JP2015213006A - Connection structure and connection method for superconducting wire rod - Google Patents

Connection structure and connection method for superconducting wire rod Download PDF

Info

Publication number
JP2015213006A
JP2015213006A JP2014094748A JP2014094748A JP2015213006A JP 2015213006 A JP2015213006 A JP 2015213006A JP 2014094748 A JP2014094748 A JP 2014094748A JP 2014094748 A JP2014094748 A JP 2014094748A JP 2015213006 A JP2015213006 A JP 2015213006A
Authority
JP
Japan
Prior art keywords
superconducting
conductor layer
superconducting conductor
oxide
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014094748A
Other languages
Japanese (ja)
Other versions
JP6258775B2 (en
Inventor
俊昭 天野
Toshiaki Amano
俊昭 天野
勁 劉
Jin Liu
勁 劉
紳也 安永
Shinya Yasunaga
紳也 安永
則夫 松井
Norio Matsui
則夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2014094748A priority Critical patent/JP6258775B2/en
Priority to EP15786084.2A priority patent/EP3128618B1/en
Priority to US15/308,095 priority patent/US20170062097A1/en
Priority to EP19175232.8A priority patent/EP3550619A1/en
Priority to PCT/JP2015/062768 priority patent/WO2015166936A1/en
Publication of JP2015213006A publication Critical patent/JP2015213006A/en
Application granted granted Critical
Publication of JP6258775B2 publication Critical patent/JP6258775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively perform oxygen annealing.SOLUTION: Provided is a connection structure 100 of superconducting wire rods in which one side of a base material 1 is connected with the mutual connection edge parts of superconducting wire rods 10A, 10B formed with an oxide superconducting conductor layer 3 so as to be pasted each other, the oxide superconducting layers of the two superconducting wire rods are joined so as to be confronted each other, and an opening part 13 is provided at a depth not passing through each superconducting layer at a face 12 on the reverse side to each oxide superconducting layer in the base material within the joining range of either or both the oxide superconducting wire rods.

Description

本発明は、超電導線材の接続構造及び接続方法に関する。   The present invention relates to a superconducting wire connection structure and a connection method.

近年、臨界温度(Tc)が液体窒素温度(約77K)よりも高い酸化物超電導体として、例えば、YBCO系(イットリウム系)、Bi系(ビスマス系)などの酸化物超電導体が注目されている。
この高温酸化物超電導線材は、長尺でフレキシブルな金属などの基板上に酸化物超電導膜を成膜して超電導導体層が形成されたものが知られている。また、基板と超電導導体層との間には、必要に応じて中間層が設けられることもある。
In recent years, oxide superconductors such as YBCO (yttrium) and Bi (bismuth) oxides have attracted attention as oxide superconductors whose critical temperature (Tc) is higher than liquid nitrogen temperature (about 77K). .
This high-temperature oxide superconducting wire is known in which a superconducting conductor layer is formed by forming an oxide superconducting film on a long and flexible substrate such as a metal. An intermediate layer may be provided between the substrate and the superconducting conductor layer as necessary.

上記超電導線材の接続方法として、特許文献1には、接続する二本の超電導線材のシースに含まれる酸化物超電導体を露出させ、MOD法(Metal Organic Deposition法/有機金属堆積法)に基づくMOD液を露出面に塗布し、互いの露出面を貼り合わせて焼成を行うことにより、MOD液から形成される超電導膜を介して二本の超電導線材を接続する方法が挙げられている。   As a method for connecting the superconducting wires, Patent Document 1 discloses an MOD based on a MOD method (Metal Organic Deposition method / Organic metal deposition method) by exposing an oxide superconductor contained in the sheath of two superconducting wires to be connected. There is a method of connecting two superconducting wires through a superconducting film formed from a MOD liquid by applying a liquid to an exposed surface, bonding the exposed surfaces together, and baking.

特許文献2には、基板の上面に緩衝層を介して超電導導体層が形成された二本の超電導線材の超電導導体層を露出させると共に、超電導導体層同士を互いに密着させた状態で、超電導導体層の溶融点まで加熱し、超電導導体層を溶融拡散して二本の超電導線材を接続する方法が挙げられている。   In Patent Document 2, the superconducting conductor layer of the two superconducting wires in which the superconducting conductor layer is formed on the upper surface of the substrate via the buffer layer is exposed, and the superconducting conductor layers are in close contact with each other. There is a method in which two superconducting wires are connected by heating to the melting point of the layer, melting and diffusing the superconducting conductor layer.

特開2009−016253号公報JP 2009-016253 A 特許5214744号公報Japanese Patent No. 5214744

特許文献1と特許文献2の接続方法は、いずれも、超電導導体層の接合時に加熱を行うので、超電導導体層がYBaCu7−x等の酸化物超電導導体層である場合には、接合した後の超電導導体層からは酸素が抜け出して超電導性が大きく劣化する場合がある。
このため、超電導線材の接続部分をおよそ500℃の酸素雰囲気中で酸化させる酸素アニールを行う必要があった。
しかしながら、上記超電導線材の接続構造では、超電導導体層が基材に挟まれた状態にあり、基材は酸素透過性が殆ど無い金属等から形成されている場合が多い。
このため、基材がバリア層となって当該基材に挟まれた内側部分には酸素が届きにくく、十分な酸素アニールを行うことができないか、或いは、酸素アニールに非常に長時間を要するという問題が生じていた。
Since both the connection methods of Patent Document 1 and Patent Document 2 perform heating at the time of joining the superconducting conductor layers, when the superconducting conductor layer is an oxide superconducting conductor layer such as YBa 2 Cu 3 O 7-x In some cases, oxygen escapes from the superconducting conductor layer after joining and the superconductivity is greatly deteriorated.
For this reason, it is necessary to perform oxygen annealing in which the connecting portion of the superconducting wire is oxidized in an oxygen atmosphere at about 500 ° C.
However, in the connection structure of the superconducting wire, the superconducting conductor layer is sandwiched between base materials, and the base material is often formed of a metal or the like that has almost no oxygen permeability.
For this reason, it is difficult for oxygen to reach the inner part sandwiched between the base material as a barrier layer, and sufficient oxygen annealing cannot be performed, or oxygen annealing requires a very long time. There was a problem.

本発明の目的は、酸素アニールを効果的に行うことが可能な接続構造及び接続方法を提供することである。   An object of the present invention is to provide a connection structure and a connection method capable of effectively performing oxygen annealing.

請求項1記載の発明は、
基材の片面側に酸化物超電導導体層が形成された超電導線材同士の互いの接続端部を重合させて接続されている超電導線材の接続構造であって、
二本の前記超電導線材の前記酸化物超電導導体層が向かい合わせで接合され、
一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に前記酸化物超電導導体層を貫通しない深さで開口部が設けられていることを特徴とする。
The invention described in claim 1
A superconducting wire connecting structure in which the connecting end portions of the superconducting wires having the oxide superconducting conductor layer formed on one side of the base material are polymerized and connected,
The oxide superconducting conductor layers of the two superconducting wires are joined face to face,
An opening is provided at a depth not penetrating the oxide superconducting conductor layer on a surface opposite to the oxide superconducting conductor layer in the base material within a bonding range of one or both of the superconducting wires. Features.

請求項2記載の発明は、請求項1記載の超電導線材の接続構造において、
前記開口部を挟んでその両側で一端部と他端部とが二本の前記超電導線材に個別に連結された補強部材を備えることを特徴とする。
The invention described in claim 2 is the superconducting wire connecting structure according to claim 1,
One end and the other end are provided on both sides of the opening with reinforcing members individually connected to the two superconducting wires.

請求項3記載の発明は、請求項2記載の超電導線材の接続構造において、
前記補強部材は、その一端部と他端部とが、それぞれ二本の前記超電導線材の前記基材における前記酸化物超電導導体層とは反対側に接合されていることを特徴とする。
The invention according to claim 3 is the connection structure of the superconducting wire according to claim 2,
The reinforcing member is characterized in that one end and the other end of the reinforcing member are joined to the opposite side of the oxide superconducting conductor layer in the base material of the two superconducting wires.

請求項4記載の発明は、
基材の片面側に酸化物超電導導体層が形成され、互いの接続端部が向かい合う二本の超電導線材が、基材の片面側に酸化物超電導導体層が形成された接続用の超電導線材によってブリッジ接続されている超電導線材の接続構造であって、
前記二本の超電導線材の前記酸化物超電導導体層と前記接続用の超電導線材の前記酸化物超電導導体層とが向かい合わせで接合され、
前記二本の超電導線材と前記接続用の超電導線材のいずれか一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に前記酸化物超電導導体層を貫通しない深さで開口部が設けられていることを特徴とする。
The invention according to claim 4
An oxide superconducting conductor layer is formed on one side of the substrate, and two superconducting wires facing each other are connected to each other by a connecting superconducting wire in which an oxide superconducting conductor layer is formed on one side of the substrate. A superconducting wire connection structure that is bridge-connected,
The oxide superconducting conductor layer of the two superconducting wires and the oxide superconducting conductor layer of the connecting superconducting wire are joined face to face,
The oxide superconducting conductor on the surface opposite to the oxide superconducting conductor layer in the base material within the joining range of one or both of the two superconducting wires and the connecting superconducting wire. An opening is provided at a depth that does not penetrate the layer.

