JP2015215333A - Three-dimensional displacement measuring device and three-dimensional displacement measuring system - Google Patents

Three-dimensional displacement measuring device and three-dimensional displacement measuring system Download PDF

Info

Publication number
JP2015215333A
JP2015215333A JP2015018385A JP2015018385A JP2015215333A JP 2015215333 A JP2015215333 A JP 2015215333A JP 2015018385 A JP2015018385 A JP 2015018385A JP 2015018385 A JP2015018385 A JP 2015018385A JP 2015215333 A JP2015215333 A JP 2015215333A
Authority
JP
Japan
Prior art keywords
displacement
measuring
wire
measured
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018385A
Other languages
Japanese (ja)
Other versions
JP6349267B2 (en
Inventor
隆二 古賀
Ryuji Koga
隆二 古賀
徹 池▲崎▼
Toru Ikezaki
徹 池▲崎▼
直以 野呂
Tadayuki Noro
直以 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2015018385A priority Critical patent/JP6349267B2/en
Publication of JP2015215333A publication Critical patent/JP2015215333A/en
Application granted granted Critical
Publication of JP6349267B2 publication Critical patent/JP6349267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure a three-dimensional displacement amount, accurately following to displacement of a probe.SOLUTION: A three-dimensional displacement measuring device 1 is configured to attach a sensor body 2 to a lower base plate and to cause a displacement meter 10 to rotate in two directions, by a first rotation shaft 9 and a second rotation shaft 11 which are orthogonal each other of a gimbal mechanism. The other end of a measuring wire 16 extending from the displacement meter 10 and capable of extending and shrinking is attached to a probe 3, and the probe 3 is rotatably supported to an upper base plate. An extending amount and shrinking amount of the measuring wire 16 are measured by the displacement meter 10. Pantagraph state arms 18 for connecting the displacement meter 10 and probe 3 are arranged around the measuring wire 16, and following to displacement of the probe 3, the displacement meter 10 can rotate. A rotation angle of the measuring wire 16 in orthogonal two shaft directions is detected by a first angle detector 13 and second angle detector 14. Based on the extending amount and shrinking amount of the measuring wire 16 and the rotation angle in two directions, relative three-dimensional displacement of the lower and upper base plates is measured.

Description

本発明は、三次元変位計測装置とこれを備えた免震装置に関するものであり、例えば建物や橋梁等の各種建築物において相対変位する被測定対象物の一方と他方に取り付けた免震ダンパーの変形量を検出するようにした三次元変位計測装置と三次元変位計測システムに関する。   The present invention relates to a three-dimensional displacement measuring device and a seismic isolation device including the same, and for example, a seismic isolation damper attached to one and the other of objects to be measured that are relatively displaced in various buildings such as buildings and bridges. The present invention relates to a three-dimensional displacement measuring apparatus and a three-dimensional displacement measuring system configured to detect a deformation amount.

従来、地震に備えて、例えばビル等の建物や橋梁等の各種建築物において地盤側に設置された下部構造体と構築物側に設置した上部構造体との間に免震装置として免震ダンパーを設置したものが知られている。免震ダンパーとして例えば図13に示すようなU字型のダンパー100を設置したものがあり、上下のベースプレート(支持基盤)101、102に略U型ダンパー100の両端を連結したものを水平方向に例えば90度間隔や60度間隔で設置している。なお、上部ベースプレート101は上部構造体に設置され、下部ベースプレート102は下部構造体に設置されている。   Conventionally, in preparation for earthquakes, seismic isolation dampers are installed as seismic isolation devices between the lower structure installed on the ground side and the upper structure installed on the structure side in various buildings such as buildings and bridges. What is installed is known. As a seismic isolation damper, for example, a U-shaped damper 100 as shown in FIG. 13 is installed, and the upper and lower base plates (support bases) 101 and 102 are connected to both ends of a substantially U-shaped damper 100 in the horizontal direction. For example, it is installed at intervals of 90 degrees or 60 degrees. The upper base plate 101 is installed in the upper structure, and the lower base plate 102 is installed in the lower structure.

そして、地震時に360度方向の振動による変形に対してU型ダンパーに生じる歪みを局部的に集中させずにU型ダンパー全体に分散させて塑性化させることにより、塑性履歴を利用して地震エネルギーを吸収し、建築物の耐震・制震性能を向上させている。U型ダンパー100は大地震時に30cm以上大きく変形するため、U型ダンパー100の歪みが約10%となって繰り返される極低サイクル疲労領域の過酷な使い方をする。   Then, the strain generated in the U-shaped damper against the deformation caused by vibration in the direction of 360 degrees during an earthquake is dispersed and plasticized throughout the U-shaped damper without locally concentrating, and the seismic energy is utilized using the plastic history. To improve the earthquake resistance and vibration control performance of buildings. Since the U-type damper 100 is greatly deformed by 30 cm or more in the event of a large earthquake, the U-type damper 100 is used severely in an extremely low cycle fatigue region that is repeated with the strain of the U-type damper 100 being about 10%.

免震用のU型ダンパーは地震発生時に鋼材変形を繰り返すことになるが、U型ダンパーの健全性確保のために、最大変形量や累積変形量が所定値となった時点で交換を行っている。そのため、U型ダンパーの変形量の把握・検出が必要になる。
従来、2点間の相対変位を三次元座標で動的に測定するシステムとして、超音波や光、レーザ光等を用いた非接触式の変位計測システムが知られている。これらの変位計測システムは高精度が得られる一方で高価であり、サイズも大きいという欠点がある。
The U-type damper for seismic isolation repeats steel deformation at the time of the earthquake occurrence. To ensure the soundness of the U-type damper, replace it when the maximum deformation amount or cumulative deformation amount reaches a predetermined value. Yes. Therefore, it is necessary to grasp and detect the deformation amount of the U-shaped damper.
Conventionally, a non-contact displacement measurement system using ultrasonic waves, light, laser light, or the like is known as a system that dynamically measures relative displacement between two points using three-dimensional coordinates. These displacement measurement systems have the disadvantages of being expensive and high in size while being able to obtain high accuracy.

また、比較的低廉な接触型の変位計を備えた変位計測装置として、例えば特許文献1及び2に記載されたものが提案されている。特許文献1に記載された変位計測システムは、垂直軸と水平軸を備えた回転体にロッドを備えて、ロッドの先端を配管に係止させ、後端にワイヤを連結させている。そして、ワイヤの直線移動と水平軸及び垂直軸の回転角をポテンショメータで測定している。
また、特許文献2に記載された変位計測装置は、水平軸と垂直軸を有するジンバル機構を備えたセンサ本体を一方の被測定対象物に取り付け、連結ロッドの先端に連結した測定子を他方の被測定対象物の変動部に取り付ける。そして、測定子が変動部からの振動や変位を受けると水平軸と垂直軸を中心として回転し、連結ロッドも伸縮することで変動部の振動や変位に追従して、それぞれ変位を検出するようにしている。
Further, as a displacement measuring apparatus provided with a relatively inexpensive contact type displacement meter, for example, those described in Patent Documents 1 and 2 have been proposed. In the displacement measuring system described in Patent Document 1, a rod is provided on a rotating body having a vertical axis and a horizontal axis, the tip of the rod is locked to a pipe, and a wire is connected to the rear end. Then, the linear movement of the wire and the rotation angles of the horizontal axis and the vertical axis are measured with a potentiometer.
In addition, the displacement measuring device described in Patent Document 2 has a sensor body provided with a gimbal mechanism having a horizontal axis and a vertical axis attached to one object to be measured, and a measuring element connected to the tip of a connecting rod is connected to the other measuring object. Attach to the variable part of the measurement object. When the probe receives vibration or displacement from the variable part, it rotates about the horizontal and vertical axes, and the connecting rod also expands and contracts to follow the vibration and displacement of the variable part and detect the displacement. I have to.

特開平8−233569号公報Japanese Unexamined Patent Publication No. Hei 8-23369 特開2007−315815号公報JP 2007-315815 A

ところで、U型ダンパーは上下のベースプレート101、102の間隔が200mm〜300mm程度と狭く変形量が最大±800mm程度と大きいため、上下のベースプレート101、102間の狭い空間に長いストロークの変位計測が可能なセンサが必要である。一方、特許文献1及び2に記載された装置では、各ロッドを短く且つ多段構造にして長く延びる必要があるため、構造が複雑になり、製作が難しい上に製作費用も高価になる欠点がある。また、ロッドを多段に構成すると基部側のロッドの径が大きくなり、ロッドがセンサの動きを邪魔するだけでなく、変形したダンパーと接触してセンサを破損する恐れもあった。   By the way, since the U-type damper has a narrow space between the upper and lower base plates 101 and 102 of about 200 mm to 300 mm and a large deformation amount of about ± 800 mm, it can measure displacement of a long stroke in a narrow space between the upper and lower base plates 101 and 102. Sensor is necessary. On the other hand, in the devices described in Patent Documents 1 and 2, each rod needs to be short and have a multi-stage structure to extend long, so that the structure is complicated, and the manufacturing is difficult and the manufacturing cost is expensive. . Further, when the rod is configured in multiple stages, the diameter of the rod on the base side becomes large, and the rod not only obstructs the movement of the sensor, but also has a risk of damaging the sensor by contacting with the deformed damper.

これに対し、図14、図15に示すように、特許文献2に示す三次元変位計測システムにおいて、上述した不具合を改善するために、ロッドに変えてワイヤ106を設置して、ワイヤ106の上端に上部ベースプレート101に設けた測定子105を連結し、下端にセンサ本体107を連結した三次元変位計測装置108を下部ベースプレート102に設置したものが考えられる。   On the other hand, as shown in FIGS. 14 and 15, in the three-dimensional displacement measurement system shown in Patent Document 2, in order to improve the above-described problem, the wire 106 is installed instead of the rod, and the upper end of the wire 106 is A three-dimensional displacement measuring device 108 in which a measuring element 105 provided on the upper base plate 101 is connected and a sensor main body 107 is connected to the lower end is installed on the lower base plate 102.

このような三次元変位計測装置108によれば、構造が簡単になる上にダンパー100との接触の可能性も小さくなる。しかしながら、測定子105及びワイヤ106の移動に対してセンサ本体107の重量の慣性、水平軸や垂直軸を備えた各回転部材の摺動部の摩擦、配線ケーブルの張力によるセンサ本体107の追従性が低下するため、回転部材や変位計等を備えたセンサ本体107の回転が遅れ(図15(a)、(b)参照)、測定子105やワイヤ106の延長線からずれてしまい、計測精度が悪くなるという問題があった。   According to such a three-dimensional displacement measuring apparatus 108, the structure is simplified and the possibility of contact with the damper 100 is reduced. However, the inertia of the weight of the sensor body 107 with respect to the movement of the probe 105 and the wire 106, the friction of the sliding portion of each rotary member having a horizontal axis and a vertical axis, and the followability of the sensor body 107 due to the tension of the wiring cable Therefore, the rotation of the sensor body 107 provided with a rotating member, a displacement meter, etc. is delayed (see FIGS. 15A and 15B), and the sensor body 105 and the wire 106 are displaced from the extended line, resulting in measurement accuracy. There was a problem of getting worse.

本発明は、このような事情に鑑みてなされたものであり、測定子の変位に追従して精度よく三次元の変位量を計測できるようにした三次元変位計測装置と三次元変位計測システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and includes a three-dimensional displacement measuring apparatus and a three-dimensional displacement measuring system that can accurately measure a three-dimensional displacement amount following the displacement of a probe. The purpose is to provide.

