JP2015215186A - Method for removing radioactive cesium in contaminated soil - Google Patents

Method for removing radioactive cesium in contaminated soil Download PDF

Info

Publication number
JP2015215186A
JP2015215186A JP2014096781A JP2014096781A JP2015215186A JP 2015215186 A JP2015215186 A JP 2015215186A JP 2014096781 A JP2014096781 A JP 2014096781A JP 2014096781 A JP2014096781 A JP 2014096781A JP 2015215186 A JP2015215186 A JP 2015215186A
Authority
JP
Japan
Prior art keywords
radioactive cesium
cesium
treated
processed
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014096781A
Other languages
Japanese (ja)
Inventor
敏彰 工藤
Toshiaki Kudo
敏彰 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014096781A priority Critical patent/JP2015215186A/en
Publication of JP2015215186A publication Critical patent/JP2015215186A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently separating radioactive cesium from an object to be treated such as soil or sludge in which radioactive materials have been accumulated and concentrating the radioactive cesium.SOLUTION: A method for removing radioactive cesium comprises: an addition step of adding a metallic oxide, a chlorine-based oxidizer, and an alkali to an object to be treated; a step of melting the object to be treated to which chemicals have been added; and a step of dissolving the object to be treated in water and then concentrating the object to be treated by using an ion exchange resin.

Description

本発明は、放射性セシウムに汚染された被処理物から、放射線セシウムを分離・除去し、濃縮する方法に関する。   The present invention relates to a method for separating / removing and concentrating radioactive cesium from a workpiece contaminated with radioactive cesium.

近年、原子力発電所等から漏洩した放射性物質で汚染された土壌及び、汚泥等から放射性物質を分離濃縮する技術が求められている。その為、様々な方策が研究され事故時の主たる漏洩放射線物質である沃素、セシウムは特に注目されている。この内、沃素は半減期が短くガス体であるため、現場からの拡散及び減衰が早い。しかし、セシウムは半減期が30年と長いため問題視されている。更に、セシウムは粘土鉱物との吸着性が強く粘土鉱物内に吸着されると酸洗浄、強熱等でも容易に遊離しないので、処理上の大きな問題になっていることが、様々な研究から報告されている。   In recent years, there has been a demand for a technique for separating and concentrating radioactive materials from soil contaminated with radioactive materials leaked from nuclear power plants and the like and sludge. For this reason, various measures have been studied, and iodine and cesium, which are the main radiation materials at the time of the accident, are attracting particular attention. Among these, iodine has a short half-life and is a gas body, so that diffusion and decay from the field are fast. However, cesium is regarded as a problem because it has a long half-life of 30 years. In addition, cesium has a strong adsorptivity with clay minerals, and once adsorbed in clay minerals, it is not easily released even by acid washing, ignition, etc., and it has been reported from various studies that it is a major problem in processing. Has been.

セシウムはアルカリ金属であり、イオン化傾向等からも反応性の高い金属であるにも関わらず、イオン半径が大きい為イオンの移動のしにくいアルカリ金属となっている。また、イオン半径のおおきさが、粘土鉱物及びケイ酸塩鉱物の結晶間隔とマッチするため結晶内に挟みこまれ更に遊離を妨げている。
これらの事から、セシウムを効率的に除去する技術が求められており、特許文献1や特許文献2などにみられる数々の技術が公開されている。
Cesium is an alkali metal, and although it is a highly reactive metal due to its ionization tendency and the like, it has a large ionic radius and is an alkali metal that is difficult to move ions. Moreover, since the large ionic radius matches the crystal interval of the clay mineral and silicate mineral, it is sandwiched in the crystal and further prevents liberation.
From these things, the technique which removes a cesium efficiently is calculated | required and many techniques seen in the patent document 1, the patent document 2, etc. are disclosed.

しかし、これら従来技術は、放射性セシウムを遊離させるために、特許文献1では1350℃と言う高温が必要であり、実験室レベルでは可能であっても、実行レベルとなると温度維持に設備的、ランニングコスト的に大きな問題を発生する。   However, in order to liberate radioactive cesium, these conventional techniques require a high temperature of 1350 ° C. in Patent Document 1, and even if possible at the laboratory level, when the practical level is reached, the temperature can be maintained in terms of equipment and running. A big problem occurs in cost.