請求項5記載の発明は、請求項1から4のいずれか一項に記載の超電導線材の接続構造において、
前記超電導線材は、前記基材と前記酸化物超電導導体層との間に中間層を備え、
前記開口部は中間層まで形成されていることを特徴とする。
The invention according to claim 5 is the superconducting wire connecting structure according to any one of claims 1 to 4,
The superconducting wire comprises an intermediate layer between the base material and the oxide superconducting conductor layer,
The opening is formed up to an intermediate layer.

請求項6記載の発明は、請求項1から5のいずれか一項に記載の超電導線材の接続構造において、
前記開口部は溝状に形成されていることを特徴とする。
The invention according to claim 6 is the connection structure of the superconducting wire according to any one of claims 1 to 5,
The opening is formed in a groove shape.

請求項7記載の発明は、請求項1から5のいずれか一項に記載の超電導線材の接続構造において、
前記開口部は複数個並んで形成されていることを特徴とする。
The invention according to claim 7 is the superconducting wire connecting structure according to any one of claims 1 to 5,
A plurality of the openings are formed side by side.

請求項8記載の発明は、
基材の片面側に酸化物超電導導体層が形成された超電導線材同士の互いの接続端部を重合させて接続する超電導線材の接続方法であって、
二本の前記超電導線材の前記酸化物超電導導体層を露出させる露出工程と、
前記二本の超電導線材の前記酸化物超電導導体層を向かい合わせで接合する接合工程と、
一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に、エッチングにより前記酸化物超電導導体層を貫通しない深さで開口部を形成する開口工程と、
前記酸化物超電導導体層に対する酸素アニール工程とを備えることを特徴とする。
The invention described in claim 8
A superconducting wire connecting method in which the connection ends of the superconducting wires formed with an oxide superconducting conductor layer on one side of the base material are polymerized and connected,
An exposing step of exposing the oxide superconducting conductor layer of the two superconducting wires;
A joining step in which the oxide superconducting conductor layers of the two superconducting wires are joined face to face;
An opening that forms an opening at a depth not penetrating the oxide superconducting conductor layer by etching on a surface opposite to the oxide superconducting conductor layer in the base material within a bonding range of one or both of the superconducting wires. Process,
And an oxygen annealing step for the oxide superconducting conductor layer.

請求項9記載の発明は、請求項8記載の超電導線材の接続方法において、
前記接合工程は、前記二本の超電導線材の前記酸化物超電導導体層の一方に又は両方に酸化物超電導導体の前駆体を配置する工程と、前記酸化物超電導導体の前駆体を焼成する工程とを含むことを特徴とする。
The invention according to claim 9 is the method of connecting superconducting wires according to claim 8,
The joining step includes a step of disposing a precursor of the oxide superconducting conductor on one or both of the oxide superconducting conductor layers of the two superconducting wires, and a step of firing the precursor of the oxide superconducting conductor; It is characterized by including.

請求項10記載の発明は、
基材の片面側に酸化物超電導導体層が形成された二本の超電導線材同士の互いの接続端部を突き合わせた状態で、基材の片面側に酸化物超電導導体層が形成された接続用の超電導線材によってブリッジ接続する超電導線材の接続方法であって、
前記二本の超電導線材の前記酸化物超電導導体層を露出させる露出工程と、
前記二本の超電導線材の前記酸化物超電導導体層と前記接続用の超電導線材の前記酸化物超電導導体層とを向かい合わせで接合する接合工程と、
前記二本の超電導線材と前記接続用の超電導線材のいずれか一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に、エッチングにより前記酸化物超電導導体層を貫通しない深さで開口部を形成する開口工程と、
前記酸化物超電導導体層に対する酸素アニール工程とを備えることを特徴とする
The invention according to claim 10 is:
For connection in which an oxide superconducting conductor layer is formed on one side of a base material in a state in which the connection ends of two superconducting wires having an oxide superconducting conductor layer formed on one side of the base material are butted together A superconducting wire connecting method for bridge connection with a superconducting wire of
An exposing step of exposing the oxide superconducting conductor layer of the two superconducting wires;
A joining step of joining the oxide superconducting conductor layer of the two superconducting wires and the oxide superconducting conductor layer of the superconducting wire for connection facing each other;
Etching is performed on the surface opposite to the oxide superconducting conductor layer in the base material within the bonding range of one or both of the two superconducting wires and the connecting superconducting wires. An opening step of forming an opening at a depth not penetrating the physical superconductor layer;
And an oxygen annealing step for the oxide superconducting conductor layer.

請求項11記載の発明は、請求項10記載の超電導線材の接続方法において、
前記接合工程は、前記二本の超電導線材の前記酸化物超電導導体層と前記接続用の超電導線材の前記酸化物超電導導体層のいずれかの一方に又は両方に酸化物超電導導体の前駆体を配置する工程と、前記酸化物超電導導体の前駆体を焼成する工程とを含むことを特徴とする。
The invention according to claim 11 is the method of connecting superconducting wires according to claim 10,
In the joining step, a precursor of the oxide superconducting conductor is disposed on one or both of the oxide superconducting conductor layer of the two superconducting wires and the oxide superconducting conductor layer of the connecting superconducting wire. And a step of firing the precursor of the oxide superconducting conductor.

上記発明では、上記の構成により、酸素アニールを効果的に行うことが可能となる。   In the above invention, oxygen annealing can be effectively performed by the above configuration.

超電導線材の斜視図である。It is a perspective view of a superconducting wire. 図2(A)は図2(B)のV−V線に沿った第一の実施形態である超電導線材の接続構造の断面図、図2(B)は平面図である。2A is a cross-sectional view of a superconducting wire connecting structure according to the first embodiment along the line V-V in FIG. 2B, and FIG. 2B is a plan view. 図3(A)〜図3(E)は超電導線材の接続方法を工程順に示した断面図である。3 (A) to 3 (E) are cross-sectional views showing a superconducting wire connecting method in the order of steps. レーザー加工により形成した開口部の例を示す断面図である。It is sectional drawing which shows the example of the opening part formed by laser processing. 図5(A)は超電導線材の接続構造に補強部材を加えた例を示す側面図、図5(B)は補強部材の他端部を第二の超電導線材側から見た図である。FIG. 5A is a side view showing an example in which a reinforcing member is added to the superconducting wire connection structure, and FIG. 5B is a view of the other end of the reinforcing member as seen from the second superconducting wire side. 第一と第二の超電導線材の両方に開口部を形成した例を示す断面図である。It is sectional drawing which shows the example which formed the opening part in both the 1st and 2nd superconducting wire. 第一と第二の超電導線材を第三の超電導線材によりブリッジ接続した例を示す断面図である。It is sectional drawing which shows the example which bridge-connected the 1st and 2nd superconducting wire with the 3rd superconducting wire. 図8(A)〜図8(E)は超電導線材の接続方法を工程順に示した断面図である。8A to 8E are cross-sectional views showing a method of connecting superconducting wires in the order of steps.

[第一の実施形態]
以下に、本発明を実施するための好ましい第一の実施の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付し、重複した説明を適宜省略する。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
[First embodiment]
Hereinafter, a preferred first embodiment for carrying out the present invention will be described with reference to the drawings. However, the embodiments described below are given various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples. In the drawings, the same or corresponding elements are denoted by the same reference numerals as appropriate, and repeated descriptions are omitted as appropriate. Furthermore, it should be noted that the drawings are schematic, and dimensional relationships between elements may differ from actual ones. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included.

[超電導線材]
本実施形態では超電導線材の接続構造について説明する。
図1は、本発明の第1実施形態に係る超電導線材の斜視図である。
図1に示すように、超電導線材10は、超電導成膜用基材1(以下、「基材1」とする)の厚み方向の一方の主面(以下、成膜面11という)に、中間層2、酸化物超電導導体層3及び安定化層4がこの順に積層され、また、基材1の成膜面11とは反対側の面(以下、「背面12」とする)にも安定化層4が形成されている。即ち、超電導線材10は、安定化層4、基材1、中間層2、酸化物超電導導体層3(以下、「超電導導体層3」とする)、安定化層4による積層構造を有している。
[Superconducting wire]
In this embodiment, a superconducting wire connecting structure will be described.
FIG. 1 is a perspective view of a superconducting wire according to the first embodiment of the present invention.
As shown in FIG. 1, a superconducting wire 10 is placed on one main surface (hereinafter referred to as a film-forming surface 11) in the thickness direction of a substrate 1 for superconducting film formation (hereinafter referred to as “base material 1”). Layer 2, oxide superconducting conductor layer 3, and stabilization layer 4 are laminated in this order, and the surface opposite to the film formation surface 11 of the substrate 1 (hereinafter referred to as “back surface 12”) is also stabilized. Layer 4 is formed. That is, the superconducting wire 10 has a laminated structure including a stabilizing layer 4, a base material 1, an intermediate layer 2, an oxide superconducting conductor layer 3 (hereinafter referred to as “superconducting conductor layer 3”), and a stabilizing layer 4. Yes.

