。   The heat medium composition of the present invention can be used continuously at a high temperature of 400 ° C. or higher without impairing thermal stability. The heat resistance of the heat medium composition can be evaluated by, for example, a heat stability test at 425 ° C. In the heat stability test of the heat medium composition, the heat medium composition was put into a sealable container, the container was filled with nitrogen, and the pressure in the container was adjusted to 7 MPa (room temperature). The container charged with is kept at 425 ° C. for 96 hours. The heat resistance of the heat medium composition was evaluated by the decomposition rate of the heat medium composition.

本発明の熱媒体組成物において、熱安定性試験による分解率は、0.7%以下であることが好ましく、より好ましくは0.5%以下である。熱媒体組成物の分解率は、ガスクロマトグラフィー質量分析で測定することができる。以下の方法により測定した分解率により、熱安定性試験後に生成した液体成分の割合を評価することができる。分析条件の一例を以下に示す。
装置:HP−6890
カラム:J&W DB−1(30m×0.25mmφ)
キャリアガス:ヘリウム
注入量:0.2μL
分解率は以下の式により求めた。
分解率(%)=(試験後に発生したピーク面積の総和)/(全ピーク面積の総和)×100
In the heat medium composition of the present invention, the decomposition rate by the heat stability test is preferably 0.7% or less, more preferably 0.5% or less. The decomposition rate of the heat medium composition can be measured by gas chromatography mass spectrometry. The ratio of the liquid component produced after the thermal stability test can be evaluated by the decomposition rate measured by the following method. An example of analysis conditions is shown below.
Device: HP-6890
Column: J & W DB-1 (30 m × 0.25 mmφ)
Carrier gas: Helium injection amount: 0.2 μL
The decomposition rate was determined by the following formula.
Decomposition rate (%) = (total peak area generated after test) / (total total peak area) × 100

本発明の熱媒体組成物を、蓄熱槽を有する太陽熱発電装置で使用する場合、熱媒体組成物の比熱が高いことが好ましい。熱媒体組成物の比熱が高ければ、より少ない量で蓄熱槽での熱交換が可能となる。   When using the heat-medium composition of this invention with the solar thermal power generation apparatus which has a heat storage tank, it is preferable that the specific heat of a heat-medium composition is high. If the specific heat of the heat medium composition is high, heat exchange in the heat storage tank is possible with a smaller amount.

本発明の熱媒体組成物の比熱は、蓄熱槽を模した熱交換試験により評価することができる。例えば、熱媒体組成物を密閉可能な200mLの容器内(材質SUS316、質量2000g)に投入し、容器内を窒素で封入して容器内圧力を7MPa(室温)に調整した後に、425℃へ加熱し、200℃に保持した300gの溶融塩に容器ごと浸漬させ、溶融塩が300℃に達するために要した熱媒体組成物量から評価することができる。本発明の熱媒体組成物において、上記熱交換試験における熱媒体組成物の使用量は、130g以下であることが好ましく、より好ましくは125g以下である。   The specific heat of the heat medium composition of the present invention can be evaluated by a heat exchange test simulating a heat storage tank. For example, the heating medium composition is put into a 200 mL container (material SUS316, mass 2000 g) that can be sealed, and the container is sealed with nitrogen, and the pressure inside the container is adjusted to 7 MPa (room temperature), followed by heating to 425 ° C. Then, the entire container can be immersed in 300 g of molten salt kept at 200 ° C., and the amount of the heat medium composition required for the molten salt to reach 300 ° C. can be evaluated. In the heat medium composition of the present invention, the amount of the heat medium composition used in the heat exchange test is preferably 130 g or less, more preferably 125 g or less.

本発明の熱媒体組成物は、凝固点以上の温度範囲で気相含有量は10体積%以下であり、好ましくは8体積%以下、より好ましくは7体積%以下である。気相含有量が10体積%を超えると本発明の熱媒体組成物を熱交換システムに用いた場合、熱伝達効率、輸送効率等が低下する可能性が有り好ましくない。本発明の熱媒体組成物は使用温度の上昇に伴い蒸気圧が高まるが、加圧条件下で使用することにより気相含有量を10体積%以下とすることができる。   The heat medium composition of the present invention has a gas phase content of 10% by volume or less, preferably 8% by volume or less, more preferably 7% by volume or less in the temperature range above the freezing point. When the gas phase content exceeds 10% by volume, when the heat medium composition of the present invention is used in a heat exchange system, there is a possibility that heat transfer efficiency, transport efficiency, and the like are lowered, which is not preferable. Although the vapor pressure of the heat medium composition of the present invention increases as the use temperature increases, the vapor phase content can be reduced to 10% by volume or less by using it under pressurized conditions.

