JP2015217365A - Fluid concentration/vaporization device - Google Patents

Fluid concentration/vaporization device Download PDF

Info

Publication number
JP2015217365A
JP2015217365A JP2014104216A JP2014104216A JP2015217365A JP 2015217365 A JP2015217365 A JP 2015217365A JP 2014104216 A JP2014104216 A JP 2014104216A JP 2014104216 A JP2014104216 A JP 2014104216A JP 2015217365 A JP2015217365 A JP 2015217365A
Authority
JP
Japan
Prior art keywords
concentration
vaporization chamber
flow rate
solution
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014104216A
Other languages
Japanese (ja)
Other versions
JP6322050B2 (en
Inventor
川瀬 信雄
Nobuo Kawase
信雄 川瀬
敦志 日高
Atsushi Hidaka
敦志 日高
石井 秀和
Hidekazu Ishii
秀和 石井
池田 信一
Nobukazu Ikeda
信一 池田
西野 功二
Koji Nishino
功二 西野
土肥 亮介
Ryosuke Doi
亮介 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2014104216A priority Critical patent/JP6322050B2/en
Publication of JP2015217365A publication Critical patent/JP2015217365A/en
Application granted granted Critical
Publication of JP6322050B2 publication Critical patent/JP6322050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid concentration/vaporization device needing no conveyance of high-concentration hydrogen peroxide solution, with low adverse effect on electronic apparatuses and capable of downsizing.SOLUTION: A fluid concentration/vaporization device comprises: a vaporization chamber in which the inflow and outflow ports are comprised and the aqueous solution of high-boiling point liquid having a standard boiling point higher than 100°C is housed; a flow rate controller controlling the flow rate of the vapor flowing out of the outflow port; a heater heating the prescribed places of the vaporization chamber and the flow rate controller; a discharge flow channel through which the vapor flow-controlled in the flow rate controller is discharged; a drain flow channel branched from the discharge flow channel; a switching valve switching the discharge flow channel and the drain flow channel; and a controller switching the switching valve from the drain flow channel to the discharge flow channel when the concentration of the high-boiling point liquid in the aqueous solution in the vaporization chamber is a prescribed estimated level or higher.

Description

本発明は、過酸化水素水溶液等の2成分の溶液を濃縮し、気化させる装置に関する。   The present invention relates to an apparatus for concentrating and vaporizing a two-component solution such as an aqueous hydrogen peroxide solution.

従来、例えば、過酸化水素水溶液等の殺菌・除菌液を気化させて、医療施設内や救急搬送車内等を殺菌、滅菌する装置が知られている(例えば、特許文献1〜7等)。   2. Description of the Related Art Conventionally, for example, a device that sterilizes and sterilizes a medical facility, an emergency transport vehicle, and the like by vaporizing a sterilizing / sterilizing solution such as an aqueous hydrogen peroxide solution (for example, Patent Documents 1 to 7).

特許第3915598号公報Japanese Patent No. 3915598 特許4421181号公報Japanese Patent No. 4421181 特許第4330940号公報Japanese Patent No. 4330940 特許第5222140号公報Japanese Patent No. 5222140 特開2011−125788号公報JP 2011-125788 A 特開2012−034781号公報JP 2012-034781 A 特開2012−135378号公報JP 2012-135378 A

上記従来の装置のうち、過酸化水素濃度が30〜35wt%程度の低濃度の過酸化水素水溶液を気化させる装置は、輸送困難な高濃度の過酸化水素水溶液を扱う必要は無いが、多くの水分を含んだ蒸気を放散して電子機器等に悪影響を及ぼすという問題がある。   Among the above conventional devices, a device that vaporizes a low concentration hydrogen peroxide aqueous solution having a hydrogen peroxide concentration of about 30 to 35 wt% does not need to handle a high concentration hydrogen peroxide aqueous solution that is difficult to transport, There is a problem in that vapor containing moisture is diffused to adversely affect electronic devices.

他方、過酸化水素水溶液を濃縮して気化させている従来の装置は、高濃度の過酸化水素水溶液を輸送することもなく、水分含有率が低いため電子機器への悪影響も少ないが、真空ポンプを備える等のために装置が大型化する。   On the other hand, the conventional device that concentrates and vaporizes the aqueous hydrogen peroxide solution does not transport the high-concentration aqueous hydrogen peroxide solution, and the moisture content is low, so there is little adverse effect on electronic devices. The size of the apparatus increases.

そこで、本発明は、高濃度の過酸化水素水を輸送する必要がなく、電子機器への悪影響も少なく、且つ、小型化し得る流体濃縮気化装置を提供することを主たる目的とする。   Therefore, a main object of the present invention is to provide a fluid concentrating and vaporizing apparatus that does not need to transport high-concentration hydrogen peroxide water, has little adverse effect on electronic devices, and can be miniaturized.

上記目的を達成するため、本発明に係る流体濃縮気化装置は、第1の態様として、流入口及び流出口を備え、2成分を含む溶液が収容される気化チャンバと、前記気化チャンバに収容された溶液を加熱し、気化させるための加熱装置と、前記気化チャンバで気化させた蒸気の流量を制御する流量制御装置と、前記流量制御装置で流量制御された蒸気を放出する放出流路と、前記放出流路から分岐する第1ドレン流路と、前記放出流路と第1ドレン流路とを切り換える切換弁と、前記気化チャンバ内の溶液中の一方の成分濃度が所定の推定濃度以上のときに前記第1ドレン流路を閉じて前記放出流路を開くように前記切換弁を制御する制御装置と、を備えることを特徴とする。   In order to achieve the above object, a fluid concentrating vaporizer according to the present invention includes, as a first aspect, a vaporization chamber that includes an inlet and an outlet and that contains a solution containing two components, and is contained in the vaporization chamber. A heating device for heating and vaporizing the solution, a flow rate control device for controlling the flow rate of the vapor vaporized in the vaporization chamber, a discharge channel for releasing the vapor flow-controlled by the flow rate control device, A first drain channel that branches from the discharge channel, a switching valve that switches between the discharge channel and the first drain channel, and one component concentration in the solution in the vaporization chamber is equal to or higher than a predetermined estimated concentration. And a control device that controls the switching valve so as to close the first drain channel and open the discharge channel.

また、本発明に係る流体濃縮気化装置は、第2の態様として、流入口及び流出口を備え、2成分を含む溶液が収容される気化チャンバと、前記気化チャンバに収容された溶液を加熱し、気化させるための加熱装置と、前記気化チャンバで気化させた蒸気の流量を制御する流量制御装置と、前記流量制御装置で流量制御された蒸気をドレンする第2ドレン流路と、前記気化チャンバ内の溶液を排出する第3ドレン流路と、前記第3ドレン流路からの排液を流通または遮断する排液制御弁と、前記気化チャンバ内の溶液中の一方の成分濃度を所定の推定濃度以上のときに前記気化チャンバ内の溶液を排出するように前記排液制御弁を制御する制御装置と、を備えることを特徴とする。   The fluid concentrating vaporizer according to the present invention includes, as a second aspect, a vaporization chamber having an inlet and an outlet, in which a solution containing two components is accommodated, and the solution contained in the vaporization chamber being heated. A heating device for vaporization, a flow control device for controlling the flow rate of the vapor vaporized in the vaporization chamber, a second drain flow channel for draining the vapor flow-controlled by the flow control device, and the vaporization chamber A third drain channel for discharging the solution in the interior, a drainage control valve for circulating or blocking the drainage from the third drain channel, and a predetermined estimate of one component concentration in the solution in the vaporization chamber And a controller for controlling the drainage control valve so as to drain the solution in the vaporization chamber when the concentration is higher than the concentration.