基材1は、低磁性の金属基板やセラミックス基板が用いられる。金属基板の材料としては、例えば、強度及び耐熱性に優れた、Co、Cu、Cr、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Ag等の金属又はこれらの合金が用いられる。特に、耐食性及び耐熱性が優れているという観点からハステロイ(登録商標)、インコネル(登録商標)等のNi基合金、またはステンレス鋼等のFe基合金を用いることが好ましい。
また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基板の材料としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア等が用いられる。その他にも、サファイアを基材として用いてもよい。
As the substrate 1, a low magnetic metal substrate or ceramic substrate is used. As the material of the metal substrate, for example, a metal such as Co, Cu, Cr, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, and Ag, which is excellent in strength and heat resistance, or an alloy thereof is used. . In particular, from the viewpoint of excellent corrosion resistance and heat resistance, it is preferable to use Ni-based alloys such as Hastelloy (registered trademark) and Inconel (registered trademark), or Fe-based alloys such as stainless steel.
Various ceramics may be arranged on these various metal materials. Moreover, as a material of the ceramic substrate, for example, MgO, SrTiO 3 , yttrium stabilized zirconia, or the like is used. In addition, sapphire may be used as a base material.

成膜面11は、略平滑な面とされており、例えば成膜面11の表面粗さが10nm以下とされていることが好ましい。
なお、表面粗さとは、JISB-0601-2001において規定する表面粗さパラメータの「高さ方向の振幅平均パラメータ」における算術平均粗さRaである。
The film formation surface 11 is a substantially smooth surface, and for example, the surface roughness of the film formation surface 11 is preferably 10 nm or less.
The surface roughness is the arithmetic average roughness Ra in the “amplitude average parameter in the height direction” of the surface roughness parameter defined in JISB-0601-2001.

中間層2は、超電導導体層3において例えば高い2軸配向性を実現するための層である。このような中間層2は、例えば、熱膨張率や格子定数等の物理的な特性値が基材1と超電導導体層3を構成する超電導体との中間的な値を示す。
また、中間層2は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、非晶質のGdZr7−δ(δは酸素不定比量)やAl或いはY等を含むベッド層と、結晶質のMgO等を含みIBAD(Ion Beam Assisted Deposition)法により成形された強制配向層と、LaMnO3+δ(δは酸素不定比量)を含むLMO層と、を順に積層した構成となっていてもよい。また、LMO層の上にCeO2等を含むキャップ層をさらに設けてもよい。
上記各層の厚さは、LMO層を30nm、強制配向層のMgO層を40nm、ベッド層のY層を7nm、Al層を80nmとする。なお、これらの数値はいずれも一例である。
また、中間層2は、単層構造と多層構造のいずれの場合であってもAl(アルミナ)層を有することが望ましい。
The intermediate layer 2 is a layer for realizing, for example, high biaxial orientation in the superconducting conductor layer 3. For such an intermediate layer 2, for example, physical characteristic values such as a coefficient of thermal expansion and a lattice constant indicate intermediate values between the substrate 1 and the superconductor constituting the superconducting conductor layer 3.
The intermediate layer 2 may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of layers are not limited, but a bed layer containing amorphous Gd 2 Zr 2 O 7-δ (δ is an oxygen non-stoichiometric amount), Al 2 O 3, Y 2 O 3, or the like. And a forced alignment layer formed by IBAD (Ion Beam Assisted Deposition) method including crystalline MgO and the like, and an LMO layer including LaMnO 3 + δ (δ is an oxygen non-stoichiometric amount) are sequentially stacked. May be. Further, a cap layer containing CeO 2 or the like may be further provided on the LMO layer.
The thickness of each of the above layers is 30 nm for the LMO layer, 40 nm for the MgO layer for forced alignment layer, 7 nm for the Y 2 O 3 layer for bed, and 80 nm for the Al 2 O 3 layer. These numerical values are only examples.
In addition, the intermediate layer 2 preferably has an Al 2 O 3 (alumina) layer regardless of whether the intermediate layer 2 has a single layer structure or a multilayer structure.

この中間層2の表面には、超電導導体層3が積層している。超電導導体層3は、酸化物超電導体、特に銅酸化物超電導体を含んでいることが好ましい。銅酸化物超電導体としては、高温超電導体としてのREBaCu7−δ(以下、RE系超電導体と称す)が好ましい。なお、RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素であり、これらの中でもBaサイトと置換が起き難い等の理由でYであることが好ましい。また、δは、酸素不定比量であって、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。 A superconducting conductor layer 3 is laminated on the surface of the intermediate layer 2. The superconducting conductor layer 3 preferably contains an oxide superconductor, particularly a copper oxide superconductor. As the copper oxide superconductor, REBa 2 Cu 3 O 7-δ (hereinafter referred to as RE superconductor) as a high-temperature superconductor is preferable. The RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Y is preferable because it is difficult to cause substitution with the Ba site. Further, δ is an oxygen non-stoichiometric amount and is, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint that the superconducting transition temperature is high. The oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.

安定化層4,4は、超電導導体層3の表面と基材1の背面12とを覆っているが、基材1と中間層2と超電導導体層3の周囲全体を覆っていることがより好ましい。
この安定化層4,4は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、銀からなる銀安定化層と、銅からなる銅安定化層を順に積層した構成となっていてもよい。
また、本実施形態では、安定化層4,4は超電導導体層3の表面と基材1の背面12とを覆っているが、これに限られず、少なくとも超電導導体層3の表面を覆っていればよい。
The stabilization layers 4, 4 cover the surface of the superconducting conductor layer 3 and the back surface 12 of the base material 1, but more preferably cover the entire periphery of the base material 1, the intermediate layer 2, and the superconducting conductor layer 3. preferable.
The stabilizing layers 4 and 4 may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of the layers are not limited, but a silver stabilization layer made of silver and a copper stabilization layer made of copper may be laminated in order.
In the present embodiment, the stabilization layers 4 and 4 cover the surface of the superconducting conductor layer 3 and the back surface 12 of the base material 1, but the present invention is not limited to this, and at least the surface of the superconducting conductor layer 3 may be covered. That's fine.

[超電導線材の接続構造]
本実施形態である超電導線材の接続構造100は、図2(A)に示すように、第一と第二の超電導線材10A,10Bの互いの接続端部を重合させて接続する接続方法(後述)によって接続することにより形成される。第一と第二の超電導線材10A,10Bは上記超電導線材10と同一構造であり、各層1〜4については超電導線材10と同じ符号を使用する。
[Connection structure of superconducting wire]
As shown in FIG. 2 (A), the superconducting wire connecting structure 100 according to the present embodiment is a connecting method (described later) in which the connecting ends of the first and second superconducting wires 10A and 10B are overlapped. ). The first and second superconducting wires 10A and 10B have the same structure as the superconducting wire 10, and the same reference numerals as those of the superconducting wire 10 are used for the respective layers 1 to 4.

この接続構造100は、第一と第二の超電導線材10A,10Bの超電導導体層3,3の露出された平面が向かい合わせで接合され、第二の超電導線材10Bの基材1の背面12に超電導導体層3,3を貫通しない深さで開口部13が設けられている。
上記開口部13は、図2(B)に示すように、平面視で略矩形であり、複数個の開口部13が基材1の長手方向に沿って二列に並んで形成されている。
また、各開口部13は、基材1の背面12から中間層2までに達する深さで形成されている。
In this connection structure 100, the exposed planes of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are joined face to face, and are attached to the back surface 12 of the base 1 of the second superconducting wire 10B. The opening 13 is provided at a depth that does not penetrate the superconducting conductor layers 3 and 3.
As shown in FIG. 2B, the opening 13 is substantially rectangular in plan view, and a plurality of openings 13 are formed in two rows along the longitudinal direction of the substrate 1.
Each opening 13 is formed with a depth reaching from the back surface 12 of the substrate 1 to the intermediate layer 2.

[超電導線材の接続方法]
上記の接続構造100について、図3(A)〜図3(E)に基づいて、その接続方法を工程順に説明する。
まず、図3(A)に示すように、第一と第二の超電導線材10A,10Bを用意する。なお、図3(A)及び図3(B)では、第二の超電導線材10Bの図示を省略している。
そして、図3(B)に示すように、第一と第二の超電導線材10A,10Bの接続端部側において、超電導導体層3側及び基材1の背面12側の安定化層4,4の除去を行い、超電導導体層3,3を露出させる(露出工程)。安定化層4の除去は、機械的研磨、化学的研磨又はこれらの組み合わせにより行う。
また、安定化層4の剥離によって露出した超電導導体層3は、超電導導体層同士の接合を良好に行うために、その表面粗さをより小さくすることが望ましい(例えば、10nm程度)。
[Connection method of superconducting wire]
With respect to the connection structure 100 described above, the connection method will be described in the order of steps based on FIGS. 3 (A) to 3 (E).
First, as shown in FIG. 3A, first and second superconducting wires 10A and 10B are prepared. In addition, in FIG. 3 (A) and FIG. 3 (B), illustration of the 2nd superconducting wire 10B is abbreviate | omitted.
Then, as shown in FIG. 3 (B), on the connection end portions side of the first and second superconducting wires 10A and 10B, the stabilization layers 4 and 4 on the superconducting conductor layer 3 side and on the back surface 12 side of the substrate 1. Then, the superconducting conductor layers 3 and 3 are exposed (exposure process). The removal of the stabilization layer 4 is performed by mechanical polishing, chemical polishing, or a combination thereof.
Further, it is desirable that the surface roughness of the superconducting conductor layer 3 exposed by peeling of the stabilizing layer 4 is made smaller (for example, about 10 nm) in order to satisfactorily join the superconducting conductor layers.