特許文献2では、高濃度の強酸を被処理物に添加して30日間置くなどと、実際の大規模な処理に適応するには、強酸を被処理物に添加した時に発生する酸性ガスの処理、強酸を用いるため、反応時の容器の腐食等の問題がある。   In Patent Document 2, in order to adapt to an actual large-scale treatment, such as adding a high-concentration strong acid to a treatment object and leaving it for 30 days, treatment of acid gas generated when a strong acid is added to the treatment object. Since a strong acid is used, there are problems such as corrosion of the container during the reaction.

土壌に吸着された放射性セシウムは、反応性がアルカリ金属中最大であるにもかかわらず、イオン半径が大きいため移動しにくい。また、粘土鉱物に吸着されると、そのイオン半径の大きさから結晶間に
はさまれ、簡単には遊離出来なくなる。このことは雲母鉱物では顕著である。
The radioactive cesium adsorbed on the soil is difficult to move because of its large ionic radius, despite the highest reactivity among alkali metals. Also, when adsorbed on clay minerals, it is sandwiched between crystals due to the size of its ionic radius and cannot be easily released. This is especially true for mica minerals.

特開2013―242194JP 2013-242194 A 特開2014―32110JP2014-32110A

本発明は、上記のような従来の欠点をクリアするとともに、他の従来技術にない新しい工夫も加え、高効率の汚染土壌における放射性セシウムの除去方法を提供する事を目的としている。   An object of the present invention is to provide a method for removing radioactive cesium from highly contaminated soil in addition to clearing the conventional drawbacks as described above and adding new ideas not found in other conventional techniques.

本発明は、上記目的である被処理物に含まれる放射性セシウムを効率的に分離濃縮するために、被処理物に金属酸化物、塩素系酸化剤、アルカリを添加する添加工程と、被処理物に薬剤を添加しての熔融工程と、水に溶かした後イオン交換樹脂により濃縮する工程から構成される放射性セシウムの除去方法である。(請求項1)   In order to efficiently separate and concentrate radioactive cesium contained in the object to be treated, which is the above object, the present invention includes an addition step of adding a metal oxide, a chlorine-based oxidant, and an alkali to the object to be treated; This is a method for removing radioactive cesium comprising a melting step in which a chemical is added to and a step of concentrating with an ion exchange resin after dissolving in water. (Claim 1)

またその工程をより具体的に述べると、前期構成において、添加工程の金属酸化物として二酸化マンガンを、塩素系酸化剤として塩素酸ナトリウム、塩素酸カリウム、次亜塩素酸、塩素酸カルシウム、塩素ガスのいずれか、またはこれらの混合物を、熔融行程の混和薬剤として水酸化ナトリウム、水酸化カリウム、水酸化カルシウムのいずれか、またはこれらの混合物を用い、混和後400℃以上〜800℃以下に加熱熔融し、放射性セシウムをマンガン酸塩として水に溶かした後、水相に移動し陽イオン交換樹脂により放射性セシウムを捕捉することを特徴とする。(請求項2)   In more detail, the process is described in the previous configuration. Manganese dioxide is used as the metal oxide in the addition process. Sodium chlorate, potassium chlorate, hypochlorous acid, calcium chlorate, chlorine gas is used as the chlorinated oxidant. Any one of these or a mixture thereof is melted by heating to 400 ° C to 800 ° C after mixing using any of sodium hydroxide, potassium hydroxide, calcium hydroxide or a mixture thereof as an admixture for the melting process. Then, the radioactive cesium is dissolved in water as a manganate, then moved to the aqueous phase, and the radioactive cesium is captured by a cation exchange resin. (Claim 2)