本発明による三次元変位計測装置は、相対変位する被測定対象物の一方に取り付けられたセンサ本体と、前記センサ本体に設けられていて互いに直交する2軸方向に回転可能なジンバル機構によって支持された変位計と、前記変位計によってその伸縮量を計測可能であって伸縮可能な計測用ワイヤと、前記計測用ワイヤの他端に連結されていて前記被測定対象物の他方に取り付けられた測定子と、前記変位計と測定子に直接または前記被測定物の他方を介して接続していて前記測定子の変位に同期して前記計測用ワイヤを一体に変位及び伸縮させる補助ガイド部材と、前記計測用ワイヤの互いに直交する前記2軸方向の回転角度をそれぞれ検出する第1角度検出器及び第2角度検出器とを備え、前記第1角度検出器及び第2角度検出器でそれぞれ計測される前記計測用ワイヤの回転角度と前記変位計で計測される前記計測用ワイヤの伸縮量とに基づいて前記被測定対象物の相対的な三次元変位を計測するようにしたことを特徴とする。
本発明によれば、地震等によって一方と他方の被測定対象物が相対変位した際、他方の被測定対象物に取り付けた測定子が他方の被測定対象物に沿って相対変位すると、変位計に設けた計測用ワイヤがジンバル機構で直交する2軸方向に追従して所要角度回転すると共に更に変位計から計測用ワイヤが所要長さ延びることになり、しかも計測用ワイヤの周囲に補助ガイド部材を設けたことで変位計が計測用ワイヤの相対変位と2軸方向の回転に同期して追従して変位及び回転するため、計測用ワイヤの三次元変位を第1角度検出器及び第2角度検出器と変位計に伝達して精度よく計測することができる。
A three-dimensional displacement measuring apparatus according to the present invention is supported by a sensor main body attached to one of objects to be measured that are relatively displaced, and a gimbal mechanism that is provided on the sensor main body and is rotatable in two axial directions perpendicular to each other. Displacement meter, a measuring wire that can measure the amount of expansion and contraction by the displacement meter, and a measurement that is connected to the other end of the object to be measured and connected to the other end of the measuring wire An auxiliary guide member that is connected to the displacement meter and the measuring element directly or via the other of the object to be measured, and that integrally displaces and expands the measuring wire in synchronization with the displacement of the measuring element, A first angle detector and a second angle detector for respectively detecting rotation angles of the measurement wire in the two axial directions perpendicular to each other, and the first angle detector and the second angle detector respectively. The relative three-dimensional displacement of the object to be measured is measured based on the rotation angle of the measurement wire measured and the amount of expansion / contraction of the measurement wire measured by the displacement meter. Features.
According to the present invention, when one and the other objects to be measured are displaced relative to each other due to an earthquake or the like, if the probe attached to the other object to be measured is relatively displaced along the other objects to be measured, the displacement meter The measurement wire provided in the gimbal mechanism follows a two-axis direction orthogonal to the gimbal mechanism and rotates at a required angle, and further, the measurement wire extends from the displacement meter for a required length, and an auxiliary guide member is provided around the measurement wire. Since the displacement gauge is displaced and rotated in synchronization with the relative displacement of the measuring wire and the rotation in the two axial directions, the three-dimensional displacement of the measuring wire is detected by the first angle detector and the second angle. It can be transmitted to the detector and displacement meter for accurate measurement.

また、本発明による三次元変位計測装置は、相対変位する被測定対象物の一方に取り付けられたセンサ本体と、前記センサ本体に設けられていて互いに直交する2軸方向に回転可能なジンバル機構によって支持された変位計と、前記変位計によってその伸縮量を計測可能であって伸縮可能な計測用ワイヤと、前記計測用ワイヤの他端に連結されていて前記被測定対象物の他方に取り付けられた測定子と、前記変位計に連結されるとともに所定の張力を有している複数の牽引用ワイヤと、前記牽引用ワイヤを案内すると共に前記被測定対象物の他方または測定子に取り付けられた複数のプーリーと、前記牽引用ワイヤを、前記プーリーを介して牽引して繰り出し可能な複数の牽引巻き取り手段と、前記計測用ワイヤの互いに直交する前記2軸方向の回転角度をそれぞれ検出する第1角度検出器及び第2角度検出器とを備え、前記第1角度検出器及び第2角度検出器でそれぞれ計測される前記計測用ワイヤの回転角度と前記変位計で計測される前記計測用ワイヤの伸縮量とに基づいて前記被測定対象物の相対的な三次元変位を計測するようにしたことを特徴とする。
本発明によれば、地震等によって、他方の被測定対象物に取り付けた測定子が他方の被測定対象物に沿って相対変位すると、変位計に設けた計測用ワイヤがジンバル機構で直交する2軸方向に追従して所要角度回転すると共に更に変位計から計測用ワイヤが所要長さ延びることになり、しかも計測用ワイヤの近傍に張力が大きい牽引用ワイヤとプーリーとを設けて牽引巻き取り手段で張力を確保することで、変位計が計測用ワイヤの相対変位と2軸方向の回転に同期して追従して変位及び回転するため、計測用ワイヤの三次元変位を第1角度検出器及び第2角度検出器と変位計に伝達して精度よく計測できる。
なお、牽引用ワイヤとプーリーと牽引巻き取り手段とは補助ガイド部材に含まれる。
A three-dimensional displacement measuring apparatus according to the present invention includes a sensor main body attached to one of the objects to be measured that are relatively displaced, and a gimbal mechanism that is provided in the sensor main body and is rotatable in two axial directions perpendicular to each other. A supported displacement meter, a measuring wire capable of measuring the amount of expansion / contraction by the displacement meter, and an expandable / contractable measuring wire, connected to the other end of the measuring wire and attached to the other of the object to be measured A plurality of pulling wires connected to the displacement meter and having a predetermined tension, and guided to the pulling wires and attached to the other of the objects to be measured or the measuring points. The plurality of pulleys, the plurality of traction winding means capable of pulling and feeding the traction wire through the pulley, and the two axes of the measurement wire orthogonal to each other A first angle detector and a second angle detector for detecting the rotation angle of the measuring wire, respectively, and the rotation angle of the measuring wire measured by the first angle detector and the second angle detector, and the displacement meter, respectively. The relative three-dimensional displacement of the object to be measured is measured based on the amount of expansion / contraction of the measurement wire measured in step (1).
According to the present invention, when a probe attached to the other object to be measured is relatively displaced along the other object to be measured due to an earthquake or the like, the measurement wires provided on the displacement meter are orthogonal to each other by the gimbal mechanism. The measuring wire is rotated by the required angle following the axial direction, and the measuring wire extends from the displacement meter for the required length. In addition, a pulling wire and a pulley having high tension are provided in the vicinity of the measuring wire, and the pulling winding means is provided. By securing the tension with the displacement meter, the displacement meter is displaced and rotated in synchronization with the relative displacement of the measuring wire and the rotation in the biaxial direction, so that the three-dimensional displacement of the measuring wire is detected by the first angle detector and It can be accurately transmitted by transmitting to the second angle detector and the displacement meter.
The pulling wire, the pulley, and the pulling winding means are included in the auxiliary guide member.

また、牽引巻き取り手段は、前記牽引用ワイヤをぜんまい等の弾性復帰手段を用いて牽引していることが好ましい。
これによって、牽引用ワイヤを牽引巻き取り手段の弾性復帰手段によって牽引できるため、一方と他方の被測定対象物の相対変位に同期して牽引用ワイヤと共に計測用ワイヤを変位させることができる。
Moreover, it is preferable that the traction winding means pulls the traction wire using an elastic return means such as a mainspring.
Accordingly, since the pulling wire can be pulled by the elastic return means of the pulling winding means, the measuring wire can be displaced together with the pulling wire in synchronism with the relative displacement of one of the objects to be measured.

本発明による三次元変位計測装置は、相対変位する被測定対象物の一方に取り付けられたセンサ本体と、センサ本体に設けられていて互いに直交する2軸方向に回転可能なジンバル機構によって支持された変位計と、変位計によってその伸縮量を計測可能であって伸縮可能な計測用ワイヤと、計測用ワイヤの他端に連結されていて被測定対象物の他方に取り付けられた測定子と、変位計と測定子を連結して伸縮可能とした補助アームと、計測用ワイヤの互いに直交する2軸方向の回転角度をそれぞれ検出する第1角度検出器及び第2角度検出器とを備え、第1角度検出器及び第2角度検出器でそれぞれ計測される計測用ワイヤの回転角度と変位計で計測される計測用ワイヤの伸縮量とに基づいて被測定対象物の相対的な三次元変位を計測するようにしたことを特徴とする。
本発明によれば、地震等によって他方の被測定対象物に取り付けた測定子が他方の被測定対象物に沿って相対変位すると、変位計に設けた計測用ワイヤがジンバル機構で直交する2軸方向に追従して所要角度回転すると共に更に変位計から計測用ワイヤが所要長さ延びることになり、しかもワイヤの周囲に補助アームを設けたことで変位計が計測用ワイヤの相対変位と2軸方向の回転に同期して追従して変位及び回転するため、計測用ワイヤの三次元変位を第1角度検出器及び第2角度検出器と変位計に伝達して精度よく計測することができる。なお、補助アームは補助ガイド手段に含まれる。
A three-dimensional displacement measuring apparatus according to the present invention is supported by a sensor main body attached to one of objects to be measured that are relatively displaced, and a gimbal mechanism that is provided in the sensor main body and is rotatable in two axial directions orthogonal to each other. A displacement meter, a measuring wire capable of measuring the amount of expansion / contraction by the displacement meter, a measuring wire connected to the other end of the measuring object connected to the other end of the measuring wire, and a displacement A first arm detector and a second angle detector for detecting respective rotation angles of the measuring wire in two axial directions orthogonal to each other; Measures the relative three-dimensional displacement of the object to be measured based on the rotation angle of the measuring wire measured by the angle detector and the second angle detector and the amount of expansion / contraction of the measuring wire measured by the displacement meter. Do And said that there was Unishi.
According to the present invention, when a probe attached to the other object to be measured is displaced along the other object to be measured due to an earthquake or the like, the measurement wires provided on the displacement meter are two axes orthogonal to each other by the gimbal mechanism. The measurement wire is rotated by the required angle following the direction, and the measurement wire extends from the displacement meter for the required length. Furthermore, the auxiliary arm is provided around the wire, so that the displacement meter can move relative to the measurement wire relative to the two axes. Since the displacement and the rotation follow the direction in synchronization with the rotation of the direction, the three-dimensional displacement of the measurement wire can be transmitted to the first angle detector, the second angle detector, and the displacement meter for accurate measurement. The auxiliary arm is included in the auxiliary guide means.

また、補助アームはパンタグラフ状に屈曲可能であって計測用ワイヤの周囲を囲うように複数本配設されていることが好ましい。
パンタグラフ状の補助アームによって、測定子の変位に応じて変位計の2軸と計測用ワイヤを同期して追従させることができるため、精度よく測定子の三次元変位を計測できる。
Moreover, it is preferable that a plurality of auxiliary arms can be bent in a pantograph shape and are arranged so as to surround the circumference of the measuring wire.
Since the pantograph-shaped auxiliary arm can follow the two axes of the displacement meter and the measuring wire in accordance with the displacement of the probe, the three-dimensional displacement of the probe can be measured with high accuracy.

また、補助アームはマジックハンド形状であってもよい。
マジックハンド形状の補助アームによって、測定子の変位に応じて変位計の2軸と計測用ワイヤを同期して追従させることができるため、精度よく測定子の三次元変位を計測できる。
Further, the auxiliary arm may have a magic hand shape.
Since the magic hand-shaped auxiliary arm can follow the two axes of the displacement meter and the measurement wire in synchronization with the displacement of the probe, the three-dimensional displacement of the probe can be accurately measured.

また、ジンバル機構は、第一回転軸と第一回転軸に直交する第二回転軸の2軸を備え、第一回転軸は変位計と第二回転軸とを回転可能に支持し、第二回転軸は変位計を回転可能に支持するようにしてもよい。
測定子の相対変位に応じて、変位計をジンバル機構の第一回転軸と第二回転軸に沿って所要量回転させることができ、測定子の相対変位に対する変位計と計測用ワイヤの追従性が高い。
The gimbal mechanism includes a first rotation axis and a second rotation axis orthogonal to the first rotation axis. The first rotation axis rotatably supports the displacement meter and the second rotation axis. The rotating shaft may support the displacement meter rotatably.
Depending on the relative displacement of the probe, the displacement meter can be rotated by the required amount along the first and second rotation axes of the gimbal mechanism, and the displacement meter and measuring wire can follow the relative displacement of the probe. Is expensive.