次に、図3(C)に示すように、第一と第二の超電導線材10A,10Bの超電導導体層3,3の露出された平面を向かい合わせに配置して超電導導体層3,3同士を接合する(接合工程)。
ここでは、第一及び第二の超電導線材10A,10Bの超電導導体層3,3の間に、MOD法(Metal Organic Deposition法/有機金属堆積法)によって図示しない超電導導体を形成することにより接合する。
このため、上記接合工程は、第一の超電導導体層10Aの超電導導体層3の表面と第二の超電導導体層10Bの超電導導体層3の表面のいずれか一方又は両方に、MOD法に基づいて超電導導体の前駆体となるMOD液を塗布する工程を含んでいる。
上記MOD液は、例えば、RE(Y(イットリウム)、Gd(ガドリニウム)、Sm(サマリウム)及びHo(ホルミウム)等の希土類元素)とBaとCuとが約1:2:3の割合で含まれているアセチルアセトナート系MOD溶液が使用される。
Next, as shown in FIG. 3C, the exposed surfaces of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are arranged facing each other so that the superconducting conductor layers 3 and 3 Are joined (joining step).
Here, the superconducting conductors 3A and 3B of the first and second superconducting wires 10A and 10B are joined by forming a superconducting conductor (not shown) by the MOD method (Metal Organic Deposition method / Organic metal deposition method). .
For this reason, the joining step is performed based on the MOD method on one or both of the surface of the superconducting conductor layer 3 of the first superconducting conductor layer 10A and the surface of the superconducting conductor layer 3 of the second superconducting conductor layer 10B. A step of applying a MOD liquid to be a precursor of the superconducting conductor.
The MOD liquid contains, for example, RE (rare earth elements such as Y (yttrium), Gd (gadolinium), Sm (samarium), and Ho (holmium)), Ba, and Cu in a ratio of about 1: 2: 3. Acetylacetonate MOD solutions are used.

また、上記接合工程は、第一の超電導線材10Aと第二の超電導線材10Bのいずれか一方又は両方に塗布されたMOD液に含まれる有機成分を除去するための仮焼成工程と、第一及び第二の超電導線材10A,10Bの超電導導体層3,3の界面にエピタキシャル成長させて超電導導体層3,3を接合するための本焼成工程を含んでいる。
上記仮焼成工程については、第一と第二の超電導線材10A,10Bの接合部分を10〜100MPaの範囲で加圧しながら、400℃以上500℃以下の温度範囲で熱処理が行なわれる。
また、本焼成工程では、第一と第二の超電導線材10A,10Bの接合部分を10〜100MPaの範囲で加圧しながら、780℃以上830℃以下の温度範囲で熱処理が行なわれる。
なお、これらの圧力条件と温度条件はいずれも一例であってこれらの数値範囲限定されるものではない。
Further, the bonding step includes a preliminary firing step for removing an organic component contained in the MOD liquid applied to one or both of the first superconducting wire 10A and the second superconducting wire 10B, A main firing step for joining the superconducting conductor layers 3 and 3 by epitaxial growth at the interface between the superconducting conductor layers 3 and 3 of the second superconducting wires 10A and 10B is included.
About the said temporary baking process, heat processing is performed at a temperature range of 400 degreeC or more and 500 degrees C or less, pressurizing the junction part of 1st and 2nd superconducting wire 10A, 10B in the range of 10-100 MPa.
Further, in the main firing step, heat treatment is performed in a temperature range of 780 ° C. or higher and 830 ° C. or lower while pressurizing the joining portion of the first and second superconducting wires 10A and 10B in the range of 10 to 100 MPa.
In addition, both of these pressure conditions and temperature conditions are examples, and these numerical ranges are not limited.

次に、第二の超電導線材10Bの基材1の背面12に、エッチングにより中間層2まで達する深さで開口部13を形成する(開口工程)。
上記エッチングは、基材1の開口部13以外の部分を残すためのマスク形成工程と、マスクに従って基材1の部分的な除去を行う除去工程とを含んでいる。
Next, an opening 13 is formed in the back surface 12 of the base material 1 of the second superconducting wire 10B with a depth reaching the intermediate layer 2 by etching (opening step).
The etching includes a mask forming process for leaving a portion other than the opening 13 of the base material 1 and a removing process for partially removing the base material 1 according to the mask.

マスク工程では、図3(D)に示すように、第一と第二の超電導線材10A,10Bの接続部分全体をエッチングレジスト51で被覆し、複数の開口部13の形成パターンに応じてエッチングレジスト51を所定の短波長のエネルギー線で露光する。そして、エッチングレジスト51の現像液により露光部分のレジストを除去し、マスクを形成する。なお、エッチングレジストがポジ型である場合を例示しているが、ネガ型のエッチングレジスト51を使用しても良い。その場合には、複数の開口部13の形成パターン以外の部分が露光される   In the mask process, as shown in FIG. 3D, the entire connecting portion of the first and second superconducting wires 10A and 10B is covered with an etching resist 51, and the etching resist is formed according to the formation pattern of the plurality of openings 13. 51 is exposed with an energy beam having a predetermined short wavelength. Then, the resist in the exposed portion is removed with a developer for the etching resist 51 to form a mask. Although the case where the etching resist is a positive type is illustrated, a negative type etching resist 51 may be used. In that case, portions other than the formation pattern of the plurality of openings 13 are exposed.

除去工程では、エッチングレジスト51によるマスク部分以外の部分をエッチング液に浸漬し、基材1の背面12側から複数の開口部13を形成する。エッチング液は、基材1を溶解し、中間層2を溶解しないものを使用する。これにより、エッチング液による溶解の進行を中間層2で止めることができる。
例えば、基材1をNiCr合金であるハステロイ(登録商標)から形成している場合には、硝酸を20〜30%、硫酸を1〜5%、過酸化水素水を0.5〜2%の比率で含有するエッチング液を使用すると、好適な開口形成を行うことが可能である。なお、上記数値範囲は一例であって適宜異なる値を選択可能である。
前述したように、中間層2がAl層を含む場合、上記エッチング液には溶解しないので、少なくとも開口部13はこのAl層よりも超電導導体層3側に進行しない。
In the removing step, a portion other than the mask portion by the etching resist 51 is immersed in an etching solution, and a plurality of openings 13 are formed from the back surface 12 side of the substrate 1. An etching solution that dissolves the substrate 1 and does not dissolve the intermediate layer 2 is used. Thereby, the progress of dissolution by the etching solution can be stopped by the intermediate layer 2.
For example, when the substrate 1 is made of Hastelloy (registered trademark), which is a NiCr alloy, nitric acid is 20 to 30%, sulfuric acid is 1 to 5%, and hydrogen peroxide is 0.5 to 2%. When the etching solution contained is used, suitable opening formation can be performed. In addition, the said numerical range is an example and can select a different value suitably.
As described above, when the intermediate layer 2 includes an Al 2 O 3 layer, it does not dissolve in the etching solution, and therefore, at least the opening 13 does not proceed to the superconducting conductor layer 3 side than the Al 2 O 3 layer.

次に、図3(E)に示すように、エッチングレジスト51を除去し、第一及び第二の超電導線材10A,10Bの超電導導体層3,3に対して酸素をドープする酸素アニール工程が行われる。この酸素アニール工程は、第一及び第二の超電導線材10A,10Bの超電導導体層3,3が、350℃以上500℃以下の温度範囲の酸素雰囲気内に所定時間収容されることにより実施される。
そして、これらの工程により超電導線材の接続構造100が形成される。
Next, as shown in FIG. 3E, the etching resist 51 is removed, and an oxygen annealing step is performed in which the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are doped with oxygen. Is called. This oxygen annealing step is performed by accommodating the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B in an oxygen atmosphere in a temperature range of 350 ° C. or higher and 500 ° C. or lower for a predetermined time. .
And the connection structure 100 of a superconducting wire is formed by these processes.

[第一の実施形態の技術的効果]
上記超電導線材の接続構造100は、超電導導体層3,3が向かい合わせで接合される第一と第二の超電導線材10A,10Bの内の第二の超電導線材10Bの基材1の背面12に中間層2まで到達する複数の開口部13が設けられている。
このため、第一と第二の超電導線材10A,10Bの超電導導体層3,3が接合されて酸素アニールを行う際に、基材1に遮られることなく各開口部13により酸素が超電導導体層3,3に供給され、効果的に酸化を促すことが可能となる。従って、第一と第二の超電導線材10A,10Bの超電導導体層3,3の超電導性を高く維持することが可能となる。また、酸素アニールに要する時間を短縮化することが可能となる。
[Technical effects of the first embodiment]
The superconducting wire connecting structure 100 is formed on the back surface 12 of the base material 1 of the second superconducting wire 10B out of the first and second superconducting wires 10A and 10B to which the superconducting conductor layers 3 and 3 are joined face to face. A plurality of openings 13 reaching the intermediate layer 2 are provided.
For this reason, when the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are joined and oxygen annealing is performed, oxygen is not superposed by the base material 1 and the oxygen is superconducting through the openings 13. 3 and 3, and can effectively promote oxidation. Therefore, the superconductivity of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B can be maintained high. In addition, the time required for oxygen annealing can be shortened.

また、開口部13は第二の超電導線材10Bの長手方向に沿って複数個並んで形成されているので、その間隔を適宜調節することにより基材1の強度を適正な範囲に調節することが可能である。   Further, since a plurality of openings 13 are formed side by side along the longitudinal direction of the second superconducting wire 10B, the strength of the substrate 1 can be adjusted to an appropriate range by appropriately adjusting the interval. Is possible.