本発明では、非処理物に吸着された遊離しがたい放射性セシウムを、二酸化マンガンと塩素系酸化剤の損在化でアルカリ溶融する事により、水溶性のマンガン酸塩及び、塩化セシウムに変化させ、変化したセシウムはイオン化しているため、イオン交換樹脂の捕捉が効率的かつ容易となる。
また、本発明では、二酸化マンガンを除く添加剤は水溶性であり、更に二酸化マンガンの一部は水溶性のマンガン酸塩に変化するため、添加量を増やしても処理後分離した被処理物が大きな増量を起こさないことも利点であり、発明の効果でもある。
In the present invention, radioactive cesium that is difficult to release adsorbed on the untreated material is converted into water-soluble manganate and cesium chloride by alkali melting due to the loss of manganese dioxide and chlorinated oxidant. Since the changed cesium is ionized, it becomes efficient and easy to capture the ion exchange resin.
In the present invention, the additive excluding manganese dioxide is water-soluble, and part of the manganese dioxide changes to a water-soluble manganate. It is an advantage not to cause a large increase, and it is also an effect of the invention.

本発明での被処理物からの放射線セシウムの分離は物理的な分離ではなく、化学的な分離をしているので、セシウム単品での濃縮が可能であり、イオン交換樹脂で捕捉出来る形態に変化させた事により、汚染物質を限界までの減容化が可能になった。このことは、今まで困難と言われていた細かい粒度の被処理物からも放射性セシウムを分離する事を可能とした。
さらに、使用している薬剤に有害性が少なく、除去後の処理物の管理がいらないことも発明の効果の一つである。
Separation of radiation cesium from the object to be treated in the present invention is not a physical separation but a chemical separation, so it can be concentrated by a single cesium product and changed to a form that can be captured by an ion exchange resin. By doing so, it became possible to reduce the volume of pollutants to the limit. This has made it possible to separate radioactive cesium from a fine-grained material that has been said to be difficult until now.
Furthermore, it is one of the effects of the invention that the chemicals used are less harmful and do not require management of the processed product after removal.

本発明の基本工程を示すフロー図。The flowchart which shows the basic process of this invention.

以下、本発明の実施の形態を説明する。図1は、本発明の基本工程を示すフロー図であり、判断A(1)は、熔融物が緑色でない場合に混和の前に戻し、熔融物が緑色の場合に次に進む。判断B(2)は、陽イオン交換樹脂を通過したろ液に放射線が検出され時に、陽イオン交換樹脂を交換し、続行する。   Embodiments of the present invention will be described below. FIG. 1 is a flowchart showing the basic steps of the present invention, and judgment A (1) returns to mixing before the melt is not green, and proceeds to the next when the melt is green. Decision B (2) continues by exchanging the cation exchange resin when radiation is detected in the filtrate that has passed through the cation exchange resin.

本発明を実施するための装置としては、被処理物、及び薬剤を定量的に送り出すフィーダー、それらを混和しながら熔融するロータリーキルン、熔融した被処理物を溶解する水槽、溶解したセシウムと被処理物とを分離するフィルタープレス、ろ液内のセシウムを吸着する交換樹脂搭から構成される。   As an apparatus for carrying out the present invention, a workpiece and a feeder for quantitatively delivering a drug, a rotary kiln that melts them while mixing them, a water tank that melts the melted workpiece, dissolved cesium and a workpiece And a filter press for separating the cesium and an exchange resin tower for adsorbing cesium in the filtrate.

本発明での、被処理物の粒径は特にこだわりはなく、添加する薬剤が混和出来る粒径で有ればよい。ただし、添加する薬剤が酸化剤なので、予備焼成により可燃物を抜いておく方が好ましい。添加する二酸化マンガンは、被処理物の2%以上〜5質量%以下である。同時に添加する塩素系酸化剤は、10%以上〜20質量%以下となる。熔融温度は、使用するアルカリにより変化するが、400℃以上〜800℃以下となる。アルカリの添加量は、被処理物の粒度により異なるが、被処理物の20%以上〜50質量%以下が望ましい。   In the present invention, the particle diameter of the object to be treated is not particularly limited, and it is sufficient that the particle diameter is such that the added drug can be mixed. However, since the chemical to be added is an oxidizing agent, it is preferable to remove the combustible material by preliminary firing. Manganese dioxide to be added is 2% to 5% by mass of the object to be processed. The chlorine-based oxidizing agent added at the same time is 10% to 20% by mass. The melting temperature varies depending on the alkali used, but is 400 ° C to 800 ° C. The amount of alkali added varies depending on the particle size of the workpiece, but is preferably 20% to 50% by mass of the workpiece.

