JP2015217621A - Vulcanization die for spike tire, vulcanization method and spike tire - Google Patents

Vulcanization die for spike tire, vulcanization method and spike tire Download PDF

Info

Publication number
JP2015217621A
JP2015217621A JP2014103689A JP2014103689A JP2015217621A JP 2015217621 A JP2015217621 A JP 2015217621A JP 2014103689 A JP2014103689 A JP 2014103689A JP 2014103689 A JP2014103689 A JP 2014103689A JP 2015217621 A JP2015217621 A JP 2015217621A
Authority
JP
Japan
Prior art keywords
protrusion
circumferential
design surface
mold
spike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014103689A
Other languages
Japanese (ja)
Inventor
森 大輔
Daisuke Mori
大輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2014103689A priority Critical patent/JP2015217621A/en
Publication of JP2015217621A publication Critical patent/JP2015217621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of a crack around the spike pin driving hole of a tire after vulcanization by the projection of the design face of a sector mold while suppressing the increase of production cost.SOLUTION: A sector mold 2 has a pin-shaped projection 8 for forming a spike pin fitting hole to the tread part of a spike tire being provided so as to be projected from a design face 2a. In the projection 8, regarding the projections 8B, 8C provided at the nearest position at the edge in the circumferential direction of the design face 2a, the projecting direction directed from the design face 2a to the tip is tilted from the normal direction of the design face 2a in the base end to the outer direction.

Description

本発明は、スパイクピンがタイヤのトレッド部に打ち込まれるスパイクタイヤの製造工程における加硫の際に用いられるスパイクタイヤ用加硫金型、加硫方法及びスパイクタイヤに関する。   The present invention relates to a vulcanization mold for a spike tire, a vulcanization method, and a spike tire used for vulcanization in a manufacturing process of a spike tire in which spike pins are driven into a tread portion of a tire.

氷雪上用タイヤとして、トレッド部の陸部にスパイクピンが埋め込まれたスパイクタイヤが知られている。スパイクピンは、一般に、略円柱状の本体の先端にチップを有し、基端に抜け止め用のフランジを有する形状を有し、基端側がタイヤに埋め込まれ、先端側がタイヤから突出して路面に接するようにタイヤに取り付けられる。   As a tire for snow and snow, a spike tire in which a spike pin is embedded in a land portion of a tread portion is known. Spike pins generally have a shape with a tip at the tip of a substantially cylindrical body, a flange with a retaining flange at the base end, the base end side is embedded in the tire, and the tip end side protrudes from the tire to the road surface. It is attached to the tire so that it contacts.

スパイクピンのタイヤへの取り付けは、スパイクタイヤのトレッド部の陸部の表面に予めスパイクピン打込み穴を形成しておき、このスパイクピン打込み穴に、スパイクピンを打ち込むことによって行う。スパイクタイヤのスパイクピン打込み穴は、その底部近傍に、スパイクピンのフランジに対応させた拡径部が形成され、この拡径部にスパイクピンの上記フランジが収容されるようにしている。   The spike pin is attached to the tire by forming a spike pin driving hole in advance on the surface of the land portion of the tread portion of the spike tire and driving the spike pin into the spike pin driving hole. The spike pin driving hole of the spike tire is formed with an enlarged portion corresponding to the flange of the spike pin in the vicinity of the bottom thereof, and the flange of the spike pin is accommodated in the enlarged portion.

スパイクピン打込み穴の形成は、加硫金型の意匠面、すなわち、加硫金型において生タイヤのトレッド部と対向する面に、ピン状の突起が設けられ、加硫の際に生タイヤのトレッド部が加硫金型の意匠面に当接し、各突起がタイヤのトレッド部に押し込まれることによる。さらに各突起は上述したスパイクピン打込み穴の拡径部を形成するために、先端に膨出部が形成されていることがある。   The spike pin driving hole is formed by providing pin-shaped protrusions on the design surface of the vulcanization mold, i.e., the surface facing the tread portion of the raw tire in the vulcanization mold. This is because the tread portion comes into contact with the design surface of the vulcanization mold and each protrusion is pushed into the tread portion of the tire. Furthermore, each protrusion may be formed with a bulging portion at the tip in order to form the above-mentioned enlarged diameter portion of the spike pin driving hole.

タイヤの加硫に広く用いられている加硫金型は、意匠面を有する金型部分が、タイヤのトレッド部に沿った円環形状を、その周方向の円環の円周に沿って複数個で分割した、いわゆるセクターモールドよりなる。セクターモールドの意匠面は、周方向の円環の円周を含む断面において周方向に円弧形状になる曲面を有している。セクターモールドは、周方向の円環の半径方向に進退可能になっている。加硫中は各セクターモールドを半径方向中心に向けて前進させて円環形状の金型部分を構成し、加硫前又は加硫後は各セクターモールドを半径方向外方に向けて後退させて加硫前の生タイヤの加硫金型への取り付け、加硫後のタイヤの加硫金型からの取り外しを行う。   Vulcanization molds widely used for vulcanization of tires are such that a mold part having a design surface has an annular shape along the tread portion of the tire and a plurality of annular shapes along the circumference of the circumferential ring. It consists of a so-called sector mold divided into pieces. The design surface of the sector mold has a curved surface that has an arc shape in the circumferential direction in a cross section including the circumference of the annular ring in the circumferential direction. The sector mold can be advanced and retracted in the radial direction of the circumferential ring. During vulcanization, each sector mold is advanced toward the radial center to form an annular mold part, and after vulcanization or after vulcanization, each sector mold is retracted radially outward. The raw tire before vulcanization is attached to the vulcanization mold, and the tire after vulcanization is removed from the vulcanization mold.

スパイクタイヤ用加硫金型において、意匠面に設けられた突起が意匠面から突出する方向(以下、「突出方向」ともいう。)は、従来は当該突起の基端における該意匠面の法線方向と同じであった。このような突出方向になる従来のセクターモールドを、加硫後に周方向の円環の半径方向外方に後退させると、突起のうちの意匠面の周方向端に最も近い位置に設けられた突起が、タイヤのトレッド部におけるスパイクピン打ち込み穴の周囲に対してクラックを招く応力を生じさせていた。   In the spike tire vulcanization mold, the direction in which the protrusion provided on the design surface protrudes from the design surface (hereinafter, also referred to as “projection direction”) is conventionally the normal line of the design surface at the base end of the protrusion. The direction was the same. When the conventional sector mold having such a protruding direction is retracted radially outward of the circumferential ring after vulcanization, the protrusion provided at the position closest to the circumferential end of the design surface among the protrusions However, the stress which causes a crack was produced with respect to the periphery of the spike pin driving hole in the tread portion of the tire.

その理由は、それぞれのセクターモールドは、周方向の中心位置の法線方向に後退するが、セクターモールドにあるすべての突起に対して、その中心位置の法線方向と平行な方向で後退するため、セクターモールドの周方向の端に近い位置にある突起ほど、その突起の法線方向に対して、セクターモールドの後退方向と相違してくるためである。さらに突起の先端には膨出部が形成されていることがあることから、この膨出部がタイヤのトレッド部から離れるときに、タイヤのトレッド部には大きな応力が加わっていた。この応力が大きい場合にはタイヤのスパイクピン打ち込み穴の周囲にクラックが発生する可能性がある。このクラックは、スパイクタイヤに打ち込まれたスパイクピンの脱落を招きかねない。   The reason is that each sector mold retracts in the normal direction of the center position in the circumferential direction, but retracts in a direction parallel to the normal direction of the center position with respect to all protrusions in the sector mold. This is because the protrusion closer to the edge of the sector mold in the circumferential direction is different from the retracting direction of the sector mold with respect to the normal direction of the protrusion. Further, since the bulging portion may be formed at the tip of the protrusion, a large stress is applied to the tread portion of the tire when the bulging portion is separated from the tread portion of the tire. If this stress is large, cracks may occur around the spike pin driving hole of the tire. This crack can cause the spike pin driven into the spike tire to fall off.