また、各開口部13をエッチングによって形成しているので超電導導体層3を貫通しない開口部13を形成することが可能である。
例えば、レーザー加工により開口部を形成することも可能であるが、その場合の開口部13aは図4に示すように、中間層2及び超電導導体層3も貫通して形成されることになる。このように超電導導体層3が貫通する開口部13aの場合には、酸素アニールの際に、当該開口部13a内に酸素が供給されても、超電導導体層3は開口部13aの内側の微小な端面3aが酸素に曝されるに過ぎないので、十分に酸化を促すことができず、接続構造の超電導導体層3,3の超電導性を高く維持することができない。
一方、エッチングで形成された開口部13は内底面が広く確保されるので、レーザーによる加工に比べて超電導導体層3の酸化を十分に促すことができ、接続構造100の超電導導体層3,3の超電導性をより高く維持することが可能である。
Moreover, since each opening 13 is formed by etching, it is possible to form the opening 13 that does not penetrate the superconducting conductor layer 3.
For example, it is possible to form the opening by laser processing. In this case, the opening 13a is also formed through the intermediate layer 2 and the superconducting conductor layer 3 as shown in FIG. As described above, in the case of the opening 13a through which the superconducting conductor layer 3 penetrates, even when oxygen is supplied into the opening 13a during the oxygen annealing, the superconducting conductor layer 3 has a minute size inside the opening 13a. Since the end face 3a is only exposed to oxygen, the oxidation cannot be promoted sufficiently, and the superconductivity of the superconducting conductor layers 3 and 3 of the connection structure cannot be maintained high.
On the other hand, since the opening 13 formed by etching has a wide inner bottom surface, it is possible to sufficiently promote the oxidation of the superconducting conductor layer 3 as compared with the processing by laser, and the superconducting conductor layers 3 and 3 of the connection structure 100 can be promoted. It is possible to maintain higher superconductivity.

また、中間層2のベッド層がAlを含む構成とした場合、エッチングをこのAl層の手前まで行うことができ、さらに、Alは他の金属等に比べて酸素透過性に優れているので、超電導導体層3の酸化を十分に促すことができ、接続構造の超電導導体層3,3の超電導性をより高く維持することが可能である。 In addition, when the bed layer of the intermediate layer 2 includes Al 2 O 3 , etching can be performed up to this Al 2 O 3 layer, and Al 2 O 3 can be compared with other metals and the like. Since the oxygen permeability is excellent, the oxidation of the superconducting conductor layer 3 can be promoted sufficiently, and the superconducting properties of the superconducting conductor layers 3 and 3 of the connection structure can be maintained higher.

また、超電導導体層3,3の接合工程は、第一と第二の超電導線材10A,10Bの超電導導体層3,3の一方に又は両方に酸化物超電導導体の前駆体としてのMOD溶液を塗布する工程と、超電導導体の前駆体を焼成する工程とを含んでいる。
これにより、接合工程において、第一と第二の超電導線材10A,10Bの超電導導体層3,3の間に超電導導体を形成することができ、超電導導体層3,3の相互間の超電導臨界電流密度を十分に大きくして接続することが可能となる。
The superconducting conductor layers 3 and 3 are joined by applying a MOD solution as a precursor of an oxide superconducting conductor to one or both of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. And a step of firing the precursor of the superconducting conductor.
Thereby, in a joining process, a superconducting conductor can be formed between the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B, and the superconducting critical current between the superconducting conductor layers 3 and 3 can be formed. It is possible to connect with a sufficiently large density.

上記実施形態では、第一と第二の超電導線材10A,10Bの接続端部側において、超電導導体層3側及び基材1の背面12側の安定化層4,4が除去された構造としているが、これに限られない。例えば、第二の超電導線材10Bの基材1のみをエッチングにより除去する場合は、第一の超電導線材10Aの基材1の背面12側の安定化層を除去せずに残してもよい。   In the said embodiment, it is set as the structure by which the stabilization layers 4 and 4 of the superconducting conductor layer 3 side and the back surface 12 side of the base material 1 were removed in the connection edge part side of 1st and 2nd superconducting wire 10A, 10B. However, it is not limited to this. For example, when removing only the base material 1 of the second superconducting wire 10B by etching, the stabilizing layer on the back surface 12 side of the base material 1 of the first superconducting wire 10A may be left without being removed.

[補強部材]
上記超電導線材の接続構造100は、第一と第二の超電導線材10A,10Bの超電導導体層3,3同士が接合されることにより線材の接続が図られているが、超電導導体層3,3は剥離しやすいので、図5に示すように、超電導線材の接続構造100に補強部材60を加えて、接続強度の強化を図ってもよい。
[Reinforcing member]
In the superconducting wire connecting structure 100, the superconducting conductor layers 3 and 3 are connected to each other by joining the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. Is easy to peel off, and as shown in FIG. 5, a reinforcing member 60 may be added to the superconducting wire connection structure 100 to enhance the connection strength.

この補強部材60は、第二の超電導線材10Bに形成された各開口部13を避けて、一端部61と他端部62とが第一と第二の超電導線材10A,10Bに個別に連結されている。
この補強部材60の一端部61は長尺の板状であって、その平板面は第一の超電導線材10Aの基材1の背面12に形成された安定化層4の外側面に半田付けにより接合されている。図5の符号Hは半田を示している。
In the reinforcing member 60, one end 61 and the other end 62 are individually connected to the first and second superconducting wires 10A and 10B, avoiding the openings 13 formed in the second superconducting wire 10B. ing.
One end portion 61 of the reinforcing member 60 has a long plate shape, and the flat plate surface is soldered to the outer surface of the stabilization layer 4 formed on the back surface 12 of the base 1 of the first superconducting wire 10A. It is joined. A symbol H in FIG. 5 indicates solder.

また、補強部材60の他端部62は、第二の超電導線材10Bの基材1の背面12に形成された安定化層4の外側面に回り込む一対の腕部63,63を備え、当該腕部63,63の内側面が安定化層4の外側面に半田付けによって接合されている。
補強部材60の他端部62は、第二の超電導線材10Bの超電導導体層3側の安定化層4には接合されておらず、また、隙間を設けて非接触状態を維持している。超電導導体層3側の安定化層4に補強部材60の他端部62を接合すると、第一と第二の超電導線材10A,10Bが張力を受けた場合に、安定化層4を介して超電導導体層3の剥離や破損の発生を生じる可能性がある。従って、補強部材60の他端部62は、張力の影響を受けにくい基材1の背面12側の安定化層4に接合されている。
The other end portion 62 of the reinforcing member 60 includes a pair of arm portions 63 and 63 that wrap around the outer surface of the stabilization layer 4 formed on the back surface 12 of the base material 1 of the second superconducting wire 10B. The inner side surfaces of the parts 63 and 63 are joined to the outer side surface of the stabilization layer 4 by soldering.
The other end 62 of the reinforcing member 60 is not joined to the stabilizing layer 4 on the superconducting conductor layer 3 side of the second superconducting wire 10B, and a gap is provided to maintain a non-contact state. When the other end 62 of the reinforcing member 60 is joined to the stabilization layer 4 on the superconducting conductor layer 3 side, the superconductivity is passed through the stabilization layer 4 when the first and second superconducting wires 10A and 10B are under tension. There is a possibility that the conductor layer 3 is peeled off or broken. Therefore, the other end portion 62 of the reinforcing member 60 is joined to the stabilization layer 4 on the back surface 12 side of the substrate 1 that is not easily affected by tension.

また、補強部材60の他端部62は、第二の超電導線材10Bの接続端部から複数の開口部13の形成位置よりも離れた位置に接合されている。これにより、補強部材60の他端部62の接合部分が開口部13を塞ぐことを回避している。
なお、後述する例のように、第一の超電導線材10Aの基材1にも開口部13を形成する場合には(図6参照)、補強部材60の一端部61は、第二の超電導線材10Bの接続端部から複数の開口部13の形成位置よりも離れた位置に接合することが望ましい。
Further, the other end portion 62 of the reinforcing member 60 is joined to a position farther from the connection end portion of the second superconducting wire 10B than the position where the plurality of openings 13 are formed. This prevents the joint portion of the other end 62 of the reinforcing member 60 from closing the opening 13.
In addition, when the opening part 13 is formed also in the base material 1 of 10 A of 1st superconducting wire like the example mentioned later (refer FIG. 6), the one end part 61 of the reinforcement member 60 is the 2nd superconducting wire. It is desirable to join the connecting end of 10B to a position away from the position where the plurality of openings 13 are formed.

[両面に開口部を設けた例]
また、前述した開口部13は、第二の超電導線材10Bにのみ設ける場合を例示したが、開口部13は、図6に示すように、第一の超電導線材10Aにも形成しても良い。この場合も、第一の超電導線材10Aの基材1の背面12から中間層2にかけて複数の開口部13を形成する。
これにより、酸素アニールの際に、第一の超電導線材10A側の開口部13からも酸素が超電導導体層3,3に供給され、より効果的に酸化を促して、超電導導体層3,3の超電導性をさらに高く維持することが可能となる。また、酸素アニールに要する時間をさらに短縮することが可能となる。
なお、第一と第二の超電導線材10A,10Bの両方に開口部13を形成した場合には、それぞれの基材1,1の強度が低下するので、前述した補強部材60が各超電導導体層3,3を保護するためにもより有効である。
[Example with openings on both sides]
Moreover, although the case where the opening part 13 mentioned above was provided only in the 2nd superconducting wire 10B was illustrated, as shown in FIG. 6, you may form the opening part 13 also in the 1st superconducting wire 10A. Also in this case, a plurality of openings 13 are formed from the back surface 12 of the base 1 of the first superconducting wire 10A to the intermediate layer 2.
As a result, during the oxygen annealing, oxygen is also supplied from the opening 13 on the first superconducting wire 10A side to the superconducting conductor layers 3 and 3 to promote oxidation more effectively. It becomes possible to maintain superconductivity even higher. In addition, the time required for oxygen annealing can be further shortened.
In addition, since the intensity | strength of each base material 1 and 1 falls when both the 1st and 2nd superconducting wire 10A, 10B form the opening part 13, the reinforcement member 60 mentioned above is each superconducting conductor layer. It is also more effective for protecting 3,3.