本発明の熱媒体組成物は、少なくとも第1の熱媒体と、第2の熱媒体とを有し、前記第1の熱媒体と前記第2の熱媒体との間で熱交換を行う熱交換システムに使用することができる。本発明の熱媒体組成物は、前記第1の熱媒体として、400℃以上の温度条件下で、気相が10体積%以下で使用することが好ましい。   The heat medium composition of the present invention includes at least a first heat medium and a second heat medium, and performs heat exchange between the first heat medium and the second heat medium. Can be used for the system. The heat medium composition of the present invention is preferably used as the first heat medium at a gas phase of 10% by volume or less under a temperature condition of 400 ° C. or higher.

また、本発明の熱媒体組成物は、有機系熱媒体としては最高の耐熱温度を示すことから高温発熱反応の除熱用や蓄熱体、太陽熱発電、例えば集光式の太陽熱発電用の熱媒体などに有用である。特に、前記熱交換システムを備える太陽熱発電装置、例えば、太陽光を集光して熱媒体を加熱する集光集熱部と、前記熱媒体が集熱した熱を伝達する熱伝達部と、前記熱媒体が集熱した熱により発電を行う発電部と、を備える太陽熱発電装置における熱媒体として使用でき、前記集光集熱部、前記熱伝達部、および/または前記発電部において、400℃以上の温度条件下で、気相が10体積%以下で使用することが好ましい。   In addition, since the heat medium composition of the present invention exhibits the highest heat-resistant temperature as an organic heat medium, the heat medium for heat removal of a high-temperature exothermic reaction, a heat storage body, solar power generation, for example, a concentrating solar power generation It is useful for such as. In particular, a solar thermal power generation apparatus including the heat exchange system, for example, a condensing heat collecting unit that collects sunlight and heats the heat medium, a heat transfer unit that transmits heat collected by the heat medium, and And a power generation unit that generates power using the heat collected by the heat medium, and can be used as a heat medium in a solar thermal power generation apparatus, and in the light collection heat collection unit, the heat transfer unit, and / or the power generation unit, 400 ° C. or higher The gas phase is preferably used at 10% by volume or less under the above temperature conditions.

さらに、本発明の熱媒体組成物は、蓄熱部を備える太陽熱発電装置で好適に使用することができる。本発明の熱媒体組成物は、前記太陽熱発電装置の前記集光集熱部、前記熱伝達部、前記発電部、および/または前記蓄熱部において、400℃以上の温度条件下で、気相が10体積%以下で使用することが好ましい。なお、本発明の熱媒体組成物の沸点は220〜300℃程度であるので、沸点以上の高温で使用する場合は加圧して使用すればよい。   Furthermore, the heat-medium composition of this invention can be used conveniently with a solar thermal power generation apparatus provided with a thermal storage part. The heat medium composition of the present invention has a gas phase under a temperature condition of 400 ° C. or higher in the concentrating heat collecting unit, the heat transfer unit, the power generation unit, and / or the heat storage unit of the solar thermal power generation device. It is preferable to use it at 10 volume% or less. In addition, since the boiling point of the heat carrier composition of this invention is about 220-300 degreeC, what is necessary is just to pressurize and use, when using at high temperature beyond a boiling point.

本発明の熱媒体組成物は雰囲気温度が凝固点以下となる環境では、固体状態となるが、保管、輸送等の各工程で、固体状態で使用してもよく、必要に応じて保温して液体状態として使用してもよい。   The heat medium composition of the present invention is in a solid state in an environment where the ambient temperature is below the freezing point, but may be used in a solid state in each step of storage, transportation, etc. It may be used as a state.