加硫後のタイヤを加硫金型から取り出すときにセクターモールドの意匠面の突起によってスパイクピン打込み穴の周囲にクラックが発生するのを防止可能なスパイクタイヤ用加硫金型に関して、周方向端側に設けられた突起は周方向中央側に比べて突起の膨出部の大きさを小さくしたものがある(特許文献1)。   Regarding the vulcanization mold for spike tires, it is possible to prevent cracks from occurring around the spike pin insertion holes due to protrusions on the design surface of the sector mold when the vulcanized tire is removed from the vulcanization mold. As for the protrusion provided on the side, there is one in which the size of the protruding portion of the protrusion is made smaller than that of the central side in the circumferential direction (Patent Document 1).

特開2012−96471号公報JP 2012-96471 A

しかしながら、特許文献1に記載されたスパイクタイヤ用加硫金型は、突起の一つ一つの膨出部の大きさを異ならせているため、突起の加工に手間がかかる。よって加硫金型の製造コストの増加を招くおそれがある。   However, since the vulcanization mold for spike tires described in Patent Document 1 has different bulge portions for each protrusion, it takes time to process the protrusion. Therefore, there is a risk of increasing the manufacturing cost of the vulcanization mold.

本発明は、上記の問題を有利に解決するものであり、突起の加工に手間がかかることがなく、よって製造コストの増加を抑制しつつ、セクターモールドの意匠面の突起によって加硫後のタイヤのスパイクピン打込み穴の周囲にクラックが発生するのを防止することのできるスパイクタイヤ用加硫金型、加硫方法及びスパイクタイヤを提供することを目的とする。   The present invention advantageously solves the above-described problem, and does not take time and effort to process the protrusions, and thus suppresses an increase in manufacturing cost, and the tire after vulcanization by the protrusions on the design surface of the sector mold. It is an object of the present invention to provide a vulcanization mold for a spike tire, a vulcanization method, and a spike tire that can prevent cracks from occurring around the spike pin driving hole.

上記課題を解決する本発明の一側面のスパイクタイヤ用加硫金型は、成型するスパイクタイヤのトレッド部に対向するように設けられた、円環状の金型部分を備え、
該金型部分が、周方向の円環の円周に沿って複数個に分割され、周方向の円環の半径方向に進退可能なセクターモールドよりなり、
各セクターモールドは、該スパイクタイヤのトレッド部に接する曲面であって金型部分の円周を含む断面において周方向に円弧形状になる意匠面と、該意匠面から突出して設けられ、該スパイクタイヤのトレッド部にスパイクピン取り付け穴を形成するためのピン状の突起と、を有し、
該突起のうちの意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起は、該意匠面から先端に向かう突出方向が、該突起の基端における該意匠面の法線方向から外向きに傾斜していることを特徴とする。
The spike tire vulcanization mold according to one aspect of the present invention that solves the above problems includes an annular mold portion provided to face the tread portion of the spike tire to be molded,
The mold part is divided into a plurality of pieces along the circumference of the circumferential ring, and comprises a sector mold that can advance and retreat in the radial direction of the circumferential ring.
Each sector mold is provided with a design surface which is a curved surface in contact with the tread portion of the spike tire and has a circular arc shape in a circumferential direction in a cross section including the circumference of the mold portion, and protrudes from the design surface. A pin-shaped protrusion for forming a spike pin mounting hole in the tread portion of
Among the protrusions, the protrusion provided at a position closest to one of the circumferential ends of the design surface and the other of the protrusions is such that the protrusion direction from the design surface toward the tip is the method of the design surface at the base end of the protrusion Inclined outward from the line direction.

上記構成を有することにより、意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起の突出方向がセクターモールドの進退方向に近似、又は同じ方向になる。したがって加硫後にセクターモールドを後退させてタイヤを取り外すときに、タイヤのトレッド部に埋め込まれた突起をその突起の突出方向又はそれに近似する方向で抜くことができるので、タイヤのスパイクピン打込み穴の周囲にクラックが発生するのを抑制することができる。   By having the said structure, the protrusion direction of the processus | protrusion provided in the position nearest to each of the circumferential direction edge of a design surface and each other approximates or becomes the same direction as the advancing / retreating direction of a sector mold. Therefore, when the sector mold is retracted after vulcanization and the tire is removed, the protrusion embedded in the tread portion of the tire can be pulled out in the protrusion direction of the protrusion or a direction similar thereto, so that the spike pin insertion hole of the tire can be removed. It is possible to suppress the occurrence of cracks in the surroundings.

また本発明のスパイクタイヤ用加硫金型は、より具体的な構成として、
前記突起のうちの意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起は、意匠面の周方向の中心位置に最も近い位置に設けられた突起に比べて、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい構成、
前記突起のうちの意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起は、該周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起以外の突起に比べて、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい構成、
前記突起は、意匠面の周方向の中心位置に最も近い位置から周方向端に近い突起ほど、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい構成、
前記突起は、意匠面の周方向に4等分し一方及び他方の周方向端側の領域を周方向端部とし周方向中心側の2つの領域を周方向中央部としたとき、周方向端部における突起の突出方向と該突起の基端における意匠面の法線方向とのなす角度の平均値が、周方向中央部における突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度の平均値よりも大きい構成、
前記突起は、意匠面の周方向に4等分し一方及び他方の周方向端側の領域を周方向端部とし周方向中心側の2つの領域を周方向中央部としたとき、周方向端部のみにおいて突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が、該突起の基端における意匠面の法線方向から外向きに傾斜し、かつ当該周方向端部において、意匠面の周方向端に最も近い位置に設けられた突起は、当該周方向端に最も近い位置以外に設けられた突起に比べて、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい構成、又は
前記突起は、意匠面の周方向に4等分し一方及び他方の周方向端側の領域を周方向端部とし周方向中心側の2つの領域を周方向中央部としたとき、周方向端部のみにおいて突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が、該突起の基端における意匠面の法線方向から外向きに傾斜し、かつ当該周方向端部の突起は、意匠面の周方向中央部に最も近い位置から周方向端に近い突起ほど、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい構成、
とすることができる。
Moreover, the vulcanization mold for spike tires of the present invention has a more specific configuration,
Among the protrusions, the protrusion provided at the position closest to one of the circumferential ends of the design surface and the other of the protrusions is larger than the protrusion provided at the position closest to the center position in the circumferential direction of the design surface. A structure having a large angle between the protruding direction of the projection and the normal direction of the design surface at the base end of the protrusion,
Of the projections, the projections provided at positions closest to one of the circumferential ends of the design surface and the other are projections other than the projections provided at positions closest to one of the circumferential ends and the other, respectively. Compared with the configuration in which the angle formed by the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion is large,
The protrusion is configured such that the protrusion formed between the protrusion closest to the circumferential center of the design surface and the protrusion close to the circumferential end has a larger angle between the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion. ,
The projections are divided into four equal parts in the circumferential direction of the design surface, and when one and the other circumferential end side regions are circumferential end portions, and two regions on the circumferential center side are circumferential central portions, the circumferential end The average value of the angle formed by the projection direction of the projection at the projection and the normal direction of the design surface at the base end of the projection is the projection direction of the projection at the central portion in the circumferential direction and the normal of the design surface at the base end of the projection A configuration larger than the average value of the angle with the direction,
The projections are divided into four equal parts in the circumferential direction of the design surface, and when one and the other circumferential end side regions are circumferential end portions, and two regions on the circumferential center side are circumferential central portions, the circumferential end The angle formed by the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion is inclined outward from the normal direction of the design surface at the base end of the protrusion and only in the circumferential direction. In the end portion, the protrusion provided at the position closest to the circumferential end of the design surface has a protrusion direction of the protrusion and the base end of the protrusion compared to the protrusion provided at a position other than the position closest to the circumferential end. A structure having a large angle with the normal direction of the design surface in the above, or the protrusion is equally divided into four in the circumferential direction of the design surface, and the region on one and the other circumferential end side is a circumferential end, and the central side in the circumferential direction When the two regions are the central part in the circumferential direction, the protrusion direction of the protrusion only at the circumferential end part And the normal direction of the design surface at the base end of the projection is inclined outward from the normal direction of the design surface at the base end of the projection, and the projection at the circumferential end is a design A configuration in which a protrusion closer to the circumferential end from a position closest to the circumferential center of the surface has a larger angle between the protruding direction of the protrusion and the normal direction of the design surface at the base end of the protrusion,
It can be.