本発明での、被処理物より放射性セシウムを遊離させるための薬剤の添加量は、被処理物の粒径によって多少異なる。添加剤である二酸化マンガンは、粒子径の大きな被処理物(篩上5mm以上)では、5%程度添加しないと被処理物と接触が取れない場合もある。塩素系酸化剤の添加量は多くても良いが、可燃物が多いとロスが多くなるので、一度に多量に入れるよりも一度熔融して反応が不十分であれば、再度薬剤を添加しての再溶融が望ましい。熔融用のアルカリ量は被処理物の粒径が下がるほど吸収してしまうので被処理物の粒径が下がるとアルカリの添加量は上がる。   In the present invention, the amount of the agent added to release radioactive cesium from the object to be processed varies somewhat depending on the particle size of the object to be processed. Manganese dioxide, which is an additive, may not be able to come into contact with an object to be processed unless it is added in an amount of about 5% when the object has a large particle size (5 mm or more on a sieve). The amount of chlorinated oxidant may be large, but if there are many flammables, the loss will increase. Remelting of is desirable. Since the amount of alkali for melting is absorbed as the particle size of the object to be processed decreases, the amount of alkali added increases as the particle diameter of the object to be processed decreases.

本発明での添加薬剤である塩素系酸化剤及びアルカリは、溶融温度が低い塩素酸ナトリウム、水酸化ナトリウムの添加は、熔融温度が400℃程度の低温で済むので一番好ましい。他の塩素系酸化剤としては、過塩素酸塩類、塩素酸塩類、塩素ガス等いずれかでも使用できるが、溶融温度の上昇や、爆発危険等の安全性の問題を含む。同様に他のアルカリ、水酸化カリウム、水酸化カルシウム、炭酸カルシウム等いずれかでも熔融する事は可能であるが、熔融温度が上昇傾向になる。   Among the additive agents used in the present invention, the chlorine-based oxidizing agent and alkali are most preferable to add sodium chlorate and sodium hydroxide having a low melting temperature because the melting temperature is as low as about 400 ° C. As other chlorinated oxidants, any of perchlorates, chlorates, chlorine gas, and the like can be used, but there are safety problems such as an increase in melting temperature and explosion risk. Similarly, any other alkali, potassium hydroxide, calcium hydroxide, calcium carbonate or the like can be melted, but the melting temperature tends to increase.

被処理物からの放射性セシウムの遊離が不十分の条件は熔融の際に、添加した塩素系酸化剤が被処理物の可燃性物質に消費されてしまう場合と、アルカリが被処理物に吸収され、被処理物に二酸化マンガン存在化での、塩素系酸化剤とアルカリの接触が不十分であることが考えられる。これらの場合、熔融物が黒色または、茶色となり、十分な溶融状態であれば緑色になる。   Conditions for insufficient release of radioactive cesium from the object to be treated include the case where the added chlorine-based oxidant is consumed by the combustible material of the object to be treated and the alkali is absorbed by the object to be treated. It is considered that the contact between the chlorine-based oxidizing agent and the alkali in the presence of manganese dioxide in the object to be treated is insufficient. In these cases, the melt becomes black or brown, and becomes green when it is sufficiently melted.

被処理物からの放射性セシウムの遊離が不十分の場合、再度、塩素系酸化剤及びアルカリ添加による再加熱で回収率は上がる。この場合、二酸化マンガンは被処理物内にあり再添加の必要はない。   When the release of radioactive cesium from the object to be processed is insufficient, the recovery rate is increased by reheating by adding a chlorine-based oxidant and an alkali again. In this case, manganese dioxide is present in the object to be treated and does not need to be added again.

溶融後の処理物を水に溶解させた後にろ過するが、ろ過残渣は放射性セシウムを除去した処理物となり、ろ液を陽イオン交換樹脂に通過させることにより放射性セシウムを吸着させる。このろ液には、多量のアルカリが存在するが、セシウム塩は他の金属よりイオン化傾向が大きいので、優先的にイオン交換樹脂に捕捉される。   The melted treated product is dissolved in water and then filtered. The filtration residue becomes a treated product from which radioactive cesium has been removed, and the filtrate is passed through a cation exchange resin to adsorb the radioactive cesium. Although a large amount of alkali is present in this filtrate, since the cesium salt has a higher ionization tendency than other metals, it is preferentially captured by the ion exchange resin.

本発明を実施した例を以下に説明する。東日本大震災事故後の福島の土壌を、篩下5mm以下2mm以上の粒度の物を試料にして、5質量%の二酸化マンガン、10質量%の塩素酸ナトリウム、30質量%の水酸化ナトリウムを混合し、400℃15分熔融した。放冷後、水に溶かし塩類を分離した所土壌中の放射線濃度が75%低下した。   The example which implemented this invention is demonstrated below. The soil in Fukushima after the Great East Japan Earthquake was sampled with a particle size of 5 mm or less and 2 mm or more under the sieve, and 5 mass% manganese dioxide, 10 mass% sodium chlorate, and 30 mass% sodium hydroxide were mixed. And melted at 400 ° C. for 15 minutes. After cooling, the radiation concentration in the soil where the salt was separated by dissolving in water decreased by 75%.

また、事故後の福島の側溝に溜まった汚泥を、篩下2mm以下の粒度の物を試料にして、5質量%の二酸化マンガン、10質量%の塩素酸ナトリウム、40質量%の水酸化ナトリウムを混合し、400℃15分熔融する。放冷後水に溶かし塩類を分離した土壌中の放射線濃度が86%低下した。   In addition, sludge collected in the side groove of Fukushima after the accident was sampled with a particle size of 2 mm or less under the sieve, and 5% by mass of manganese dioxide, 10% by mass of sodium chlorate, and 40% by mass of sodium hydroxide. Mix and melt at 400 ° C. for 15 minutes. After cooling, the radiation concentration in the soil dissolved in water and separated from the salt decreased by 86%.

上記実施例1、2とも放射線量の測定器は、堀場製作所のシンチレーションカウンターであるRadi(登録商標)PA-1000を用いた。   Radiation (registered trademark) PA-1000, a scintillation counter manufactured by HORIBA, Ltd. was used as the radiation dose measuring instrument in both Examples 1 and 2 above.

本発明は、汚染土壌におけるセシウム除去の切り札として、広く汚染除去プラントに採用されるものであり、その効率的な方法の普及により東日本大震災からの復興を早期に実現することを願うものである。
The present invention is widely used in decontamination plants as a trump card for removing cesium in contaminated soil, and hopes that recovery from the Great East Japan Earthquake will be realized at an early stage by spreading the efficient method.

Claims (2)

被処理物に含まれる放射性セシウムを効率的に分離濃縮する方法であって、被処理物に金属酸化物、塩素系酸化剤、アルカリを添加する添加工程と、被処理物に薬剤を添加しての熔融工程と、水に溶かした後イオン交換樹脂により濃縮する工程からなる放射性セシウムの除去方法。   A method for efficiently separating and concentrating radioactive cesium contained in an object to be processed, an addition step of adding a metal oxide, a chlorine-based oxidant and an alkali to the object to be processed, and an agent added to the object to be processed The radioactive cesium removal method which consists of a melt process of this and the process of concentrating with ion exchange resin after melt | dissolving in water. 前記添加工程の金属酸化物として二酸化マンガンを、塩素系酸化剤として塩素酸ナトリウム、塩素酸カリウム、次亜塩素酸、塩素酸カルシウム、塩素ガスのいずれか、またはこれらの混合物を、熔融行程の混和薬剤として水酸化ナトリウム、水酸化カリウム、水酸化カルシウムのいずれか、またはこれらの混合物を用い、混和後400℃以上〜800℃以下に加熱熔融し、放射性セシウムをマンガン酸塩として水に溶かした後、水相に移動し陽イオン交換樹脂により放射性セシウムを捕捉する請求項1の放射性セシウムの除去方法。
Manganese dioxide as the metal oxide in the addition step, sodium chlorate, potassium chlorate, hypochlorous acid, calcium chlorate, chlorine gas, or a mixture thereof as the chlorinated oxidant, or a mixture thereof, is mixed in the melting process. After mixing with sodium hydroxide, potassium hydroxide, calcium hydroxide or a mixture of these as a chemical, heating and melting to 400 ° C to 800 ° C and dissolving radioactive cesium in water as manganate The method for removing radioactive cesium according to claim 1, wherein the radioactive cesium is moved to an aqueous phase and captured by a cation exchange resin.
JP2014096781A 2014-05-08 2014-05-08 Method for removing radioactive cesium in contaminated soil Pending JP2015215186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014096781A JP2015215186A (en) 2014-05-08 2014-05-08 Method for removing radioactive cesium in contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014096781A JP2015215186A (en) 2014-05-08 2014-05-08 Method for removing radioactive cesium in contaminated soil