上記第1又は第2の態様において、前記気化チャンバ内で気化された蒸気温度又は気化チャンバ内の液温を検出する温度検出器を含み、該温度検出器によって検出された温度に基づいて前記一方の成分濃度を推定することが好ましい。   In the first or second aspect, the apparatus includes a temperature detector that detects a vapor temperature vaporized in the vaporization chamber or a liquid temperature in the vaporization chamber, and the one based on the temperature detected by the temperature detector. It is preferable to estimate the component concentration.

上記第1又は第2の態様において、前記気化チャンバ内から前記流量制御装置に送られる蒸気の圧力を検出する第1圧力検出器を含み、該第1圧力検出器の検出圧力に基づいて前記一方の成分濃度を推定することとしてもよい。   The first or second aspect includes a first pressure detector for detecting a pressure of steam sent from the vaporization chamber to the flow rate control device, and the one of the ones based on a detected pressure of the first pressure detector. It is good also as estimating the component density | concentration of.

上記第1又は第2の態様において、前記気化チャンバ-内の液面を検知する液面レベル検出器を含み、該液面レベル検出器の検出値に基づいて前記一方の成分濃度を推定することとしてもよい。   In the first or second aspect, including a liquid level detector for detecting the liquid level in the vaporization chamber, the one component concentration is estimated based on a detection value of the liquid level detector. It is good.

上記第1又は第2の態様において、前記気化チャンバ内の液面高さを検出する液面レベル検出器を備え、該液面レベル検出器により検出された液面レベルが所定レベル迄下がったときに、気化されるべき水溶液を前記気化チャンバ内に追加供給するように構成されていることが好ましい。   In the first or second aspect, when a liquid level detector for detecting a liquid level in the vaporization chamber is provided, and the liquid level detected by the liquid level detector is lowered to a predetermined level Further, it is preferable that an aqueous solution to be vaporized is additionally supplied into the vaporization chamber.

上記第1又は第2の態様において、前記流量制御装置によって流量制御された蒸気の積算流量に基づいて前記一方の成分濃度を推定することとしてもよい。   In the first or second aspect, the one component concentration may be estimated based on an integrated flow rate of steam whose flow rate is controlled by the flow rate control device.

上記第1又は第2の態様において、前記流体濃縮気化装置が複数台併設され、各流体濃縮気化装置の濃縮時間が異なる時間帯に設定されていることが好ましい。   In the first or second aspect, it is preferable that a plurality of the fluid concentration vaporizers are provided side by side, and the concentration times of the fluid concentration vaporizers are set in different time zones.

上記第1又は第2の態様において、前記2成分を含む溶液が過酸化水素水溶液とした場合、前記加熱装置によって、過酸化水素水溶液が115〜130℃の範囲の所定温度に調節されることが好ましい。   In the first or second aspect, when the solution containing the two components is an aqueous hydrogen peroxide solution, the aqueous hydrogen peroxide solution may be adjusted to a predetermined temperature in the range of 115 to 130 ° C. by the heating device. preferable.

上記第1の態様において、前記溶液を貯液するための貯液タンクを備え、前記第1ドレン流路は、該貯液タンク内の溶液と熱交換して該第1ドレン流路内を流通する蒸気を凝縮させる熱交換部を備えることが好ましい。   In the first aspect, a liquid storage tank for storing the solution is provided, and the first drain channel flows through the first drain channel by exchanging heat with the solution in the liquid storage tank. It is preferable to provide a heat exchanging unit that condenses the steam to be condensed.

上記第1又は第2の態様において、前記流量制御装置が、蒸気流量を制御するための制御弁と、該制御弁の下流側流路に介在されたオリフィスプレートと、前記制御弁と前記オリフィスプレートと間の流路内の圧力を検出する第2圧力検出器と、前記第2圧力検出器の検出圧力に基づいて前記制御弁を制御する制御部とを備え、前記制御弁が、圧電駆動型金属ダイヤフラム弁であることが好ましい。   In the first or second aspect, the flow control device includes a control valve for controlling a steam flow rate, an orifice plate interposed in a downstream flow path of the control valve, the control valve, and the orifice plate. A second pressure detector for detecting the pressure in the flow path between the control valve and a control unit for controlling the control valve based on the detected pressure of the second pressure detector, the control valve being a piezoelectric drive type A metal diaphragm valve is preferred.

本発明によれば、2成分の混合溶液を気化させることによって濃縮し、一方の成分の濃度が所定の推定濃度になるまで蒸発させ、その蒸気をドレンし、所定の推定濃度以上になった後に、流路を切り換えて高濃度の溶液を利用することができるため、装置の小型化が可能である。   According to the present invention, the two-component mixed solution is concentrated by vaporization, evaporated until the concentration of one component reaches a predetermined estimated concentration, the vapor is drained, and after the concentration exceeds a predetermined estimated concentration. Since the high-concentration solution can be used by switching the flow path, the apparatus can be miniaturized.

本発明に係る流体濃縮気化装置の第一実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 1st embodiment of the fluid concentration vaporization apparatus which concerns on this invention. 本発明の構成要素である流量制御装置の一例を示す断面図である。It is sectional drawing which shows an example of the flow control apparatus which is a component of this invention. 本発明に係る流体濃縮気化装置の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the fluid concentration vaporization apparatus which concerns on this invention. 本発明の説明のための実験結果を過酸化水素水溶液の相図とともに示す図表である。It is a graph which shows the experimental result for description of this invention with the phase diagram of hydrogen peroxide aqueous solution. 本発明の説明のための実験結果を示す棒グラフである。It is a bar graph which shows the experimental result for description of this invention. 本発明に係る流体濃縮気化装置の第2実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of the fluid concentration vaporization apparatus which concerns on this invention. 本発明に係る流体濃縮気化装置の第3実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment of the fluid concentration vaporization apparatus which concerns on this invention. 本発明に係る流体濃縮気化装置の第4実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th Embodiment of the fluid concentration vaporization apparatus which concerns on this invention. 第4実施形態の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of 4th Embodiment.

本発明に係る流体濃縮気化装置の実施形態について、以下に図1〜図9を参照しつつ説明する。なお、全図及び全実施形態を通して同一又は類似の構成部分には同符号を付した。   Embodiments of a fluid concentration and vaporization apparatus according to the present invention will be described below with reference to FIGS. In addition, the same code | symbol was attached | subjected to the same or similar component through all the figures and all the embodiment.