また、本発明の別の側面のスパイクタイヤの加硫方法は、上記のスパイクタイヤ用加硫金型を用いた加硫後に、金型部分を移動させてスパイクタイヤを該金型部分から取り外すにあたり、前記突起は、先端に膨出部を有し、かつ、金型部分の突起の膨出部が当該膨出部の高さに相当する長さまで移動した時に、金型の移動を一旦停止することを特徴とする。   The spike tire vulcanizing method according to another aspect of the present invention is a method for removing a spike tire from the mold part by moving the mold part after vulcanization using the above-mentioned spike tire vulcanization mold. The protrusion has a bulging portion at the tip, and when the bulging portion of the protrusion of the mold portion has moved to a length corresponding to the height of the bulging portion, the movement of the mold is temporarily stopped. It is characterized by that.

更に、本発明のスパイクタイヤの加硫方法の別の構成は、上記のスパイクタイヤ用加硫金型を用いた加硫後に、セクターモールドを移動させてスパイクタイヤを該セクターモールドから取り外すにあたり、前記突起は、先端に膨出部を有し、かつ、セクターモールドの突起の膨出部が当該膨出部の高さに相当する長さまで移動する間のセクターモールドの移動速度を、それ以降の移動速度よりも遅くするものである。   Further, another configuration of the spike tire vulcanizing method of the present invention is that, after vulcanization using the spike tire vulcanization mold, the sector mold is moved to remove the spike tire from the sector mold. The protrusion has a bulging portion at the tip, and the movement speed of the sector mold is changed while the bulging portion of the protrusion of the sector mold moves to a length corresponding to the height of the bulging portion. It is slower than the speed.

更に、本発明の別の側面のスパイクタイヤは、上記のスパイクタイヤ用加硫金型を用いて製造され、キャップゴム層と、ベースゴム層との2層以上からなるトレッドゴムを備え、トレッドゴムの陸部に、スパイクピン打ち込み穴を備えるスパイクタイヤにおいて、
前記突起は、先端に膨出部を有し、かつ、前記キャップゴム層とベースゴム層との界面が、該スパイクタイヤのトレッドゴムの陸部の表面から位置する深さは、スパイクタイヤ用加硫金型に該スパイクタイヤが密接しているときに、該スパイクタイヤ用加硫金型の突起の膨出部の基部の位置を基準位置として、この基準位置から意匠面に向けて該膨出部の高さに相当する長さで浅い位置から深いことを特徴とする。
Furthermore, a spike tire according to another aspect of the present invention is manufactured using the above-described spike tire vulcanization mold, and includes a tread rubber composed of two or more layers of a cap rubber layer and a base rubber layer. In the spike tire with spike pin driving holes in the land part of
The protrusion has a bulged portion at the tip, and the depth at which the interface between the cap rubber layer and the base rubber layer is located from the surface of the land portion of the tread rubber of the spike tire is determined by the added pressure for the spike tire. When the spike tire is in close contact with the mold, the position of the base of the bulge of the projection of the vulcanization mold for the spike tire is used as a reference position, and the bulge is directed from the reference position toward the design surface. It has a length corresponding to the height of the part and is deep from a shallow position.

本発明によれば、突起の膨出部の加工に手間がかかることがなく、よって製造コストの増加を抑制しつつ、加硫後のタイヤのスパイクピン打込み穴の周囲にクラックが発生するのを防止することができる。   According to the present invention, it is possible to prevent the occurrence of cracks around the spike pin driving hole of the tire after vulcanization while suppressing an increase in manufacturing cost without taking time and effort to process the protruding portion of the protrusion. Can be prevented.

本発明の一実施形態のタイヤ用加硫金型の模式図である。It is a schematic diagram of the vulcanization mold for tires of one embodiment of the present invention. 本発明の一実施形態のタイヤ用加硫金型の断面図である。It is sectional drawing of the vulcanization mold for tires of one Embodiment of this invention. タイヤ用加硫金型のセクターモールドの説明図である。It is explanatory drawing of the sector mold of the vulcanization metal mold | die for tires. 図3のセクターモールドの動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the sector mold of FIG. 本発明の一実施形態加硫方法の説明図である。It is explanatory drawing of the vulcanization method of one Embodiment of this invention. 本発明の一実施形態のタイヤの説明図である。It is explanatory drawing of the tire of one Embodiment of this invention. 従来のタイヤ用加硫金型のセクターモールドの説明図である。It is explanatory drawing of the sector mold of the conventional vulcanization mold for tires. 図8のセクターモールドの動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the sector mold of FIG.

本発明のスパイクタイヤ用加硫金型、加硫方法及びスパイクタイヤの実施の形態を、図面を用いつつ、より具体的に説明する。   Embodiments of a vulcanization mold for spike tire, a vulcanization method, and a spike tire according to the present invention will be described more specifically with reference to the drawings.

本実施形態のスパイクタイヤ用加硫金型1は、図1の模式図に示すように、加硫成型するスパイクタイヤ(図示せず)のトレッド部に対向するように設けられた円環状の金型部分が、当該周方向の円環の円周に沿って分割された複数個、図示した例では9個のセクターモールド2よりなる。また、スパイクタイヤ用加硫金型1は、図2(a)、(b)の断面図に示すようにセクターモールド2の幅方向端部に接続するように設けられ、互いに接近離隔可能なサイドモールド3、4を備えている。タイヤのトレッド部を成型するためのセクターモールド2と、サイド部を成型するためのサイドモールド3、4とにより、スパイクタイヤの外形を成型するようになっている。   As shown in the schematic diagram of FIG. 1, the vulcanization mold 1 for spike tire according to the present embodiment is an annular mold provided so as to face a tread portion of a spike tire (not shown) to be vulcanized. The mold part is composed of a plurality of sector molds 2 divided along the circumference of the circumferential ring, in the illustrated example, nine sector molds 2. Further, the spike tire vulcanization mold 1 is provided so as to be connected to the end portion in the width direction of the sector mold 2 as shown in the cross-sectional views of FIGS. Molds 3 and 4 are provided. The outer shape of the spike tire is molded by a sector mold 2 for molding the tread portion of the tire and side molds 3 and 4 for molding the side portion.

サイドモールド3の上面はトッププレート5に固定され、サイドモールド4の半径方向外側はプレートリング6に固定されている。また、各セクターモールド2の半径方向外側には、コンテナリング7が設けられている。セクターモールド2の外面及びコンテナリング7の内面には互いに同一傾斜になる傾斜面を有している。これらの傾斜面でセクターモールド2とコンテナリング7とが摺動可能になっている。   The upper surface of the side mold 3 is fixed to the top plate 5, and the radially outer side of the side mold 4 is fixed to the plate ring 6. A container ring 7 is provided outside the sector mold 2 in the radial direction. The outer surface of the sector mold 2 and the inner surface of the container ring 7 have inclined surfaces that are inclined to each other. The sector mold 2 and the container ring 7 can slide on these inclined surfaces.

コンテナリング7をサイドモールド3側に方向に移動させると、コンテナリング7の傾斜面とセクターモールド2の傾斜面とが摺動して、各セクターモールド2は、円環状の金型部分の半径方向外方に向けて移動する。逆に、コンテナリング7をサイドモールド4側に移動させると、コンテナリング7の傾斜面とセクターモールド2の傾斜面とが摺動して、セクターモールド2は、半径方向中心に向けて移動する。このような構造により、セクターモールド2は、周方向の円環の半径方向に進退可能になっている。   When the container ring 7 is moved in the direction toward the side mold 3, the inclined surface of the container ring 7 and the inclined surface of the sector mold 2 slide, and each sector mold 2 is in the radial direction of the annular mold portion. Move outward. Conversely, when the container ring 7 is moved to the side mold 4 side, the inclined surface of the container ring 7 and the inclined surface of the sector mold 2 slide, and the sector mold 2 moves toward the center in the radial direction. With such a structure, the sector mold 2 can advance and retreat in the radial direction of the circumferential ring.