[第二の実施形態]
前述した超電導線材の接続構造100では、第一と第二の超電導線材10A,10Bの接続端部を重合配置して、超電導導体層3,3を向かい合わせに接続しているが、この接続方式に限定されない。
この第二の実施形態では、接続用の超電導線材である第三の超電導線材10Cを用いて第一と第二の超電導線材10A,10Bをブリッジ接続する場合の超電導線材の接続構造100Cを例示する。
[Second Embodiment]
In the superconducting wire connecting structure 100 described above, the connecting ends of the first and second superconducting wires 10A and 10B are overlapped and the superconducting conductor layers 3 and 3 are connected face to face. It is not limited to.
In the second embodiment, a superconducting wire connection structure 100C in the case where the first and second superconducting wires 10A and 10B are bridge-connected using a third superconducting wire 10C which is a superconducting wire for connection is illustrated. .

超電導線材の接続構造100Cは、図7に示すように、その両端部において、それぞれ第一と第二の超電導線材10A,10Bと個別に接続端部を重合させて接続された第三の超電導線材10Cを備え、当該第三の超電導線材10Cに開口部13Cが設けられていることを特徴とする。
なお、開口部13Cは、第一と第二の超電導線材10A,10B側に設けても良い。
また、この超電導線材の接続構造100Cでは、第一と第二の超電導線材10A,10Bの基材1,1の背面12,12側の安定化層4,4を跨いで、安定化層4Dと基材1Dとを有する補強用線材10Dを取り付けて補強することが望ましい。
As shown in FIG. 7, the superconducting wire connecting structure 100 </ b> C is a third superconducting wire that is connected to the first and second superconducting wires 10 </ b> A and 10 </ b> B individually by overlapping the connecting ends at both ends thereof. 10C, and the third superconducting wire 10C is provided with an opening 13C.
Note that the opening 13C may be provided on the first and second superconducting wires 10A and 10B.
Further, in this superconducting wire connecting structure 100C, the stabilizing layer 4D extends across the stabilizing layers 4 and 4 on the back surfaces 12 and 12 of the bases 1 and 1 of the first and second superconducting wires 10A and 10B. It is desirable to attach and reinforce the reinforcing wire 10D having the base 1D.

[超電導線材の接続方法]
図8は上記超電導線材の接続構造100Cに基づく超電導線材の接続方法を示している。かかる接続方法を工程順に説明する。
まず、図8(A)に示すように、第一と第二の超電導線材10A,10Bを用意する。
そして、図8(B)に示すように、第一と第二の超電導線材10A,10Bの接続端部側において、超電導導体層3側の安定化層4の除去を行い、超電導導体層3,3を露出させる(露出工程)。安定化層4の除去は、機械的研磨、化学的研磨又はこれらの組み合わせにより行う。
なお、基材1の背面12側の安定化層4は、図7に示す補強用の基材1Cを取り付けるために除去しないで残される。
なお、露出した超電導導体層3の表面粗さをより小さくすべきことは超電導線材の接続構造100の場合と同様である。
[Connection method of superconducting wire]
FIG. 8 shows a superconducting wire connecting method based on the superconducting wire connecting structure 100C. Such a connection method will be described in the order of steps.
First, as shown in FIG. 8A, first and second superconducting wires 10A and 10B are prepared.
Then, as shown in FIG. 8 (B), the stabilization layer 4 on the superconducting conductor layer 3 side is removed on the connecting end side of the first and second superconducting wires 10A and 10B, and the superconducting conductor layer 3, 3 is exposed (exposure process). The removal of the stabilization layer 4 is performed by mechanical polishing, chemical polishing, or a combination thereof.
The stabilization layer 4 on the back surface 12 side of the base material 1 is left without being removed in order to attach the reinforcing base material 1C shown in FIG.
It should be noted that the surface roughness of the exposed superconducting conductor layer 3 should be reduced as in the case of the superconducting wire connection structure 100.

次に、図8(C)に示すように、第三の超電導線材10Cの超電導導体層3Cと、第一と第二の超電導線材10A,10Bの露出した超電導導体層3,3とが対向するように第三の超電導線材10Cを配置する。なお、第三の超電導線材10Cは、基材1Cと中間層2Cと超電導導体層3Cとを備えており、これらは、第一と第二の超電導線材10A,10Bの基材1、中間層2、超電導導体層3と同一材料からなるものである。   Next, as shown in FIG. 8C, the superconducting conductor layer 3C of the third superconducting wire 10C and the exposed superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B face each other. Thus, the third superconducting wire 10C is disposed. The third superconducting wire 10C includes a base material 1C, an intermediate layer 2C, and a superconducting conductor layer 3C, which are the base material 1 and the intermediate layer 2 of the first and second superconducting wires 10A and 10B. The superconducting conductor layer 3 is made of the same material.

そして、第一と第二の超電導線材10A,10Bの超電導導体層3,3と第三の超電導線材10Cの超電導導体層3Cとを接合する(接合工程)。
第一及び第二の超電導線材10A,10Bの超電導導体層3,3と第三の超電導線材10Cの超電導導体層3Cとの接合は、超電導線材の接続構造100と同じ方法であるMOD法を利用する。
Then, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B and the superconducting conductor layer 3C of the third superconducting wire 10C are joined (joining step).
For joining the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B and the superconducting conductor layer 3C of the third superconducting wire 10C, use the MOD method which is the same method as the connection structure 100 of the superconducting wires. To do.

次に、第三の超電導線材10Cの基材1Cの背面12Cに、エッチングにより中間層2Cまで達する深さで開口部13Cを形成する(開口工程)。
各開口部13Cの形成は、前述した超電導線材の接続構造100の開口部13の形成と同じ工程で行われる。
即ち、上記エッチングは、マスク形成工程と除去工程とを含んでいる。
Next, an opening 13C is formed in the back surface 12C of the base material 1C of the third superconducting wire 10C with a depth reaching the intermediate layer 2C by etching (opening step).
The formation of each opening 13C is performed in the same process as the formation of the opening 13 of the superconducting wire connecting structure 100 described above.
That is, the etching includes a mask formation process and a removal process.

マスク工程では、図8(D)に示すように、第一〜第三の超電導線材10A〜10Cの接続部分全体をエッチングレジスト51で被覆し、複数の開口部13Cの形成パターンに応じて露光し、露光部分のレジストを除去してマスクを形成する。
除去工程では、エッチングレジスト51によるマスクに従ってエッチング液に浸漬し、基材1Cの背面側から複数の開口部13Cを形成する。この場合も開口部13Cは中間層2Cまで形成される。
In the mask process, as shown in FIG. 8D, the entire connection portion of the first to third superconducting wires 10A to 10C is covered with an etching resist 51, and exposed according to the formation pattern of the plurality of openings 13C. Then, the resist in the exposed portion is removed to form a mask.
In the removing step, the plurality of openings 13C are formed from the back side of the substrate 1C by dipping in an etching solution according to a mask made of the etching resist 51. Also in this case, the opening 13C is formed up to the intermediate layer 2C.

次に、図8(E)に示すように、エッチングレジスト51を除去し、第一〜第三の超電導線材10A〜10Cの超電導導体層3,3,3Cに対して酸素をドープする酸素アニール工程が行われる。酸素アニールの条件は、超電導線材の接続構造100の場合と同じである。
その後、接続部分の表面に、銀を蒸着する、または、銀ペーストを塗布した後に焼成することで銀安定化層を形成し、その上に電解めっき法などで銅安定化層を形成する安定化層形成工程が行われる。この時、安定化層は開口部13Cを埋めるように形成されてよい。
Next, as shown in FIG. 8E, the etching resist 51 is removed, and an oxygen annealing step of doping oxygen into the superconducting conductor layers 3, 3, and 3C of the first to third superconducting wires 10A to 10C. Is done. The conditions for the oxygen annealing are the same as in the case of the superconducting wire connection structure 100.
Then, the silver stabilization layer is formed by depositing silver on the surface of the connection portion or baking after applying a silver paste, and then forming the copper stabilization layer on the surface by electrolytic plating or the like. A layer forming step is performed. At this time, the stabilization layer may be formed to fill the opening 13C.