また、第1角度検出器及び第2角度検出器は、抵抗素子またはホール素子を用いたポテンショメータであってもよい。あるいは、第1角度検出器及び第2角度検出器は、ロータリエンコーダであってもよい。   The first angle detector and the second angle detector may be a potentiometer using a resistance element or a Hall element. Alternatively, the first angle detector and the second angle detector may be rotary encoders.

また、変位計は、直動型変位計であってもよく、またワイヤ式変位計であってもよい。   Further, the displacement meter may be a direct acting displacement meter or a wire type displacement meter.

本発明による三次元変位計測システムは、上述したいずれかに記載された三次元変位計測装置を備えていて、第1角度検出器、第2角度検出器及び変位計から出力される変位情報をアナログ信号からデジタル信号に変換するA/D変換器と、A/D変換器から出力されるデジタル信号を三次元座標に変換して変位方向と変位量を演算する演算手段と、を備えたことを特徴とする。
本発明による三次元変位計測システムによれば、三次元変位計測装置で計測した計測用ワイヤの伸縮量と互いに直交する2軸方向の回転角度の変位情報に基づいて、A/D変換器と演算手段によって三次元座標を演算して変位方向と変位量を算出することができる。
The three-dimensional displacement measurement system according to the present invention includes any one of the above-described three-dimensional displacement measurement devices, and analogizes displacement information output from the first angle detector, the second angle detector, and the displacement meter. An A / D converter that converts a signal into a digital signal, and an arithmetic unit that converts a digital signal output from the A / D converter into three-dimensional coordinates to calculate a displacement direction and a displacement amount. Features.
According to the three-dimensional displacement measurement system of the present invention, the A / D converter and the calculation are performed based on the displacement information of the rotation angles in the biaxial directions orthogonal to the expansion / contraction amount of the measurement wire measured by the three-dimensional displacement measurement device. By calculating the three-dimensional coordinates by means, the displacement direction and the displacement amount can be calculated.

本発明による三次元変位計測システムは、上述したいずれかに記載された三次元変位計測装置を備えていて、被測定対象物の一方は建築物の下部構造体に取り付ける下部ベースプレートであり、他方は上部構造体に取り付ける上部ベースプレートであり、下部ベースプレートと上部ベースプレートの間に免震ダンパーを設置したことを特徴とする。
本発明によれば、三次元変位計測装置によって計測した計測用ワイヤの伸縮量と互いに直交する2軸方向の回転角度に基づいて建築物における下部構造体と上部構造体の相対変位量を検出することができる。
A three-dimensional displacement measuring system according to the present invention includes the above-described three-dimensional displacement measuring device described above, and one of the objects to be measured is a lower base plate attached to a lower structure of a building, and the other is An upper base plate to be attached to an upper structure, and a seismic isolation damper is installed between the lower base plate and the upper base plate.
According to the present invention, the relative displacement amount of the lower structure and the upper structure in the building is detected based on the biaxial rotation angle orthogonal to the measurement wire expansion / contraction amount measured by the three-dimensional displacement measurement device. be able to.

本発明による三次元変位計測装置と三次元変位計測システムによれば、三次元方向に変位可能な測定子に対して補助ガイド部材によって計測用ワイヤと変位計の追従性を良好に維持できるので、被測定対象物の一方と他方との間の三次元方向の変位方向と変位量を精度よく計測できる。
また、本発明による三次元変位計測装置と三次元変位計測システムは、三次元方向に変位可能な測定子に対して、牽引用ワイヤとプーリーと牽引巻き取り手段、または補助アームによって、計測用ワイヤと変位計の追従性を良好に維持できるので、被測定対象物の一方と他方との間の三次元方向の変位方向と変位量を精度よく計測できる。
According to the three-dimensional displacement measuring apparatus and the three-dimensional displacement measuring system according to the present invention, the followability of the measuring wire and the displacement meter can be favorably maintained by the auxiliary guide member with respect to the probe that can be displaced in the three-dimensional direction. It is possible to accurately measure the three-dimensional displacement direction and displacement amount between one and the other of the objects to be measured.
Further, the three-dimensional displacement measuring apparatus and the three-dimensional displacement measuring system according to the present invention provide a measuring wire by using a pulling wire and a pulley and a pulling winding means or an auxiliary arm for a probe that can be displaced in a three-dimensional direction. Therefore, it is possible to accurately measure the displacement direction and the displacement amount in the three-dimensional direction between one and the other of the measurement objects.

本発明の第一実施形態による三次元変位計測装置の要部斜視図である。It is a principal part perspective view of the three-dimensional displacement measuring apparatus by 1st embodiment of this invention. 図1に示す三次元変位計測装置の初期位置を示す第二回転軸方向から見た図である。It is the figure seen from the 2nd rotating shaft direction which shows the initial position of the three-dimensional displacement measuring apparatus shown in FIG. 図1に示す三次元変位計測装置の測定子が変位した位置を示す第二回転軸方向から見た図である。It is the figure seen from the 2nd rotating shaft direction which shows the position which the measuring element of the three-dimensional displacement measuring apparatus shown in FIG. 1 displaced. 三次元変位計測装置で計測する三次元変位計測システムのブロック図である。It is a block diagram of the three-dimensional displacement measuring system measured with a three-dimensional displacement measuring device. 測定子の三次元座標位置を三面図に投影した状態を示す概念図である。It is a conceptual diagram which shows the state which projected the three-dimensional coordinate position of the measuring element on the three-plane figure. 本発明の第二実施形態による三次元変位計測装置の要部を示す図であり、(a)は正面図、(b)は側面図である。It is a figure which shows the principal part of the three-dimensional displacement measuring device by 2nd embodiment of this invention, (a) is a front view, (b) is a side view. 第二実施形態による三次元変位計測装置において上部ベースプレートの変位に応じてワイヤと多段アームが変位した状態を示す側面図であり,(a)は変位が小さい状態、(b)は変位が大きい状態の図である。It is a side view which shows the state which the wire and the multistage arm displaced according to the displacement of an upper base plate in the three-dimensional displacement measuring device by 2nd embodiment, (a) is a state with small displacement, (b) is a state with large displacement FIG. 第三実施形態による三次元変位計測装置の要部斜視図である。It is a principal part perspective view of the three-dimensional displacement measuring device by 3rd embodiment. (a)、(b)は図8に示す三次元変位計測装置のプーリー及びプーリーの固定部材の回転軸方向と回転軸に直交する方向を示す比較図である。(A), (b) is a comparison figure which shows the direction orthogonal to a rotating shaft direction and the rotating shaft direction of the pulley of the three-dimensional displacement measuring apparatus shown in FIG. 8, and the fixing member of a pulley. 図9に示す三次元変位計測装置を示す図であり、(a)は初期状態、(b)は変位状態を示す図である。It is a figure which shows the three-dimensional displacement measuring apparatus shown in FIG. 9, (a) is an initial state, (b) is a figure which shows a displacement state. 第四実施形態による三次元変位計測装置の要部斜視図である。It is a principal part perspective view of the three-dimensional displacement measuring device by 4th embodiment. 変形例による三次元変位計測装置の要部構成図である。It is a principal part block diagram of the three-dimensional displacement measuring apparatus by a modification. 建物の上下ベースプレート間に設置したU型ダンパーの地震時の変位を示す側面図であり、(a)は初期状態、(b)は地震による変位状態を示す図である。It is a side view which shows the displacement at the time of the earthquake of the U type damper installed between the upper and lower baseplates of a building, (a) is an initial state, (b) is a figure which shows the displacement state by an earthquake. 従来技術に関連する三次元変位計測装置をU型ダンパーに設置した状態を示す図である。It is a figure which shows the state which installed the three-dimensional displacement measuring apparatus relevant to a prior art in a U-shaped damper. 図14に示す三次元変位計測装置を示すものであり、(a)は初期状態、(b)は地震による変形状態を示す図である。FIG. 15 shows the three-dimensional displacement measuring apparatus shown in FIG. 14, where (a) shows an initial state and (b) shows a deformed state due to an earthquake.

以下、添付図面を参照して、本発明の各実施形態による三次元変位計測装置と三次元変位計測システムについて説明するが、上述した従来技術と同一の部材には同一の符号を用いて説明する。
図1乃至図3に示す第一実施形態による三次元変位計測装置1は、例えばU型ダンパー100の下部ベースプレート102と上部ベースプレート101との間に設置されて、U型ダンパー100の最大変形量や累積変形量等を計測してU型ダンパー100の交換時期を推定する等のために用いられる。この三次元変位計測装置1は下部ベースプレート102に設置されるセンサ本体2を備え、センサ本体2と上部ベースプレート101に設置される測定子3との2点間の相対変位を計測することで、上下部ベースプレート101,102の相対変位を三次元座標で計測するようになっている。
Hereinafter, a three-dimensional displacement measuring apparatus and a three-dimensional displacement measuring system according to each embodiment of the present invention will be described with reference to the accompanying drawings. The same members as those in the above-described conventional technology will be described using the same reference numerals. .
The three-dimensional displacement measuring apparatus 1 according to the first embodiment shown in FIGS. 1 to 3 is installed, for example, between the lower base plate 102 and the upper base plate 101 of the U-shaped damper 100, and the maximum deformation amount of the U-shaped damper 100 is It is used for estimating the replacement time of the U-shaped damper 100 by measuring the accumulated deformation amount and the like. The three-dimensional displacement measuring apparatus 1 includes a sensor body 2 installed on a lower base plate 102, and by measuring the relative displacement between two points of the sensor body 2 and a probe 3 installed on the upper base plate 101, The relative displacement of the base plate 101, 102 is measured in three-dimensional coordinates.

センサ本体2は基板6が下部ベースプレート102上に固定され、基板6上の一対の柱部7間に四角形枠状の枠体8を設け、枠体8は一方の対向する一対の枠部8aと柱部7とにそれぞれ設けた第一回転軸9によってφ方向に任意の角度回転可能とされている。枠体8の他方の対向する一対の枠部8b間に変位計10を設け、変位計10は一対の枠部8bをそれぞれ貫通する第二回転軸11によってθ方向に任意の角度回転可能に支持されている。第一回転軸9と第二回転軸11とは例えば同一平面内で互いに直交する方向に配設されている。
そのため、センサ本体2は、互いに直交する第一回転軸9と第二回転軸11によって変位計10を各軸周りに回転可能に支持しており、且つ各軸9,11の延長線が1点で交わる機構であるジンバル機構12を備えている。
The sensor body 2 has a substrate 6 fixed on a lower base plate 102, and a rectangular frame-shaped frame body 8 is provided between a pair of column portions 7 on the substrate 6, and the frame body 8 has a pair of opposed frame portions 8a and The first rotation shaft 9 provided on each of the column portions 7 can rotate at any angle in the φ direction. A displacement meter 10 is provided between the other pair of opposite frame portions 8b of the frame body 8, and the displacement meter 10 is supported by the second rotation shaft 11 penetrating the pair of frame portions 8b so as to be rotatable at any angle in the θ direction. Has been. The first rotating shaft 9 and the second rotating shaft 11 are disposed, for example, in directions orthogonal to each other in the same plane.
Therefore, the sensor body 2 supports the displacement meter 10 so as to be rotatable around each axis by the first rotation axis 9 and the second rotation axis 11 orthogonal to each other, and one extension line of each axis 9, 11 is provided. The gimbal mechanism 12 is a mechanism that intersects with each other.

そして、第一回転軸9の一端部には変位計10の回転角度φを検出するための第1角度検出器13が設置され、第二回転軸11の一端部には変位計10の回転角度θを検出するための第2角度検出器14が設置されている。第1角度検出器13と第2角度検出器14は第一回転軸9と第二回転軸11に抵抗素子またはホール素子を用いたポテンショメータを備えており、あるいはロータリエンコーダを備えていてもよい。第1角度検出器13は変位計10と枠体8との水平位置を基準として第一回転軸9の回転角度φをφ成分として計測可能としている。また、第2角度検出器14は変位計10の水平位置を基準として第二回転軸11の回転角度θをθ成分として計測可能としている。   A first angle detector 13 for detecting the rotation angle φ of the displacement meter 10 is installed at one end of the first rotation shaft 9, and the rotation angle of the displacement meter 10 is installed at one end of the second rotation shaft 11. A second angle detector 14 for detecting θ is installed. The 1st angle detector 13 and the 2nd angle detector 14 are equipped with the potentiometer which used the resistance element or the Hall element for the 1st rotating shaft 9 and the 2nd rotating shaft 11, or may be provided with the rotary encoder. The first angle detector 13 can measure the rotation angle φ of the first rotation shaft 9 as a φ component with reference to the horizontal position of the displacement meter 10 and the frame 8. The second angle detector 14 can measure the rotation angle θ of the second rotating shaft 11 as a θ component with reference to the horizontal position of the displacement meter 10.