本発明の熱媒体組成物は、高温発熱反応の除熱用や蓄熱体、太陽熱発電等の用途で、該熱媒体組成物が凝固するような箇所では必要に応じ簡単な保温を施すことにより、運転管理の負担を増大することなく、使用することができる。例えば、熱交換設備においてパイプライン中の熱媒体組成物が夜間の運転休止中に外気冷却され凝固する場合は、必要に応じてヒーター加熱等により温度を保つことができる。   The heat medium composition of the present invention is used for heat removal of a high-temperature exothermic reaction, a heat storage body, solar power generation, etc., and by applying a simple heat insulation as necessary at a place where the heat medium composition solidifies, It can be used without increasing the burden of operation management. For example, in the heat exchange facility, when the heat medium composition in the pipeline is cooled by the outside air and solidified during the nighttime operation stop, the temperature can be maintained by heating the heater as necessary.

以下に実施例により本発明の実施態様を例示するが、本発明はそれらの実施例に限定されるものではない。   Embodiments of the present invention are illustrated below by examples, but the present invention is not limited to these examples.

以下の実施例および比較例において、以下の化合物および商品を使用した。
ビフェニル(BP、東京化成工業社製 純度99.5%品)
ナフタレン(NA、東京化成工業社製 純度98%品)
ジフェニルエーテル(DPO、東京化成工業社製 純度99%品)
NeoSK−1400(NEO、綜研テクニックス社製)
バーレルサーム400(バーレル、松村石油社製)
ジフェニルエタン(DPE、JX日鉱日石エネルギー社製)
ジフェニレンオキサイド(DPNO、東京化成工業社製 純度97%品)
o−トリフェニル(o−TER、東京化成工業社製 純度99%品)
m−トリフェニル(m−TER、東京化成工業社製 純度98%品)
In the following examples and comparative examples, the following compounds and products were used.
Biphenyl (BP, 99.5% purity product, manufactured by Tokyo Chemical Industry Co., Ltd.)
Naphthalene (NA, 98% purity manufactured by Tokyo Chemical Industry Co., Ltd.)
Diphenyl ether (DPO, 99% purity by Tokyo Chemical Industry Co., Ltd.)
NeoSK-1400 (NEO, manufactured by Soken Technics)
Barrel Therm 400 (Barrel, manufactured by Matsumura Oil Co., Ltd.)
Diphenylethane (DPE, manufactured by JX Nippon Oil & Energy Corporation)
Diphenylene oxide (DPNO, 97% purity manufactured by Tokyo Chemical Industry Co., Ltd.)
o-Triphenyl (o-TER, 99% purity manufactured by Tokyo Chemical Industry Co., Ltd.)
m-triphenyl (m-TER, manufactured by Tokyo Chemical Industry Co., Ltd., 98% purity product)

(実施例1)
ビフェニルを71.0質量%、ナフタレンを29.0質量%となるように配合して熱媒体組成物1を調製した(ビフェニルとナフタレンの合計配合量100.0質量%)。内径14mm、幅65mm、高さ158mmのU字配管に熱媒体組成物1を20g詰め、U字配管内に窒素を封入して圧力を7MPaに調整した後、425℃で96時間熱安定性試験を行った。試験後の熱媒体組成物1についてガスクロマトグラフィー質量分析を行い、分解率(%)、を求めた。熱交換試験における熱媒体組成物の使用量については、熱媒体組成物1の所定量を200mL容器に投入し、窒素を封入して圧力を7MPaに調整した後、425℃まで加温し、200℃に温められた300gのNEOSK―SALT(綜研テクニックス社製)へ浸漬させ、NeoSK―SALTが300℃へ到達するのに要した量を求めた。結果を表1に示す。
熱安定性試験における熱媒体組成物1の分解率は0.2%であり、熱交換試験における熱媒体組成物1の使用量は110gであった。
Example 1
Heat medium composition 1 was prepared by blending 71.0% by mass of biphenyl and 29.0% by mass of naphthalene (total blending amount of biphenyl and naphthalene 100.0% by mass). 20 g of heat medium composition 1 is packed in a U-shaped pipe having an inner diameter of 14 mm, a width of 65 mm, and a height of 158 mm, and nitrogen is filled in the U-shaped pipe and the pressure is adjusted to 7 MPa. Went. The heat medium composition 1 after the test was subjected to gas chromatography mass spectrometry to determine the decomposition rate (%). About the usage-amount of the heat carrier composition in a heat exchange test, after putting predetermined amount of the heat carrier composition 1 into a 200 mL container, sealing nitrogen and adjusting a pressure to 7 MPa, it heats to 425 degreeC, and is 200 It was immersed in 300 g of NEOSK-SALT (manufactured by Soken Techniques) warmed to ° C., and the amount required for NeoSK-SALT to reach 300 ° C. was determined. The results are shown in Table 1.
The decomposition rate of the heat medium composition 1 in the heat stability test was 0.2%, and the amount of the heat medium composition 1 used in the heat exchange test was 110 g.