図1は、本発明に係る流体濃縮気化装置の第1実施形態を概略的に示している。流体濃縮気化装置1は、流入口2及び流出口3を備えていて2成分を含む溶液Lが収容される気化チャンバ4と、流出口3から流出した蒸気の流量を調節する流量制御装置5と、気化チャンバに収容された溶液を加熱して気化させるための加熱装置6と、流量制御装置5で流量制御された蒸気を放出する放出流路7と、放出流路7から分岐する第1ドレン流路8と、放出流路7と第1ドレン流路8とを切り換える切換弁9と、気化チャンバ4内の溶液L中の一方の成分濃度が所定の推定濃度以上のときに第1ドレン流路8を閉じて放出流路7を開くように切換弁9を制御する制御装置Cと、を備えている。   FIG. 1 schematically shows a first embodiment of a fluid concentrating vaporizer according to the present invention. The fluid concentration vaporizer 1 includes an inlet 2 and an outlet 3, a vaporization chamber 4 in which a solution L containing two components is accommodated, a flow rate controller 5 that adjusts the flow rate of the vapor flowing out of the outlet 3, and A heating device 6 for heating and vaporizing the solution contained in the vaporization chamber, a discharge flow channel 7 for discharging the vapor whose flow rate is controlled by the flow rate control device 5, and a first drain branched from the discharge flow channel 7. The switching valve 9 for switching the flow path 8, the discharge flow path 7 and the first drain flow path 8, and the first drain flow when the concentration of one component in the solution L in the vaporization chamber 4 is equal to or higher than a predetermined estimated concentration. And a control device C that controls the switching valve 9 so as to close the passage 8 and open the discharge passage 7.

気化チャンバ4は、図示例のように、オリフィス10、11が其々設けられた隔壁12、13によって3つのチャンバ4a、4b、4cを備えることにより、蒸気の十分な加熱を行うとともに、流量制御装置5への液体流入が防止されている。原料となる溶液は、図外のタンクからオリフィス14を介して流入口2に供給され、オリフィス14の上流部に設けられた液供給バルブ15により供給量が制御される。   The vaporization chamber 4 is provided with three chambers 4a, 4b, and 4c by partition walls 12 and 13 provided with orifices 10 and 11, respectively, as in the illustrated example, thereby sufficiently heating the steam and controlling the flow rate. Inflow of liquid into the device 5 is prevented. A raw material solution is supplied from a tank (not shown) to the inlet 2 via the orifice 14, and the supply amount is controlled by a liquid supply valve 15 provided upstream of the orifice 14.

図示例の流量制御装置5は、公知の圧力式流量制御装置であり、図2に断面図で示すように、蒸気の流量を制御するための制御弁20と、制御弁20の下流側流路に介在されたオリフィスプレート21と、制御弁20とオリフィスプレート21と間の流路内の圧力を検出する第2圧力検出器22と、第2圧力検出器22の検出圧力に基づいて制御弁20を制御する制御回路を有する制御部23とを備える。図示例の制御弁20は、圧電駆動型金属ダイヤフラム弁であり、圧電素子20aの伸縮によって流路を開閉する金属製ダイヤフラム弁20bを備えている。   The flow control device 5 in the illustrated example is a known pressure type flow control device, and as shown in a cross-sectional view in FIG. 2, a control valve 20 for controlling the flow rate of steam, and a downstream flow path of the control valve 20. The second pressure detector 22 for detecting the pressure in the flow path between the orifice plate 21, the control valve 20 and the orifice plate 21, and the control valve 20 based on the detected pressure of the second pressure detector 22. And a control unit 23 having a control circuit for controlling. The illustrated control valve 20 is a piezoelectric drive type metal diaphragm valve, and includes a metal diaphragm valve 20b that opens and closes a flow path by expansion and contraction of the piezoelectric element 20a.

圧力式流量制御装置は、オリフィスプレート21のオリフィスを通過するガスの流量Qが、オリフィス上流側の絶対圧力Pがオリフィス下流側圧力Pの約2倍以上の臨界膨張条件(P≧約2P)を満たすときに、Q=KP(Kは定数)で算出される原理を利用し、高精度の流量制御を可能にする。 The pressure type flow rate control device, the flow rate Q of gas passing through the orifice of the orifice plate 21, an orifice upstream of the absolute pressure P 1 is more than twice the critical expansion conditions of the orifice downstream side pressure P 2 (P 1 ≧ about 2P 2 ), the flow rate can be controlled with high accuracy by using the principle calculated by Q = KP 1 (K is a constant).

加熱装置6は、気化チャンバ4の内部を所定の高温状態に保ってチャンバ内の溶液を気化させるとともに、望ましくは、流量制御装置5内の流路等の所望個所も所定の高温状態に保つことができる。   The heating device 6 keeps the inside of the vaporizing chamber 4 in a predetermined high temperature state to vaporize the solution in the chamber, and desirably keeps a desired portion such as a flow path in the flow rate control device 5 in a predetermined high temperature state. Can do.

気化チャンバ4はステンレス鋼によって箱形に形成されており、その場合、加熱装置6は、例えば、図3に示すように、シーズヒータ6aを埋め込んだ金属プレート6b(アルミプレート等)として、気化チャンバ4の外側面、及び、流量制御装置5の側面に取り付けることができる。また、前記ヒータ内蔵金属プレートの外側を図示しない断熱材によって覆ってもよい。また、図2に示されているように、流量制御装置5の本体ブロック内に、カートリッジヒーター6cや補助シーズヒータ6dを付加することもできる。   The vaporization chamber 4 is formed in a box shape from stainless steel. In this case, the heating device 6 is, for example, as a metal plate 6b (aluminum plate or the like) embedded with a sheathed heater 6a as shown in FIG. 4 and the side surface of the flow control device 5 can be attached. Moreover, you may cover the outer side of the said metal plate with a built-in heater with the heat insulating material which is not shown in figure. Further, as shown in FIG. 2, a cartridge heater 6c and an auxiliary sheathed heater 6d can be added in the main body block of the flow control device 5.

切換弁9は、方向切換弁とすることができるが、例えば放出流路7と第1ドレン流路8との各々に開閉弁(図示せず)を設けてもよい。   Although the switching valve 9 can be a direction switching valve, for example, an opening / closing valve (not shown) may be provided in each of the discharge channel 7 and the first drain channel 8.

