JP2015215262A - Method and device for non-destructive inspection - Google Patents

Method and device for non-destructive inspection Download PDF

Info

Publication number
JP2015215262A
JP2015215262A JP2014098899A JP2014098899A JP2015215262A JP 2015215262 A JP2015215262 A JP 2015215262A JP 2014098899 A JP2014098899 A JP 2014098899A JP 2014098899 A JP2014098899 A JP 2014098899A JP 2015215262 A JP2015215262 A JP 2015215262A
Authority
JP
Japan
Prior art keywords
scattered
ray
inspection object
rays
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014098899A
Other languages
Japanese (ja)
Other versions
JP6277520B2 (en
Inventor
祐嗣 大石
Suketsugu Oishi
祐嗣 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2014098899A priority Critical patent/JP6277520B2/en
Publication of JP2015215262A publication Critical patent/JP2015215262A/en
Application granted granted Critical
Publication of JP6277520B2 publication Critical patent/JP6277520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-destructive inspection device capable of simply detecting a state of an inspection object in the case of using Compton scattering γ rays without being affected by fluctuation of a γ ray source, and moreover without causing a problem of restriction of the arrangement position of a detector.SOLUTION: A non-destructive inspection method includes: a γ-ray source 1 for radiating a γ-ray toward an inspection object 3; a collimator for collimating a scattered γ-ray based on Compton scattering obtained as a result of the irradiation; and a detector for generating a scattered γ-ray energy distribution characteristic representing signal strength for scattered γ-ray energy of a scattered γ-ray signal representing the scattered γ-ray incident via the collimator. The detector 2 detects a state of the inspection object 3 when a peak of signal intensity of a scattered γ-ray based on Compton scattering is shifted to a high energy side or a low energy side in the scattered γ-ray energy distribution characteristic as a thickness of the inspection object 3 becomes thin.

Description

本発明は非破壊検査方法およびその装置に関し、特にコンプトン散乱を利用した非破壊検査に適用して有用なものである。   The present invention relates to a nondestructive inspection method and an apparatus therefor, and is particularly useful when applied to a nondestructive inspection utilizing Compton scattering.

原子力設備の配管の検査等にはX線またはγ線(以下、本明細書において両者をまとめてγ線という)を利用した非破壊検査が汎用されている。これは検査対象物である配管等にγ線を照射し、これによる検査対象物の透過画像を解析して減肉の程度等を検出するものである(例えば特許文献1参照)。   Non-destructive inspection using X-rays or γ-rays (hereinafter collectively referred to as γ-rays in the present specification) is widely used for inspection of piping of nuclear facilities. In this method, γ-rays are irradiated to a pipe or the like that is an inspection object, and a transmission image of the inspection object is analyzed to detect the degree of thinning (for example, see Patent Document 1).

しかしながら、検査対象物の透過画像を得ることにより減肉の程度等を検査する場合においては、γ線を検出する検出器を、γ線を照射する線源に対し検査対象物を挟んで反対側に配置する必要がある。   However, when inspecting the degree of thinning by obtaining a transmission image of the inspection object, the detector for detecting γ rays is placed on the opposite side of the inspection object with respect to the radiation source that irradiates γ rays. Need to be placed in.

このため、線源に対する検査対象物の反対側が狭隘部であったり、他の配管等の障害物の存在により検出器を配設するための十分なスペースが確保できない場合も多い。   For this reason, the opposite side of the object to be inspected with respect to the radiation source is often a narrow part, or a sufficient space for disposing the detector cannot be secured due to the presence of obstacles such as other pipes.

一方、コンプトン後方散乱に基づく散乱γ線を利用すれば線源と検出器を検査対象物に対して同じ側に配設することもできる。コンプトン後方散乱とは、図5(a)に示すように、所定のγ線をターゲットTに照射したとき、γ線に対して角度Φの方向に飛び出す反跳電子Eとともに、エネルギーが変化した散乱γ線として元のγ線が散乱される現象をいう。ここで、散乱γ線の散乱角θはターゲットTに照射されるγ線のエネルギーEと散乱される散乱γ線の散乱γ線エネルギーEとで一意に定まる。散乱角θ>90°の領域に散乱する場合を、特に後方散乱という。 On the other hand, if scattered gamma rays based on Compton backscattering are used, the radiation source and the detector can be arranged on the same side with respect to the inspection object. As shown in FIG. 5 (a), Compton backscattering shows that when the target T is irradiated with a predetermined γ-ray, the energy changes with recoil electrons E e that jump out in the direction of the angle Φ with respect to the γ-ray. A phenomenon in which the original γ rays are scattered as scattered γ rays. Here, the scattering angle θ of the scattered γ-ray is uniquely determined by the energy E 0 of the γ-ray irradiated to the target T and the scattered γ-ray energy E 1 of the scattered γ-ray scattered. The case of scattering in a region where the scattering angle θ> 90 ° is particularly referred to as backscattering.

したがって、図5(b)に示すように、γ線源01と検出器02とを散乱角θ>90°に合致するように配設すれば、γ線源01と検出器02とを検査対象物である配管03に対して同じ側に配設することができ、検出器02の配設条件を緩和することができる。ここで、検出器02では、図5(c)に示すように、散乱角θ(γ線源01の配設位置と検出器02の配設位置とがなす角度)で一意に特定される散乱γ線の散乱γ線エネルギーEで信号強度がピークとなる散乱γ線エネルギー分布が得られる。なお、図5(c)の横軸には、散乱γ線のエネルギーを採り、縦軸には検出器02で検出される散乱γ線信号の信号強度を採ってある。散乱γ線信号は、散乱γ線の強度を表す信号である。また、γ線源01および検出器02の前には、図示はしないが、通常コリメーターが配設される。 Accordingly, as shown in FIG. 5B, if the γ-ray source 01 and the detector 02 are arranged so as to match the scattering angle θ> 90 °, the γ-ray source 01 and the detector 02 are inspected. It can arrange | position on the same side with respect to the piping 03 which is a thing, and the arrangement | positioning conditions of the detector 02 can be eased. Here, in the detector 02, as shown in FIG. 5C, the scattering uniquely identified by the scattering angle θ (the angle formed by the arrangement position of the γ-ray source 01 and the arrangement position of the detector 02). A scattered γ-ray energy distribution having a peak signal intensity is obtained at the scattered γ-ray energy E 1 of γ-rays. In FIG. 5C, the horizontal axis represents the energy of the scattered γ-ray, and the vertical axis represents the signal intensity of the scattered γ-ray signal detected by the detector 02. The scattered γ-ray signal is a signal representing the intensity of the scattered γ-ray. Although not shown, a normal collimator is usually provided in front of the γ-ray source 01 and the detector 02.

一方、図6(a)に示すように、検査対象物である配管03が内周に減肉を生起することなく正常な状態を維持している場合の後方散乱γ線の散乱γ線エネルギーEは、図6(b)に示すように、検査対象物である配管03の内周に減肉部03Aが形成されている場合よりも大きくなる。検査対象物である配管03の肉厚部分は鉄等の高密度物質であるのに対し、減肉部03Aは低密度の空気であるので、かかる空気部分でγ線の散乱強度が大きく低下するからである。例えば、γ線源01である放射性同位体イリジウム線源から照射されるγ線のエネルギーEが320keVとすると、散乱角θ=90°の場合の散乱γ線の散乱γ線エネルギーEは197keVと、一意に決まる。したがって、検査対象物である配管03に減肉部03Aが発生している場合には散乱γ線の散乱γ線エネルギーEの信号強度が小さくなる。 On the other hand, as shown in FIG. 6A, the scattered γ-ray energy E of the back-scattered γ-ray when the pipe 03 that is the inspection object maintains a normal state without causing thinning on the inner periphery. As shown in FIG. 6B, 1 is larger than the case where the thinned portion 03A is formed on the inner periphery of the pipe 03 that is the inspection object. The thick portion of the pipe 03, which is the inspection object, is a high-density material such as iron, whereas the thinned portion 03A is low-density air, so that the γ-ray scattering intensity greatly decreases in the air portion. Because. For example, assuming that the energy E 0 of γ-rays emitted from the radioisotope iridium source, which is the γ-ray source 01, is 320 keV, the scattered γ-ray energy E 1 of the scattered γ-rays when the scattering angle θ = 90 ° is 197 keV. It is uniquely determined. Accordingly, the signal intensity of the scattered γ ray energy E 1 of the scattered γ ray becomes small when the reduced thickness portion 03A on the pipe 03 which is an inspection object is occurring.

そこで、図5(c)に示す散乱γ線エネルギー分布において散乱γ線の散乱γ線エネルギーEを検出することにより減肉の発生を検出し得る(例えば、非特許文献1参照)。 Therefore, occurrence of thinning can be detected by detecting the scattered γ-ray energy E 1 of the scattered γ-rays in the scattered γ-ray energy distribution shown in FIG. 5C (see, for example, Non-Patent Document 1).

特開2006―177841号公報JP 2006-177841 A

(社)日本原子力学会「1995秋の大会」(1995年10月17日〜20日、原研) コンプトン散乱を用いた保温材表面からの点検技術、(株)東芝、宇高彰、濱島隆之、後藤哲夫(Japan) Atomic Energy Society of Japan "1995 Autumn Conference" (October 17-20, 1995, JAERI) Inspection technology from the surface of thermal insulation materials using Compton scattering, Toshiba Corporation, Akira Udaka, Takayuki Takashima, Goto Tetsuo

ところが、上述の如く図5(c)に示す散乱γ線エネルギー分布特性における散乱γ線の散乱γ線エネルギーEの信号強度に基づき減肉を検出する場合には、γ線源01の揺らぎが問題となる。γ線源として、例えば放射性同位体線源を用いた場合、γ線源01から照射されるγ線の強度が時間の経過とともに揺らぐことがあり、これに伴い基準の信号強度が変化してしまい、高精度の測定の阻害要因となってしまうからである。 However, as described above, when the thinning is detected based on the signal intensity of the scattered γ-ray energy E 1 of the scattered γ-rays in the scattered γ-ray energy distribution characteristics shown in FIG. It becomes a problem. For example, when a radioisotope source is used as the γ-ray source, the intensity of the γ-ray irradiated from the γ-ray source 01 may fluctuate with time, and the reference signal intensity changes accordingly. This is because it becomes an impediment to highly accurate measurement.

なお、上述の如く、基準の信号強度が変化してしまうという問題は、図6に示す場合のように、コンプトン後方散乱を利用する場合のみならず、コンプトン散乱を利用する場合には、同様に発生する。すなわち、かかる基準の信号強度の揺れという問題は、散乱γ線エネルギーEの信号強度の大きさのみを利用する限り、後方散乱に限ることなく、一般に発生する。 Note that, as described above, the problem that the reference signal intensity changes is not only when using Compton backscattering as shown in FIG. 6, but also when using Compton scattering. Occur. That is, a problem that fluctuation of the signal intensity of such criteria as long as it utilizes only the magnitude of the signal intensity of the scattered γ ray energy E 1, not limited to backscattering generally occurs.