(実施例2)
ビフェニルを49.5質量%、ナフタレンを50.5質量%となるように配合して熱媒体組成物2を調製した(ビフェニルとナフタレンの合計配合量100.0質量%)。調製した熱媒体組成物2を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験における熱媒体組成物2の分解率は0.3であり、熱安定性に優れることがわかった。また熱交換試験における熱媒体組成物2の使用量は120gであった。
(Example 2)
The heat medium composition 2 was prepared by blending biphenyl to 49.5% by mass and naphthalene to 50.5% by mass (total blending amount of biphenyl and naphthalene 100.0% by mass). The test was performed in the same manner as in Example 1 except that the prepared heat medium composition 2 was used. The results are also shown in Table 1. The decomposition rate of the heat medium composition 2 in the thermal stability test was 0.3, and it was found that the thermal stability was excellent. Moreover, the usage-amount of the heat carrier composition 2 in the heat exchange test was 120g.

(実施例3)
ビフェニル、ナフタレンおよびジフェニルエーテルを、下記表1の割合(質量%)となるように配合して熱媒体組成物3を調製した(ビフェニルとナフタレンの合計配合量93.0質量%)。調製した熱媒体組成物3を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験における熱媒体組成物3の分解率は0.2であり、熱安定性に優れることがわかった。また熱交換試験における熱媒体組成物1の使用量は124gであった。ジフェニレンオキサイドは、400℃以上の高温では分解して分解フェノールを生成するおそれがあるが、7.0質量%程度の配合量では、高温での安定性に問題がないことが判った。
(Example 3)
Biphenyl, naphthalene, and diphenyl ether were blended so as to have the ratio (mass%) shown in Table 1 below to prepare a heat medium composition 3 (total blending amount of biphenyl and naphthalene: 93.0 mass%). The test was performed in the same manner as in Example 1 except that the prepared heat medium composition 3 was used. The results are also shown in Table 1. The decomposition rate of the heat medium composition 3 in the thermal stability test was 0.2, and it was found that the thermal stability was excellent. The amount of the heat medium composition 1 used in the heat exchange test was 124 g. Although diphenylene oxide may decompose and produce decomposed phenol at a high temperature of 400 ° C. or higher, it has been found that there is no problem in stability at high temperature when the blending amount is about 7.0% by mass.

(比較例1)
ビフェニル100.0質量%の熱媒体組成物4を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験における熱媒体組成物4の分解率は0.2であり、また熱交換試験における熱媒体組成物4の使用量は108gであったが、凝固点が69℃と高い。
(Comparative Example 1)
The test was performed in the same manner as in Example 1 except that the heat medium composition 4 of 100.0% by weight of biphenyl was used. The results are also shown in Table 1. The decomposition rate of the heat medium composition 4 in the heat stability test was 0.2, and the amount of the heat medium composition 4 used in the heat exchange test was 108 g, but the freezing point was as high as 69 ° C.

(比較例2)
ナフタレン100.0質量%の熱媒体組成物5を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験において、熱媒体組成物5の分解率は0.3であり、また熱交換試験における熱媒体組成物5の使用量は124gであったが、凝固点が82℃と高い。
(Comparative Example 2)
The test was performed in the same manner as in Example 1 except that the heat medium composition 5 of 100.0% by mass of naphthalene was used. The results are also shown in Table 1. In the heat stability test, the decomposition rate of the heat medium composition 5 was 0.3, and the amount of the heat medium composition 5 used in the heat exchange test was 124 g, but the freezing point was as high as 82 ° C.

(比較例3)
ビフェニルを26.5質量%、ジフェニルエーテルを73.5質量%となるように配合して熱媒体組成物6を調製した。調製した熱媒体組成物6を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定試験において、熱媒体組成物6の分解率は1.0%と高く、また熱交換試験における熱媒体組成物6の使用量も147gと多くなることが判った。
(Comparative Example 3)
The heat medium composition 6 was prepared by blending 26.5% by mass of biphenyl and 73.5% by mass of diphenyl ether. The test was performed in the same manner as in Example 1 except that the prepared heat medium composition 6 was used. The results are also shown in Table 1. In the heat stability test, it was found that the decomposition rate of the heat medium composition 6 was as high as 1.0%, and the amount of the heat medium composition 6 used in the heat exchange test was as large as 147 g.

(比較例4)
NeoSK−1400が100.0質量%の熱媒体組成物7を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験において、熱媒体組成物7の分解率は2.0%以上と高く、また熱交換試験における熱媒体組成物7の使用量も136gと多くなることが判った。
(Comparative Example 4)
The test was performed in the same manner as in Example 1 except that the heat medium composition 7 containing 100.0% by mass of NeoSK-1400 was used. The results are also shown in Table 1. In the heat stability test, it was found that the decomposition rate of the heat medium composition 7 was as high as 2.0% or more, and the amount of the heat medium composition 7 used in the heat exchange test was increased to 136 g.

(比較例5)
バーレルサーム400が100.0質量%の熱媒体組成物8を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験において、熱媒体組成物8の分解率は2.0%以上と高く、また熱交換試験における熱媒体組成物8の使用量も131gと多くなることが判った。
(Comparative Example 5)
The test was performed in the same manner as in Example 1 except that the heat transfer medium composition 8 having a barrel temperature 400 of 100.0% by mass was used. The results are also shown in Table 1. In the heat stability test, it was found that the decomposition rate of the heat medium composition 8 was as high as 2.0% or more, and the amount of the heat medium composition 8 used in the heat exchange test was as large as 131 g.

(比較例6)
ジフェニルエタンが100.0質量%の熱媒体組成物9を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験において、熱媒体組成物9の分解率は2.0%以上と高く、また熱交換試験における熱媒体組成物9の使用量も139gと多くなることが判った。
(Comparative Example 6)
The test was performed in the same manner as in Example 1 except that the heating medium composition 9 containing 100.0% by mass of diphenylethane was used. The results are also shown in Table 1. In the heat stability test, it was found that the decomposition rate of the heat medium composition 9 was as high as 2.0% or more, and the amount of the heat medium composition 9 used in the heat exchange test was increased to 139 g.

(比較例7)
米国特許第1874258号明細書に開示される処方、すなわち、ジフェニルエーテルを70.0質量%、ジフェニレンオキサイドを30.0質量%となるように配合して熱媒体組成物10を調製した。調整した熱媒体組成物10を用いた以外、実施例1と同様に実施した。結果を同じく表1に示す。米国特許第1874258号明細書に開示される熱媒体組成物10は、熱交換試験における使用量が158gと多いことが判った。
(Comparative Example 7)
The heat medium composition 10 was prepared by blending the formulation disclosed in US Pat. No. 1,874,258, that is, 70.0% by mass of diphenyl ether and 30.0% by mass of diphenylene oxide. The same operation as in Example 1 was carried out except that the adjusted heat medium composition 10 was used. The results are also shown in Table 1. The heat medium composition 10 disclosed in US Pat. No. 1,874,258 was found to be used in a large amount of 158 g in the heat exchange test.

(比較例8)
ビフェニル、ナフタレンおよびジフェニレンオキサイドを、下記表1の割合(質量%)となるように配合して熱媒体組成物11を調製した(ビフェニルとナフタレンの合計配合量66.9質量%)。調製した熱媒体組成物11を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定性試験において、熱媒体組成物11は、熱交換試験における媒体使用量が149gと多くなることが判った。
(Comparative Example 8)
Biphenyl, naphthalene and diphenylene oxide were blended so as to have the ratio (mass%) shown in Table 1 below to prepare a heating medium composition 11 (total blending amount of biphenyl and naphthalene 66.9 mass%). The test was performed in the same manner as in Example 1 except that the prepared heat medium composition 11 was used. The results are also shown in Table 1. In the heat stability test, it was found that the heat medium composition 11 increased the amount of medium used in the heat exchange test to 149 g.

(比較例9)
ビフェニル、ジフェニルエーテル、ジフェニレンオキサイド、およびナフタレンを、下記表1の割合(質量%)となるように配合して熱媒体組成物12を調製した(ビフェニルとナフタレンの合計配合量45.1質量%)。調製した熱媒体組成物12を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱媒体組成物12は、熱交換試験における媒体使用量が164gと多くなることが判った。
(Comparative Example 9)
Biphenyl, diphenyl ether, diphenylene oxide, and naphthalene were blended so as to have the ratio (mass%) shown in Table 1 below to prepare a heating medium composition 12 (total blending amount of biphenyl and naphthalene: 45.1 mass%). . The test was performed in the same manner as in Example 1 except that the prepared heat medium composition 12 was used. The results are also shown in Table 1. The heat medium composition 12 was found to increase the amount of medium used in the heat exchange test to 164 g.

(比較例10)
ビフェニルを26.5質量%、o−トリフェニル73.5質量%となるように配合して熱媒体組成物13を調製した。調製した熱媒体組成物13を用いた以外、実施例1と同様に試験を行なった。結果を同じく表1に示す。熱安定試験において、熱媒体組成物13の分解率が1.1%と高いことが判った。
(Comparative Example 10)
The heating medium composition 13 was prepared by blending 26.5% by mass of biphenyl and 73.5% by mass of o-triphenyl. The test was performed in the same manner as in Example 1 except that the prepared heat medium composition 13 was used. The results are also shown in Table 1. In the heat stability test, it was found that the decomposition rate of the heat medium composition 13 was as high as 1.1%.

(比較例11)
特開平1−261490号公報に開示される処方、すなわち、ビフェニル、ジフェニルエーテル、o−トリフェニル、m−トリフェニルを下記表1の割合(質量%)となるように配合して熱媒体組成物14を調製した。調整した熱媒体組成物14を用いた以外、実施例1と同様に実施した。結果を同じく表1に示す。熱安定試験において、熱媒体組成物14の分解率が1.2%と高いことが判った。
(Comparative Example 11)
The formulation disclosed in JP-A-1-261490, that is, biphenyl, diphenyl ether, o-triphenyl, and m-triphenyl are blended so as to have the ratio (mass%) shown in Table 1 below. Was prepared. The same operation as in Example 1 was carried out except that the adjusted heat medium composition 14 was used. The results are also shown in Table 1. In the heat stability test, it was found that the decomposition rate of the heat medium composition 14 was as high as 1.2%.

(比較例12)
特開平05−009465号公報に開示される処方、すなわち、ビフェニル、ジフェニルエーテル、ジフェニレンオキサイドを、下記表1の割合(質量%)となるように配合して熱媒体組成物15を調製した。調製した熱媒体組成物15を用いた以外、実施例1と同様に実施した。結果を同じく表1に示す。熱安定性試験において、特開平05−009465号公報に開示される熱媒体組成物15の分解率は1.0%と高く、また熱交換試験における熱媒体組成物15の使用量も165gと多くなることが判った。
(Comparative Example 12)
The heat medium composition 15 was prepared by blending the formulation disclosed in JP-A No. 05-009465, that is, biphenyl, diphenyl ether, and diphenylene oxide so as to have the ratio (mass%) shown in Table 1 below. The same operation as in Example 1 was performed except that the prepared heat medium composition 15 was used. The results are also shown in Table 1. In the thermal stability test, the decomposition rate of the heat medium composition 15 disclosed in JP-A-05-009465 is as high as 1.0%, and the amount of the heat medium composition 15 used in the heat exchange test is as high as 165 g. I found out that

(比較例13)
特開平01−261490号公報に開示される処方、すなわち、ビフェニル、ナフタレン、o−トリフェニル、m−トリフェニルを下記表1の割合(質量%)となるように配合して熱媒体組成物16を調製した(ビフェニルとナフタレンの合計配合量40.0質量%)。調製した熱媒体組成物16を用いた以外、実施例1と同様に実施した。結果を同じく表1に示す。特開平01−261490号公報に開示される熱媒体組成物16は、熱安定性試験後の分解率が高いことが判った。
(Comparative Example 13)
The formulation disclosed in JP-A-01-261490, that is, biphenyl, naphthalene, o-triphenyl, and m-triphenyl are blended so as to have the ratio (mass%) shown in Table 1 below. (Total amount of biphenyl and naphthalene was 40.0% by mass). The same operation as in Example 1 was performed except that the prepared heat medium composition 16 was used. The results are also shown in Table 1. It has been found that the heat medium composition 16 disclosed in JP-A-01-261490 has a high decomposition rate after the thermal stability test.

Figure 2015218313
Figure 2015218313

本発明の熱媒体組成物は、従来の有機熱媒体より高温下で連続使用ができるため、高温発熱反応の除熱用や蓄熱体、太陽熱発電などに適している。また、本発明の熱媒体組成物は、比熱が大きく、熱媒体の使用量を低減できるため、蓄熱槽を有する太陽熱発電装置などに有用である。本発明の熱媒体組成物を前記分野に使用することにより、長寿命化や発電効率の向上が可能になり、ランニングコストを低下できる。また初期投資額も低減できる。   Since the heat medium composition of the present invention can be continuously used at a higher temperature than conventional organic heat mediums, it is suitable for heat removal of a high temperature exothermic reaction, a heat storage body, solar power generation and the like. Moreover, since the heat medium composition of the present invention has a large specific heat and can reduce the amount of heat medium used, it is useful for solar thermal power generation devices having a heat storage tank. By using the heat medium composition of the present invention in the above-mentioned field, it becomes possible to extend the life and improve the power generation efficiency, and to reduce the running cost. Also, the initial investment can be reduced.

Claims (7)

少なくとも2種類以上の多環芳香族化合物からなる熱媒体組成物であって、
ビフェニル及びナフタレンを合計で80質量%以上含み、凝固点が60℃以下であることを特徴とする熱媒体組成物。
A heating medium composition comprising at least two kinds of polycyclic aromatic compounds,
A heating medium composition comprising biphenyl and naphthalene in total of 80% by mass or more and having a freezing point of 60 ° C. or less.
ジフェニルエーテルの含有量が10質量%以下であることを特徴とする請求項1に記載の熱媒体組成物。   The heat medium composition according to claim 1, wherein the content of diphenyl ether is 10% by mass or less. ビフェニルのナフタレンに対する質量比が0.60〜4.0であることを特徴とする請求項1または2に記載の熱媒体組成物。   The heat medium composition according to claim 1 or 2, wherein a mass ratio of biphenyl to naphthalene is 0.60 to 4.0. 前記多環芳香族化合物は、炭素数が10〜16であることを特徴とする請求項1〜3のいずれか一つに記載の熱媒体組成物。   The heating medium composition according to claim 1, wherein the polycyclic aromatic compound has 10 to 16 carbon atoms. 太陽熱発電に使用されることを特徴とする請求項1〜4のいずれか一つに記載の熱媒体組成物。   It is used for solar thermal power generation, The heat carrier composition as described in any one of Claims 1-4 characterized by the above-mentioned. 少なくとも第1の熱媒体と、第2の熱媒体とを有し、前記第1の熱媒体と前記第2の熱媒体との間で熱交換を行う熱交換システムであって、
前記第1の熱媒体として、請求項1〜5のいずれか一つに記載の熱媒体組成物を、400℃以上の温度条件下で、気相が10体積%以下で使用することを特徴とする熱交換システム。
A heat exchange system that includes at least a first heat medium and a second heat medium, and performs heat exchange between the first heat medium and the second heat medium,
The heat medium composition according to any one of claims 1 to 5 is used as the first heat medium under a temperature condition of 400 ° C or more and a gas phase of 10% by volume or less. Heat exchange system.
請求項6に記載の熱交換システムを備えることを特徴とする太陽熱発電装置。
A solar thermal power generation apparatus comprising the heat exchange system according to claim 6.
JP2014104759A 2014-05-20 2014-05-20 Heat medium composition, heat exchange system, and solar thermal power generation device Pending JP2015218313A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014104759A JP2015218313A (en) 2014-05-20 2014-05-20 Heat medium composition, heat exchange system, and solar thermal power generation device
PCT/JP2015/062903 WO2015178183A1 (en) 2014-05-20 2015-04-28 Heating medium composition, heat exchange system, and solar thermal power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104759A JP2015218313A (en) 2014-05-20 2014-05-20 Heat medium composition, heat exchange system, and solar thermal power generation device

Publications (1)

Publication Number Publication Date
JP2015218313A true JP2015218313A (en) 2015-12-07

Family

ID=54553857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104759A Pending JP2015218313A (en) 2014-05-20 2014-05-20 Heat medium composition, heat exchange system, and solar thermal power generation device

Country Status (2)

Country Link
JP (1) JP2015218313A (en)
WO (1) WO2015178183A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833879B1 (en) * 1969-08-30 1973-10-17
WO1989007634A1 (en) * 1988-02-12 1989-08-24 The Dow Chemical Company Heat-transfer fluids and process for preparing the same
JPH059465A (en) * 1991-06-28 1993-01-19 Nippon Steel Chem Co Ltd Heating medidum composition
DE4125261A1 (en) * 1991-07-31 1993-02-04 Huels Chemische Werke Ag USE OF SUBSTITUTED BIPHENYLENE AS HEAT TRANSFER LIQUIDS
EP1106667A1 (en) * 1999-12-08 2001-06-13 Solutia Europe N.V./S.A. Process for the manufacture of temperature-sensitive polymers with binary heat transfer fluid system

Also Published As

Publication number Publication date
WO2015178183A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
Zhu et al. Thermodynamical properties of phase change materials based on ionic liquids
Delahaye et al. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration
Matuszek et al. Pyrazolium Phase‐Change Materials for Solar‐Thermal Energy Storage
Steele et al. Thermodynamic properties and ideal-gas enthalpies of formation for dicyclohexyl sulfide, diethylenetriamine, di-n-octyl sulfide, dimethyl carbonate, piperazine, hexachloroprop-1-ene, tetrakis (dimethylamino) ethylene, N, N ‘-bis-(2-hydroxyethyl) ethylenediamine, and 1, 2, 4-triazolo [1, 5-a] pyrimidine
US9010318B2 (en) Extended-range heat transfer fluid using variable composition
Aydın Diesters of high-chain dicarboxylic acids with 1-tetradecanol as novel organic phase change materials for thermal energy storage
JP5957377B2 (en) Heat medium composition
Han et al. A novel eutectic mixture of biphenyl and diphenylmethane as a potential liquid organic hydrogen carrier: catalytic hydrogenation
CN111479900A (en) Perfluorinated 1-alkoxy propenes, compositions, and methods and apparatus for their use
CN108821936A (en) The store method of tetrafluoropropene and the preservation container of tetrafluoropropene
Zhang et al. Functional groups in geminal imidazolium ionic compounds and their influence on thermo-physical properties
JP6560233B2 (en) Perfluoropolyether extraction method
JP2015030778A (en) Heat medium composition
Matuszek et al. Guanidinium Organic Salts as Phase‐Change Materials for Renewable Energy Storage
US4011274A (en) 1,1-diphenyl ethane process
CN103275675A (en) Application of ionic liquid material serving as cross-seasonal phase change heat storage material
CN102660235B (en) 1.1-(phenylalkylnaphthyl)ethane isomer used as heat-transfer fluid and preparation method therefor
JP2015218313A (en) Heat medium composition, heat exchange system, and solar thermal power generation device
CN102712474A (en) Mixtures of alkali polysulfides
EP3303502B1 (en) A process for preparation of homogenous mixture for thermal storage and heat transfer applications
CN102627952A (en) 1,1-phenyltetralylethane isomer used as heat transfer fluid and synthetic method thereof
JPH03502465A (en) Heat transfer liquid and its manufacturing method
Verevkin et al. Thermochemistry of substituted benzenes: quantification of ortho-, para-, meta-, and buttress interactions in alkyl-substituted nitrobenzenes
JIANG et al. Thermodynamic properties of caprolactam ionic liquids
JP2009051799A (en) Dehydration method of hexafluoroacetone hydrate