気化チャンバ4には、標準沸点が100℃より高い高沸点液体の溶液Lとして、例えば、殺菌、滅菌に使用される過酸化水素や過酢酸の水溶液が供給され得る。過酸化水素水溶液は、30wt%程度の濃度のものが市販されている。表1に過酸化水素水溶液の物性表を示す。過酸化水素の標準沸点は、151.4℃であるが、過酸化水素は水に溶解しており、過酸化水素水溶液の沸点は過酸化水素の濃度によって表1のように変化する。   The vaporization chamber 4 may be supplied with an aqueous solution of hydrogen peroxide or peracetic acid used for sterilization and sterilization, for example, as a high-boiling liquid solution L having a normal boiling point higher than 100 ° C. An aqueous hydrogen peroxide solution having a concentration of about 30 wt% is commercially available. Table 1 shows the physical properties of the aqueous hydrogen peroxide solution. The normal boiling point of hydrogen peroxide is 151.4 ° C., but hydrogen peroxide is dissolved in water, and the boiling point of the aqueous hydrogen peroxide solution varies as shown in Table 1 depending on the concentration of hydrogen peroxide.

Figure 2015217365
Figure 2015217365

市販の過酸化水素水溶液をマントルヒーターで加熱し、所定時間経過毎に過酸化水素水溶液の温度と過酸化水素の濃度を測定した実験結果を表2、表3に示す。加熱設定温度は、それぞれ、表2が190℃、表3が230℃である。   Tables 2 and 3 show the results of experiments in which a commercially available aqueous hydrogen peroxide solution was heated with a mantle heater and the temperature of the aqueous hydrogen peroxide solution and the concentration of hydrogen peroxide were measured every predetermined time. The heating set temperatures are 190 ° C. in Table 2 and 230 ° C. in Table 3, respectively.

Figure 2015217365
Figure 2015217365

Figure 2015217365
Figure 2015217365

表2、表3より、水溶液の液温が高くなるにつれて過酸化水素の濃度が高くなり、濃縮が進む傾向が確認でき、また、加熱設定温度を上げて入熱量を増やせば、効率的に水分を蒸発させることができ、効率的に濃縮が進むことが確認できる。そして、水溶液の液温と水溶液中の過酸化水素の濃度とは相関があることが分かる。図4は、表3を、過酸化水素水溶液の相図とともに示しており、この相図からも過酸化水素水溶液の過酸化水素濃度と水溶液の温度との相関が分かる。   From Tables 2 and 3, the concentration of hydrogen peroxide increases as the temperature of the aqueous solution increases, confirming the tendency of concentration, and if the heating input temperature is increased to increase the amount of heat input, moisture content can be efficiently increased. It can be confirmed that concentration can proceed efficiently. And it turns out that the liquid temperature of aqueous solution and the density | concentration of hydrogen peroxide in aqueous solution have a correlation. FIG. 4 shows Table 3 together with the phase diagram of the aqueous hydrogen peroxide solution. From this phase diagram, the correlation between the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution and the temperature of the aqueous solution can be seen.

この相関関係を用いることによって、気化チャンバ4内の過酸化水素水溶液の温度を検出すれば、過酸化水素の濃度を推定することができる。   By using this correlation, the concentration of hydrogen peroxide can be estimated by detecting the temperature of the aqueous hydrogen peroxide solution in the vaporization chamber 4.

次に、マントルヒーターの加熱設定温度を230℃にしておいて、液温が115℃、120℃、130℃になった時点での、過酸化水素の濃度と残存量とについて調べた結果を表4に示し、表4の結果を棒グラフにした図を図5に示す。   Next, the results of examining the concentration and residual amount of hydrogen peroxide when the heating temperature of the mantle heater is set to 230 ° C. and the liquid temperature reaches 115 ° C., 120 ° C., and 130 ° C. are shown in FIG. FIG. 5 is a bar graph of the results shown in FIG.

Figure 2015217365
Figure 2015217365

表4、及び図5のグラフから、過酸化水素の残存割合は、120℃が最も多く、115℃、130℃の順に少なくなっていることが分かる。従って、115℃と130℃の間に、残存割合が最高値となる温度が存在すると考えられる。液温が115℃〜130℃の場合の過酸化水素濃度は、表4を参照すれば、53.6〜87.1%である。   From the graphs in Table 4 and FIG. 5, it can be seen that the remaining ratio of hydrogen peroxide is the highest at 120 ° C., and decreases in the order of 115 ° C. and 130 ° C. Accordingly, it is considered that there is a temperature between 115 ° C. and 130 ° C. at which the remaining ratio becomes the maximum value. Referring to Table 4, the hydrogen peroxide concentration when the liquid temperature is 115 ° C. to 130 ° C. is 53.6 to 87.1%.

従って、過酸化水素水溶液を濃縮する場合は、過酸化水素の残存割合が高くなる液温又は過酸化水素濃度で気化させることが効率的である。液温が120℃の場合、表4から過酸化水素濃度は67.2wt%であるが、この程度の濃度があれば、気化させて殺菌、消毒等に用いても電子機器への影響も少ないと考えられる。   Accordingly, when the aqueous hydrogen peroxide solution is concentrated, it is efficient to vaporize at a liquid temperature or a hydrogen peroxide concentration at which the residual ratio of hydrogen peroxide is high. When the liquid temperature is 120 ° C., the hydrogen peroxide concentration is 67.2 wt% from Table 4. However, if such a concentration is used, even if it is vaporized and used for sterilization, disinfection, etc., there is little influence on the electronic equipment. it is conceivable that.

流量制御装置5を構成する圧力式流量制御装置は、一般に、流量制御するガスの温度を検出する温度検出器30(図1、図2)を備えており、この温度検出器30による検出温度によって制御流量の温度補正を行う。温度検出器30によって検出された蒸気温度は、液温とほぼ同じか相関を有しているので、検出された蒸気温度から過酸化水素濃度を推定することができる。もちろん、気化チャンバ4内の液温を直接検出する温度検出器を別に設けて、過酸化水素濃度を推定することもできる。逆に、過酸化水素濃度の所定の推定濃度を得るための、蒸気温度又は液温が求められ得る。検出された蒸気温度又は液温は、制御装置Cに送られ、制御装置Cにおいて、検出温度に対応する過酸化水素濃度(一方の成分の濃度)の推定濃度が演算される。   The pressure type flow rate control device constituting the flow rate control device 5 is generally provided with a temperature detector 30 (FIGS. 1 and 2) for detecting the temperature of the gas whose flow rate is controlled. Compensates the temperature of the control flow rate. Since the vapor temperature detected by the temperature detector 30 is approximately the same as or correlated with the liquid temperature, the hydrogen peroxide concentration can be estimated from the detected vapor temperature. Of course, it is also possible to estimate the hydrogen peroxide concentration by providing a separate temperature detector for directly detecting the liquid temperature in the vaporization chamber 4. Conversely, the vapor temperature or liquid temperature can be determined to obtain a predetermined estimated concentration of hydrogen peroxide concentration. The detected vapor temperature or liquid temperature is sent to the control device C, and the control device C calculates an estimated concentration of the hydrogen peroxide concentration (concentration of one component) corresponding to the detected temperature.