本発明は、上述の従来技術に鑑み、コンプトン散乱γ線を利用する場合において、検査対象物の状態を、γ線源の揺らぎの影響を受けることなく、さらに検出器の配設位置の制限という問題を生起することなく、簡便かつ高精度に検出し得る非破壊検査方法およびその装置を提供することを目的とする。   In view of the above-described prior art, the present invention, in the case of using Compton scattered γ-rays, the state of the inspection object is not affected by fluctuations in the γ-ray source, and is further referred to as a restriction on the arrangement position of the detector. It is an object of the present invention to provide a nondestructive inspection method and apparatus capable of easily and accurately detecting without causing a problem.

上記目的を達成する本発明は次の知見を基礎とするものである。図1に示すように、γ線源1から検査対象物3である鉄板(厚さ10mm)に向けてγ線を照射し、この場合の後方散乱γ線をコリメーター(例えば、内径φ=10mm)4を介して検出器2で検出する場合を考える。前述の如く、この場合には、図5(c)に示すような散乱γ線エネルギー分布特性が得られる。同図に示す場合は、散乱γ線エネルギーEで信号強度のピークPが観測されている。 The present invention that achieves the above object is based on the following knowledge. As shown in FIG. 1, γ-rays are irradiated from a γ-ray source 1 toward an iron plate (thickness 10 mm) as an inspection object 3, and backscattered γ-rays in this case are converted into a collimator (for example, inner diameter φ = 10 mm). ) Let us consider a case in which the detector 2 detects via 4. As described above, in this case, a scattered γ-ray energy distribution characteristic as shown in FIG. 5C is obtained. The case shown in the figure, the peak P of the signal intensity in the scattered γ ray energy E 1 are observed.

また、この場合の散乱γ線エネルギーは次式(1)で与えられる。   In this case, the scattered γ-ray energy is given by the following equation (1).

図2には、検査対象物3である鉄板の厚さを10mm、7mm、6mm、5mmと変化させて同様にγ線を照射し、検査対象物3で散乱され、コリメーター4を介して検出された散乱γ線に基づく散乱γ線エネルギー分布特性を示す。当該、散乱γ線エネルギー分布特性は、各板厚毎にシミュレーション演算を行なった結果である。同図を参照すれば、明かな通り、板厚が10mm(図2(a))から5mm(図2(d))へと減少するに従い信号強度のピークPの位置が理論値に対し、高エネルギー側にシフトしているのが分かる。図では、E=468keVのγ線がθ=90°方向に散乱された散乱γ線おいて、図2(a)に示す10mmの場合と、図2(d)に示す5mmの場合とではシフト量ΔEのシフトが生起されている。このように、ピークPの位置が高エネルギー側にシフトする現象を利用し、シフト量ΔEと検査対象物3の厚さとの相関関係を利用すれば、検査対象物3の減肉等、その状態を検出することができると考えられる。 In FIG. 2, the thickness of the iron plate that is the inspection object 3 is changed to 10 mm, 7 mm, 6 mm, and 5 mm, and γ-rays are similarly irradiated, scattered by the inspection object 3, and detected through the collimator 4. The scattered γ-ray energy distribution characteristics based on the scattered γ-rays thus obtained are shown. The scattered γ-ray energy distribution characteristics are the results of simulation calculations for each plate thickness. Referring to the figure, as is clear, as the plate thickness decreases from 10 mm (FIG. 2 (a)) to 5mm (FIG. 2 (d)), the position of the peak P of the signal intensity is higher than the theoretical value. You can see that it is shifting to the energy side. In the figure, in the case of the scattered γ-rays in which E 0 = 468 keV γ-rays are scattered in the θ = 90 ° direction, the case of 10 mm shown in FIG. 2A and the case of 5 mm shown in FIG. A shift of the shift amount ΔE 1 has occurred. As described above, if the correlation between the shift amount ΔE 1 and the thickness of the inspection object 3 is used by utilizing the phenomenon that the position of the peak P shifts to the high energy side, It is thought that the state can be detected.

なお、ピークPの位置が高エネルギー側にシフトする理由は、次のように考えられる。図5(c)に示すように、一般にコンプトン散乱γ線は、散乱γ線エネルギー分布特性上で信号強度のピークPを中心にある程度のエネルギー広がりを持つ。その理由の1つとして、鉛のコリメーター4の内径φが10mmであり、観測領域がピンポイントでないことが挙げられる。すなわち、コリメーター4の横断面は有限の広がりを持っている。上記シミュレーションにおいては、散乱角度θ=90°で散乱されるγ線に着目しているが、図1に示すようにコリメーター4の回転対称軸とγ線進行軸の交差点は検査対象物3から10mm奥まった位置に存在し、コリメーター4の内径φの半径が5mmであるため、検査対象物3の表面から10−(5√2)=6.5mmよりも奥まった場所からの散乱γ線(散乱角度θ=90°)は観測される。一方、図1に示すように、6.5mmよりも浅い領域からは幾何学的制限により、散乱γ線(散乱角度θ=90°)は観測されず、散乱角度θ<90°の散乱γ線のみが観測される。散乱角度θ<90°の散乱γ線エネルギーは上記式(1)よりθ=90°に比べ、高エネルギーであり、このことが検査対象物3が薄くなるにつれて、散乱γ線のピークエネルギー位置が高エネルギー側にシフトする理由と考えられる。   The reason why the position of the peak P shifts to the high energy side is considered as follows. As shown in FIG. 5C, generally, Compton scattered γ-rays have a certain energy spread around the peak P of the signal intensity on the scattered γ-ray energy distribution characteristics. One reason for this is that the inner diameter φ of the lead collimator 4 is 10 mm and the observation region is not pinpointed. That is, the cross section of the collimator 4 has a finite extent. In the above simulation, attention is paid to γ-rays scattered at a scattering angle θ = 90 °. As shown in FIG. 1, the intersection of the rotational symmetry axis of the collimator 4 and the γ-ray traveling axis is determined from the inspection object 3. Since the radius of the inner diameter φ of the collimator 4 is 5 mm at a position 10 mm deeper, scattered γ-rays from a position deeper than 10− (5√2) = 6.5 mm from the surface of the inspection object 3 (Scattering angle θ = 90 °) is observed. On the other hand, as shown in FIG. 1, scattered γ-rays (scattering angle θ = 90 °) are not observed from an area shallower than 6.5 mm due to geometric limitations, and scattered γ-rays having a scattering angle θ <90 °. Only observed. The scattered γ-ray energy at a scattering angle θ <90 ° is higher than that of θ = 90 ° from the above equation (1), and this indicates that the peak energy position of the scattered γ-rays becomes smaller as the inspection object 3 becomes thinner. This is considered to be the reason for shifting to the high energy side.

図3は図2に示す検出結果に基づき検出した検査対象物であるFeの厚さと、ピークシフトとの関係を示す特性図である。同図を参照すれば、コリメーター4の幾何学的制限により散乱γ線(散乱角度θ=90°)が観測されない、6.5mmよりも浅い領域でシフト量ΔEが急激に増加していることが分かる。 FIG. 3 is a characteristic diagram showing the relationship between the thickness of Fe that is the inspection object detected based on the detection result shown in FIG. 2 and the peak shift. Referring to the figure, the shift amount ΔE 1 increases rapidly in a region shallower than 6.5 mm where no scattered γ-rays (scattering angle θ = 90 °) are observed due to geometric limitations of the collimator 4. I understand that.

かかる知見を基礎とする本発明の第1の態様は、X線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射するとともに、前記照射の結果得られるコンプトン散乱に基づく散乱γ線をコリメーターでコリメートして検出し、検出した前記散乱γ線を表す散乱γ線信号の散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を求めるとともに、前記検査対象物の厚さが薄くなるに従い、前記信号強度のピークが、前記コリメーターの径に応じ、前記散乱γ線エネルギー分布特性において前記散乱γ線エネルギーの高エネルギー側または低エネルギー側にシフトすることを利用して前記検査対象物の状態を検出することを特徴とする非破壊検査方法にある。   The first aspect of the present invention based on this knowledge is based on Compton scattering obtained as a result of the irradiation while irradiating the inspection object with X-rays or γ-rays (hereinafter collectively referred to as γ-rays). The scattered γ-rays are detected by collimating with a collimator, and the scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the scattered γ-ray energy of the scattered γ-ray signal representing the detected scattered γ-rays is obtained. As the thickness decreases, the peak of the signal intensity shifts to the high energy side or the low energy side of the scattered γ-ray energy in the scattered γ-ray energy distribution characteristics according to the diameter of the collimator. And a non-destructive inspection method characterized by detecting the state of the inspection object.

本態様によれば、散乱γ線エネルギー分布特性における信号強度のピークのシフト態様をとらえることにより、検査対象物の減肉等、その状態を容易かつ適確に検出することができる。   According to this aspect, it is possible to easily and accurately detect the state such as thinning of the inspection object by grasping the shift aspect of the signal intensity peak in the scattered γ-ray energy distribution characteristics.

本発明の第2の態様は、第1の態様に記載する非破壊検査方法において、前記状態の検出は、標準の検査対象物における前記ピークの位置を基準ピーク位置とし、該基準ピーク位置と、実測した検査対象物の前記ピークの位置である実測ピーク位置との差であるシフト量に基づき行うことを特徴とする非破壊検査方法にある。   According to a second aspect of the present invention, in the nondestructive inspection method according to the first aspect, the detection of the state uses the peak position in a standard inspection object as a reference peak position, and the reference peak position; The nondestructive inspection method is characterized in that the nondestructive inspection method is performed based on a shift amount which is a difference from the actually measured peak position which is the peak position of the actually measured inspection object.

本態様によれば、定量的な基準となるシフト量を利用して減肉等の所定の状態を客観的に把握し得る。   According to this aspect, it is possible to objectively grasp a predetermined state such as thinning using a shift amount that is a quantitative reference.

本発明の第3の態様は、第1または第2の態様に記載する非破壊検査方法において、前記コンプトン散乱は、コンプトン後方散乱であることを特徴とする非破壊検査方法にある。   According to a third aspect of the present invention, in the nondestructive inspection method according to the first or second aspect, the Compton scattering is Compton backscattering.

本態様によれば、配管等が錯綜して配設された狭隘部の検出対象であっても検出位置の条件が緩和され良好な作業性を担保した上で、容易に所定の状態検出を行なうことができる。   According to this aspect, even if it is a detection target of a narrow portion where piping and the like are arranged in a complicated manner, the detection position condition is relaxed and good workability is ensured, and a predetermined state is easily detected. be able to.

本発明の第4の態様は、検査対象物に向けてγ線を照射するγ線源と、前記照射の結果得られるコンプトン散乱に基づく散乱γ線をコリメートするコリメーターと、該コリメーターを介して入射された前記散乱γ線を表す散乱γ線信号の散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を生成する検出器とを有する非破壊検査装置において、前記検出器は、前記検査対象物の厚さが薄くなるに従い、前記コンプトン散乱に基づく散乱γ線の信号強度のピークが、前記コリメーターの径に応じ、前記散乱γ線エネルギー分布特性において前記散乱γ線エネルギーの高エネルギー側または低エネルギー側へシフトする際のシフト量に基づき前記検査対象物の状態を検出するものであることを特徴とする非破壊検査装置にある。   According to a fourth aspect of the present invention, there is provided a γ-ray source that irradiates a test object with γ-rays, a collimator that collimates scattered γ-rays based on Compton scattering obtained as a result of the irradiation, and the collimator And a detector that generates a scattered γ-ray energy distribution characteristic that represents a signal intensity with respect to scattered γ-ray energy of a scattered γ-ray signal that represents the scattered γ-rays incident thereon. As the inspection object becomes thinner, the peak of the signal intensity of the scattered γ-rays based on the Compton scattering has a higher energy of the scattered γ-ray energy in the scattered γ-ray energy distribution characteristics according to the diameter of the collimator. The non-destructive inspection apparatus is characterized in that the state of the inspection object is detected based on a shift amount when shifting to a low energy side or a low energy side.

本態様によれば、散乱γ線エネルギー分布特性における信号強度のピークのシフト態様をとらえることにより、検査対象物の減肉等、その状態を容易かつ適確に検出することができる。   According to this aspect, it is possible to easily and accurately detect the state such as thinning of the inspection object by grasping the shift aspect of the signal intensity peak in the scattered γ-ray energy distribution characteristics.

本発明の第5の態様は、第4の態様に記載する非破壊検査装置において、前記検出器は、前記シフト量が所定の閾値を超えた場合に前記検査対象物が不良であると判定することを特徴とする非破壊検査装置にある。   According to a fifth aspect of the present invention, in the nondestructive inspection apparatus according to the fourth aspect, the detector determines that the inspection object is defective when the shift amount exceeds a predetermined threshold value. It is in the nondestructive inspection apparatus characterized by this.

本態様によれば、閾値を超えるか否かを目安として検査対象物の良否を適確に判定し得る。   According to this aspect, whether or not the inspection object is good can be accurately determined by using whether or not the threshold value is exceeded.

本発明の第6の態様によれば、第4または第5の態様に記載する非破壊検査装置において、前記コンプトン散乱は、コンプトン後方散乱であり、前記検出器は、前記検査対象物に対して同じ側に配設されていることを特徴とする非破壊検査装置にある。   According to a sixth aspect of the present invention, in the nondestructive inspection apparatus according to the fourth or fifth aspect, the Compton scattering is Compton backscattering, and the detector is configured to detect the inspection object. The non-destructive inspection apparatus is arranged on the same side.

本態様によれば、配管等が錯綜して配設された狭隘部の検出対象であっても検出器の配設位置の条件が緩和される。この結果、良好な作業性を担保した上で、容易に所定の状態検出を行なうことができる。   According to this aspect, even if the detection target is a narrow portion where piping and the like are arranged in a complicated manner, the condition of the arrangement position of the detector is relaxed. As a result, it is possible to easily detect a predetermined state while ensuring good workability.

本発明によれば、検査対象物の厚さが薄くなるに従い、前記検査対象物に照射されて散乱された散乱γ線を表す散乱γ線信号の信号強度のピークが、散乱γ線エネルギー分布特性において散乱γ線エネルギーの高エネルギー側または低エネルギー側にシフトすることを利用して前記検査対象物の状態、例えば厚さ等を適確に検出することができる。ここで、本発明は、散乱γ線に基づく信号強度と他の対象物とを比較するものではなく、ピークのシフトのみを基準として所定の判断をするものであるので、γ線源の揺らぎ等の影響を受けることもない。   According to the present invention, as the inspection object becomes thinner, the peak of the signal intensity of the scattered γ-ray signal representing the scattered γ-rays irradiated and scattered on the inspection object becomes the scattered γ-ray energy distribution characteristic. The state of the object to be inspected, for example, the thickness or the like can be accurately detected using the shift of the scattered γ-ray energy to the high energy side or the low energy side. Here, the present invention does not compare the signal intensity based on the scattered γ-rays with other objects, but makes a predetermined determination based on only the peak shift. It is not affected by.

検査対象物にγ線を照射し、これに伴う散乱γ線をコリメーターによりコリメートして検出する場合の態様を概念的に示す説明図である。It is explanatory drawing which shows notionally the aspect in the case of irradiating a to-be-inspected object with a gamma ray and collimating and detecting the scattered gamma ray accompanying this with a collimator. 検査対象物の厚さを変えて行う図1に示す散乱γ線を利用した検出の際のそれぞれの厚みに対応する散乱γ線エネルギー分布特性を示す特性図である。It is a characteristic view which shows the scattered gamma ray energy distribution characteristic corresponding to each thickness in the case of the detection using the scattered gamma ray shown in FIG. 1 performed by changing the thickness of a test object. 図2に示す検出結果に基づき検出した検査対象物であるFeの厚さと、ピークシフトとの関係を示す特性図である。It is a characteristic view which shows the relationship between the thickness of Fe which is a test object detected based on the detection result shown in FIG. 2, and a peak shift. 本発明の実施の形態に係る非破壊検査装置を示すブロック図である。It is a block diagram which shows the nondestructive inspection apparatus which concerns on embodiment of this invention. 従来周知のコンプトン後方散乱の原理を模式的に示す説明図である。It is explanatory drawing which shows the principle of conventionally well-known Compton backscattering typically. コンプトン後方散乱を利用して配管の減肉を非破壊検査する従来技術の原理を模式的に示す説明図である。It is explanatory drawing which shows typically the principle of the prior art which carries out nondestructive inspection of the thinning of piping using Compton backscattering.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図4は本発明の実施の形態に係る非破壊検査装置を示すブロック図である。同図に示すように、本形態に係る非破壊検査装置は、例えば配管である検査対象物3に向けてγ線を照射するγ線源1と、前記照射の結果得られるコンプトン散乱に基づく散乱γ線を検出する検出器2とを有している。ここで、検出器2と検査対象物3との間には、内径φが、例えば10mmの鉛の円筒状部材で形成したコリメーター4(図1参照)が配設してある。この結果、散乱γ線は、コリメーター4でコリメートされて検出器2に入射される。   FIG. 4 is a block diagram showing a nondestructive inspection apparatus according to an embodiment of the present invention. As shown in the figure, the nondestructive inspection apparatus according to this embodiment includes a γ-ray source 1 that irradiates γ-rays toward an inspection object 3 that is, for example, a pipe, and scattering based on Compton scattering obtained as a result of the irradiation. and a detector 2 for detecting γ-rays. Here, a collimator 4 (see FIG. 1) formed of a lead cylindrical member having an inner diameter φ of, for example, 10 mm is disposed between the detector 2 and the inspection object 3. As a result, the scattered γ rays are collimated by the collimator 4 and are incident on the detector 2.

ここで、γ線源1は、例えば放射性同位体イリジウム線源を好適に適用し得る。また、検出器2は、コリメーター4を介して入射された前記散乱γ線を表す散乱γ線信号の散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性(図2参照)を生成する。   Here, as the γ-ray source 1, for example, a radioisotope iridium radiation source can be suitably applied. In addition, the detector 2 generates a scattered γ-ray energy distribution characteristic (see FIG. 2) indicating the signal intensity of the scattered γ-ray signal representing the scattered γ-rays incident through the collimator 4 with respect to the scattered γ-ray energy. .

前記検出器は、前記検査対象物の厚さが薄くなるに従い、前記コンプトン散乱に基づく散乱γ線の信号強度のピークが、前記コリメーターの径に応じ、前記散乱γ線エネルギー分布特性において前記散乱γ線エネルギーの高エネルギー側または低エネルギー側へシフトする際のシフト量に基づき前記検査対象物の状態を検出する。   The detector has a signal intensity peak of scattered γ-rays based on the Compton scattering as the thickness of the object to be inspected decreases in the scattered γ-ray energy distribution characteristics according to the diameter of the collimator. The state of the inspection object is detected based on the shift amount when the γ-ray energy is shifted to the high energy side or the low energy side.

さらに詳言すると、検出器2は、コンプトン後方散乱γ線を入射する入射部2A、コンプトン後方散乱γ線を表すコンプトン後方散乱γ線信号を生成する信号処理部2B、コンプトン後方散乱γ線信号を処理して検査対象物3の減肉の状態を検出する演算処理部2C、減肉の状態を検出するための基準データを記憶している記憶部2Dおよび演算処理部2Cで検出した検出結果を表示する表示部2Eを有している。信号処理部2Bでは、コンプトン後方散乱γ線を処理して散乱γ線エネルギーに対するコンプトン後方散乱γ線信号の信号強度を表す、図2に示すようなγ線エネルギー分布特性を生成する。記憶部2Dには、健全な(減肉を生起していない)検査対象物3の散乱γ線エネルギー分布特性(以下、基準散乱γ線エネルギー分布特性という)が予め記憶してある。ここで、基準散乱γ線エネルギー分布特性には、散乱γ線エネルギーEの信号強度のピークPが存在する。演算処理部2Cでは、実測データから生成した散乱γ線エネルギー分布における散乱γ線エネルギーの信号強度のピークPの位置を検出し、この位置が所定の閾値を越えて高エネルギー側または低エネルギー側にシフトしている場合にこのことを表す警告またはデータを表示部に2Eに表示する。 More specifically, the detector 2 includes an incident unit 2A that receives Compton backscattered γ rays, a signal processing unit 2B that generates a Compton backscattered γray signal representing Compton backscattered γrays, and a Compton backscattered γray signal. An arithmetic processing unit 2C that processes and detects a thinning state of the inspection object 3, a storage unit 2D that stores reference data for detecting the thinning state, and a detection result detected by the arithmetic processing unit 2C. It has a display section 2E for displaying. The signal processing unit 2B processes the Compton backscattered γ-ray to generate a γ-ray energy distribution characteristic as shown in FIG. 2 that represents the signal intensity of the Compton backscattered γ-ray signal with respect to the scattered γ-ray energy. The storage unit 2D stores in advance a scattered γ-ray energy distribution characteristic (hereinafter referred to as a reference scattered γ-ray energy distribution characteristic) of a healthy inspection object 3 (which does not cause thinning). Here, a peak P of the signal intensity of the scattered γ-ray energy E 1 exists in the reference scattered γ-ray energy distribution characteristic. In the arithmetic processing unit 2C, the position of the peak P of the signal intensity of the scattered γ-ray energy in the scattered γ-ray energy distribution generated from the actual measurement data is detected, and this position exceeds a predetermined threshold value to the high energy side or the low energy side. When shifting, a warning or data indicating this is displayed on the display unit 2E.

このように、本形態における検出器2では、検査対象物3の厚さが薄くなるに従い、コンプトン散乱に基づく散乱γ線の信号強度のピークPが、散乱γ線エネルギー分布特性において散乱γ線エネルギーの高エネルギー側または低エネルギー側へシフトする際のシフト量を検出し、このシフト量に基づき検査対象物3の減肉量等、検査対象物3の状態を検出する。ここで、本形態では、信号強度と他の対象物とを比較するものではなく、ピークのシフトのみを基準として所定の判断をするものであるので、γ線源1の揺らぎ等の影響を受けることもない。   As described above, in the detector 2 according to the present embodiment, as the inspection object 3 becomes thinner, the peak P of the scattered γ-ray signal intensity based on Compton scattering becomes the scattered γ-ray energy in the scattered γ-ray energy distribution characteristics. The shift amount when shifting to the high energy side or the low energy side is detected, and the state of the inspection object 3 such as the thinning amount of the inspection object 3 is detected based on the shift amount. Here, in this embodiment, the signal intensity is not compared with other objects, but a predetermined determination is made based only on the shift of the peak, so that it is affected by fluctuations of the γ-ray source 1 and the like. There is nothing.

なお、上記実施の形態では、コンプトン後方散乱γ線を利用する場合に関して説明したが、後方散乱に限るものではない。ただ、後方散乱を利用する場合にはγ線源1と検出器2とを検査対象物3である配管に対して同じ側に配設することができるので、機器配置の自由度が向上する。また、検査対象物3も配管である必要はなく、必ずしも減肉を検出するものである必要もない。広く検査対象物の各部の寸法を検出する非破壊検査装置として有用なものである。さらに、標準データを提供する標準試料との比較においてシフト量を検出する必要も、必ずしもなく、要するに検査対象物3の厚さが薄くなるに従い、信号強度のピークPが、散乱γ線エネルギー分布特性において散乱γ線エネルギーの高エネルギー側または低エネルギー側にシフトすることを利用して検査対象物3の状態を検出する場合は、すべて本発明の技術思想に含まれる。   In the above embodiment, the case of using Compton backscattered γ rays has been described. However, the present invention is not limited to backscattering. However, when using backscattering, since the γ-ray source 1 and the detector 2 can be arranged on the same side with respect to the pipe that is the inspection object 3, the degree of freedom in equipment arrangement is improved. Further, the inspection object 3 does not need to be a pipe, and does not necessarily need to detect thinning. It is useful as a nondestructive inspection apparatus that widely detects the dimensions of each part of an inspection object. Furthermore, it is not always necessary to detect the shift amount in comparison with a standard sample that provides standard data. In short, as the thickness of the inspection object 3 becomes thinner, the peak P of the signal intensity becomes the scattered γ-ray energy distribution characteristic. In the case of detecting the state of the inspection object 3 by utilizing the shift of the scattered γ-ray energy to the high energy side or the low energy side, all are included in the technical idea of the present invention.

また、図2(a)〜(d)に示す検査対象物3の厚さごとの散乱γ線エネルギー分布特性のデータを記憶部2Dに逐一記憶しておき、各データを読み出すことにより演算処理部2Cで所定の演算を行わせることで、例えば図3に示すピークシフト特性図を作成し、表示部2Eに表示するように構成することもできる。   Further, the data of the scattered γ-ray energy distribution characteristics for each thickness of the inspection object 3 shown in FIGS. 2A to 2D is stored in the storage unit 2D one by one, and the arithmetic processing unit is read by reading each data. By performing a predetermined calculation at 2C, for example, a peak shift characteristic diagram shown in FIG. 3 can be created and displayed on the display unit 2E.

本発明は配管等の検査対象物が錯綜して配設されている発電所等の保守、点検等に伴う非破壊検査を実施する産業分野で有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in an industrial field where non-destructive inspection is performed for maintenance, inspection, etc. of a power plant where inspection objects such as piping are arranged in a complicated manner.

1 γ線源
2 検出器
3 検査対象物
4 コリメーター
1 Gamma ray source 2 Detector 3 Inspection object 4 Collimator

Claims (6)

X線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射するとともに、前記照射の結果得られるコンプトン散乱に基づく散乱γ線をコリメーターでコリメートして検出し、検出した前記散乱γ線を表す散乱γ線信号の散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を求めるとともに、
前記検査対象物の厚さが薄くなるに従い、前記信号強度のピークが、前記コリメーターの径に応じ、前記散乱γ線エネルギー分布特性において前記散乱γ線エネルギーの高エネルギー側または低エネルギー側にシフトすることを利用して前記検査対象物の状態を検出することを特徴とする非破壊検査方法。
X-rays or γ-rays (hereinafter collectively referred to as γ-rays) are irradiated onto the inspection object, and scattered γ-rays based on Compton scattering obtained as a result of the irradiation are collimated and detected by a collimator. While obtaining the scattered γ-ray energy distribution characteristics representing the signal intensity relative to the scattered γ-ray energy of the scattered γ-ray signal representing the scattered γ-ray,
As the thickness of the inspection object decreases, the peak of the signal intensity shifts to the high energy side or the low energy side of the scattered γ-ray energy in the scattered γ-ray energy distribution characteristics according to the diameter of the collimator. A non-destructive inspection method characterized by detecting the state of the inspection object by using.
請求項1に記載する非破壊検査方法において、
前記状態の検出は、標準の検査対象物における前記ピークの位置を基準ピーク位置とし、該基準ピーク位置と、実測した検査対象物の前記ピークの位置である実測ピーク位置との差であるシフト量に基づき行うことを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 1,
The detection of the state uses the peak position in a standard inspection object as a reference peak position, and a shift amount that is a difference between the reference peak position and the actual measurement peak position that is the actual peak position of the inspection object A non-destructive inspection method characterized by
請求項1または請求項2に記載する非破壊検査方法において、
前記コンプトン散乱は、コンプトン後方散乱であることを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 1 or 2,
The non-destructive inspection method, wherein the Compton scattering is Compton backscattering.
検査対象物に向けてγ線を照射するγ線源と、前記照射の結果得られるコンプトン散乱に基づく散乱γ線をコリメートするコリメーターと、該コリメーターを介して入射された前記散乱γ線を表す散乱γ線信号の散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を生成する検出器とを有する非破壊検査装置において、
前記検出器は、前記検査対象物の厚さが薄くなるに従い、前記コンプトン散乱に基づく散乱γ線の信号強度のピークが、前記コリメーターの径に応じ、前記散乱γ線エネルギー分布特性において前記散乱γ線エネルギーの高エネルギー側または低エネルギー側へシフトする際のシフト量に基づき前記検査対象物の状態を検出するものであることを特徴とする非破壊検査装置。
A γ-ray source that irradiates γ-rays toward an inspection object, a collimator that collimates scattered γ-rays based on Compton scattering obtained as a result of the irradiation, and the scattered γ-rays incident through the collimator In a nondestructive inspection apparatus having a detector that generates a scattered γ-ray energy distribution characteristic that represents a signal intensity with respect to scattered γ-ray energy of a scattered γ-ray signal that represents
The detector has a signal intensity peak of scattered γ-rays based on the Compton scattering as the thickness of the object to be inspected decreases in the scattered γ-ray energy distribution characteristics according to the diameter of the collimator. A nondestructive inspection apparatus for detecting a state of the inspection object based on a shift amount when shifting to a high energy side or a low energy side of γ-ray energy.
請求項4に記載する非破壊検査装置において、
前記検出器は、前記シフト量が所定の閾値を超えた場合に前記検査対象物が不良であると判定することを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 4,
The non-destructive inspection apparatus, wherein the detector determines that the inspection object is defective when the shift amount exceeds a predetermined threshold.
請求項4または請求項5の何れか一つに記載する非破壊検査装置において、
前記コンプトン散乱は、コンプトン後方散乱であり、前記検出器は、前記検査対象物に対して同じ側に配設されていることを特徴とする非破壊検査装置。
In the nondestructive inspection device according to any one of claims 4 and 5,
The Compton scattering is Compton backscattering, and the detector is disposed on the same side with respect to the inspection object.
JP2014098899A 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus Active JP6277520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098899A JP6277520B2 (en) 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098899A JP6277520B2 (en) 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2015215262A true JP2015215262A (en) 2015-12-03
JP6277520B2 JP6277520B2 (en) 2018-02-14

Family

ID=54752273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098899A Active JP6277520B2 (en) 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP6277520B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183313A (en) * 1999-12-22 2001-07-06 Kawasaki Steel Corp Method and apparatus for detecting inclusion
JP2007248081A (en) * 2006-03-14 2007-09-27 Kyoto Univ Device and method for generating photon beam
JP2010249785A (en) * 2009-04-20 2010-11-04 Central Res Inst Of Electric Power Ind Nondestructive inspection method and its apparatus
US20120114102A1 (en) * 2010-11-04 2012-05-10 Ut-Battelle, Llc X-ray backscatter imaging of nuclear materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183313A (en) * 1999-12-22 2001-07-06 Kawasaki Steel Corp Method and apparatus for detecting inclusion
JP2007248081A (en) * 2006-03-14 2007-09-27 Kyoto Univ Device and method for generating photon beam
JP2010249785A (en) * 2009-04-20 2010-11-04 Central Res Inst Of Electric Power Ind Nondestructive inspection method and its apparatus
US20120114102A1 (en) * 2010-11-04 2012-05-10 Ut-Battelle, Llc X-ray backscatter imaging of nuclear materials

Also Published As

Publication number Publication date
JP6277520B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
US8767912B1 (en) System for inspection and imaging of insulated pipes and vessels using backscattered radiation and X-ray fluorescence
JP5958999B2 (en) Bearing part inspection method and bearing part inspection apparatus
Durham et al. Tests of cosmic ray radiography for power industry applications
GB2490635A (en) A high-energy x-ray spectroscopy-based inspection system and methods to determine the atomic number of materials
KR101378757B1 (en) Radiation imaging equipment and method available to obtain element date of material and select dimensions of image
JP5429788B2 (en) Nondestructive inspection method and apparatus
JP2018036156A (en) Heavy element inclusion measuring apparatus and measuring method thereof
JP2011027559A (en) Moisture measurement apparatus and moisture measurement method
JP6277520B2 (en) Nondestructive inspection method and apparatus
Abdul-Majid et al. Single side imaging of corrosion under insulation using single photon gamma backscattering
JP6598205B2 (en) Nondestructive inspection method and apparatus
US8976936B1 (en) Collimator for backscattered radiation imaging and method of using the same
JP6497701B2 (en) Nondestructive inspection method and apparatus
JP6299033B2 (en) Nondestructive inspection method and apparatus
Lalleman et al. A dual X-ray backscatter system for detecting explosives: Image and discrimination of a suspicious content
JP6278457B2 (en) Nondestructive inspection method and apparatus
JP2008157763A (en) Moisture measuring device and method
Naito et al. Novel X-ray backscatter technique for detecting crack below deposit
Harara Deposit thickness measurement in pipes by tangential radiography using gamma ray sources
JP2008215815A (en) Moisture measuring method and device
JP2014071102A (en) Board thickness inspection device and board thickness inspection method
Ooka et al. Application of Digital Radiographic Testing techniques to thick material using high-energy X-Ray
Robinson et al. Image-Based Verification Algorithms for Arms Control
JP2018044874A (en) Radiation measuring instrument and radiation measuring method
Wassink et al. Toward practical 3D radiography of pipeline girth welds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6277520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250