加硫時には各セクターモールド2を半径方向中心に向けて前進させ、互いに隣接させて円環状の金型部分を構成し、加硫後はセクターモールド2を半径方向外方に後退させて、タイヤを取り外すことができるようになっている。   At the time of vulcanization, each sector mold 2 is moved forward toward the center in the radial direction, and an annular mold portion is formed adjacent to each other. After vulcanization, the sector mold 2 is moved back outward in the radial direction, It can be removed.

セクターモールド2の内面は、スパイクタイヤのトレッド部に接し、当該トレッド部の形状を形成する意匠面2aである。意匠面2aは、円環状の金型部分の円周を含む断面で周方向に円弧形状を示す曲面になる。意匠面2aには、スパイクタイヤのスパイクピン打ち込み穴を形成するために突起8が突出している。セクターモールド2の大きさにもよるが、1つのセクターモールドには100個〜130個程度の突起が設けられている。図1では代表して3個の突起8を図示し、図2では代表して1個の突起8を図示している。   The inner surface of the sector mold 2 is a design surface 2a that contacts the tread portion of the spike tire and forms the shape of the tread portion. The design surface 2a is a curved surface having an arc shape in the circumferential direction in a cross section including the circumference of the annular mold portion. On the design surface 2a, a protrusion 8 projects to form a spike pin driving hole for a spike tire. Depending on the size of the sector mold 2, one sector mold is provided with about 100 to 130 protrusions. FIG. 1 representatively shows three protrusions 8, and FIG. 2 representatively shows one protrusion 8.

図3(a)にセクターモールド2の意匠面2aの周方向中心位置に最も近い位置に設けられた突起8A及び周方向端に最も近い位置に設けられた突起8B、8Cの模式図を示し、図3(b)に突起8Cの拡大図を示すように、各突起8A、8B、8Cは、略ピン形状であり、意匠面2aと接続する基端から延び先端にはスパイクピン打込み穴の拡径部を形成するための膨出部8aを有している。なお、各突起8A、8B、8Cは、膨出部8aを有しない構成とすることもできる。   FIG. 3A shows a schematic diagram of the protrusion 8A provided at the position closest to the circumferential center position of the design surface 2a of the sector mold 2 and the protrusions 8B and 8C provided at the position closest to the circumferential end. As shown in the enlarged view of the protrusion 8C in FIG. 3B, each of the protrusions 8A, 8B, and 8C has a substantially pin shape, extends from the base end connected to the design surface 2a, and expands a spike pin driving hole at the tip. It has a bulging portion 8a for forming a diameter portion. In addition, each protrusion 8A, 8B, 8C can also be set as the structure which does not have the bulging part 8a.

セクターモールド2の意匠面2aの周方向端に最も近い位置に設けられた突起8B、8Cは、セクターモールド2の意匠面2aから突出する方向、すなわち突起8が基端から先端に向けて延びる方向が、該突起8B、8Cの基端における該意匠面2aの法線方向から外向きに傾斜している。このことは、図3(b)の拡大図で明瞭に示され、突起8Cは、突起8Cの突出方向と、該突起8Cの基端における意匠面の法線方向とのなす角度(以下、「傾斜角度」という。)θとして、所定の角度を有している。突起8Bも同様に、所定の傾斜角度を有しているが、傾斜している方向が突起8Cとは反対側である。一方、セクターモールド2の意匠面2aの周方向中心位置に最も近い位置に設けられた突起8Aは、セクターモールド2の意匠面2aから突出する方向が、該突起8Aの基端における該意匠面2aの法線方向と略一致している。すなわち傾斜角度θは略0度である。   The protrusions 8B and 8C provided at positions closest to the circumferential end of the design surface 2a of the sector mold 2 are the directions protruding from the design surface 2a of the sector mold 2, that is, the direction in which the protrusions 8 extend from the base end toward the tip. However, it inclines outward from the normal line direction of the design surface 2a at the base ends of the protrusions 8B and 8C. This is clearly shown in the enlarged view of FIG. 3B, where the protrusion 8C has an angle (hereinafter referred to as “the direction between the protrusion direction of the protrusion 8C and the normal direction of the design surface at the base end of the protrusion 8C”). It is referred to as “inclination angle”.) Θ has a predetermined angle. Similarly, the protrusion 8B has a predetermined inclination angle, but the direction of inclination is opposite to the protrusion 8C. On the other hand, the protrusion 8A provided at the position closest to the center position in the circumferential direction of the design surface 2a of the sector mold 2 is such that the direction protruding from the design surface 2a of the sector mold 2 is the design surface 2a at the base end of the protrusion 8A. It is almost the same as the normal direction. That is, the inclination angle θ is approximately 0 degrees.

本実施形態のスパイクタイヤ用加硫金型1は、上記構成を具備することにより意匠面2aの周方向端に最も近い位置に設けられた突起8B、8Cの突出方向と、周方向中心位置に最も近い位置に設けられた突起8Aの突出方向とが、平行又は平行に近似した向きになる。したがって図4に示すように加硫後にセクターモールド2を矢印方向に後退させ、スパイクタイヤ(以下、単に「タイヤ」ともいう。)10を当該セクターモールド2から取り外すときに、セクターモールド2の後退方向に突起8B、8Cの突出方向を近づけ、又は同じにすることができる。よって突起8B、8Cをその突出方向と同じ又は近似する方向でタイヤ10から引き抜くことができるので、突起8B、8Cが、特にその膨出部8aが、タイヤ10から離れるときにタイヤ10のスパイクピン打込み穴の周囲に加わる応力が小さく、ゴムの弾性変形量も小さいためクラックが発生するのを抑制することができる。   The spike tire vulcanization mold 1 of the present embodiment is provided with the above-described configuration at the protrusion direction of the protrusions 8B and 8C provided at the position closest to the circumferential end of the design surface 2a and the circumferential center position. The protrusion direction of the protrusion 8A provided at the closest position is parallel or approximate to parallel. Therefore, when the sector mold 2 is retracted in the direction of the arrow after vulcanization as shown in FIG. 4 and the spike tire (hereinafter also simply referred to as “tire”) 10 is removed from the sector mold 2, The protrusion directions of the protrusions 8B and 8C can be made close to or the same. Therefore, since the protrusions 8B and 8C can be pulled out of the tire 10 in the same or approximate direction as the protrusion direction, the protrusions 8B and 8C, particularly when the bulging portion 8a is separated from the tire 10, are spike pins of the tire 10. Since the stress applied to the periphery of the driving hole is small and the elastic deformation amount of the rubber is small, the occurrence of cracks can be suppressed.

また、突起8B、8Cは突起8Aと同様の大きさの膨出部8aを有しているので、突起8B、8Cにより形成されたタイヤ10のスパイクピン打込み穴は、スパイクピンの保持力が低下することもない。   Further, since the protrusions 8B and 8C have the bulging portion 8a having the same size as the protrusion 8A, the spike pin holding hole of the tire 10 formed by the protrusions 8B and 8C has a reduced holding force of the spike pin. I don't have to.

これに対し図7(a)に従来の加硫金型101の要部を模式図で示すように、従来はセクターモールド102の意匠面102aの周方向端に最も近い位置に設けられた突起108B、108Cは、周方向中心位置に最も近い位置に設けられた突起108Aと同様に、セクターモールド102の意匠面102aから突出する方向が、該突起108Aの基端における該意匠面2aの法線方向と略一致している。すなわち突起108Cの拡大図を図7(b)に示すように、突起108Cの傾斜角度θは略0度である。突起108Bの傾斜角度も略0度である。したがって図8に示すように加硫後にセクターモールド102を矢印方向に後退させ、タイヤを当該セクターモールド102から取り外すときに、セクターモールド102の後退方向と突起108B、108Cの突出方向との相違が大きい。よって突起108B、108Cの膨出部108aがタイヤ10から離れるときにタイヤ10のスパイクピン打込み穴の周囲に加わる応力が大きく、ゴムの弾性変形量も大きいためクラックが発生する場合があった。図5と図3との対比により本実施形態のスパイクタイヤ用加硫金型1の構成及び効果は容易に理解できる。   On the other hand, as shown in the schematic diagram of the main part of the conventional vulcanization mold 101 in FIG. 7A, the projection 108B provided at the position closest to the circumferential end of the design surface 102a of the sector mold 102 in the past. , 108C, like the projection 108A provided at the position closest to the center position in the circumferential direction, the direction protruding from the design surface 102a of the sector mold 102 is the normal direction of the design surface 2a at the base end of the projection 108A Is almost the same. That is, as shown in an enlarged view of the protrusion 108C in FIG. 7B, the inclination angle θ of the protrusion 108C is approximately 0 degrees. The inclination angle of the protrusion 108B is also approximately 0 degrees. Therefore, as shown in FIG. 8, when the sector mold 102 is retracted in the arrow direction after vulcanization and the tire is removed from the sector mold 102, the difference between the retracting direction of the sector mold 102 and the protruding direction of the protrusions 108B and 108C is large. . Therefore, when the bulging portion 108a of the protrusions 108B and 108C is separated from the tire 10, a large stress is applied to the periphery of the spike pin driving hole of the tire 10 and the amount of elastic deformation of the rubber is large, so that a crack may occur. By comparing FIG. 5 with FIG. 3, the configuration and effects of the spike tire vulcanization mold 1 of this embodiment can be easily understood.