温度検出器30により検出された蒸気温度(又は液温)が所定の温度になるまで、すなわち、推定される所定の過酸化水素水濃度まで濃縮されるまでは、制御装置Cの指令によって切換弁9が第1ドレン流路8の側に切り換えられており、過酸化水素水濃度の低い蒸気はドレンする。ドレンした蒸気は、第1ドレン流路8の下流側で、図1には図示していないが、凝縮手段により凝縮させて液化することができる。   Until the vapor temperature (or liquid temperature) detected by the temperature detector 30 reaches a predetermined temperature, that is, until it is concentrated to the estimated predetermined concentration of hydrogen peroxide solution, the switching valve is instructed by the command from the controller C. 9 is switched to the first drain flow path 8 side, and steam having a low hydrogen peroxide concentration is drained. Although the drained steam is downstream of the first drain flow path 8 and is not shown in FIG. 1, it can be condensed and liquefied by a condensing means.

温度検出器30により検出された蒸気温度(又は液温)が所定の温度になって、推定される所定の過酸化水素水濃度まで濃縮されると、制御装置Cによって切換弁9が放出流路7の側に切り換えられ、高濃度の過酸化水素水溶液の蒸気が放出される。   When the vapor temperature (or liquid temperature) detected by the temperature detector 30 reaches a predetermined temperature and is concentrated to a predetermined hydrogen peroxide solution concentration, the control valve C causes the switching valve 9 to be discharged from the discharge channel. 7 is switched, and the vapor of the high-concentration hydrogen peroxide solution is released.

上記構成を有する流体濃縮気化装置は、水溶液中の水と高沸点液体の標準沸点の温度差に基づき、水溶液中の高沸点液体が所定の推定濃度になるまで蒸発させた蒸気をドレンし、所定の推定濃度以上になった後に蒸気流路を切り換えて殺菌等に利用するため、真空ポンプ等が不要であり、小型化可能である。   The fluid concentrating and vaporizing apparatus having the above configuration drains vapor evaporated until the high boiling point liquid in the aqueous solution reaches a predetermined estimated concentration based on the temperature difference between the normal boiling point of water and the high boiling point liquid in the aqueous solution. Since the steam flow path is switched and used for sterilization after the concentration exceeds the estimated concentration, a vacuum pump or the like is not required and the size can be reduced.

上記の実施形態では、蒸気温度又は液温により過酸化水素濃度を推定していたが、表1の物性表や図4に示した沸点図を参照すれば、蒸気圧と過酸化水素水溶液中の過酸化水素濃度との間にも相関があることが分かる。   In the above embodiment, the hydrogen peroxide concentration was estimated from the vapor temperature or the liquid temperature. However, referring to the physical property table of Table 1 and the boiling point diagram shown in FIG. It can be seen that there is also a correlation with the hydrogen peroxide concentration.

従って、図6に本発明に係る流体濃縮気化装置の第2実施形態として示すように、気化チャンバ4内から流量制御装置5に送られる蒸気の圧力を検出する第1圧力検出器40を設け、第1圧力検出器40によって検出された検出圧力に基づいて過酸化水素水濃度を推定することが可能である。そこで、第1圧力検出器40の検出圧力が所定値になったときに、切換弁9を切り換えるように制御してもよい。図示例では、第1圧力検出器40は、気化チャンバ4と制御弁20との間の流路内圧力を検出する位置に設けられているが、気化チャンバ内の蒸気圧力を検出する位置に設けてもよい。   Accordingly, as shown in FIG. 6 as a second embodiment of the fluid concentration vaporizer according to the present invention, a first pressure detector 40 for detecting the pressure of the vapor sent from the vaporization chamber 4 to the flow rate controller 5 is provided, It is possible to estimate the hydrogen peroxide concentration based on the detected pressure detected by the first pressure detector 40. Accordingly, the switching valve 9 may be controlled to be switched when the detected pressure of the first pressure detector 40 reaches a predetermined value. In the illustrated example, the first pressure detector 40 is provided at a position for detecting the pressure in the flow path between the vaporization chamber 4 and the control valve 20, but is provided at a position for detecting the vapor pressure in the vaporization chamber. May be.

気化チャンバ4内の液面高さを検出する液面レベル検出器(図示せず)を設けることができ、気化チャンバ4内の過酸化水素水溶液の残量が所定レベルにまで減少したことを液面レベル検出器で検出し、この検出出力を制御装置Cで受けて、制御装置Cにより、過酸化水素水溶液の追加供給するように液供給バルブ15を制御し、空焚きを防止することができる。図示例では、チャンバ4aにのみ液体が存在するため、液面レベル検出器はチャンバ4aに設けられる。   A liquid level detector (not shown) for detecting the liquid level in the vaporization chamber 4 can be provided, and it is determined that the remaining amount of the aqueous hydrogen peroxide solution in the vaporization chamber 4 has been reduced to a predetermined level. It is detected by the surface level detector, the detection output is received by the control device C, and the control device C controls the liquid supply valve 15 so as to additionally supply the hydrogen peroxide solution, thereby preventing emptying. . In the illustrated example, since the liquid exists only in the chamber 4a, the liquid level detector is provided in the chamber 4a.

液面レベル検出器は、フロート式液面レベルセンサ、光学式レベルセンサ、超音波式液面レベルセンサ、静電容量式液面レベルセンサ、電導率式レベルセンサ等の公知のレベルセンサを利用することができる。   The liquid level detector uses a known level sensor such as a float type liquid level sensor, an optical level sensor, an ultrasonic liquid level sensor, a capacitive liquid level sensor, a conductivity level sensor, or the like. be able to.

また、液面レベル検出器による液面レベルの検出値からも過酸化水素水濃度を推定することが可能である。気化チャンバ4内に供給される過酸化水素水溶液の初期の過酸化水素濃度(例えば30wt%)及び供給量(液面レベル)が分かっていれば、気化によりある高さの液面レベルに達したときには、気化チャンバ4内の容積は既知であるので、加熱によって蒸発・減少した液量が分かり、その結果、過酸化水素の濃度も分かる。液面レベルと過酸化水素水濃度との関係を予め試験等によりシミュレーションしデータ化しておいて、制御装置Cの記憶装置に記憶させておいてもよい。   It is also possible to estimate the hydrogen peroxide solution concentration from the detected value of the liquid level by the liquid level detector. If the initial hydrogen peroxide concentration (for example, 30 wt%) and the supply amount (liquid level) of the aqueous hydrogen peroxide solution supplied into the vaporization chamber 4 are known, the liquid level reached a certain height by vaporization. Sometimes, the volume in the vaporization chamber 4 is known, so that the amount of liquid evaporated / decreased by heating is known, and as a result, the concentration of hydrogen peroxide is also known. The relationship between the liquid level and the hydrogen peroxide concentration may be simulated in advance by testing or the like and converted into data, and stored in the storage device of the control device C.

流量制御装置5によって流量制御された蒸気の積算流量からも、蒸発後の残液の液量が分かるため、液面レベル検知と同様に、濃縮度合いを推定することが可能である。その他、気化チャンバ4内の溶液の比重や屈折率を検知することにもよっても、過酸化水素の濃度の推定値を得ることが可能である。   Since the amount of the remaining liquid after evaporation is also known from the integrated flow rate of the steam whose flow rate is controlled by the flow rate control device 5, the degree of concentration can be estimated in the same manner as the liquid level detection. In addition, it is possible to obtain an estimated value of the concentration of hydrogen peroxide by detecting the specific gravity and refractive index of the solution in the vaporization chamber 4.

気化チャンバ4の液体残量は、第1圧力検出器40によっても検出することができる。すなわち、気化チャンバ4内の溶液が残り少なくなると、気化チャンバ4内の圧力が減少するため、第1圧力検出器40の検出圧力が所定値にまで低下した場合に、過酸化水素水溶液を追加供給するように制御することができる。   The liquid remaining amount in the vaporization chamber 4 can also be detected by the first pressure detector 40. That is, when the remaining solution in the vaporization chamber 4 is reduced, the pressure in the vaporization chamber 4 is decreased. Therefore, when the detection pressure of the first pressure detector 40 is reduced to a predetermined value, an aqueous hydrogen peroxide solution is additionally supplied. Can be controlled.

流体濃縮気化装置1を複数台併設し、各流体濃縮気化装置の濃縮時間が異なる時間帯に設定し、交互に蒸気が放出されるようにしてもよい。すなわち、流体濃縮気化装置1は気化チャンバ4内が所定温度になるまで一定の時間を要し、また、蒸気の放出にも一定の時間を要するので、一つの流体濃縮気化装置が蒸気を放出している間に他の一つの流体濃縮気化装置1が流体を所定温度まで加熱し、これを繰り返すことにより、できるだけ蒸気を放出していない時間帯がなくなるようにすることができる。   A plurality of fluid concentrating vaporizers 1 may be provided side by side, the concentration times of the respective fluid concentrating vaporizers may be set in different time zones, and vapor may be alternately discharged. That is, the fluid concentrating vaporizer 1 requires a certain time until the inside of the vaporizing chamber 4 reaches a predetermined temperature, and also requires a certain time for the discharge of the vapor, so that one fluid concentrating vaporizer releases the vapor. In the meantime, the other fluid concentration vaporizer 1 heats the fluid to a predetermined temperature and repeats this, so that the time zone in which the vapor is not released can be eliminated as much as possible.

図7は、本発明に係る流体濃縮気化装置の第3実施形態を示す概略断面図である。   FIG. 7 is a schematic sectional view showing a third embodiment of the fluid concentrating vaporizer according to the present invention.

第3実施形態の流体濃縮気化装置1は、溶液を貯液するための貯液タンク50を気化チャンバ4の上部に備え、第1ドレン流路8は、貯液タンク50内の溶液と熱交換して第1ドレン流路8内を流通する蒸気を凝縮させる熱交換部51を貯液タンク50内に備えている。貯液タンク50内の溶液は、熱交換により予熱される。第3実施形態のその他の構成は、上記第1実施形態と同様であるので詳細な説明を省略する。   The fluid concentration vaporizer 1 of the third embodiment includes a liquid storage tank 50 for storing a solution at the upper part of the vaporization chamber 4, and the first drain channel 8 exchanges heat with the solution in the liquid storage tank 50. In addition, the liquid storage tank 50 is provided with a heat exchanging portion 51 that condenses the steam flowing through the first drain channel 8. The solution in the liquid storage tank 50 is preheated by heat exchange. Since the other configuration of the third embodiment is the same as that of the first embodiment, detailed description thereof is omitted.

図8は、本発明に係る流体濃縮気化装置の第4実施形態を示す概略断面図である。   FIG. 8 is a schematic cross-sectional view showing a fourth embodiment of the fluid concentrating vaporizer according to the present invention.

第4実施形態の流体濃縮気化装置は、濃縮した液体を蒸気として取り出すのではなく、液体の状態で取り出すように構成されている点が上記第1〜第3実施形態と相違している。   The fluid concentration and vaporization apparatus according to the fourth embodiment is different from the first to third embodiments in that the concentrated liquid is not extracted as a vapor but is extracted in a liquid state.

第4実施形態の流体濃縮気化装置1は、流量制御装置5で流量制御された蒸気は、第2ドレン流路60を介してドレンされ、溶液の流入口2に接続された溶液供給流路61に、排液制御弁62を介して第3ドレン流路63が接続されている。図示例の排液制御弁62は方向切換弁であるが、溶液供給流路61と第3ドレン流路63の各々に開閉制御弁を設けることにより排液制御弁を構成してもよい。   In the fluid concentration vaporizer 1 of the fourth embodiment, the steam whose flow rate is controlled by the flow rate control device 5 is drained through the second drain channel 60 and connected to the solution inlet 2. In addition, a third drain channel 63 is connected via a drainage control valve 62. Although the drainage control valve 62 in the illustrated example is a direction switching valve, a drainage control valve may be configured by providing an open / close control valve in each of the solution supply channel 61 and the third drain channel 63.

第4実施形態では、上記と同様に溶液として過酸化水素濃度が30wt%の過酸化水素水溶液を用いる場合、溶液供給流路61から溶液を気化チャンバ4に供給できるように排液制御弁62を切換制御しておいて、気化チャンバ4内に溶液供給路61を通じて所定量供給する。そして、気化チャンバ4内の溶液を加熱し、気化させて濃縮することにより、過酸化水素の濃度が所定濃度になったところで、排液制御弁62を第3ドレン流路63側に切り換えて、第3ドレン流路63から所定濃度に濃縮された過酸化水素水溶液を図外の容器等に収容し、高濃濃度に濃縮された過酸化水素水溶液を得ることができる。第4実施形態のその他の構成は、上記第1実施形態と同様であるので、詳細な説明を省略する。   In the fourth embodiment, when a hydrogen peroxide solution having a hydrogen peroxide concentration of 30 wt% is used as a solution in the same manner as described above, the drainage control valve 62 is set so that the solution can be supplied from the solution supply channel 61 to the vaporization chamber 4. Under the switching control, a predetermined amount is supplied into the vaporizing chamber 4 through the solution supply path 61. Then, by heating, evaporating and concentrating the solution in the vaporization chamber 4, when the hydrogen peroxide concentration reaches a predetermined concentration, the drainage control valve 62 is switched to the third drain flow path 63 side, The aqueous hydrogen peroxide solution concentrated to a predetermined concentration from the third drain channel 63 can be accommodated in a container or the like (not shown) to obtain an aqueous hydrogen peroxide solution concentrated to a high concentration. Since the other configuration of the fourth embodiment is the same as that of the first embodiment, detailed description thereof is omitted.

図9は、第4実施形態の変形例であり、第3ドレン流路63が気化チャンバ4の内底に連通接続されており、第3ドレン流路3に開閉弁で構成される排液制御弁62が介在されている。その他の構成は上記第4実施形態と同様である。   FIG. 9 is a modified example of the fourth embodiment, in which a third drain channel 63 is connected to the inner bottom of the vaporization chamber 4 and drainage control is configured with an open / close valve in the third drain channel 3. A valve 62 is interposed. Other configurations are the same as those in the fourth embodiment.

上記の説明では、主として過酸化水素水溶液について説明したが、本発明は、その他の流体についても適用できることは当業者に自明である。また、上記の説明では、殺菌・滅菌の用途について主として説明したが、半導体製造分野等のその他の分野にも応用できる。本発明は、上記実施形態に限らず、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。   In the above description, the hydrogen peroxide aqueous solution has been mainly described. However, it is obvious to those skilled in the art that the present invention can be applied to other fluids. In the above description, the use of sterilization / sterilization is mainly described, but the present invention can be applied to other fields such as a semiconductor manufacturing field. The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば本実施形態においては、気化チャンバの上部に流体制御装置が積層される構造となっているが、流体制御装置は、気化チャンバの側面や、気化チャンバの後方に配置される構造であっても良いのは勿論である。   For example, in this embodiment, the fluid control device is stacked on the vaporization chamber. However, the fluid control device may be disposed on the side surface of the vaporization chamber or behind the vaporization chamber. Of course it is good.

1 流体濃縮気化装置
2 流入口
3 流出口
4 気化チャンバ
5 流量制御装置
6 加熱装置
7 放出流路
8 第1ドレン流路
9 切換弁
20 制御弁
21 オリフィスプレート
22 第2圧力検出器
30 温度検出器
40 第1圧力検出器
50 貯液タンク
51 熱交換部
60 第2ドレン流路
62 排液制御弁
63 第3ドレン流路
DESCRIPTION OF SYMBOLS 1 Fluid concentration vaporizer 2 Inflow port 3 Outlet 4 Vaporization chamber 5 Flow rate control device 6 Heating device 7 Release flow path 8 First drain flow path 9 Switching valve 20 Control valve 21 Orifice plate 22 Second pressure detector 30 Temperature detector 40 First pressure detector 50 Liquid storage tank 51 Heat exchange unit 60 Second drain flow path 62 Drainage control valve 63 Third drain flow path

Claims (11)

流入口及び流出口を備え、2成分を含む溶液が収容される気化チャンバと、
前記気化チャンバに収容された溶液を加熱し、気化させるための加熱装置と、
前記気化チャンバで気化させた蒸気の流量を制御する流量制御装置と、
前記流量制御装置で流量制御された蒸気を放出する放出流路と、
前記放出流路から分岐する第1ドレン流路と、
前記放出流路と第1ドレン流路とを切り換える切換弁と、
前記気化チャンバ内の溶液中の一方の成分濃度が所定の推定濃度以上のときに前記第1ドレン流路を閉じて前記放出流路を開くように前記切換弁を制御する制御装置と、
を備えることを特徴とする流体濃縮気化装置。
A vaporization chamber having an inlet and an outlet and containing a solution containing two components;
A heating device for heating and vaporizing the solution contained in the vaporization chamber;
A flow rate control device for controlling a flow rate of vapor vaporized in the vaporization chamber;
A discharge passage for discharging steam whose flow rate is controlled by the flow rate control device;
A first drain channel branched from the discharge channel;
A switching valve for switching between the discharge channel and the first drain channel;
A control device for controlling the switching valve so as to close the first drain channel and open the discharge channel when the concentration of one component in the solution in the vaporization chamber is equal to or higher than a predetermined estimated concentration;
A fluid concentrating and vaporizing apparatus comprising:
流入口及び流出口を備え、2成分を含む溶液が収容される気化チャンバと、
前記気化チャンバに収容された溶液を加熱し、気化させるための加熱装置と、
前記気化チャンバで気化させた蒸気の流量を制御する流量制御装置と、
前記流量制御装置で流量制御された蒸気をドレンする第2ドレン流路と、
前記気化チャンバ内の溶液を排出する第3ドレン流路と、
前記第3ドレン流路から排液を流通または遮断する排液制御弁と、
前記気化チャンバ内の溶液中の一方の成分濃度を所定の推定濃度以上のときに前記気化チャンバ内の溶液を排出するように前記排液制御弁を制御する制御装置と、
を備えることを特徴とする流体濃縮気化装置。
A vaporization chamber having an inlet and an outlet and containing a solution containing two components;
A heating device for heating and vaporizing the solution contained in the vaporization chamber;
A flow rate control device for controlling a flow rate of vapor vaporized in the vaporization chamber;
A second drain passage for draining steam whose flow rate is controlled by the flow rate control device;
A third drain channel for discharging the solution in the vaporization chamber;
A drainage control valve for circulating or blocking drainage from the third drain channel;
A control device that controls the drainage control valve to discharge the solution in the vaporization chamber when the concentration of one component in the solution in the vaporization chamber is equal to or higher than a predetermined estimated concentration;
A fluid concentrating and vaporizing apparatus comprising:
前記気化チャンバ内で気化された蒸気温度又は気化チャンバ内の液温を検出する温度検出器を含み、該温度検出器によって検出された温度に基づいて前記一方の成分濃度を推定することを特徴とする請求項1又は2に記載の流体濃縮気化装置。   A temperature detector that detects a vapor temperature vaporized in the vaporization chamber or a liquid temperature in the vaporization chamber, and the concentration of the one component is estimated based on the temperature detected by the temperature detector. The fluid concentration vaporizer according to claim 1 or 2. 前記気化チャンバ内から前記流量制御装置に送られる蒸気の圧力を検出する第1圧力検出器を含み、該第1圧力検出器の検出圧力に基づいて前記一方の成分濃度を推定することを特徴とする請求項1又は2に記載の流体濃縮気化装置。   Including a first pressure detector for detecting a pressure of steam sent from the vaporization chamber to the flow rate control device, and estimating the one component concentration based on a detected pressure of the first pressure detector. The fluid concentration vaporizer according to claim 1 or 2. 前記気化チャンバ-内の液面を検知する液面レベル検出器を含み、該液面レベル検出器の検出値に基づいて前記一方の成分濃度を推定することを特徴とする請求項1又は2に記載の流体濃縮気化装置。   3. A liquid level detector for detecting a liquid level in the vaporization chamber, wherein the one component concentration is estimated based on a detection value of the liquid level detector. The fluid concentration vaporizer described. 前記気化チャンバ内の液面高さを検出する液面レベル検出器を備え、該液面レベル検出器により検出された液面レベルが所定レベル迄下がったときに、気化されるべき水溶液を前記気化チャンバ内に追加供給するように構成されていることを特徴とする請求項1又は2に記載の流体濃縮気化装置。   A liquid level detector for detecting a liquid level in the vaporization chamber is provided, and the vaporized aqueous solution to be vaporized when the liquid level detected by the liquid level detector falls to a predetermined level. The fluid concentrating and vaporizing apparatus according to claim 1, wherein the fluid concentrating and vaporizing apparatus is configured to be additionally supplied into the chamber. 前記流量制御装置によって流量制御された蒸気の積算流量に基づいて前記一方の成分濃度を推定することを特徴とする請求項1又は2に記載の流体濃縮気化装置。   3. The fluid concentration vaporizer according to claim 1, wherein the concentration of the one component is estimated based on an integrated flow rate of steam whose flow rate is controlled by the flow rate control device. 前記流体濃縮気化装置が複数台併設され、各流体濃縮気化装置の濃縮時間が異なる時間帯に設定されていることを特徴とする請求項1又は2に記載の流体濃縮気化装置。   3. The fluid concentration vaporizer according to claim 1, wherein a plurality of the fluid concentration vaporizers are provided side by side, and the concentration times of the fluid concentration vaporizers are set in different time zones. 前記2成分を含む溶液が過酸化水素水溶液であり、前記加熱装置によって、過酸化水素水溶液が115〜130℃の範囲の所定温度に調節されることを特徴とする請求項1又は2に記載に流体濃縮気化装置。   3. The solution according to claim 1, wherein the solution containing the two components is an aqueous hydrogen peroxide solution, and the aqueous hydrogen peroxide solution is adjusted to a predetermined temperature in a range of 115 to 130 ° C. by the heating device. Fluid concentration vaporizer. 前記溶液を貯液するための貯液タンクを備え、前記第1ドレン流路は、該貯液タンク内の溶液と熱交換して該第1ドレン流路内を流通する蒸気を凝縮させる熱交換部を備えることを特徴とする請求項1に記載の流体濃縮気化装置。   A liquid storage tank for storing the solution is provided, and the first drain passage exchanges heat with the solution in the liquid storage tank to condense the vapor flowing through the first drain passage. The fluid concentrating and vaporizing apparatus according to claim 1, further comprising a unit. 前記流量制御装置が、蒸気流量を制御するための制御弁と、該制御弁の下流側流路に介在されたオリフィスプレートと、前記制御弁と前記オリフィスプレートと間の流路内の圧力を検出する第2圧力検出器と、前記第2圧力検出器の検出圧力に基づいて前記制御弁を制御する制御部とを備え、前記制御弁が、圧電駆動型金属ダイヤフラム弁であることを特徴とする請求項1又は2に記載の流体濃縮気化装置。
The flow rate control device detects a pressure in a flow path between the control valve and the orifice plate, a control valve for controlling the flow rate of the steam, an orifice plate interposed in a downstream flow path of the control valve, and the control valve And a control unit that controls the control valve based on a detected pressure of the second pressure detector, and the control valve is a piezoelectric driven metal diaphragm valve. The fluid concentrating vaporizer according to claim 1 or 2.
JP2014104216A 2014-05-20 2014-05-20 Fluid concentration vaporizer Active JP6322050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104216A JP6322050B2 (en) 2014-05-20 2014-05-20 Fluid concentration vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104216A JP6322050B2 (en) 2014-05-20 2014-05-20 Fluid concentration vaporizer

Publications (2)

Publication Number Publication Date
JP2015217365A true JP2015217365A (en) 2015-12-07
JP6322050B2 JP6322050B2 (en) 2018-05-09

Family

ID=54777253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104216A Active JP6322050B2 (en) 2014-05-20 2014-05-20 Fluid concentration vaporizer

Country Status (1)

Country Link
JP (1) JP6322050B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744951A (en) * 1983-11-07 1988-05-17 American Sterilizer Company Vaporization method to enhance sterilant penetration
JP2001520532A (en) * 1995-07-27 2001-10-30 アメリカン ステリライザー カンパニー Real-time monitor, control system, and method for hydrogen peroxide vapor disinfection
JP2009501631A (en) * 2005-07-21 2009-01-22 アメリカン ステリライザー カンパニー Method and apparatus for injecting a metered liquid into a chamber
JP2011125788A (en) * 2009-12-17 2011-06-30 Nikki Universal Co Ltd Hydrogen peroxide gas generator and sterilization method by hydrogen peroxide gas
JP2012135378A (en) * 2010-12-24 2012-07-19 Nikki Universal Co Ltd Concentrator and hydrogen peroxide gas generation apparatus therewith
US20130004384A1 (en) * 2010-03-17 2013-01-03 Chul Won Yoo Sterilizing apparatus and method using hydrogen peroxide
JP2013094392A (en) * 2011-10-31 2013-05-20 Canon Marketing Japan Inc Sterilization apparatus, and sterilization method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744951A (en) * 1983-11-07 1988-05-17 American Sterilizer Company Vaporization method to enhance sterilant penetration
JP2001520532A (en) * 1995-07-27 2001-10-30 アメリカン ステリライザー カンパニー Real-time monitor, control system, and method for hydrogen peroxide vapor disinfection
JP2009501631A (en) * 2005-07-21 2009-01-22 アメリカン ステリライザー カンパニー Method and apparatus for injecting a metered liquid into a chamber
JP2011125788A (en) * 2009-12-17 2011-06-30 Nikki Universal Co Ltd Hydrogen peroxide gas generator and sterilization method by hydrogen peroxide gas
US20130004384A1 (en) * 2010-03-17 2013-01-03 Chul Won Yoo Sterilizing apparatus and method using hydrogen peroxide
JP2012135378A (en) * 2010-12-24 2012-07-19 Nikki Universal Co Ltd Concentrator and hydrogen peroxide gas generation apparatus therewith
JP2013094392A (en) * 2011-10-31 2013-05-20 Canon Marketing Japan Inc Sterilization apparatus, and sterilization method

Also Published As

Publication number Publication date
JP6322050B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6147764B2 (en) Cooling system
CN110506029A (en) Water purification system and distillation unit
US9381264B2 (en) Steam sterilizer
JP2013133166A (en) Water server and water supply method for the same
JP6322050B2 (en) Fluid concentration vaporizer
JP2008290044A5 (en)
JP6737500B2 (en) Steam sterilizer
JP2015194285A (en) Hot water supply device
JP5822599B2 (en) Heating device using low pressure steam
JP6584241B2 (en) Steam sterilizer
JP5808045B2 (en) Operation method of pure steam generator
JP6224784B2 (en) Water server and water supply method thereof
JP6804245B2 (en) Steam heating device
US20080149035A1 (en) Teat cup cleaning device and method related thereto
JP2665835B2 (en) Heating and cooling device
JP6595855B2 (en) Distillation equipment with distillation tower
JP2007202934A (en) Steam heat treatment apparatus
JP2013056285A (en) Multieffect evaporatos type device for production of distilled water, method for steam sterilization of the device, and method for hot water sterilization of the same
JP7172318B2 (en) steam generator
US507519A (en) Hot water
KR100601350B1 (en) vacuum evaporator
JP2023020568A (en) Sterilizer
JP2004003851A (en) Heat accumulator
WO2023244784A1 (en) Tabletop steam sterilizer with integrated water distiller
JP2008002922A (en) Device for measuring saturated steam temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180406

R150 Certificate of patent or registration of utility model

Ref document number: 6322050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250