次いで、安定化層4Dと基材1Dとを有する補強用線材10Dが、第一と第二の超電導線材10A,10Bの基材1の背面12側の安定化層4の外側面に取り付けられる(図7参照)。
補強用線材10Dの安定化層4Dと基材1Dは、第一と第二の超電導線材10A,10Bの安定化層4及び基材1と同一材料からなる
補強用線材10Dはその安定化層4Dを第一と第二の超電導線材10A,10Bの安定化層4に対向させて配置され、安定化層4,4Dを接合する。例えば、安定化層4,4Dが銀安定化層の場合には、Ag−Ag拡散接合により接合される。
そして、これらの工程により超電導線材の接続構造100が形成される。
Next, the reinforcing wire 10D having the stabilization layer 4D and the base material 1D is attached to the outer surface of the stabilization layer 4 on the back surface 12 side of the base material 1 of the first and second superconducting wires 10A and 10B ( (See FIG. 7).
The stabilizing layer 4D and the substrate 1D of the reinforcing wire 10D are made of the same material as the stabilizing layer 4 and the substrate 1 of the first and second superconducting wires 10A and 10B. The reinforcing wire 10D is made of the stabilizing layer 4D. Is arranged to face the stabilization layer 4 of the first and second superconducting wires 10A and 10B, and the stabilization layers 4 and 4D are joined. For example, when the stabilization layers 4 and 4D are silver stabilization layers, they are joined by Ag-Ag diffusion bonding.
And the connection structure 100 of a superconducting wire is formed by these processes.

[第二の実施形態の技術的効果]
上記超電導線材の接続構造100Cは、超電導線材の接続構造100と同様に、各開口部13,13Cにより酸素が超電導導体層3,3,3Cに供給され、効果的に酸化を促すことが可能となる。従って、第一〜第三の超電導線材10A〜10Cの超電導導体層3,3,3Cの超電導性を高く維持することができ、また、酸素アニールに要する時間を短縮化することが可能となる。
[Technical effects of the second embodiment]
In the superconducting wire connecting structure 100C, as with the superconducting wire connecting structure 100, oxygen is supplied to the superconducting conductor layers 3, 3, and 3C through the openings 13 and 13C, thereby effectively promoting oxidation. Become. Therefore, the superconductivity of the superconducting conductor layers 3, 3 and 3C of the first to third superconducting wires 10A to 10C can be kept high, and the time required for oxygen annealing can be shortened.

また、開口部13Cが各超電導線材10A〜10Cの長手方向に並んで形成されていること、開口部13Cをエッチングによって形成すること、中間層2がAlを含むベッド層を備えること、超電導導体層3,3,3Cの接合にMOD法を利用すること等による効果は超電導線材の接続構造100の場合と同じである。 Also, the opening 13C is formed side by side in the longitudinal direction of each of the superconducting wires 10A to 10C, the opening 13C is formed by etching, the intermediate layer 2 includes a bed layer containing Al 2 O 3 , The effect of using the MOD method for joining the superconducting conductor layers 3, 3, 3 C is the same as that of the superconducting wire connecting structure 100.

[その他]
上記各実施形態の開口部13,13Cの形状は矩形に限らない。開口部13,13Cは円形等、その他の形状で形成しても良い。例えば、六角形の開口部を有するハニカム構造とすれば、強度低下を抑制しつつ開口部の面積を大きくすることができるので好ましい。さらに、開口部は溝状に形成しても良い。その場合、開口部を広く形成することができ、各超電導導体層3又は3Cに効果的に酸素を供給することが可能となる。
[Others]
The shape of the openings 13 and 13C in the above embodiments is not limited to a rectangle. The openings 13 and 13C may be formed in other shapes such as a circle. For example, a honeycomb structure having hexagonal openings is preferable because the area of the openings can be increased while suppressing a decrease in strength. Further, the opening may be formed in a groove shape. In that case, the opening can be formed widely, and oxygen can be effectively supplied to each superconducting conductor layer 3 or 3C.

また、上記各実施形態では、中間層2を有する第一と第二の超電導線材10A,10Bを例示したが、中間層2を備えていない超電導線材の場合にも開口部13は形成可能である。即ち、開口部13は超電導導体層3を貫通しないように形成すれば良く、エッチング液の調整、エッチングの時間の調整などにより基材1を貫通しない深さまで開口部13を形成すれば良い。   In each of the above embodiments, the first and second superconducting wires 10A and 10B having the intermediate layer 2 are exemplified. However, the opening 13 can be formed even in the case of a superconducting wire having no intermediate layer 2. . That is, the opening 13 may be formed so as not to penetrate the superconducting conductor layer 3, and the opening 13 may be formed to a depth not penetrating the base material 1 by adjusting the etching solution or adjusting the etching time.

また、上記各実施形態では、超電導導体層3又は3Cの接合をMOD法で行う場合を例示したが、これに限定されない。例えば、化学気相蒸着法(CVD法)、レーザー蒸着法(PLD法)、有機金属気相成長法(MOCVD法)により接合を行っても良い。   Further, in each of the above embodiments, the case where the superconducting conductor layer 3 or 3C is joined by the MOD method is exemplified, but the present invention is not limited to this. For example, bonding may be performed by chemical vapor deposition (CVD), laser vapor deposition (PLD), or metal organic chemical vapor deposition (MOCVD).

1,1C,1D 基材
2,2C 中間層
3,3,3C 超電導導体層(酸化物超電導導体層)
4,4D 安定化層
10 超電導線材
10A 第一の超電導線材(超電導線材)
10B 第二の超電導線材(超電導線材)
10C 第三の超電導線材(接続用の超電導線材)
10D 補強用線材
11 成膜面(主面)
12,12C 背面
13,13C 開口部
51 エッチングレジスト
60 補強部材
61 一端部
62 他端部
100,100C 超電導線材の接続構造
1,1C, 1D Base material 2,2C Intermediate layer 3,3,3C Superconducting conductor layer (oxide superconducting conductor layer)
4,4D Stabilization layer 10 Superconducting wire 10A First superconducting wire (superconducting wire)
10B Second superconducting wire (superconducting wire)
10C Third superconducting wire (superconducting wire for connection)
10D reinforcing wire 11 Deposition surface (main surface)
12, 12C Back surface 13, 13C Opening 51 Etching resist 60 Reinforcing member 61 One end 62 Other end 100, 100C Superconducting wire connection structure

Claims (11)