Publications (1)

Publication Number Publication Date
JP2015215186A true JP2015215186A (en) 2015-12-03

Family

ID=54752211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096781A Pending JP2015215186A (en) 2014-05-08 2014-05-08 Method for removing radioactive cesium in contaminated soil

Country Status (1)

Country Link
JP (1) JP2015215186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018022119A1 (en) * 2016-07-29 2018-02-01 Westinghouse Electric Company Llc Tank closure cesium removal
JP2019207212A (en) * 2018-05-30 2019-12-05 敏彰 工藤 Radioactive cesium recovery method
CN114047274A (en) * 2021-09-22 2022-02-15 四川轻化工大学 Separation and extraction system for nuclides in radioactive sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018022119A1 (en) * 2016-07-29 2018-02-01 Westinghouse Electric Company Llc Tank closure cesium removal
US10192648B2 (en) 2016-07-29 2019-01-29 Westinghouse Electric Company Llc Tank closure cesium removal
JP2019207212A (en) * 2018-05-30 2019-12-05 敏彰 工藤 Radioactive cesium recovery method
CN114047274A (en) * 2021-09-22 2022-02-15 四川轻化工大学 Separation and extraction system for nuclides in radioactive sample

Similar Documents

Publication Publication Date Title
JP6998241B2 (en) Lithium recovery method
JP5175995B1 (en) Method for removing radioactive cesium from soil
US20140096646A1 (en) Treatment method of spent uranium catalyst
WO2014166400A1 (en) Sludge or soil treatment method and heavy metal content stabilization agent
JP2015215186A (en) Method for removing radioactive cesium in contaminated soil
KR102282701B1 (en) Lithium recovery method
JP6327782B2 (en) Method for removing radioactive cesium from wastewater containing radioactive cesium
CN103910365A (en) Method for preparing light magnesium oxide by using phosphate ore reverse flotation magnesium removal tailings
JP2020105597A (en) Valuable metal recovery method
JP2013127437A (en) Method and device for treating radioactive cesium-containing substance
JP4753141B2 (en) Method for dissolving and separating uranium using ionic liquid, and method for recovering uranium using the same
CN211688283U (en) Resourceful treatment device of industry waste salt
JP2016176742A (en) Radioactive cesium immobilization method and radioactive cesium absorbing inorganic mineral
KR101616174B1 (en) Method for the remediation of heavy metals polluted soil using recyclable leaching agent
CN103638814A (en) Method and device for removing heavy metal in garbage incineration fly ash by use of electrodialysis
JP2014014802A (en) Method for removing cesium from soil
US10233081B2 (en) Method to prepare one or more chemical products using hydrogen sulfide
JP5879281B2 (en) Method for cleaning incinerated ash containing radioactive cesium
JP2019207212A (en) Radioactive cesium recovery method
JP5811401B2 (en) Treatment method of radioactive cesium contaminated soil
EP2927907A1 (en) Method for decontaminating borated alkaline radioactive waste
JP2016145728A (en) Method for removing radioactive cesium and separation accelerator-containing slurry
JP2015136641A (en) Method and apparatus for treating phosphoric acid waste liquid
JP5715295B1 (en) Removal method of radioactive cesium
WO2013160806A1 (en) A METHOD FOR REMOVING THE 137Cs FROM POLLUTED EAF DUSTS