本実施形態のスパイクタイヤ用加硫金型1において、セクターモールド2の意匠面2aの周方向端に最も近い位置に設けられた突起8B、8Cの傾斜角度θは、セクターモールド2の分割数や加硫するスパイクタイヤ10の大きさ等にもよるが、一例として図1〜4に図示した9分割のセクターモールド2の意匠面2aにおいて、周方向の最端部の突起について少なくとも5度の角度を持ち、最大で周方向中心位置に最も近い位置に設けられた突起8Aの突出方向と平行になるような角度を持つ。   In the spike tire vulcanization mold 1 of the present embodiment, the inclination angle θ of the protrusions 8B and 8C provided at the position closest to the circumferential end of the design surface 2a of the sector mold 2 is the number of divisions of the sector mold 2 or Depending on the size of the spiked tire 10 to be vulcanized, as an example, the design surface 2a of the nine-segment sector mold 2 shown in FIGS. And has an angle that is parallel to the protruding direction of the protrusion 8A provided at the position closest to the center position in the circumferential direction.

本発明のスパイクタイヤ用加硫金型は、セクターモールドの意匠面の周方向端に最も近い位置に設けられた突起の突出方向を意匠面の法線方向から外向きに傾斜させた構成を少なくとも具備している。かかる構成を具備するスパイクタイヤ用加硫金型の実施形態は、以下に説明するようにいくつかの派生が考えられる。   The spike tire vulcanization mold according to the present invention has at least a configuration in which the protruding direction of the protrusion provided at the position closest to the circumferential end of the design surface of the sector mold is inclined outward from the normal direction of the design surface. It has. The embodiment of the vulcanization mold for spike tires having such a configuration can be derived from several derivations as described below.

第1実施形態のスパイクタイヤ用加硫金型は、上述したように、意匠面2aの周方向端に最も近い位置に設けられた突起8B、8Cと、意匠面の周方向中心位置に最も近い位置に設けられた突起8Aとを比較したときに、突起8B、8Cは、突起8Aに比べて、傾斜角度が大きいものである。第1の実施形態では、セクターモールド2の意匠面2aに設けられた複数の突起について、周方向端に最も近い位置に設けられた突起8B、8Cと周方向中心位置に最も近い位置に設けられた突起8Aとに着目して特徴付けられる。周方向中心位置に最も近い位置に設けられた突起8Aの傾斜角度は、ほぼ0度でよい。第1の実施形態においては、周方向端に最も近い位置に設けられた突起8B、8C及び周方向中心位置に最も近い位置に設けられた突起8A以外の突起については、特に限定しないが、突起8B、8Cの傾斜角度と突起8Aの傾斜角度との中間の傾斜角度とすることができる。   As described above, the vulcanization mold for spike tire according to the first embodiment is closest to the protrusions 8B and 8C provided at the position closest to the circumferential end of the design surface 2a and the circumferential center position of the design surface. When the projection 8A provided at the position is compared, the projections 8B and 8C have a larger inclination angle than the projection 8A. In the first embodiment, the plurality of protrusions provided on the design surface 2a of the sector mold 2 are provided at positions closest to the protrusions 8B and 8C provided at positions closest to the circumferential end and the center position in the circumferential direction. It is characterized by paying attention to the protrusion 8A. The inclination angle of the protrusion 8A provided at the position closest to the circumferential center position may be approximately 0 degrees. In the first embodiment, the protrusions other than the protrusions 8B and 8C provided at the position closest to the circumferential end and the protrusion 8A provided at the position closest to the circumferential center position are not particularly limited. The inclination angle can be an intermediate inclination angle between the inclination angles of 8B and 8C and the inclination angle of the protrusion 8A.

第2の実施形態のスパイクタイヤ用加硫金型は、意匠面2aの周方向端に最も近い位置の突起8B、8Cは、突起8B、8C以外の意匠面2aに設けられた突起に比べて、傾斜角度が大きいものである。第2の実施態様では、スパイクタイヤ用加硫金型1の意匠面2aに設けられた複数の突起について、周方向端に最も近い位置に設けられた突起8B、8Cとそれ以外の突起とに着目して特徴付けられる。周方向端に最も近い位置に設けられた突起以外の突起の傾斜角度は、0度以上で周方向端に最も近い位置に設けられた突起8B、8Cの傾斜角度より小さい角度であれば、傾斜角度を問わない。   In the vulcanization mold for spike tire according to the second embodiment, the protrusions 8B and 8C located closest to the circumferential end of the design surface 2a are compared to the protrusions provided on the design surface 2a other than the protrusions 8B and 8C. The inclination angle is large. In the second embodiment, with respect to the plurality of protrusions provided on the design surface 2a of the spike tire vulcanizing mold 1, the protrusions 8B and 8C provided at positions closest to the circumferential end and the other protrusions are provided. Characterized by attention. If the inclination angle of the protrusions other than the protrusion provided at the position closest to the circumferential end is 0 degree or more and smaller than the inclination angle of the protrusions 8B and 8C provided at the position closest to the circumferential end, the inclination is inclined. Any angle.

第3の実施形態のスパイクタイヤ用加硫金型は、意匠面2aの周方向中心位置に最も近い位置から周方向端に近い突起ほど、突起の傾斜角度θが大きいものである。第3の実施態様では、スパイクタイヤ用加硫金型1の意匠面2aに設けられた複数の突起について、周方向中心位置に最も近い位置から周方向端にかけての突起に着目して特徴付けられる。第3の実施形態では、意匠面2aの周方向中心位置に最も近い位置から周方向端にかけて、傾斜角度θは順次に、又は段階的に大きくなる。   In the vulcanization mold for spike tire according to the third embodiment, the inclination angle θ of the protrusion is larger from the position closest to the circumferential center position of the design surface 2a to the protrusion closer to the circumferential end. In the third embodiment, the plurality of protrusions provided on the design surface 2a of the spike tire vulcanizing mold 1 are characterized by paying attention to the protrusion from the position closest to the circumferential center position to the circumferential end. . In the third embodiment, the inclination angle θ increases sequentially or stepwise from the position closest to the circumferential center position of the design surface 2a to the circumferential end.

スパイクタイヤのクラックの発生は、セクターモールドの意匠面の周方向端に近い位置に設けられた突起により生じ得るから、図3においてセクターモールド2の意匠面2aの領域を周方向に4等分して、周方向中心側の領域を周方向中央部A1及び周方向中央部A2とし、周方向端側の領域を周方向端部B及び周方向端部Cとしたとき、周方向端部B及びCに設けられた突起のみについて、外向きに傾斜させる構成とすることができる。この構成により、意匠面2aに設けられる各突起の角度を調整する手間を軽減することができる。   The occurrence of cracks in the spike tire can be caused by a protrusion provided at a position near the circumferential end of the design surface of the sector mold. Therefore, the region of the design surface 2a of the sector mold 2 in FIG. Thus, when the region on the circumferential center side is the circumferential central portion A1 and the circumferential central portion A2, and the region on the circumferential end side is the circumferential end B and the circumferential end C, the circumferential end B and Only the protrusions provided on C can be inclined outward. With this configuration, the trouble of adjusting the angle of each protrusion provided on the design surface 2a can be reduced.

意匠面2aの周方向端部B及びCに設けられた突起のみについて、その突出方向を意匠面2aの法線方向から外向きに傾斜させた構成を具備するスパイクタイヤ用加硫金型の実施形態は、以下に説明するようにいくつかの派生が考えられる。   Implementation of a vulcanization mold for spike tires having a configuration in which only the protrusions provided on the circumferential ends B and C of the design surface 2a are inclined outward from the normal direction of the design surface 2a. The form can be derived in several ways as described below.

第4の実施形態のスパイクタイヤ用加硫金型は、周方向端部B及びCにおける突起の傾斜角度の平均値が、周方向中央部A1及びA2における突起の傾斜角度の平均値よりも大きいものである。第4の実施形態では、周方向端部B及びCの突起8B、8Cは所定の傾斜角度を有するものとして、周方向中央部A1及びA2の突起8Aの傾斜角度θは、ほぼ0度でよい。   In the vulcanization mold for spike tire according to the fourth embodiment, the average value of the inclination angle of the protrusions at the circumferential ends B and C is larger than the average value of the inclination angle of the protrusions at the circumferential center parts A1 and A2. Is. In the fourth embodiment, assuming that the protrusions 8B and 8C at the circumferential end portions B and C have a predetermined inclination angle, the inclination angle θ of the protrusions 8A at the circumferential central portions A1 and A2 may be approximately 0 degrees. .

第5の実施形態のスパイクタイヤ用加硫金型は、周方向端部B及びCにおいて設けられた突起のうちの、周方向端に最も近い位置に設けられた突起8B、8Cは、周方向端に最も近い位置に設けられた突起8B、8C以外の周方向端部B及びCの突起に比べて、傾斜角度が大きいものである。第5実施態様では、周方向端部B及びCに設けられた複数の突起について、周方向端に最も近い位置に設けられた突起8B、8Cとそれ以外の突起とに着目して特徴付けられる。周方向端部B及びCにおける周方向端に最も近い位置に設けられた突起8B、8C以外の突起の傾斜角度は、0度以上で周方向端に最も近い位置に設けられた突起8B、8Cの傾斜角度より小さい角度であれば、傾斜角度を問わない。また、周方向中央部A1及びA2の突起8Aの傾斜角度θは、ほぼ0度でよい。   The spike tire vulcanization mold according to the fifth embodiment includes projections 8B and 8C provided at positions closest to the circumferential end among the projections provided at the circumferential ends B and C. The inclination angle is larger than the protrusions of the circumferential end portions B and C other than the protrusions 8B and 8C provided at the position closest to the end. In the fifth embodiment, the plurality of protrusions provided at the circumferential ends B and C are characterized by paying attention to the protrusions 8B and 8C provided at positions closest to the circumferential end and the other protrusions. . Protrusions 8B and 8C provided at positions closest to the circumferential end when the inclination angles of the protrusions other than the protrusions 8B and 8C provided at positions closest to the circumferential ends at the circumferential ends B and C are 0 degrees or more. The inclination angle is not limited as long as it is smaller than the inclination angle. Further, the inclination angle θ of the protrusions 8A of the circumferential center portions A1 and A2 may be approximately 0 degrees.

第6の実施形態のスパイクタイヤ用加硫金型は、周方向端部B及びCにおいて設けられた突起は、意匠面2aの周方向中央部に最も近い位置から周方向端に近い突起ほど、傾斜角度が大きいものである。第6実施形態では、周方向端部B及びCに設けられた複数の突起について、周方向中央部に最も近い位置から周方向端にかけての突起に着目して特徴づけられる。第6の実施形態では、周方向端部B及びCの周方向中央部に最も近い位置から周方向端にかけて、傾斜角度は順次に、又は段階的に大きくなる。また、周方向中央部A1及びA2の突起8Aの傾斜角度θは、ほぼ0度でよい。   In the vulcanization mold for spike tire according to the sixth embodiment, the protrusions provided at the circumferential end portions B and C are closer to the circumferential end from the position closest to the circumferential central portion of the design surface 2a. The inclination angle is large. In the sixth embodiment, the plurality of protrusions provided at the circumferential ends B and C are characterized by paying attention to the protrusion from the position closest to the circumferential center to the circumferential end. In the sixth embodiment, the inclination angle increases sequentially or stepwise from the position closest to the circumferential center of the circumferential ends B and C to the circumferential end. Further, the inclination angle θ of the protrusions 8A of the circumferential center portions A1 and A2 may be approximately 0 degrees.

上述した第1〜6の実施形態のいずれにおいても、クラックの発生を効果的に防止することができる。   In any of the first to sixth embodiments described above, the occurrence of cracks can be effectively prevented.

本発明の実施形態のスパイクタイヤ用加硫金型を用いた、加硫方法の実施形態を以下に説明する。   An embodiment of a vulcanization method using a vulcanization mold for spike tires according to an embodiment of the present invention will be described below.

一つの実施形態では、加硫後に、セクターモールド2を半径方向外方に移動させてスパイクタイヤ10を該セクターモールド2から取り外すにあたり、図5に示すようにセクターモールド2の意匠面2aの突起8の膨出部8aが、当該膨出部の高さhに相当する長さhまで移動した時に、金型の移動を一旦停止することが好ましい。タイヤ10のスパイクピン取り付け孔の周囲において、クラックcが生じやすい領域は、加硫時にタイヤ10の表面から埋め込まれた突起8の膨出部8aの位置よりも当該膨出部8aの高さhの分だけ表面寄りの領域である。そこで、このクラックの起点となる突起8の膨出部8aが、当該膨出部8aの高さhに相当する長さhまで移動した時に、セクターモールド2の移動を一旦停止することにより、膨出部がタイヤから引き抜かれることよるクラックの発生を、より抑制することができる。   In one embodiment, after the vulcanization, when the sector mold 2 is moved radially outward to remove the spike tire 10 from the sector mold 2, as shown in FIG. 5, the protrusion 8 on the design surface 2 a of the sector mold 2. It is preferable that the movement of the mold is temporarily stopped when the bulging portion 8a has moved to a length h corresponding to the height h of the bulging portion. Around the spike pin mounting hole of the tire 10, the region where the crack c is likely to occur is the height h of the bulging portion 8a than the position of the bulging portion 8a of the projection 8 embedded from the surface of the tire 10 during vulcanization. This is the area closer to the surface by the amount of. Therefore, when the bulging portion 8a of the protrusion 8 serving as the starting point of the crack has moved to a length h corresponding to the height h of the bulging portion 8a, the movement of the sector mold 2 is temporarily stopped, thereby It is possible to further suppress the occurrence of cracks due to the protruding portion being pulled out of the tire.

クラックcを抑制する加硫方法は、上記の一旦停止する方法に限られず、別の実施形態としては、セクターモールド2の突起8の膨出部8aが当該膨出部8aの高さhに相当する長さhまで移動する間のセクターモールド2の移動速度を、それ以降の移動速度よりも遅くする。この方法によっても膨出部8aがタイヤから引き抜かれることよるクラックcの発生を、より抑制することができる。   The vulcanizing method for suppressing the crack c is not limited to the method of temporarily stopping, and as another embodiment, the bulging portion 8a of the protrusion 8 of the sector mold 2 corresponds to the height h of the bulging portion 8a. The movement speed of the sector mold 2 during the movement to the length h to be made is made slower than the subsequent movement speed. Also by this method, generation | occurrence | production of the crack c by the bulging part 8a being pulled out from a tire can be suppressed more.

次に、スパイクピン取り付け穴の周囲にクラックcの発生を抑制するのに好適なスパイクタイヤの構造を説明する。図6に示すようにトレッドゴム11が、キャップゴム層12と、ベースゴム層13との2層以上からなるスパイクタイヤ10において、キャップゴム層12とベースゴム層13との界面Iが、加硫時の突起の位置との関係で、所定の位置から深い構造を有するものである。より具体的には、上記界面Iが、該スパイクタイヤ10のトレッドゴムの陸部の表面から位置する深さdは、セクターモールド2に該スパイクタイヤ10が密接しているときに、該セクターモールド2の突起8の膨出部8aの基部の位置を基準位置Bとして、この基準位置Bから意匠面2aに向けて該膨出部8aの高さhに相当する長さhで浅い位置から深い位置にある構造である。図5で説明したクラックcが発生しやすい領域に、キャップゴム層12とベースゴム層13との界面Iが位置すると、この界面Iからクラックが発生しやすい。したがって、クラックを抑制するためには、クラックが発生しやすい領域に界面Iが存在しないこと、より具体的には、クラックが発生しやすい領域よりもタイヤ表面から深い位置に界面Iが位置するようなスパイクタイヤとする。   Next, a structure of a spike tire suitable for suppressing the generation of crack c around the spike pin mounting hole will be described. As shown in FIG. 6, in the spike tire 10 in which the tread rubber 11 is composed of two or more layers of the cap rubber layer 12 and the base rubber layer 13, the interface I between the cap rubber layer 12 and the base rubber layer 13 is vulcanized. It has a deep structure from a predetermined position in relation to the position of the protrusion at the time. More specifically, the depth d at which the interface I is located from the surface of the land portion of the tread rubber of the spike tire 10 is such that when the spike tire 10 is in close contact with the sector mold 2, the sector mold The position of the base portion of the bulging portion 8a of the projection 8 is defined as a reference position B and is deep from a shallow position with a length h corresponding to the height h of the bulging portion 8a from the reference position B toward the design surface 2a. The structure is in position. If the interface I between the cap rubber layer 12 and the base rubber layer 13 is located in the region where the crack c described with reference to FIG. 5 is likely to occur, cracks are likely to occur from the interface I. Therefore, in order to suppress cracks, the interface I does not exist in a region where cracks are likely to occur. More specifically, the interface I seems to be located deeper from the tire surface than a region where cracks are likely to occur. Use spike tires.

以上、本発明のスパイクタイヤ用加硫金型、加硫方法及びスパイクタイヤを実施形態に基づいて説明したが、本発明は上述の実施形態に限定されるものでなく、本発明の趣旨を逸脱しない範囲で幾多の変形が可能である。   As mentioned above, although the vulcanization | cure mold for spike tires, the vulcanization method, and the spike tire of this invention were demonstrated based on embodiment, this invention is not limited to the above-mentioned embodiment, and deviates from the meaning of this invention. Many variations are possible within the range that is not.

本発明に従い、意匠面の周方向端に最も近い位置に設けられた突起の傾斜角度を大きくしたセクターモールドを備える加硫金型を用いて、スパイクタイヤを加硫成型し、スパイクピン打込み穴の周囲のクラックの発生を調べたところ、全スパイクピン打込み穴に対する、クラックの発生したスパイクピン打込み穴の割合は0%であった。
これに対して、意匠面の周方向端に最も近い位置に設けられた突起の傾斜角度を、周方向中心位置に最も近い位置に設けられた突起の傾斜角度と同じく、略0度とした大きくした従来のセクターモールドを備える加硫金型を用いて、スパイクタイヤを加硫成型し、スパイクピン打込み穴の周囲のクラックの発生を調べたところ、全スパイクピン打込み穴に対する、クラックの発生したスパイクピン打込み穴の割合は2〜10%であった。
According to the present invention, a spike tire is vulcanized using a vulcanization mold having a sector mold with a large inclination angle of a protrusion provided at a position closest to a circumferential end of the design surface, and a spike pin driving hole is formed. When the occurrence of surrounding cracks was examined, the ratio of spike pin insertion holes with cracks to all spike pin injection holes was 0%.
On the other hand, the inclination angle of the protrusion provided at the position closest to the circumferential end of the design surface is substantially 0 degree, similar to the inclination angle of the protrusion provided at the position closest to the circumferential center position. Spike tires were vulcanized using a vulcanization mold equipped with a conventional sector mold, and the occurrence of cracks around the spike pin insertion holes was examined. The ratio of pin driving holes was 2 to 10%.

かくして本発明によれば、スパイクタイヤ用加硫金型によりスパイクピン打込み穴の周囲にクラックが発生するのを、コスト増加を抑制しつつ可能にした。   Thus, according to the present invention, cracks can be generated around the spike pin driving hole by the vulcanization mold for spike tires while suppressing an increase in cost.

1 スパイクタイヤ用加硫金型、2 セクターモールド、2a 意匠面、8 突起、8a 膨出部、10 スパイクタイヤ 11 トレッドゴム、 12 キャップゴム層、13 ベースゴム層 DESCRIPTION OF SYMBOLS 1 Vulcanization mold for spike tires, 2 sector molds, 2a design surface, 8 protrusions, 8a bulge part, 10 spike tires 11 tread rubber, 12 cap rubber layer, 13 base rubber layer

Claims (10)

成型するスパイクタイヤのトレッド部に対向するように設けられた、円環状の金型部分を備え、
該金型部分が、周方向の円環の円周に沿って複数個に分割され、周方向の円環の半径方向に進退可能なセクターモールドよりなり、
各セクターモールドは、該スパイクタイヤのトレッド部に接する曲面であって金型部分の円周を含む断面において周方向に円弧形状になる意匠面と、該意匠面から突出して設けられ、該スパイクタイヤのトレッド部にスパイクピン取り付け穴を形成するためのピン状の突起と、を有し、
該突起のうちの意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起は、該意匠面から先端に向かう突出方向が、該突起の基端における該意匠面の法線方向から外向きに傾斜していることを特徴とするスパイクタイヤ用加硫金型。
Provided with an annular mold portion provided to face the tread portion of the spike tire to be molded,
The mold part is divided into a plurality of pieces along the circumference of the circumferential ring, and comprises a sector mold that can advance and retreat in the radial direction of the circumferential ring.
Each sector mold is provided with a design surface which is a curved surface in contact with the tread portion of the spike tire and has a circular arc shape in a circumferential direction in a cross section including the circumference of the mold portion, and protrudes from the design surface. A pin-shaped protrusion for forming a spike pin mounting hole in the tread portion of
Among the protrusions, the protrusion provided at a position closest to one of the circumferential ends of the design surface and the other of the protrusions is such that the protrusion direction from the design surface toward the tip is the method of the design surface at the base end of the protrusion A vulcanization mold for spike tires, which is inclined outward from the linear direction.
前記突起のうちの意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起は、意匠面の周方向の中心位置に最も近い位置に設けられた突起に比べて、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい請求項1記載のスパイクタイヤ用加硫金型。   Among the protrusions, the protrusion provided at the position closest to one of the circumferential ends of the design surface and the other of the protrusions is larger than the protrusion provided at the position closest to the center position in the circumferential direction of the design surface. The spike tire vulcanization mold according to claim 1, wherein an angle formed between the protrusion direction of the protrusion and a normal direction of the design surface at the base end of the protrusion is large. 前記突起のうちの意匠面の周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起は、該周方向端の一方及び他方のそれぞれに最も近い位置に設けられた突起以外の突起に比べて、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい請求項1記載のスパイクタイヤ用加硫金型。   Of the projections, the projections provided at positions closest to one of the circumferential ends of the design surface and the other are projections other than the projections provided at positions closest to one of the circumferential ends and the other, respectively. 2. The vulcanization mold for spike tire according to claim 1, wherein an angle formed by a protruding direction of the protrusion and a normal direction of the design surface at the base end of the protrusion is large. 前記突起は、意匠面の周方向の中心位置に最も近い位置から周方向端に近い突起ほど、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい請求項1記載のスパイクタイヤ用加硫金型。   The protrusion has a larger angle between the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion, as the protrusion is closer to the circumferential end from the position closest to the center position in the circumferential direction of the design surface. Item 1. A vulcanization mold for spike tires according to item 1. 前記突起は、意匠面の周方向に4等分し一方及び他方の周方向端側の領域を周方向端部とし周方向中心側の2つの領域を周方向中央部としたとき、周方向端部における突起の突出方向と該突起の基端における意匠面の法線方向とのなす角度の平均値が、周方向中央部における突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度の平均値よりも大きい請求項1記載のスパイクタイヤ用加硫金型。   The projections are divided into four equal parts in the circumferential direction of the design surface, and when one and the other circumferential end side regions are circumferential end portions, and two regions on the circumferential center side are circumferential central portions, the circumferential end The average value of the angle formed by the projection direction of the projection at the projection and the normal direction of the design surface at the base end of the projection is the projection direction of the projection at the central portion in the circumferential direction and the normal of the design surface at the base end of the projection The vulcanization mold for spike tires according to claim 1, wherein the vulcanization mold is larger than an average value of angles formed with the direction. 前記突起は、意匠面の周方向に4等分し一方及び他方の周方向端側の領域を周方向端部とし周方向中心側の2つの領域を周方向中央部としたとき、周方向端部のみにおいて突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が、該突起の基端における意匠面の法線方向から外向きに傾斜し、かつ当該周方向端部において、意匠面の周方向端に最も近い位置に設けられた突起は、当該周方向端に最も近い位置以外に設けられた突起に比べて、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい請求項1記載のスパイクタイヤ用加硫金型。   The projections are divided into four equal parts in the circumferential direction of the design surface, and when one and the other circumferential end side regions are circumferential end portions, and two regions on the circumferential center side are circumferential central portions, the circumferential end The angle formed by the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion is inclined outward from the normal direction of the design surface at the base end of the protrusion and only in the circumferential direction. In the end portion, the protrusion provided at the position closest to the circumferential end of the design surface has a protrusion direction of the protrusion and the base end of the protrusion compared to the protrusion provided at a position other than the position closest to the circumferential end. The vulcanization mold for spike tires according to claim 1, wherein the angle formed with the normal direction of the design surface in is large. 前記突起は、意匠面の周方向に4等分し一方及び他方の周方向端側の領域を周方向端部とし周方向中心側の2つの領域を周方向中央部としたとき、周方向端部のみにおいて突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が、該突起の基端における意匠面の法線方向から外向きに傾斜し、かつ当該周方向端部の突起は、意匠面の周方向中央部に最も近い位置から周方向端に近い突起ほど、突起の突出方向と、該突起の基端における意匠面の法線方向とのなす角度が大きい請求項1記載のスパイクタイヤ用加硫金型。   The projections are divided into four equal parts in the circumferential direction of the design surface, and when one and the other circumferential end side regions are circumferential end portions, and two regions on the circumferential center side are circumferential central portions, the circumferential end The angle formed by the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion is inclined outward from the normal direction of the design surface at the base end of the protrusion and only in the circumferential direction. As for the protrusion at the end, the angle between the protrusion direction of the protrusion and the normal direction of the design surface at the base end of the protrusion increases from the position closest to the center in the circumferential direction of the design surface to the edge in the circumferential direction. The vulcanization mold for spike tires according to claim 1. 請求項1記載のスパイクタイヤ用加硫金型を用いた加硫後に、セクターモールドを移動させてスパイクタイヤを該セクターモールドから取り外すにあたり、前記突起は、先端に膨出部を有し、かつ、セクターモールドの突起の膨出部が当該膨出部の高さに相当する長さまで移動した時に、セクターモールドの移動を一旦停止することを特徴とするスパイクタイヤの加硫方法。   After vulcanization using the vulcanization mold for spike tire according to claim 1, when removing the spike tire from the sector mold by moving the sector mold, the protrusion has a bulging portion at the tip, and A spike tire vulcanizing method, wherein the movement of the sector mold is temporarily stopped when the bulging portion of the projection of the sector mold has moved to a length corresponding to the height of the bulging portion. 請求項1記載のスパイクタイヤ用加硫金型を用いた加硫後に、セクターモールドを移動させてスパイクタイヤを該セクターモールドから取り外すにあたり、前記突起は、先端に膨出部を有し、かつ、セクターモールドの突起の膨出部が当該膨出部の高さに相当する長さまで移動する間のセクターモールドの移動速度を、それ以降の移動速度よりも遅くすることを特徴とするスパイクタイヤの加硫方法。   After vulcanization using the vulcanization mold for spike tire according to claim 1, when removing the spike tire from the sector mold by moving the sector mold, the protrusion has a bulging portion at the tip, and Addition of a spike tire characterized in that the movement speed of the sector mold is made slower than the subsequent movement speed while the bulge of the projection of the sector mold moves to a length corresponding to the height of the bulge. Sulfur method. 請求項1記載のスパイクタイヤ用加硫金型を用いて製造され、キャップゴム層と、ベースゴム層との2層以上からなるトレッドゴムを備え、トレッドゴムの陸部に、スパイクピン打ち込み穴を備えるスパイクタイヤにおいて、
前記突起は、先端に膨出部を有し、かつ、前記キャップゴム層とベースゴム層との界面が、該スパイクタイヤのトレッドゴムの陸部の表面から位置する深さは、スパイクタイヤ用加硫金型に該スパイクタイヤが密接しているときに、該スパイクタイヤ用加硫金型の突起の膨出部の基部の位置を基準位置として、この基準位置から意匠面に向けて該膨出部の高さに相当する長さで浅い位置から深いことを特徴とするスパイクタイヤ。
A tread rubber manufactured using the vulcanization mold for spike tire according to claim 1 and comprising two or more layers of a cap rubber layer and a base rubber layer, and a spike pin driving hole is formed in a land portion of the tread rubber. In the spike tires provided,
The protrusion has a bulged portion at the tip, and the depth at which the interface between the cap rubber layer and the base rubber layer is located from the surface of the land portion of the tread rubber of the spike tire is determined by the added pressure for the spike tire. When the spike tire is in close contact with the mold, the position of the base of the bulge of the projection of the vulcanization mold for the spike tire is used as a reference position, and the bulge is directed from the reference position toward the design surface. Spike tire characterized by being deep from a shallow position with a length corresponding to the height of the part.
JP2014103689A 2014-05-19 2014-05-19 Vulcanization die for spike tire, vulcanization method and spike tire Pending JP2015217621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103689A JP2015217621A (en) 2014-05-19 2014-05-19 Vulcanization die for spike tire, vulcanization method and spike tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103689A JP2015217621A (en) 2014-05-19 2014-05-19 Vulcanization die for spike tire, vulcanization method and spike tire

Publications (1)

Publication Number Publication Date
JP2015217621A true JP2015217621A (en) 2015-12-07

Family

ID=54777432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103689A Pending JP2015217621A (en) 2014-05-19 2014-05-19 Vulcanization die for spike tire, vulcanization method and spike tire

Country Status (1)

Country Link
JP (1) JP2015217621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065290A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065290A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Tire

Similar Documents

Publication Publication Date Title
CN102256778B (en) For the liner assembly on the top layer of tyre vulcanized mould
US11298858B2 (en) Method for manufacturing sealing device, and sealing device
JP2008006805A (en) Molding die for vulcanization of tire
JP6097193B2 (en) Tire vulcanization mold and tire manufacturing method
JP5735950B2 (en) Mold for tire
JP5513345B2 (en) Vulcanization mold for spike tire and spike tire
JP2015217621A (en) Vulcanization die for spike tire, vulcanization method and spike tire
JP3197505U (en) Tire vulcanization mold equipment
JP2013039793A (en) Mold for vulcanizing tire and method for manufacturing tire
JP5612391B2 (en) STUDABLE TIRE MANUFACTURING METHOD AND TIRE MOLD
US10730257B2 (en) Tire vulcanization mold, tire vulcanization device, and tire production method
CN107206639B (en) Tire molding mold and pneumatic tire
JP6159235B2 (en) Tire vulcanization mold and tire manufacturing method
JP2005145024A (en) Mold for molding tire
JP6567405B2 (en) Tire vulcanization mold and tire manufacturing method
EP3023213B1 (en) Mold for spiked tire
JP2012035542A (en) Method for production of studdable tire and tire mold
JP2020090064A (en) Mold for manufacturing tire
JP6130762B2 (en) Tire molding die and tire molding method
JP6585486B2 (en) Tire vulcanization mold and pneumatic tire
JP2007331270A (en) Tire vulcanizing mold and pneumatic tire
JP6931192B2 (en) Tire vulcanization mold
KR200308928Y1 (en) Vulcanizing mold for tire
JP6288185B2 (en) Sealing device
US11318693B2 (en) Tire vulcanization mold, tire vulcanization device, and tire production method