また、変位計10は上面に支持部15が設置され、支持部15から計測用ワイヤ16が引き出し可能とされ、計測用ワイヤ16の先端部が測定子3に接続されている。変位計10の筐体10a内には計測用ワイヤ16を巻き取り可能な巻き取りドラムと、計測用ワイヤ16を巻き取りドラムに巻き込む方向に付勢する渦巻ばねとが内蔵されており、測定子3を取り付けた上部ベースプレート101の変位によって計測用ワイヤ16が伸縮可能とされている。なお、測定子3は上部ベースプレート101に対して例えば自在継手等によって回転可能に支持されている。
しかも、変位計10は筐体10a内に巻き取りドラムの回転軸と一体に回転するワイヤ式変位計または直動型変位計を備えており、計測用ワイヤ16の引き出し長さをr成分として検出可能としている。計測用ワイヤ16の延長線は第一回転軸9及び第二回転軸11の延長線と1点で交わる原点とされ、第一回転軸9、第二回転軸11、計測用ワイヤ16は1個の動径(引き出し長さ)rと2個の偏角(回転角度)θ,φからなる三次元極座標系を構成している。この三次元極座標系は、互いに直交するX軸、Y軸、Z軸の3軸からなる三次元直交座標系に変換することができる(図5参照)。
Further, the displacement meter 10 is provided with a support portion 15 on the upper surface, the measurement wire 16 can be pulled out from the support portion 15, and the distal end portion of the measurement wire 16 is connected to the probe 3. In the housing 10a of the displacement meter 10, a winding drum capable of winding the measuring wire 16 and a spiral spring that urges the measuring wire 16 in the winding direction are incorporated. The measuring wire 16 can be expanded and contracted by the displacement of the upper base plate 101 to which 3 is attached. The measuring element 3 is rotatably supported on the upper base plate 101 by, for example, a universal joint.
In addition, the displacement meter 10 includes a wire displacement meter or a linear displacement meter that rotates integrally with the rotating shaft of the take-up drum in the housing 10a, and detects the drawing length of the measuring wire 16 as an r component. It is possible. The extension line of the measurement wire 16 is an origin that intersects the extension lines of the first rotation shaft 9 and the second rotation shaft 11 at one point, and the first rotation shaft 9, the second rotation shaft 11, and the measurement wire 16 are one piece. A three-dimensional polar coordinate system comprising a moving radius (drawing length) r and two declination angles (rotation angles) θ and φ is constructed. This three-dimensional polar coordinate system can be converted into a three-dimensional orthogonal coordinate system composed of three axes of X axis, Y axis, and Z axis orthogonal to each other (see FIG. 5).

また、変位計10の支持部15と測定子3との間には計測用ワイヤ16の周囲に任意の複数本、例えば4本の屈曲可能なアーム18が配設され、パンタグラフ状に伸縮可能に形成されている。各アーム18は長手方向中央の軸部18aで自由に折り曲げ可能であり、計測用ワイヤ16の周囲に所定間隔、例えば90度間隔で配列されている。アーム18は金属などの剛性の高い高強度の部材で形成され、各アーム18の両端部は例えば軸受によって支持部15と測定子3にそれぞれ連結されている。   Arbitrary plural, for example, four bendable arms 18 are arranged between the support portion 15 of the displacement meter 10 and the measuring element 3 around the measuring wire 16 so that the arm 18 can expand and contract in a pantograph shape. Is formed. Each arm 18 can be freely bent by a shaft portion 18a at the center in the longitudinal direction, and is arranged around the measurement wire 16 at a predetermined interval, for example, an interval of 90 degrees. The arm 18 is formed of a high-strength member having high rigidity such as metal, and both ends of each arm 18 are connected to the support portion 15 and the measuring element 3 by, for example, bearings.

そのため、図2に示す初期位置では、上下部ベースプレート101,102は変位しておらず、計測用ワイヤ16は上部ベースプレート101に垂直な方向に位置している。そして、地震時に上部ベースプレート101が下部ベースプレート102に対して相対移動した場合には、センサ本体2の変位計10が第一及び第二回転軸9、11回りに傾斜する。図3に示す例では、第二回転軸11が角度θ傾斜するとともに、測定子3の水平移動に追従して移動するにしたがって計測用ワイヤ16が伸長することで、その周囲のアーム18の曲げ角が大きく直線に近い形状に変形する。   Therefore, in the initial position shown in FIG. 2, the upper and lower base plates 101 and 102 are not displaced, and the measuring wire 16 is positioned in a direction perpendicular to the upper base plate 101. When the upper base plate 101 moves relative to the lower base plate 102 at the time of an earthquake, the displacement meter 10 of the sensor body 2 is tilted around the first and second rotating shafts 9 and 11. In the example shown in FIG. 3, the second rotating shaft 11 is inclined at an angle θ, and the measuring wire 16 is extended as it moves following the horizontal movement of the probe 3, so that the surrounding arm 18 is bent. Deforms into a shape with large corners and a straight line.

図4に示すように、三次元変位計測装置1に設けた第一回転軸9の傾斜角度φを計測する第1角度検出器13と、第二回転軸11の傾斜角度θを計測する第2角度検出器14と、第一及び第二回転軸9,13に直交するr成分の長さを計測する変位計10を備えたセンサ部21を備えている。
また、三次元変位計測装置1のセンサ部21には測定記録部23が電気的に接続されており、第1角度検出器13と第2角度検出器14と変位計10から出力されたφ、θ、rの各成分の変位情報を入力してA/D変換するA/D変換器24と、デジタル信号に変換された各信号を演算する演算部25と、演算結果の情報を例えば三次元直交座標系(x、y、z)として記録したり印刷したりする記録部26とを備えている。更にセンサ部21に電力を供給する電源部27を備えている。
これらセンサ部21を備えた三次元変位計測装置1と測定記録部23とを含めて三次元変位計測システム20を構成する。
As shown in FIG. 4, the first angle detector 13 that measures the tilt angle φ of the first rotating shaft 9 provided in the three-dimensional displacement measuring apparatus 1 and the second that measures the tilt angle θ of the second rotating shaft 11. An angle detector 14 and a sensor unit 21 including a displacement meter 10 that measures the length of the r component orthogonal to the first and second rotating shafts 9 and 13 are provided.
In addition, a measurement recording unit 23 is electrically connected to the sensor unit 21 of the three-dimensional displacement measuring apparatus 1, and φ output from the first angle detector 13, the second angle detector 14, and the displacement meter 10, An A / D converter 24 that inputs A / D conversion by inputting displacement information of each component of θ and r, a calculation unit 25 that calculates each signal converted into a digital signal, and information of the calculation result are obtained in, for example, a three-dimensional form. And a recording unit 26 for recording and printing as an orthogonal coordinate system (x, y, z). Furthermore, a power supply unit 27 that supplies power to the sensor unit 21 is provided.
A three-dimensional displacement measuring system 20 is configured including the three-dimensional displacement measuring apparatus 1 including the sensor unit 21 and the measurement recording unit 23.

ここで、図1に示す三次元変位計測装置1におけるセンサ本体2の運動支点、すなわち第一回転軸9、第二回転軸11、計測用ワイヤ16の各延長線の交差点を原点とした三次元極座標系をとり、計測用ワイヤ16の先端部に連結した測定子3の中心(自在継手がボールジョイントであればその中心)を測定点とする。
そして、図5において、第1角度検出器13で検出する角度φと第2角度検出器14で検出する角度θと変位計10で検出する計測用ワイヤ16の伸縮長さrとを随時計測することで、測定点の三次元極座標系における位置を特定できる。更に、計測して求めた各値r,θ,φを三次元直交座標系におけるX−Z座標面、Y−Z座標面にそれぞれ投影することにより、原点からの長さx,y,zを随時演算することで測定点の三次元直交座標系における位置に変換できる。
Here, in the three-dimensional displacement measuring apparatus 1 shown in FIG. 1, the three-dimensional movement center of the sensor body 2, that is, the intersection of the extended lines of the first rotating shaft 9, the second rotating shaft 11, and the measuring wire 16 is the origin. Taking a polar coordinate system, the center of the probe 3 connected to the tip of the measuring wire 16 (or the center if the universal joint is a ball joint) is taken as the measurement point.
In FIG. 5, the angle φ detected by the first angle detector 13, the angle θ detected by the second angle detector 14, and the expansion / contraction length r of the measuring wire 16 detected by the displacement meter 10 are measured as needed. Thus, the position of the measurement point in the three-dimensional polar coordinate system can be specified. Further, the values x, y, and z from the origin are obtained by projecting the measured values r, θ, and φ on the XZ coordinate plane and the YZ coordinate plane in the three-dimensional orthogonal coordinate system, respectively. By calculating at any time, it is possible to convert the measurement point into a position in the three-dimensional orthogonal coordinate system.

本実施形態による三次元変位計測装置1は上述の構成を備えており、次に三次元変位計測装置1の使用方法について説明する。
本実施形態による三次元変位計測装置1は免震装置であるU型ダンパー100の下部ベースプレート102上に設置され、測定子3は上部ベースプレート101に回転自在に支承されている。そして、地震が発生した場合、建物や橋梁等の建築物が水平360度全方向の変形に対して、U型ダンパー100に生じる歪みを局部的に集中させずに全体に分散させ塑性化させることで塑性履歴を利用して地震エネルギーを吸収し、建築物の耐震制震性能を向上させる。このようなダンパー100の歪みや塑性変形量や累積変形量を三次元変位計測システム20によって計測する。
The three-dimensional displacement measuring apparatus 1 according to the present embodiment has the above-described configuration. Next, a method for using the three-dimensional displacement measuring apparatus 1 will be described.
The three-dimensional displacement measuring apparatus 1 according to the present embodiment is installed on a lower base plate 102 of a U-shaped damper 100 that is a seismic isolation device, and the measuring element 3 is rotatably supported on the upper base plate 101. When an earthquake occurs, buildings such as buildings and bridges are deformed in a 360 ° horizontal direction in all directions, and the distortion generated in the U-shaped damper 100 is dispersed and plasticized without being concentrated locally. The plastic history is used to absorb the seismic energy and improve the seismic control performance of the building. The three-dimensional displacement measurement system 20 measures such distortion, plastic deformation amount, and cumulative deformation amount of the damper 100.

図1及び図2に示す初期位置では、上下部ベースプレート101,102は変位しておらず、第一及び第二回転軸9、11は変位計10が水平状態で計測用ワイヤ16が上部ベースプレート101に垂直な方向に延びている。そして、図3に示すように、地震発生時に上部ベースプレート101が下部ベースプレート102に対して相対移動した場合には、測定子3が追従して上部ベースプレート101と共に相対移動する。   1 and 2, the upper and lower base plates 101 and 102 are not displaced, the first and second rotary shafts 9 and 11 have the displacement gauge 10 in a horizontal state, and the measurement wire 16 is in the upper base plate 101. It extends in a direction perpendicular to. As shown in FIG. 3, when the upper base plate 101 moves relative to the lower base plate 102 when an earthquake occurs, the probe 3 follows and moves relative to the upper base plate 101.

例えば、上部ベースプレート101が下部ベースプレート102に対して第一回転軸9に直交する方向に相対変位する場合、測定子3に連動して、変位計10の計測用ワイヤ16が支持部15を通して引き出されると共に、測定子3の移動と一体に計測用ワイヤ16を囲うパンタグラフ状の剛性の高いアーム18が計測用ワイヤ16に伸長と傾斜に沿って略直線状に近い形状に伸長しながら傾斜していく。そのため、アーム18の下端部が支持される支持部15を備えた変位計10がアーム18に引っ張られて第二回転軸11を中心にして所要角度θ回転する。   For example, when the upper base plate 101 is relatively displaced with respect to the lower base plate 102 in a direction perpendicular to the first rotation axis 9, the measurement wire 16 of the displacement meter 10 is pulled out through the support portion 15 in conjunction with the measuring element 3. At the same time, the pantograph-like highly rigid arm 18 that surrounds the measuring wire 16 integrally with the movement of the measuring element 3 is inclined while extending to the measuring wire 16 in a shape close to a substantially linear shape along the extension and inclination. . Therefore, the displacement meter 10 including the support portion 15 on which the lower end portion of the arm 18 is supported is pulled by the arm 18 and rotates about the second rotation shaft 11 by the required angle θ.

例えば、上部ベースプレート101が下部ベースプレート102に対して任意の方向に相対変位した場合、測定子3に連動して、変位計10の計測用ワイヤ16が支持部15を通して引き出されると共に、測定子3の移動と一体に計測用ワイヤ16を囲うパンタグラフ状の剛性の高いアーム18が計測用ワイヤ16の伸長と傾斜に沿って屈曲部を伸長させながら追従して傾斜していく。そのため、アーム18の下端部が支持される支持部15を備えた変位計10がアーム18に引っ張られて、第一回転軸9と第二回転軸11を中心にして互いに直交する方向に所要角度φ、θ回転する。そのため、測定子3と計測用ワイヤ16及びアーム18と変位計10とは互いに略直線状の配置を維持しながら同期して傾斜する。
そのため、センサ本体2における変位計1の重量による慣性や、変位計10の回転時の摺動部分の摩擦等による変位計10の回転の遅れを生じない。
For example, when the upper base plate 101 is relatively displaced with respect to the lower base plate 102 in an arbitrary direction, the measuring wire 16 of the displacement meter 10 is pulled out through the support portion 15 in conjunction with the measuring element 3 and the measuring element 3 The pantograph-like highly rigid arm 18 surrounding the measurement wire 16 integrally with the movement follows and inclines while extending the bent portion along the extension and inclination of the measurement wire 16. Therefore, the displacement meter 10 provided with the support portion 15 on which the lower end portion of the arm 18 is supported is pulled by the arm 18, and the required angle in a direction orthogonal to each other about the first rotation shaft 9 and the second rotation shaft 11. Rotates φ and θ. Therefore, the measuring element 3, the measuring wire 16, the arm 18, and the displacement meter 10 are inclined in synchronization with each other while maintaining a substantially linear arrangement.
Therefore, the inertia due to the weight of the displacement meter 1 in the sensor main body 2, the rotation delay of the displacement meter 10 due to the friction of the sliding portion when the displacement meter 10 rotates, and the like do not occur.

このように、地震の振動によって、第一及び第二回転軸9、11を備えた変位計10、計測用ワイヤ16が同期して相対変位すると、図4に示すセンサ部21において、第1角度検出器13、第2角度検出器14、変位計10で計測用ワイヤ16の傾斜角度φ、θ、伸縮長さrを同時に精度よく検出できる。そして、これらの測定データをアナログ信号としてセンサ部21の外部に設置した測定記録部23に入力し、A/D変換器24でA/D変換し、演算部25で次式によって演算することで、測定子3の測定点の三次元直交座標系における座標(x、y、z)、そして変位方向と変位量を得られる。   As described above, when the displacement gauge 10 having the first and second rotating shafts 9 and 11 and the measurement wire 16 are relatively displaced by the earthquake vibration, the first angle is detected in the sensor unit 21 shown in FIG. The detector 13, the second angle detector 14, and the displacement meter 10 can simultaneously detect the inclination angles φ and θ and the expansion / contraction length r of the measurement wire 16 with high accuracy. These measurement data are input as analog signals to the measurement recording unit 23 installed outside the sensor unit 21, A / D converted by the A / D converter 24, and calculated by the calculation unit 25 according to the following expression. The coordinates (x, y, z) of the measuring point of the measuring element 3 in the three-dimensional orthogonal coordinate system, the displacement direction and the displacement amount can be obtained.

Figure 2015215333
Figure 2015215333

上述のように、本第一実施形態による三次元変位計測装置1及び三次元変位計測システム20によれば、測定子3と変位計10を連結する伸縮成分として計測用ワイヤ16とアーム18を用いたことで、計測用ワイヤ16の傾斜角度φ、θ、伸縮長さrを計測でき、更に測定子3の測定点の座標(x、y、z)や変位方向と変位量を得られる。
しかも、計測用ワイヤ16の周囲にパンタグラフ形状のアーム18を取り付けて測定子3の相対変位に同期して変位計10を追従させて第一及び第二回転軸9,11回りに回転させるようにしたから、短時間で精度良く測定子3の三次元方向の変位を計測できる。そのため、ダンパー100の最大変形量や累積変形量を精度良く測定して交換時期を高精度に推定できる。また、ロッドに変えて計測用ワイヤ16を用い、その周囲のアーム18は測定子3の変位が大きければ計測用ワイヤ16に近接する方向にすぼんで小径化するため、地震時にU型ダンパー100に接触のおそれがなく、三次元変位計測装置1を損傷するおそれがない。
As described above, according to the three-dimensional displacement measuring apparatus 1 and the three-dimensional displacement measuring system 20 according to the first embodiment, the measuring wire 16 and the arm 18 are used as the expansion and contraction components that connect the measuring element 3 and the displacement meter 10. As a result, the inclination angles φ and θ and the expansion / contraction length r of the measuring wire 16 can be measured, and further, the coordinates (x, y, z) of the measuring point of the measuring element 3, the displacement direction and the displacement amount can be obtained.
In addition, a pantograph-shaped arm 18 is attached around the measurement wire 16 so that the displacement meter 10 follows in synchronization with the relative displacement of the probe 3 and rotates around the first and second rotary shafts 9 and 11. Therefore, the displacement of the measuring element 3 in the three-dimensional direction can be measured accurately in a short time. Therefore, it is possible to accurately estimate the maximum deformation amount and cumulative deformation amount of the damper 100 and estimate the replacement time with high accuracy. In addition, the measuring wire 16 is used instead of the rod, and the surrounding arm 18 is reduced in diameter in the direction close to the measuring wire 16 if the displacement of the probe 3 is large. There is no possibility of contact, and there is no possibility of damaging the three-dimensional displacement measuring apparatus 1.

なお、本発明は上述の第一実施形態に限定されることなく、本発明の要旨を変更しない範囲で上述した実施形態の構成を適宜変更したり置換したりすることができる。これらの構成も本発明の範囲に含まれる。
例えば、上述した実施形態による三次元変位計測装置1では、下部ベースプレート102にセンサ本体2の基板6を設置し、上部ベースプレート101に測定子3を設置した構成としたが、これとは逆に上部ベースプレート101にセンサ本体2の基板6を設置し、下部ベースプレート102に測定子3を設置する構成を採用してもよい。この場合には、センサ本体2に設置した変位計10が地盤等に設けた下部ベースプレート102から離間するため、地表等から離間することになり、湿気等による変位計10の誤作動や破損等を生じ難い利点がある。後述する他の実施形態や変形例でも同様である。
In addition, this invention is not limited to the above-mentioned 1st embodiment, In the range which does not change the summary of this invention, the structure of embodiment mentioned above can be changed suitably or can be substituted. These configurations are also included in the scope of the present invention.
For example, in the three-dimensional displacement measuring apparatus 1 according to the above-described embodiment, the substrate 6 of the sensor body 2 is installed on the lower base plate 102, and the measuring element 3 is installed on the upper base plate 101. A configuration in which the substrate 6 of the sensor body 2 is installed on the base plate 101 and the measuring element 3 is installed on the lower base plate 102 may be adopted. In this case, since the displacement meter 10 installed in the sensor body 2 is separated from the lower base plate 102 provided on the ground or the like, the displacement meter 10 is separated from the ground surface or the like, and malfunction or damage of the displacement meter 10 due to moisture or the like is caused. There are advantages that do not occur easily. The same applies to other embodiments and modifications described later.

次に図6及び図7により、本発明の第二実施形態による三次元変位計測装置を説明するが、第一実施形態に用いた部品や部材等は同一符号を用いて説明するものとする。
本第二実施形態による三次元変位計測装置30は、下部ベースプレート102にセンサ本体2のジンバル機構31を備えており、このジンバル機構31は第一実施形態と同様に互いに直交する第一回転軸9と第二回転軸11を備えていて、変位計10を互いに直交する上下方向に回転可能としているが、図6及び図7では簡略化して示されている。
Next, the three-dimensional displacement measuring apparatus according to the second embodiment of the present invention will be described with reference to FIGS. 6 and 7. Components, members, etc. used in the first embodiment will be described using the same reference numerals.
The three-dimensional displacement measuring device 30 according to the second embodiment includes a gimbal mechanism 31 of the sensor body 2 on the lower base plate 102, and the gimbal mechanism 31 is orthogonal to the first rotating shafts 9 as in the first embodiment. The second rotation shaft 11 is provided, and the displacement meter 10 can be rotated in the vertical direction perpendicular to each other, but is simplified in FIGS. 6 and 7.

また、図6,7において、上部ベースプレート101と測定子3を接続する連結部材32は測定子3との連結部に自在継手を備えているものとする。そして、変位計10の上面の支持部15には第一アーム受け部材34が連結され、測定子3にも第二アーム受け部材35が連結されている。
これら第一及び第二アーム受け部材34、35の間にはマジックハンド状の多段アーム36が取り付けられており、一対のアーム部37a、37bを交差させて中央の支軸37cで回転可能に軸支したものを両端部で軸ピン37dによって順次回動可能に多数本連結している。本実施形態では、多段アーム36は第一及び第二アーム受け部材34,35の両側に2組設けているが、高強度であれば1組だけでもよい。
6 and 7, it is assumed that the connecting member 32 that connects the upper base plate 101 and the measuring element 3 includes a universal joint at the connecting portion with the measuring element 3. The first arm receiving member 34 is connected to the support portion 15 on the upper surface of the displacement meter 10, and the second arm receiving member 35 is also connected to the measuring element 3.
A magic hand-shaped multi-stage arm 36 is attached between the first and second arm receiving members 34, 35, and a pair of arm portions 37a, 37b are crossed so as to be rotatable on a central support shaft 37c. A large number of supported ones are connected to each other at both ends so as to be sequentially rotatable by shaft pins 37d. In this embodiment, two sets of multistage arms 36 are provided on both sides of the first and second arm receiving members 34 and 35, but only one set may be used as long as the strength is high.

しかも、図7に示すように、この多段アーム36の一端(変位計10側)では、一方のアーム部37aのピン39が第一アーム受け部材34に回転可能に支持され、他方のアーム部37bのピン40は第一アーム受け部材34に形成した溝部34a内に摺動可能に支持されている。また、多段アーム36の他端(測定子3側)では、一方のアーム部37bのピン41が第二アーム受け部材35に回転可能に支持され、他方のアーム部37aのピン42は第二アーム受け部材35に形成した溝部35a内に摺動可能に支持されている。
また、多段アーム36は計測用ワイヤ16と略平行な状態を維持しながら伸縮することで、計測用ワイヤ16の傾斜や伸縮に同期して変位計10を追従させて、第一回転軸9及び第二回転軸11を所要角度φ、θだけ傾斜させることができる。
また、計測用ワイヤ16の延長線は、第一実施形態と同様に、第一回転軸9及び第二回転軸11と原点で互いに直交して交差する図5に示すX,Y,Z軸の三次元直交座標系を構成する。
Moreover, as shown in FIG. 7, at one end (displacement meter 10 side) of the multi-stage arm 36, the pin 39 of one arm portion 37a is rotatably supported by the first arm receiving member 34, and the other arm portion 37b. The pin 40 is slidably supported in a groove 34 a formed in the first arm receiving member 34. Further, at the other end of the multi-stage arm 36 (the measuring element 3 side), the pin 41 of one arm portion 37b is rotatably supported by the second arm receiving member 35, and the pin 42 of the other arm portion 37a is the second arm. It is slidably supported in a groove 35 a formed in the receiving member 35.
Further, the multistage arm 36 extends and contracts while maintaining a state substantially parallel to the measuring wire 16, thereby causing the displacement meter 10 to follow the first rotating shaft 9 and The second rotating shaft 11 can be inclined by the required angles φ and θ.
Further, as in the first embodiment, the extension lines of the measurement wires 16 are arranged on the X, Y, and Z axes shown in FIG. 5 that intersect with the first rotating shaft 9 and the second rotating shaft 11 at the origin. Configure a three-dimensional Cartesian coordinate system.

そのため、本実施形態による三次元変位計測装置30では、変位のない初期状態では、図6(a)、(b)に示すように多段アーム36は各アーム部37a、37b同士が互いに近接した圧縮状態にある。そして、地震の際に、図7(a)に示すように変位が比較的小さい場合には、変位計10が第一及び第二回転軸9、11回りに所定角度φ、θだけそれぞれ回転し、計測用ワイヤ16のわずかな伸張と傾斜に沿って多段アーム36は各アーム部37a、37bがわずかに離間した状態で傾斜させられる。   Therefore, in the three-dimensional displacement measuring device 30 according to the present embodiment, in the initial state where there is no displacement, as shown in FIGS. 6A and 6B, the multistage arm 36 is compressed with the arm portions 37a and 37b close to each other. Is in a state. In the event of an earthquake, if the displacement is relatively small as shown in FIG. 7A, the displacement meter 10 rotates about the first and second rotary shafts 9 and 11 by predetermined angles φ and θ, respectively. The multi-stage arm 36 is inclined along the slight extension and inclination of the measuring wire 16 with the arm portions 37a and 37b being slightly separated from each other.

また、変位が比較的大きい場合には、図7(b)に示すように、変位計10が第一及び第二回転軸9、11回りに所定角度φ、θだけそれぞれ回転し、更に計測用ワイヤ16が傾斜して大きく伸張すると共に、多段アーム36は各対のアーム部37a、37bが比較的小さな交差角を形成するように伸長した状態で傾斜させられる。
しかも、センサ部21で計測した各測定値φ、θ、rに基づいて測定記録部23によって測定子3の三次元直交座標系における座標(x,y,z)を演算することができる。
When the displacement is relatively large, as shown in FIG. 7B, the displacement meter 10 rotates about the first and second rotating shafts 9 and 11 by predetermined angles φ and θ, respectively, and further for measurement. As the wire 16 is inclined and greatly extended, the multi-stage arm 36 is inclined in a state where each pair of arm portions 37a and 37b is extended so as to form a relatively small crossing angle.
Moreover, the coordinates (x, y, z) of the measuring element 3 in the three-dimensional orthogonal coordinate system can be calculated by the measurement recording unit 23 based on the measured values φ, θ, r measured by the sensor unit 21.

このようにして、本第二実施形態による三次元変位計測装置30と三次元変位計測システム20によれば、支持部15と測定子3に両端が連結された多段アーム36によって変位計10を計測用ワイヤ16に精度よく追従させることができ、第一実施形態と同一の作用効果を奏する。   Thus, according to the three-dimensional displacement measuring device 30 and the three-dimensional displacement measuring system 20 according to the second embodiment, the displacement meter 10 is measured by the multistage arm 36 having both ends connected to the support 15 and the measuring element 3. It can be made to follow the wire 16 with high precision, and has the same effect as the first embodiment.

次に本発明の第三実施形態による三次元変位計測装置50を図8、図9、図10によって説明するが、上述した第一実施形態及び第二実施形態に用いた三次元変位計測装置1、30の部品や部材と同一または同様なものは同一符号を用いて説明するものとする。
本第三実施形態による三次元変位計測装置50は、下部ベースプレート102にセンサ本体2のジンバル機構12を備えており、このジンバル機構12は第一実施形態と同様に互いに直交する第一回転軸9と第二回転軸11を備えていて、変位計10を互いに直交する上下方向に回転可能としている。
Next, a three-dimensional displacement measuring apparatus 50 according to a third embodiment of the present invention will be described with reference to FIGS. 8, 9, and 10. The three-dimensional displacement measuring apparatus 1 used in the first embodiment and the second embodiment described above. , 30 parts and members that are the same or similar will be described using the same reference numerals.
The three-dimensional displacement measuring apparatus 50 according to the third embodiment includes the gimbal mechanism 12 of the sensor body 2 on the lower base plate 102, and the gimbal mechanism 12 is orthogonal to the first rotation shafts 9 that are orthogonal to each other as in the first embodiment. And the second rotation shaft 11, and the displacement meter 10 can be rotated in the vertical direction perpendicular to each other.

また、図8において、測定子3は自在継手によって上部ベースプレート101に連結されている。測定子3を挟む両側には2つのプーリー51,52が設けられている。図9及び図10に示すように、これらプーリー51,52は上部ベースプレート101に支持された固定部材53、54に回動可能に支持され、プーリー51、52は固定部材53,54に支持された回転軸を中心に回転可能とされている。また、固定部材53,54に対してプーリー51、52は回動可能であり、プーリー51,52の回動方向を例えばA方向というものとする。
各プーリー51、52の近傍にはぜんまいユニット55、56が牽引巻き取り手段として上部ベースプレート101に支持されている。そして、ぜんまいユニット55,56からそれぞれ繰り出された牽引用ワイヤ57はプーリー51、52を介して下方に案内されて計測用ワイヤ16の両側に沿って下方に延びて支持部15に連結されている。
In FIG. 8, the measuring element 3 is connected to the upper base plate 101 by a universal joint. Two pulleys 51 and 52 are provided on both sides of the measuring element 3. As shown in FIGS. 9 and 10, these pulleys 51 and 52 are rotatably supported by fixing members 53 and 54 supported by the upper base plate 101, and the pulleys 51 and 52 are supported by the fixing members 53 and 54. It can be rotated around a rotation axis. The pulleys 51 and 52 are rotatable with respect to the fixing members 53 and 54, and the rotation direction of the pulleys 51 and 52 is, for example, the A direction.
In the vicinity of the pulleys 51 and 52, the mainspring units 55 and 56 are supported by the upper base plate 101 as traction winding means. The pulling wire 57 fed from the mainspring units 55 and 56 is guided downward through the pulleys 51 and 52, extends downward along both sides of the measuring wire 16, and is connected to the support portion 15. .

そのため、図9(a)に示すように、上部ベースプレート101の変位によってプーリー51,52の回転軸方向、即ちA方向に力を受けると牽引用ワイヤ57の張力を受けているプーリー51,52が回動して傾斜し、各ぜんまいユニット55、56から牽引用ワイヤ57が繰り出し可能である。また、図9(b)及び図10において、上部ベースプレート101がプーリー51,52の回転軸に直交する方向(B方向という)に変位すると牽引用ワイヤ57に沿ってプーリー51,52が摺動し、各ぜんまいユニット55、56から牽引用ワイヤ57が繰り出される。   Therefore, as shown in FIG. 9A, when the upper base plate 101 is displaced, the pulleys 51 and 52 receiving the tension of the pulling wire 57 when receiving the force in the rotation axis direction of the pulleys 51 and 52, that is, the A direction. By rotating and tilting, the pulling wire 57 can be fed out from each of the mainspring units 55 and 56. 9B and 10, when the upper base plate 101 is displaced in a direction perpendicular to the rotation axis of the pulleys 51 and 52 (referred to as B direction), the pulleys 51 and 52 slide along the pulling wire 57. The pulling wire 57 is fed out from the mainspring units 55 and 56.

また、ゼンマイユニット55、56の中には図示しないゼンマイが格納されており、ゼンマイの弾性復帰力により各牽引用ワイヤ57は大きな張力で牽引されている。このとき、牽引用ワイヤ57の張力は変位計10の計測用ワイヤ16の張力よりも大きく設定するとともに、2本の牽引用ワイヤ57の張力はお互い同等になるように調整する。更に、2組のゼンマイユニット55、56とプーリー51,52と固定部材53,54は、測定子3を挟んでその両側に対称に配置されている。   Further, springs (not shown) are stored in the mainspring units 55 and 56, and each pulling wire 57 is pulled with a large tension by the elastic return force of the mainspring. At this time, the tension of the pulling wire 57 is set to be larger than the tension of the measuring wire 16 of the displacement meter 10, and the tension of the two pulling wires 57 is adjusted to be equal to each other. Further, the two sets of mainspring units 55 and 56, the pulleys 51 and 52, and the fixing members 53 and 54 are arranged symmetrically on both sides of the measuring element 3 therebetween.

本第三実施形態による三次元変位計測装置50において、上部ベースプレート101が下部ベースプレート102との関係で相対的にA方向に変位した場合、図9(a)に示すように、固定部材53、54とぜんまいユニット55,56が一体にA方向に移動する。すると、牽引用ワイヤ57がゼンマイユニット55、56から引き出され、プーリー51,52は各牽引用ワイヤ57の引き出し長さに応じて回転軸回りに回転するとともに、牽引用ワイヤ57の張力によってプーリー51,52は固定部材53、54に対してA方向に回動して傾斜する。
そして、上部ベースプレート101の変位が元に戻ると、各牽引用ワイヤ57はゼンマイユニット55,56に巻き戻され、プーリー51,52は各牽引用ワイヤ57の巻き戻される長さに応じて回転するとともに固定部材53、54に対するプーリー51,52も傾斜状態から垂直な元の姿勢に戻る。
In the three-dimensional displacement measuring apparatus 50 according to the third embodiment, when the upper base plate 101 is relatively displaced in the A direction in relation to the lower base plate 102, as shown in FIG. The mainspring units 55 and 56 move together in the A direction. Then, the pulling wire 57 is pulled out from the mainspring units 55, 56, and the pulleys 51, 52 rotate around the rotation axis according to the pulling length of each pulling wire 57, and the pulley 51 is pulled by the tension of the pulling wire 57. , 52 are tilted by rotating in the direction A with respect to the fixing members 53, 54.
When the displacement of the upper base plate 101 is restored, the pulling wires 57 are rewound onto the mainspring units 55 and 56, and the pulleys 51 and 52 rotate in accordance with the length of the traction wires 57 to be rewound. At the same time, the pulleys 51 and 52 with respect to the fixing members 53 and 54 also return to the original vertical posture from the inclined state.

また、図9(b)及び図10に示すように、上部ベースプレート101がプーリー51,52の回転軸に直交する方向、即ちB方向に変位した場合、プーリー51,52及び固定部材53、54は上部ベースプレート101とともに移動する。その結果、牽引用ワイヤ57はゼンマイユニット55,56から引き出され、プーリー51,52は各牽引用ワイヤ57の引き出される長さに応じて回転する。上部ベースプレート101の変位が元に戻ると、各牽引用ワイヤ57はゼンマイユニット55,56に巻き戻され、プーリー51,52は各牽引用ワイヤ57の巻き戻される長さに応じて回転する。   As shown in FIGS. 9B and 10, when the upper base plate 101 is displaced in the direction orthogonal to the rotation axis of the pulleys 51 and 52, that is, in the B direction, the pulleys 51 and 52 and the fixing members 53 and 54 are It moves with the upper base plate 101. As a result, the pulling wire 57 is pulled out from the mainspring units 55 and 56, and the pulleys 51 and 52 rotate according to the length of the pulling wire 57 pulled out. When the displacement of the upper base plate 101 is restored, the respective pulling wires 57 are rewound onto the mainspring units 55 and 56, and the pulleys 51 and 52 are rotated according to the length of the respective pulling wires 57 being unwound.

そのため、本第三実施形態による三次元変位計測装置50では、変位のない初期状態では、図10(a)に示すように牽引用ワイヤ57による張力により計測用ワイヤ16は上下ベースプレート101,102に垂直な方向に延びている。そして、地震の際に、図10(b)に示すように、牽引用ワイヤ57と計測用ワイヤ16は略平行な状態を維持しながら伸張と傾斜を行い、変位計10が第一及び第二回転軸9、11回りに所定角度φ、θだけそれぞれ回転し、センサ部21で計測した各測定値φ、θ、rに基づいて測定記録部23によって測定子3の三次元直交座標系における座標(x,y,z)を演算することができる。   Therefore, in the three-dimensional displacement measuring apparatus 50 according to the third embodiment, in the initial state where there is no displacement, the measuring wire 16 is moved to the upper and lower base plates 101 and 102 by the tension of the pulling wire 57 as shown in FIG. It extends in the vertical direction. In the event of an earthquake, as shown in FIG. 10B, the pulling wire 57 and the measuring wire 16 are stretched and tilted while maintaining a substantially parallel state, and the displacement meter 10 is moved in the first and second directions. Coordinates in the three-dimensional orthogonal coordinate system of the probe 3 are measured by the measurement recording unit 23 on the basis of the measured values φ, θ, r measured by the sensor unit 21 and rotated by predetermined angles φ, θ around the rotation axes 9, 11. (X, y, z) can be calculated.

上述のように、本実施形態による三次元変位計測装置50によれば、プーリー51,52と固定部材53、54とゼンマイユニット55、56は測定子3を中心として対称に配置されているため、2本の牽引用ワイヤ57がバランスよく変位計10を牽引し、牽引用ワイヤ57と計測用ワイヤ16とが略平行な状態を維持しながら伸縮することで、上部ベースプレート101の変位に同期して変位計10を追従させることができる。しかも、牽引用ワイヤ57の張力を計測用ワイヤ16よりも高い張力に設定したことで、地震等に対する変位計10の追従性を向上させることができて応答性が一層良くなる。   As described above, according to the three-dimensional displacement measuring apparatus 50 according to the present embodiment, the pulleys 51 and 52, the fixing members 53 and 54, and the spring units 55 and 56 are arranged symmetrically around the measuring element 3, The two pulling wires 57 pull the displacement meter 10 in a well-balanced manner, and the pulling wire 57 and the measuring wire 16 expand and contract while maintaining a substantially parallel state, thereby synchronizing with the displacement of the upper base plate 101. The displacement meter 10 can be made to follow. Moreover, by setting the tension of the pulling wire 57 to be higher than that of the measuring wire 16, the followability of the displacement meter 10 against an earthquake or the like can be improved and the responsiveness is further improved.

なお、牽引用ワイヤ57の張力は大きいほど変位計10の追従性が向上するが、本体センサ2を構成する各部品の強度も大きくする必要があるため、適切な張力を選択する。また、本実施形態では、牽引用ワイヤ57、プーリー51,52、ゼンマイユニット55、56は2組ずつ設けられているが、3組以上設けてもよい。   As the tension of the pulling wire 57 increases, the followability of the displacement meter 10 improves. However, since the strength of each component constituting the main body sensor 2 needs to be increased, an appropriate tension is selected. In the present embodiment, two sets of the pulling wire 57, the pulleys 51 and 52, and the mainspring units 55 and 56 are provided, but three or more sets may be provided.

次に図11により、本発明の第四実施形態による三次元変位計測装置60を説明する。
本実施形態において、2つのプーリー51,52は測定子3の対向する面に固定され、対称に配設されている。これら2つのプーリー51,52は、2つのゼンマイユニット55,56から引き出されて変位計10の支持部15に連結された2本の牽引用ワイヤ57を案内している。
本実施形態による三次元変位計測装置60においても、第三実施形態と同一の作用効果を奏する。
Next, a three-dimensional displacement measuring device 60 according to the fourth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, the two pulleys 51 and 52 are fixed to the opposing surfaces of the measuring element 3 and are arranged symmetrically. These two pulleys 51 and 52 guide two pulling wires 57 that are pulled out from the two mainspring units 55 and 56 and connected to the support portion 15 of the displacement meter 10.
The three-dimensional displacement measuring device 60 according to the present embodiment also has the same effects as the third embodiment.

また、上述した第三実施形態、第四実施形態による三次元変位計測装置50,60の変形例として、図12に示すようにゼンマイユニット55,56をセンサ本体2に取付け、牽引用ワイヤ57を上部ベースプレート101に直に固定してもよい。   Further, as a modification of the three-dimensional displacement measuring devices 50 and 60 according to the third embodiment and the fourth embodiment described above, the mainspring units 55 and 56 are attached to the sensor main body 2 as shown in FIG. It may be fixed directly to the upper base plate 101.

なお、上述した各実施形態による三次元変位計測装置1、30,50,60では、センサ本体2に設けた変位計10の回転軸として第一回転軸9と第二回転軸11を同一平面内で互いに直交する方向に配設し、計測用ワイヤ16を第一回転軸9と第二回転軸11に互いに直交する方向に伸縮させることで、測定子3の変位計測を可能にしたが、これに変えて、回転軸と垂直軸を設置すると共にこれら回転軸と垂直軸に互いに直交する計測用ワイヤ16を伸縮可能に配設して計測用ワイヤ16の先端に測定子3を設けて、計測用ワイヤ16を任意の方向に傾斜及び伸縮可能に構成してもよい。この場合には回転軸と垂直軸によって変位計10を互いに直交する2方向に変位可能としたジンバル機構を構成してもよい。なお、ジンバル機構は、互いに直交する2軸で構成したものに限定されない。例えば、球体形状等でもよい。
また、本発明において、アーム18、多段アーム36は補助アームを構成する。
また、アーム18、計測用ワイヤ16及びプーリー51,52、ぜんまいユニット55,56は補助ガイド部材を構成する。
In the three-dimensional displacement measuring apparatus 1, 30, 50, 60 according to the above-described embodiments, the first rotating shaft 9 and the second rotating shaft 11 are in the same plane as the rotating shaft of the displacement meter 10 provided in the sensor body 2. The displacement of the probe 3 can be measured by arranging the measurement wires 16 in directions orthogonal to each other in the directions perpendicular to each other. In place of this, a rotating shaft and a vertical axis are installed, a measuring wire 16 orthogonal to the rotating shaft and the vertical axis is arranged to be extendable, and a measuring element 3 is provided at the tip of the measuring wire 16 to measure. You may comprise the wire 16 for inclination and expansion-contraction in arbitrary directions. In this case, a gimbal mechanism in which the displacement meter 10 can be displaced in two directions orthogonal to each other by a rotation axis and a vertical axis may be configured. Note that the gimbal mechanism is not limited to one configured with two axes orthogonal to each other. For example, a spherical shape may be used.
In the present invention, the arm 18 and the multistage arm 36 constitute an auxiliary arm.
The arm 18, the measurement wire 16, the pulleys 51 and 52, and the mainspring units 55 and 56 constitute an auxiliary guide member.

1,30、50、60 三次元変位計測装置
2 センサ本体
3 測定子
9 第一回転軸
10 変位計
11 第二回転軸
12、31 ジンバル機構
13 第1角度検出器
14 第2角度検出器
15 支持部
16 計測用ワイヤ
18 アーム
20 三次元変位計測ユニット
21 センサ部
23 測定記録部
34 第一アーム受け部材
35 第二アーム受け部材
36 多段アーム
51,52 プーリー
53、54 固定部材
55,56 ぜんまいユニット
57 牽引用ワイヤ
100 U型ダンパー
101 上部ベースプレート
102 下部ベースプレート
1, 30, 50, 60 Three-dimensional displacement measuring device 2 Sensor body 3 Measuring element 9 First rotating shaft 10 Displacement meter 11 Second rotating shaft 12, 31 Gimbal mechanism 13 First angle detector 14 Second angle detector 15 Support Unit 16 Measuring wire 18 Arm 20 Three-dimensional displacement measuring unit 21 Sensor unit 23 Measurement recording unit 34 First arm receiving member 35 Second arm receiving member 36 Multistage arm 51, 52 Pulley 53, 54 Fixing member 55, 56 Mainspring unit 57 Towing wire 100 U-shaped damper 101 Upper base plate 102 Lower base plate

Claims (11)

相対変位する被測定対象物の一方に取り付けられたセンサ本体と、
前記センサ本体に設けられていて互いに直交する2軸方向に回転可能なジンバル機構によって支持された変位計と、
前記変位計によってその伸縮量を計測可能であって伸縮可能な計測用ワイヤと、
前記計測用ワイヤの他端に連結されていて前記被測定対象物の他方に取り付けられた測定子と、
前記変位計と測定子に直接または前記被測定物の他方を介して接続していて前記測定子の変位に同期して前記計測用ワイヤを一体に変位及び伸縮させる補助ガイド部材と、
前記計測用ワイヤの互いに直交する前記2軸方向の回転角度をそれぞれ検出する第1角度検出器及び第2角度検出器とを備え、
前記第1角度検出器及び第2角度検出器でそれぞれ計測される前記計測用ワイヤの回転角度と前記変位計で計測される前記計測用ワイヤの伸縮量とに基づいて前記被測定対象物の相対的な三次元変位を計測するようにしたことを特徴とする三次元変位計測装置。
A sensor body attached to one of the objects to be measured that are relatively displaced;
A displacement meter provided in the sensor body and supported by a gimbal mechanism that is rotatable in two axial directions orthogonal to each other;
A measuring wire capable of measuring the amount of expansion and contraction by the displacement meter and capable of expanding and contracting,
A probe connected to the other end of the object to be measured and connected to the other end of the measurement wire;
An auxiliary guide member that is connected to the displacement meter and the measuring element directly or via the other of the object to be measured, and that integrally displaces and expands and contracts the measuring wire in synchronization with the displacement of the measuring element;
A first angle detector and a second angle detector for detecting rotation angles in the two axial directions perpendicular to each other of the measurement wire;
Based on the rotation angle of the measurement wire measured by the first angle detector and the second angle detector and the amount of expansion / contraction of the measurement wire measured by the displacement meter, A three-dimensional displacement measuring device characterized by measuring a typical three-dimensional displacement.
相対変位する被測定対象物の一方に取り付けられたセンサ本体と、
前記センサ本体に設けられていて互いに直交する2軸方向に回転可能なジンバル機構によって支持された変位計と、
前記変位計によってその伸縮量を計測可能であって伸縮可能な計測用ワイヤと、
前記計測用ワイヤの他端に連結されていて前記被測定対象物の他方に取り付けられた測定子と、
前記変位計に連結されるとともに所定の張力を有している複数の牽引用ワイヤと、
前記牽引用ワイヤを案内すると共に前記被測定対象物の他方または測定子に取り付けられた複数のプーリーと、
前記牽引用ワイヤを、前記プーリーを介して牽引して繰り出し可能な複数の牽引巻き取り手段と、
前記計測用ワイヤの互いに直交する前記2軸方向の回転角度をそれぞれ検出する第1角度検出器及び第2角度検出器とを備え、
前記第1角度検出器及び第2角度検出器でそれぞれ計測される前記計測用ワイヤの回転角度と前記変位計で計測される前記計測用ワイヤの伸縮量とに基づいて前記被測定対象物の相対的な三次元変位を計測するようにしたことを特徴とする三次元変位計測装置。
A sensor body attached to one of the objects to be measured that are relatively displaced;
A displacement meter provided in the sensor body and supported by a gimbal mechanism that is rotatable in two axial directions orthogonal to each other;
A measuring wire capable of measuring the amount of expansion and contraction by the displacement meter and capable of expanding and contracting,
A probe connected to the other end of the object to be measured and connected to the other end of the measurement wire;
A plurality of pulling wires coupled to the displacement meter and having a predetermined tension;
A plurality of pulleys for guiding the pulling wire and attached to the other or measuring element of the object to be measured;
A plurality of traction winding means capable of pulling and pulling the traction wire through the pulley;
A first angle detector and a second angle detector for detecting rotation angles in the two axial directions perpendicular to each other of the measurement wire;
Based on the rotation angle of the measurement wire measured by the first angle detector and the second angle detector and the amount of expansion / contraction of the measurement wire measured by the displacement meter, A three-dimensional displacement measuring device characterized by measuring a typical three-dimensional displacement.
前記牽引巻き取り手段は、前記牽引用ワイヤをぜんまい等の弾性復帰手段を用いて牽引している請求項2に記載された三次元変位計測装置。   The three-dimensional displacement measuring apparatus according to claim 2, wherein the pulling and winding means pulls the pulling wire using an elastic return means such as a mainspring. 相対変位する被測定対象物の一方に取り付けられたセンサ本体と、
前記センサ本体に設けられていて互いに直交する2軸方向に回転可能なジンバル機構によって支持された変位計と、
前記変位計によってその伸縮量を計測可能であって伸縮可能な計測用ワイヤと、
前記計測用ワイヤの他端に連結されていて被測定対象物の他方に取り付けられた測定子と、
前記変位計と測定子を連結して伸縮可能とした補助アームと、
前記計測用ワイヤの互いに直交する2軸方向の回転角度をそれぞれ検出する第1角度検出器及び第2角度検出器とを備え、
前記第1角度検出器及び第2角度検出器でそれぞれ計測される前記計測用ワイヤの回転角度と変位計で計測される前記計測用ワイヤの伸縮量とに基づいて被測定対象物の相対的な三次元変位を計測するようにしたことを特徴とする三次元変位計測装置。
A sensor body attached to one of the objects to be measured that are relatively displaced;
A displacement meter provided in the sensor body and supported by a gimbal mechanism that is rotatable in two axial directions orthogonal to each other;
A measuring wire capable of measuring the amount of expansion and contraction by the displacement meter and capable of expanding and contracting,
A probe connected to the other end of the object to be measured and connected to the other end of the measurement wire;
An auxiliary arm that is connected to the displacement meter and a measuring element to extend and contract, and
A first angle detector and a second angle detector for detecting rotation angles of the measurement wire in two axial directions perpendicular to each other;
Based on the rotation angle of the measurement wire measured by the first angle detector and the second angle detector and the amount of expansion / contraction of the measurement wire measured by a displacement meter, the relative measurement object is measured. A three-dimensional displacement measuring apparatus characterized by measuring a three-dimensional displacement.
前記補助アームはパンタグラフ状に屈曲可能であって前記計測用ワイヤの周囲を囲うように複数本配設されている請求項4に記載された三次元変位計測装置。   5. The three-dimensional displacement measuring device according to claim 4, wherein a plurality of the auxiliary arms can be bent in a pantograph shape and are arranged so as to surround the circumference of the measuring wire. 前記補助アームはマジックハンド形状である請求項4に記載された三次元変位計測装置。   The three-dimensional displacement measuring apparatus according to claim 4, wherein the auxiliary arm has a magic hand shape. 前記ジンバル機構は、第一回転軸と該第一回転軸に直交する第二回転軸とを備え、前記第一回転軸は前記変位計と前記第二回転軸とを回転可能に支持し、前記第二回転軸は変位計を回転可能に支持するようにした請求項1から6のいずれか1項に記載された三次元変位計測装置。   The gimbal mechanism includes a first rotating shaft and a second rotating shaft orthogonal to the first rotating shaft, and the first rotating shaft rotatably supports the displacement meter and the second rotating shaft, The three-dimensional displacement measuring device according to any one of claims 1 to 6, wherein the second rotation shaft rotatably supports the displacement meter. 前記第1角度検出器及び第2角度検出器は、抵抗素子またはホール素子を用いたポテンショメータ、またはロータリエンコーダである請求項1から7のいずれか1項に記載された三次元変位計測装置。   The three-dimensional displacement measuring device according to any one of claims 1 to 7, wherein the first angle detector and the second angle detector are a potentiometer using a resistance element or a Hall element, or a rotary encoder. 前記変位計は、直動型変位計、またはワイヤ式変位計である請求項1から8のいずれか1項に記載された三次元変位計測装置。   The three-dimensional displacement measuring apparatus according to any one of claims 1 to 8, wherein the displacement meter is a direct acting displacement meter or a wire displacement meter. 請求項1から9のいずれか1項に記載された三次元変位計測装置を備えていて、
前記第1角度検出器、第2角度検出器及び変位計から出力される変位情報をアナログ信号からデジタル信号に変換するA/D変換器と、
前記A/D変換器から出力されるデジタル信号を三次元座標に変換して変位方向と変位量を演算する演算手段と、を備えた三次元変位計測システム。
A three-dimensional displacement measuring device according to any one of claims 1 to 9,
An A / D converter for converting displacement information output from the first angle detector, the second angle detector and the displacement meter from an analog signal to a digital signal;
A three-dimensional displacement measurement system comprising: an arithmetic means for calculating a displacement direction and a displacement amount by converting a digital signal output from the A / D converter into three-dimensional coordinates.
請求項1から9のいずれか1項に記載された三次元変位計測装置を備えていて、
前記被測定対象物の一方は建築物の下部構造体に取り付ける下部ベースプレートであり、他方は上部構造体に取り付ける上部ベースプレートであり、前記下部ベースプレートと上部ベースプレートの間に免震ダンパーを設置したことを特徴とする三次元変位計測システム。
A three-dimensional displacement measuring device according to any one of claims 1 to 9,
One of the objects to be measured is a lower base plate to be attached to a lower structure of a building, and the other is an upper base plate to be attached to an upper structure, and a seismic isolation damper is installed between the lower base plate and the upper base plate. Characteristic 3D displacement measurement system.
JP2015018385A 2014-04-22 2015-02-02 3D displacement measuring device and 3D displacement measuring system Active JP6349267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018385A JP6349267B2 (en) 2014-04-22 2015-02-02 3D displacement measuring device and 3D displacement measuring system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014088472 2014-04-22
JP2014088472 2014-04-22
JP2015018385A JP6349267B2 (en) 2014-04-22 2015-02-02 3D displacement measuring device and 3D displacement measuring system

Publications (2)

Publication Number Publication Date
JP2015215333A true JP2015215333A (en) 2015-12-03
JP6349267B2 JP6349267B2 (en) 2018-06-27

Family

ID=54752327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018385A Active JP6349267B2 (en) 2014-04-22 2015-02-02 3D displacement measuring device and 3D displacement measuring system

Country Status (1)

Country Link
JP (1) JP6349267B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101627560B1 (en) * 2016-02-18 2016-06-07 백양엔지니어링(주) Displacement measuring apparatus using curved elastic plate
CN106908573A (en) * 2017-03-01 2017-06-30 南京医科大学附属口腔医院 A kind of multidimensional mechanics information measurement apparatus evaluated for root canal shaping ability
KR101848714B1 (en) 2016-04-08 2018-04-13 백양엔지니어링 주식회사 Displacement measuring apparatus using curved elastic plate
JP2018084497A (en) * 2016-11-24 2018-05-31 新日鉄住金エンジニアリング株式会社 Storage Box
JP2019109206A (en) * 2017-12-20 2019-07-04 株式会社小野測器 Rotary encoder
CN110200353A (en) * 2019-06-27 2019-09-06 深圳市奥酷曼智能技术有限公司 Foot type data acquisition facility
JP2019207122A (en) * 2018-05-28 2019-12-05 グローバル精工株式会社 Relative displacement measurement device and relative displacement measurement method
CN113029066A (en) * 2021-03-17 2021-06-25 上海船舶运输科学研究所 Method for measuring relative displacement in water of two-ship model
CN113092484A (en) * 2021-04-02 2021-07-09 杭州千岛湖瑞淳机器人研究院有限公司 Visual detection equipment suitable for groove grids
KR102365210B1 (en) * 2021-03-10 2022-02-18 주식회사 광명기술단 Magnifying crack gauge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872039A (en) * 1971-12-30 1973-09-28
JPH0771109A (en) * 1993-09-01 1995-03-14 Takenaka Komuten Co Ltd Three-dimensional base isolation device for base isolation floor
JPH08233569A (en) * 1995-02-28 1996-09-13 Sanwa Tekki Corp Three-dimensional measurement device
JP2007315815A (en) * 2006-05-23 2007-12-06 Kyowa Electron Instr Co Ltd Three-dimensional displacement measuring system
US20090313844A1 (en) * 2008-06-20 2009-12-24 Swanson David W Measuring device with extensible cord and method
US20130232804A1 (en) * 2012-03-08 2013-09-12 Holding Prodim Systems B. V. Apparatus for pointing spatial coordinates, comprising a movable hand-held probe and a portable base unit, and a related method
JP2014016286A (en) * 2012-07-10 2014-01-30 Ohbayashi Corp Displacement measuring device and displacement history recording method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872039A (en) * 1971-12-30 1973-09-28
JPH0771109A (en) * 1993-09-01 1995-03-14 Takenaka Komuten Co Ltd Three-dimensional base isolation device for base isolation floor
JPH08233569A (en) * 1995-02-28 1996-09-13 Sanwa Tekki Corp Three-dimensional measurement device
JP2007315815A (en) * 2006-05-23 2007-12-06 Kyowa Electron Instr Co Ltd Three-dimensional displacement measuring system
US20090313844A1 (en) * 2008-06-20 2009-12-24 Swanson David W Measuring device with extensible cord and method
US20130232804A1 (en) * 2012-03-08 2013-09-12 Holding Prodim Systems B. V. Apparatus for pointing spatial coordinates, comprising a movable hand-held probe and a portable base unit, and a related method
JP2014016286A (en) * 2012-07-10 2014-01-30 Ohbayashi Corp Displacement measuring device and displacement history recording method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101627560B1 (en) * 2016-02-18 2016-06-07 백양엔지니어링(주) Displacement measuring apparatus using curved elastic plate
KR101848714B1 (en) 2016-04-08 2018-04-13 백양엔지니어링 주식회사 Displacement measuring apparatus using curved elastic plate
JP2018084497A (en) * 2016-11-24 2018-05-31 新日鉄住金エンジニアリング株式会社 Storage Box
CN106908573A (en) * 2017-03-01 2017-06-30 南京医科大学附属口腔医院 A kind of multidimensional mechanics information measurement apparatus evaluated for root canal shaping ability
JP2019109206A (en) * 2017-12-20 2019-07-04 株式会社小野測器 Rotary encoder
JP2019207122A (en) * 2018-05-28 2019-12-05 グローバル精工株式会社 Relative displacement measurement device and relative displacement measurement method
CN110200353A (en) * 2019-06-27 2019-09-06 深圳市奥酷曼智能技术有限公司 Foot type data acquisition facility
KR102365210B1 (en) * 2021-03-10 2022-02-18 주식회사 광명기술단 Magnifying crack gauge
CN113029066A (en) * 2021-03-17 2021-06-25 上海船舶运输科学研究所 Method for measuring relative displacement in water of two-ship model
CN113029066B (en) * 2021-03-17 2023-09-29 上海船舶运输科学研究所 Method for measuring relative displacement of two ship models in water
CN113092484A (en) * 2021-04-02 2021-07-09 杭州千岛湖瑞淳机器人研究院有限公司 Visual detection equipment suitable for groove grids

Also Published As

Publication number Publication date
JP6349267B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6349267B2 (en) 3D displacement measuring device and 3D displacement measuring system
Dong et al. A novel continuum robot using twin-pivot compliant joints: design, modeling, and validation
JP2007315815A (en) Three-dimensional displacement measuring system
JP4519941B1 (en) Sensor
CN108827264B (en) Mobile workbench and its mechanical arm optics target positioning device and localization method
JP2010281635A (en) Force sensor
CN110497385B (en) Device and method for precisely measuring pose of moving platform of six-degree-of-freedom parallel mechanism
JP2010019615A (en) Deformation measuring device
CN105043333A (en) Miniaturized underwater manipulator position angle measuring method
JP6585694B2 (en) Strain sensor, multi-axis force sensor and robot
Chen et al. Design, modeling and testing of a 3-DOF flexible piezoelectric thin sheet nanopositioner
JP2022529611A (en) Coordinate positioning machine
JP2012076188A (en) Parallel link mechanism and driving stage
JP6448613B2 (en) Motion platform configuration
JP2008002867A (en) Attitude angle determining apparatus and determining method for the same
JP5732985B2 (en) Torque calculation device, torque calculation method, and program
JP2018184710A (en) Inspection device
US11440182B2 (en) Expansion device and movable body
JP5273432B2 (en) controller
JP5319271B2 (en) ROBOT TOOL POSITION DETECTING METHOD, ROBOT AND OBJECT RELATIVE POSITION DETECTING METHOD AND DEVICE
JP2011080945A (en) Force sensor
KR102279329B1 (en) Robot teaching system
JP2005329512A (en) Method and device for detecting fingertip force of robot hand
CN108772823B (en) Device for acquiring pose quantity of three-axis flexible parallel platform and parallel platform system
JP6911289B2 (en) Encoder device, rotation information acquisition method, correction device, drive device, and robot device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250