基材の片面側に酸化物超電導導体層が形成された超電導線材同士の互いの接続端部を重合させて接続されている超電導線材の接続構造であって、
二本の前記超電導線材の前記酸化物超電導導体層が向かい合わせで接合され、
一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に前記酸化物超電導導体層を貫通しない深さで開口部が設けられていることを特徴とする超電導線材の接続構造。
A superconducting wire connecting structure in which the connecting end portions of the superconducting wires having the oxide superconducting conductor layer formed on one side of the base material are polymerized and connected,
The oxide superconducting conductor layers of the two superconducting wires are joined face to face,
An opening is provided at a depth not penetrating the oxide superconducting conductor layer on a surface opposite to the oxide superconducting conductor layer in the base material within a bonding range of one or both of the superconducting wires. Characteristic superconducting wire connection structure.
前記開口部を挟んでその両側で一端部と他端部とが二本の前記超電導線材に個別に連結された補強部材を備えることを特徴とする請求項1記載の超電導線材の接続構造。   2. The superconducting wire connecting structure according to claim 1, further comprising a reinforcing member having one end and the other end individually connected to the two superconducting wires on both sides of the opening. 前記補強部材は、その一端部と他端部とが、それぞれ二本の前記超電導線材の前記基材における前記酸化物超電導導体層とは反対側に接合されていることを特徴とする請求項2記載の超電導線材の接続構造。   3. The reinforcing member is characterized in that one end and the other end of each of the reinforcing members are joined to the opposite side of the base material of the two superconducting wires to the oxide superconducting conductor layer. The superconducting wire connection structure described. 基材の片面側に酸化物超電導導体層が形成され、互いの接続端部が向かい合う二本の超電導線材が、基材の片面側に酸化物超電導導体層が形成された接続用の超電導線材によってブリッジ接続されている超電導線材の接続構造であって、
前記二本の超電導線材の前記酸化物超電導導体層と前記接続用の超電導線材の前記酸化物超電導導体層とが向かい合わせで接合され、
前記二本の超電導線材と前記接続用の超電導線材のいずれか一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に前記酸化物超電導導体層を貫通しない深さで開口部が設けられていることを特徴とする超電導線材の接続構造。
An oxide superconducting conductor layer is formed on one side of the substrate, and two superconducting wires facing each other are connected to each other by a connecting superconducting wire in which an oxide superconducting conductor layer is formed on one side of the substrate. A superconducting wire connection structure that is bridge-connected,
The oxide superconducting conductor layer of the two superconducting wires and the oxide superconducting conductor layer of the connecting superconducting wire are joined face to face,
The oxide superconducting conductor on the surface opposite to the oxide superconducting conductor layer in the base material within the joining range of one or both of the two superconducting wires and the connecting superconducting wire. A connection structure for a superconducting wire, characterized in that an opening is provided at a depth that does not penetrate the layer.
前記超電導線材は、前記基材と前記酸化物超電導導体層との間に中間層を備え、
前記開口部は中間層まで形成されていることを特徴とする請求項1から4のいずれか一項に記載の超電導線材の接続構造。
The superconducting wire comprises an intermediate layer between the base material and the oxide superconducting conductor layer,
The superconducting wire connecting structure according to any one of claims 1 to 4, wherein the opening is formed up to an intermediate layer.
前記開口部は溝状に形成されていることを特徴とする請求項1から5のいずれか一項に記載の超電導線材の接続構造。   The superconducting wire connecting structure according to any one of claims 1 to 5, wherein the opening is formed in a groove shape. 前記開口部は複数個並んで形成されていることを特徴とする請求項1から5のいずれか一項に記載の超電導線材の接続構造。   The superconducting wire connecting structure according to any one of claims 1 to 5, wherein a plurality of the openings are formed side by side. 基材の片面側に酸化物超電導導体層が形成された超電導線材同士の互いの接続端部を重合させて接続する超電導線材の接続方法であって、
二本の前記超電導線材の前記酸化物超電導導体層を露出させる露出工程と、
前記二本の超電導線材の前記酸化物超電導導体層を向かい合わせで接合する接合工程と、
一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に、エッチングにより前記酸化物超電導導体層を貫通しない深さで開口部を形成する開口工程と、
前記酸化物超電導導体層に対する酸素アニール工程とを備えることを特徴とする超電導線材の接続方法。
A superconducting wire connecting method in which the connection ends of the superconducting wires formed with an oxide superconducting conductor layer on one side of the base material are polymerized and connected,
An exposing step of exposing the oxide superconducting conductor layer of the two superconducting wires;
A joining step in which the oxide superconducting conductor layers of the two superconducting wires are joined face to face;
An opening that forms an opening at a depth not penetrating the oxide superconducting conductor layer by etching on a surface opposite to the oxide superconducting conductor layer in the base material within a bonding range of one or both of the superconducting wires. Process,
A method of connecting a superconducting wire comprising an oxygen annealing step for the oxide superconducting conductor layer.
前記接合工程は、前記二本の超電導線材の前記酸化物超電導導体層の一方に又は両方に酸化物超電導導体の前駆体を配置する工程と、前記酸化物超電導導体の前駆体を焼成する工程とを含むことを特徴とする請求項8記載の超電導線材の接続方法。   The joining step includes a step of disposing a precursor of the oxide superconducting conductor on one or both of the oxide superconducting conductor layers of the two superconducting wires, and a step of firing the precursor of the oxide superconducting conductor; The superconducting wire connecting method according to claim 8, comprising: 基材の片面側に酸化物超電導導体層が形成された二本の超電導線材同士の互いの接続端部を突き合わせた状態で、基材の片面側に酸化物超電導導体層が形成された接続用の超電導線材によってブリッジ接続する超電導線材の接続方法であって、
前記二本の超電導線材の前記酸化物超電導導体層を露出させる露出工程と、
前記二本の超電導線材の前記酸化物超電導導体層と前記接続用の超電導線材の前記酸化物超電導導体層とを向かい合わせで接合する接合工程と、
前記二本の超電導線材と前記接続用の超電導線材のいずれか一方又は両方の前記超電導線材の接合範囲内の前記基材における前記酸化物超電導導体層とは逆側の面に、エッチングにより前記酸化物超電導導体層を貫通しない深さで開口部を形成する開口工程と、
前記酸化物超電導導体層に対する酸素アニール工程とを備えることを特徴とする超電導線材の接続方法。
For connection in which an oxide superconducting conductor layer is formed on one side of a base material in a state in which the connection ends of two superconducting wires having an oxide superconducting conductor layer formed on one side of the base material are butted together A superconducting wire connecting method for bridge connection with a superconducting wire of
An exposing step of exposing the oxide superconducting conductor layer of the two superconducting wires;
A joining step of joining the oxide superconducting conductor layer of the two superconducting wires and the oxide superconducting conductor layer of the superconducting wire for connection facing each other;
Etching is performed on the surface opposite to the oxide superconducting conductor layer in the base material within the bonding range of one or both of the two superconducting wires and the connecting superconducting wires. An opening step of forming an opening at a depth not penetrating the physical superconductor layer;
A method of connecting a superconducting wire comprising an oxygen annealing step for the oxide superconducting conductor layer.
前記接合工程は、前記二本の超電導線材の前記酸化物超電導導体層と前記接続用の超電導線材の前記酸化物超電導導体層のいずれかの一方に又は両方に酸化物超電導導体の前駆体を配置する工程と、前記酸化物超電導導体の前駆体を焼成する工程とを含むことを特徴とする請求項10記載の超電導線材の接続方法。   In the joining step, a precursor of the oxide superconducting conductor is disposed on one or both of the oxide superconducting conductor layer of the two superconducting wires and the oxide superconducting conductor layer of the connecting superconducting wire. The method for connecting a superconducting wire according to claim 10, further comprising a step of firing the precursor of the oxide superconducting conductor.
JP2014094748A 2014-05-01 2014-05-01 Superconducting wire connection structure and connection method Expired - Fee Related JP6258775B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014094748A JP6258775B2 (en) 2014-05-01 2014-05-01 Superconducting wire connection structure and connection method
EP15786084.2A EP3128618B1 (en) 2014-05-01 2015-04-28 Superconducting wire rod connection structure and connection method, and superconducting wire rod
US15/308,095 US20170062097A1 (en) 2014-05-01 2015-04-28 Superconducting wire rod connection structure and connection method, and superconducting wire rod
EP19175232.8A EP3550619A1 (en) 2014-05-01 2015-04-28 Superconducting wire rod connection structure and connection method, and superconducting wire rod
PCT/JP2015/062768 WO2015166936A1 (en) 2014-05-01 2015-04-28 Superconducting wire rod connection structure and connection method, and superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094748A JP6258775B2 (en) 2014-05-01 2014-05-01 Superconducting wire connection structure and connection method

Publications (2)

Publication Number Publication Date
JP2015213006A true JP2015213006A (en) 2015-11-26
JP6258775B2 JP6258775B2 (en) 2018-01-10

Family

ID=54697173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094748A Expired - Fee Related JP6258775B2 (en) 2014-05-01 2014-05-01 Superconducting wire connection structure and connection method

Country Status (1)

Country Link
JP (1) JP6258775B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201328A (en) * 2015-04-14 2016-12-01 古河電気工業株式会社 Connection structure for superconducting wire rods and connection method for superconducting wire rods
JP2018170173A (en) * 2017-03-30 2018-11-01 古河電気工業株式会社 Connection structure
JP7472067B2 (en) 2021-03-19 2024-04-22 株式会社東芝 Superconducting layer connection structure, superconducting wire, superconducting coil, and superconducting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003494A (en) * 2009-06-22 2011-01-06 Toshiba Corp Reinforcement high temperature superconducting wire and high temperature superconducting coil winding it
WO2014058092A1 (en) * 2012-10-11 2014-04-17 케이조인스(주) Method for joining second generation rebco high temperature superconductors using partial micro-melting diffusion welding by direct contact of high temperature superconductors and for recovering superconducting characteristics by oxygen supply annealing heat treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003494A (en) * 2009-06-22 2011-01-06 Toshiba Corp Reinforcement high temperature superconducting wire and high temperature superconducting coil winding it
WO2014058092A1 (en) * 2012-10-11 2014-04-17 케이조인스(주) Method for joining second generation rebco high temperature superconductors using partial micro-melting diffusion welding by direct contact of high temperature superconductors and for recovering superconducting characteristics by oxygen supply annealing heat treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201328A (en) * 2015-04-14 2016-12-01 古河電気工業株式会社 Connection structure for superconducting wire rods and connection method for superconducting wire rods
JP2018170173A (en) * 2017-03-30 2018-11-01 古河電気工業株式会社 Connection structure
JP6998667B2 (en) 2017-03-30 2022-01-18 古河電気工業株式会社 Connection structure
JP7472067B2 (en) 2021-03-19 2024-04-22 株式会社東芝 Superconducting layer connection structure, superconducting wire, superconducting coil, and superconducting device

Also Published As

Publication number Publication date
JP6258775B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2312592A2 (en) Melting diffusion welding method for second generation high temperature superconducting wire
JP5770947B2 (en) Superconducting recovery method by joining 2nd generation ReBCO high temperature superconductor using partial fine melt diffusion welding by direct contact of high temperature superconductor layer and annealing with oxygen supply annealing
JP5697845B2 (en) Architecture for high temperature superconductor wires
JP2008066399A (en) Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
WO2016129469A1 (en) Superconducting wire material production method and superconducting wire material joining member
JP2017050242A (en) Connection structure of oxide superconducting wire rod and method for producing the same
US20200028061A1 (en) Connection structure
JP6178779B2 (en) Superconducting wire connection structure and manufacturing method of superconducting wire connection structure
JP6324202B2 (en) Superconducting wire connection structure, connection method, and superconducting wire
JP6667543B2 (en) Superconducting wire connection structure
JP6258775B2 (en) Superconducting wire connection structure and connection method
US11289829B2 (en) Connection structure for superconductor wires
JPWO2013165001A1 (en) Superconducting wire, superconducting wire connection structure, superconducting wire connecting method, and superconducting wire terminal treatment method
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP6605942B2 (en) Superconducting wire connection structure and superconducting wire connection method
WO2015166936A1 (en) Superconducting wire rod connection structure and connection method, and superconducting wire rod
JP6356046B2 (en) Superconducting wire connection structure, superconducting wire and connection method
JP2009016253A (en) Connection structure of superconducting wire rod as well as connecting method of superconductive apparatus and superconducting wire rod
EP2453447A1 (en) Substrate, method of producing substrate superconducting wire and method of producing of superconducting wire
JP2013008556A (en) Superconductive wire material
JP2011018596A (en) Manufacturing method of superconductive wire, and connection method of superconductive wire
JP2015035425A (en) Oxide superconductive wire and production method thereof
JP2011165625A (en) Oxide superconductive wire material
WO2020161909A1 (en) Superconducting wire connection structure
JP2020053354A (en) Connection body of high temperature superconducting wire material and connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171207

R151 Written notification of patent or utility model registration

Ref document number: 6258775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees