JP2015211953A - Treatment apparatus for covering surface of powder or particle with aggregate of fine particle - Google Patents

Treatment apparatus for covering surface of powder or particle with aggregate of fine particle Download PDF

Info

Publication number
JP2015211953A
JP2015211953A JP2014105675A JP2014105675A JP2015211953A JP 2015211953 A JP2015211953 A JP 2015211953A JP 2014105675 A JP2014105675 A JP 2014105675A JP 2014105675 A JP2014105675 A JP 2014105675A JP 2015211953 A JP2015211953 A JP 2015211953A
Authority
JP
Japan
Prior art keywords
powder
particles
mesh
mesh filter
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014105675A
Other languages
Japanese (ja)
Other versions
JP2015211953A5 (en
JP6345985B2 (en
Inventor
小林 博
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014105675A priority Critical patent/JP6345985B2/en
Publication of JP2015211953A publication Critical patent/JP2015211953A/en
Publication of JP2015211953A5 publication Critical patent/JP2015211953A5/ja
Application granted granted Critical
Publication of JP6345985B2 publication Critical patent/JP6345985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a treatment apparatus which is free of restrictions as to the quality and shape of a powder and a fine particle, allows treatment of large amounts of a powder through a single treatment, conducts a treatment at room temperature in the atmospheric air, eliminates the need of a pretreatment of the surface of the powder, does not cause a chemical reaction or a heat treatment or aggregation of particles, with all the requirements combined, and enables a general-purpose powder treatment for covering the surface of a powder in large amounts with aggregate of fine particles at low production costs.SOLUTION: In a treatment apparatus, a cylinder having a mesh filter and a rotor arranged inside the mesh filter are arranged in a container. A pair of rotational flows rotating vertically in mutually opposite directions are circulated between the inside and outside of the cylinder by a rotation centrifugal force of the rotor. Together with the rotational flows, aggregate of a powder is circulated, and aggregate of fine particles is sprayed from a plurality of spraying means onto the powder having passed through the mesh filter of the rotor and the mesh filter of the cylinder.

Description

本発明は、上端部と下端部との双方にメッシュフィルターを有する円筒を容器内に設置し、いずれか一方のメッシュフィルターの内側に回転体を設置する。この回転体の回転によって発生する遠心力で、容器内の大気を、円筒の内側と外側とを、上下方向で互いに反対方向に旋回する一対の旋回流として循環させる。この旋回流と共に粉体ないしは粒子の集まりを容器内で循環させ、回転体に設けたメッシュフィルターと、円筒のいずれか一方のメッシュフィルターとの2つのメッシュフィルターを通過した粉体ないしは粒子に対し、複数個の噴射手段から微粒子の集まりを噴射する処理を繰り返す。これによって、粉体ないしは粒子の表面に衝突した微粒子が摩擦で繰り返し粉体ないしは粒子の表面に付着し、粉体ないしは粒子の表面が微粒子の集まりで覆われる処理がなされる処理装置である。  In the present invention, a cylinder having a mesh filter at both the upper end and the lower end is installed in a container, and a rotating body is installed inside one of the mesh filters. With the centrifugal force generated by the rotation of the rotating body, the atmosphere in the container is circulated as a pair of swirling flows swirling in the opposite directions in the vertical direction between the inside and outside of the cylinder. With this swirl flow, powder or particles are circulated in the container, and the powder or particles that have passed through the two mesh filters, the mesh filter provided on the rotating body and one of the cylindrical mesh filters, The process of injecting a collection of fine particles from a plurality of injection means is repeated. This is a processing apparatus in which fine particles colliding with the surface of the powder or particles are repeatedly adhered to the surface of the powder or particles by friction, and the surface of the powder or particles is covered with a collection of fine particles.

粉体ないしは粒子の表面を、微細な粒子の集まり、ないしは、新たな物質で覆う処理方法には様々な方法がある。例えば、特許文献1には、母粒子と子粒子を異なる極性に帯電させ、母粒子と子粒子との間に静電吸引力を、子粒子同士に静電反発力を発生させ、母粒子の表面を離散的に付着させた子粒子で覆う処理方法が開示されている。
また、特許文献2には、母体粒子を加水分解性錫化合物の鉱酸溶液中に分散した後、pHを上昇させて錫化合物を加水分解し、母体粒子の表面を沈殿した錫の水酸化物で被覆し、更に、酸素濃度を調整した雰囲気下で焼成することで、母体粒子の表面を、酸素が欠乏した酸化錫の微粒子の集まりで覆う処理方法が開示されている。
さらに、特許文献3には、子粒子の集まりで覆われた母粒子の集まりを熱風にさらし、子粒子を融解して子粒子の材質からなる被膜を母粒子に付着させる際に、融解した子粒子によって母粒子同士が融着して凝集することを防ぐため、熱風で熱処理した母粒子を旋回する冷風にさらし、母粒子同士を離散させて冷却させる処理方法が開示されている。
また、特許文献4には、鉄粉とシリコーン樹脂とを混合し、シリコーン樹脂の加水分解と重合反応で生成したシリコーンによって鉄粉を覆う処理方法が開示されている。
There are various methods for covering the surface of powder or particles with a collection of fine particles or a new substance. For example, in Patent Document 1, the mother particles and the child particles are charged to different polarities, an electrostatic attraction force is generated between the mother particles and the child particles, and an electrostatic repulsive force is generated between the child particles. A treatment method is disclosed in which the surface is covered with discretely attached child particles.
Patent Document 2 discloses a tin hydroxide in which base particles are dispersed in a mineral acid solution of a hydrolyzable tin compound, and then the pH is increased to hydrolyze the tin compound and precipitate the surface of the base particles. And a method of covering the surface of the base particle with a collection of fine particles of tin oxide deficient in oxygen by firing in an atmosphere in which the oxygen concentration is adjusted.
Further, Patent Document 3 discloses a method in which a group of mother particles covered with a group of child particles is exposed to hot air to melt the child particles and attach a coating made of the material of the child particles to the mother particles. In order to prevent the mother particles from being fused and aggregated by the particles, a processing method is disclosed in which the mother particles heat-treated with hot air are exposed to cold air swirling, and the mother particles are separated and cooled.
Further, Patent Document 4 discloses a treatment method in which iron powder and a silicone resin are mixed and the iron powder is covered with silicone generated by hydrolysis and polymerization reaction of the silicone resin.

しかしながら、特許文献1に記載された技術は、帯電される性質を持つ粒子に限定され、また、母粒子と子粒子とを異なる極性で帯電させるため、粒子間の材質の組み合わせが限定される。さらに、母粒子と子粒子とを別々に帯電させ、帯電された母粒子と子粒子とを混合する、3つのバッチ処理で母粒子の表面を離散的に子粒子で覆うため、製作効率が低い。また、帯電処理前に母粒子と子粒子とを洗浄し、帯電の障害となる不純物を取り除くため、洗浄と乾燥の事前処理が必要になり製造費用がかさむ。このように、帯電処理といった物理的処理を伴う方法は、粒子の表面を微細な粒子の集まりで覆う汎用的な方法ではない。また、一回の処理でなく、さらに、事前処理が必要になるため、製造費用は高い。  However, the technique described in Patent Document 1 is limited to particles having a property of being charged, and the combination of materials between particles is limited because the mother particles and the child particles are charged with different polarities. Furthermore, since the mother particles and the child particles are charged separately and the charged mother particles and the child particles are mixed, the surface of the mother particles is discretely covered with the child particles in three batch processes, so that the production efficiency is low. . In addition, since the mother particles and the child particles are washed before the charging process to remove impurities that hinder charging, a cleaning and drying pretreatment is required, which increases the manufacturing cost. As described above, a method involving physical treatment such as charging treatment is not a general-purpose method for covering the surface of particles with a collection of fine particles. In addition, since a pretreatment is required instead of a single treatment, the manufacturing cost is high.

特許文献2に開示された技術は、加水分解によって金属水酸化物の沈澱物質が生成される物質に限定される。つまり、酸化錫の事例では、硫酸バリウム粒子を水中に懸濁させ、塩酸でpH2に調整し、さらに4塩化錫溶液を添加して攪拌し、水酸化ナトリウムを加えpH11に調整することで、水酸化錫の沈澱物質が生成されるため、金属水酸化物の沈澱物質を生成できる物質は限定される。このように、加水分解といった化学反応の処理を伴う方法は、粉体ないしは粒子の表面を微細な粒子の集まりで覆う汎用的な処理方法ではない。  The technique disclosed in Patent Document 2 is limited to a substance that generates a precipitated metal hydroxide substance by hydrolysis. That is, in the case of tin oxide, barium sulfate particles are suspended in water, adjusted to pH 2 with hydrochloric acid, further added with tin tetrachloride solution, stirred, adjusted to pH 11 with sodium hydroxide, Since the tin oxide precipitation material is produced, the materials that can produce the metal hydroxide precipitation material are limited. Thus, the method involving the treatment of chemical reaction such as hydrolysis is not a general-purpose treatment method that covers the surface of the powder or particles with a collection of fine particles.

特許文献3に開示された技術は、子粒子を優先して融解させ、融解ののち固化させることで、子粒子の材質からなる被膜で母粒子を覆うため、熱風にさらすだけで容易に融解し、その後冷風と接すると容易に固化する物質に限定されるため、母粒子の表面を異なる物質の被膜で覆う汎用的な処理方法ではない。さらに、熱風の温度が子粒子の融解温度に近いため、子粒子の集まりで覆われた母粒子の投入量を増やすと、母粒子の温度むらが増大し、子粒子の材質からなる被膜で覆われた母粒子が生成される割合は、投入量の増加と共に低くなる。また、母粒子同士が接触する頻度が高まり、母粒子同士が凝集する。このように、熱処理を伴う処理方法は、大量の粉体ないしは粒子の処理には不向きである。  The technology disclosed in Patent Document 3 preferentially melts the child particles and solidifies them after melting, so that the mother particles are covered with a coating made of the material of the child particles. Then, since it is limited to a substance that easily solidifies when it comes into contact with cold air, it is not a general treatment method for covering the surface of the mother particle with a coating of a different substance. Furthermore, since the temperature of the hot air is close to the melting temperature of the child particles, if the amount of mother particles covered with the child particles is increased, the temperature unevenness of the mother particles will increase, and the coating made of the material of the child particles will cover it. The rate at which broken mother particles are produced decreases with increasing input. Further, the frequency of contact between the mother particles increases, and the mother particles aggregate. Thus, the processing method involving heat treatment is not suitable for processing a large amount of powder or particles.

特許文献4に開示された技術は、シリコーン樹脂のように、被膜の物質が加水分解と重合反応で絶縁性物質が生成される物質に限定される。このように、加水分解と重合反応といった化学反応の処理を伴う処理方法は、粉体ないしは粒子の表面を微細な粒子の集まりで覆う汎用的な処理方法ではない。  The technique disclosed in Patent Document 4 is limited to a material such as a silicone resin in which an insulating material is generated by hydrolysis and polymerization reaction. As described above, the treatment method involving the treatment of chemical reaction such as hydrolysis and polymerization reaction is not a general treatment method for covering the surface of the powder or particles with a collection of fine particles.

特開平9−100169号公報JP-A-9-100189 特開平11−295914号公報Japanese Patent Laid-Open No. 11-295914 特開2004−249206号公報JP 2004-249206 A 特開2010−183056号公報JP 2010-183056 A

いっぽう、粉体ないしは粒子は様々な材質と形状で構成され、さらに、用途に応じて微粒子の材質と形状とが変わる。このため、粉体ないしは粒子の表面を微粒子の集まりで覆う汎用的な処理方法を実現するには困難を伴う。しかしながら、処理方法が以下の10項目の要件を兼備すれば汎用的な処理方法になり、安価な製造費用で、大量の粉体ないしは粒子が微粒子の集まりで覆われる。第一に、粉体ないしは粒子および微粒子の材質上の制約がない。第二に、粉体ないしは粒子および微粒子の形状の制約がない。第三に、一回の処理で大量の粉体ないしは粒子が微粒子の集まりで覆われる。第四に、大気雰囲気での処理である。第五に、室温での処理である。第六に、粉体ないしは粒子の表面の事前処理が不要である。第七に、化学反応を伴う処理がない。第八に、特別な物理的処理がない。第九に、熱処理を伴わない。第十に、粉体ないしは粒子同士の凝集ないしは凝結が起こらない。
本発明における解決しようとする課題は、前記した10項目の要件を兼備し、安価な製造費用で、大量の粉体ないしは粒子の表面を、微粒子の集まりで満遍なく覆う汎用的な処理方法となる処理装置を実現することにある。
On the other hand, powders or particles are composed of various materials and shapes, and the material and shape of the fine particles change depending on the application. For this reason, it is difficult to realize a general-purpose processing method for covering the surface of powder or particles with a collection of fine particles. However, if the processing method has the requirements of the following 10 items, it becomes a general-purpose processing method, and a large amount of powder or particles are covered with a collection of fine particles at a low manufacturing cost. First, there is no restriction on the material of the powder or particles and fine particles. Second, there are no restrictions on the shape of the powder or particles and fine particles. Third, a large amount of powder or particles is covered with a collection of fine particles in a single treatment. Fourth, it is a treatment in an air atmosphere. Fifth, treatment at room temperature. Sixth, no pretreatment of the surface of the powder or particles is necessary. Seventh, there is no treatment involving chemical reaction. Eighth, there is no special physical processing. Ninth, no heat treatment is involved. Tenth, no agglomeration or aggregation of powders or particles occurs.
The problem to be solved in the present invention is a treatment that is a general-purpose treatment method that covers the surface of a large amount of powder or particles uniformly with a collection of fine particles at a low production cost, having the above-mentioned requirements for 10 items. To implement the device.

本発明に係わる粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第一特徴構成は、容器内に、上端部と下端部との双方にメッシュフィルターを有する円筒と、いずれか一方の前記メッシュフィルターの内側に配置され、鉛直方向の回転軸と該回転軸に直交して結合された側面にメッシュフィルターを有する傘状部材とからなる回転体とが設置され、さらに、微粒子の集まりを連続噴射する複数個の噴射手段が、前記円筒のいずれか一方の前記メッシュフィルターに近い前記容器の側壁の複数個所に設置された処理装置であって、前記傘状部材の回転によって発生する遠心力で、前記容器内の大気が、前記円筒の内側と外側とを、上下方向で互いに反対方向に旋回する一対の旋回流として循環し、該旋回流と共に粉体ないしは粒子の集まりを前記容器内で循環させ、前記傘状部材のメッシュフィルターと、前記円筒のいずれか一方の前記メッシュフィルターとを通過した粉体ないしは粒子に対し、前記微粒子の集まりが噴射される処理を繰り返すことによって、前記粉体ないしは粒子の表面が前記微粒子の集まりで覆われる処理がなされる処理装置である。  A first characteristic configuration of a processing apparatus for covering powder or particles according to the present invention with a collection of fine particles is that a container has a cylinder having mesh filters on both the upper end and the lower end, and either one of the meshes. A rotating body, which is arranged inside the filter and includes a rotating shaft in the vertical direction and an umbrella-shaped member having a mesh filter on a side surface which is coupled perpendicularly to the rotating shaft, is installed, and a collection of fine particles is continuously ejected. A plurality of spraying means are processing devices installed at a plurality of locations on the side wall of the container close to the mesh filter of any one of the cylinders, with centrifugal force generated by rotation of the umbrella-shaped member, The atmosphere in the container circulates between the inside and outside of the cylinder as a pair of swirling flows swirling in opposite directions in the vertical direction, and together with the swirling flow, powder or particles are collected. Is circulated in the container, and the process in which the collection of fine particles is sprayed on the powder or particles that have passed through the mesh filter of the umbrella-shaped member and the mesh filter of any one of the cylinders is repeated. Thus, the powder or the surface of the particle is treated with the collection of fine particles.

つまり、本特徴構成に依れば、回転体の傘状部材の回転で発生する遠心力で、容器内の大気は、円筒の内側と外側とを、上下方向で互いに反対方向に旋回する一対の旋回流として循環する。この容器に粉体ないしは粒子の集まりを投入すると、粉体ないしは粒子の集まりは、大気と共に容器内を循環する。いっぽう、回転する傘状部材に近づくほど、粉体ないしは粒子は互いに離散した浮遊状態になる。この状態の粉体ないしは粒子が、傘状部材のメッシュフィルターと、この近くに配置された円筒の一方のメッシュフィルターとの2つのメッシュフィルターを連続して通過すると、粉体ないしは粒子同士が凝集していたとしても、凝集が効率よく解除される。この直後に、複数個の噴射手段から微粒子の集まりが噴射される。このような処理が繰り返えされ、粉体ないしは粒子の表面に衝突した微粒子が摩擦で繰り返し付着し、粉体ないしは粒子が微粒子の集まりで満遍なく覆われる。
従って、本処理装置は、粉体ないしは粒子の表面に衝突した微粒子が、摩擦で粉体ないしは粒子の表面に繰り返し付着するため、粉体ないしは粒子および微粒子の材質と形状の制約はない。また、一回の処理であり、大気雰囲気の室温での処理であるため、安価な処理費用で粉体ないしは粒子の表面が微粒子の集まりで覆われる。さらに、粉体ないしは粒子について、表面の事前処理が不要になるため、製造コストを増加させる事前処理が要らない。また、回転体が回転する際の遠心力で旋回流を循環させるだけの処理であるため、熱処理を伴わず、化学反応を伴う処理や、特別な物理的処理がないため、粉体ないしは粒子の材質上の制約はない。さらに、粉体ないしは粒子の投入量が増えても、あるいは、粉体ないしは粒子の粒径が大きくなっても、また、粉体ないしは粒子が大きな密度を持つ物質で構成されても、旋回流の流路を延長し、旋回流の流速を速めれば、粉体ないしは粒子が微粒子の集まりで覆われる。また、粉体ないしは粒子が1回の旋回で必ず3つのメッシュフィルターを通過するため、粉体ないしは粒子同士の凝集が解除できる。
以上に説明したように、本特徴構成は、8段落で説明した10項目の要件を兼備する処理方法で、粉体ないしは粒子が微粒子の集まりで覆われるため、粉体ないしは粒子の表面が微粒子の集まりで満遍なく覆われる汎用的な処理方法となる処理装置である。
In other words, according to this characteristic configuration, the air in the container is caused by centrifugal force generated by the rotation of the umbrella-shaped member of the rotating body, and the atmosphere inside the container is swung in the opposite directions in the vertical direction. It circulates as a swirl flow. When powder or a collection of particles is put into the container, the powder or the collection of particles circulates in the container together with the atmosphere. On the other hand, the closer to the rotating umbrella-like member, the more the powder or particles become discrete and floating. When the powder or particles in this state pass continuously through two mesh filters, an umbrella-shaped mesh filter and one of the cylindrical mesh filters arranged nearby, the powder or particles aggregate. Even if it is, aggregation is efficiently released. Immediately after this, a collection of fine particles is ejected from a plurality of ejection means. Such processing is repeated, and the fine particles colliding with the surface of the powder or particles are repeatedly adhered by friction, and the powder or particles are evenly covered with the collection of fine particles.
Therefore, in the present processing apparatus, since the fine particles colliding with the surface of the powder or particles are repeatedly adhered to the surface of the powder or particles by friction, there are no restrictions on the material and shape of the powder or particles and fine particles. In addition, since the treatment is performed once and is performed at room temperature in an air atmosphere, the surface of the powder or particles is covered with a collection of fine particles at a low processing cost. Furthermore, since no pretreatment of the surface of powder or particles is required, no pretreatment that increases the manufacturing cost is required. In addition, since it is a process that only circulates the swirl flow with the centrifugal force when the rotating body rotates, there is no heat treatment, no chemical reaction or special physical treatment, so there is no powder or particles. There are no material restrictions. Furthermore, even if the input amount of powder or particles is increased, the particle size of the powder or particles is increased, or the powder or particles are made of a substance having a high density, If the flow path is extended and the flow velocity of the swirl flow is increased, the powder or particles are covered with a collection of fine particles. Further, since the powder or particles always pass through the three mesh filters in one rotation, the aggregation of the powder or particles can be released.
As described above, this characteristic configuration is a processing method having the requirements of the 10 items described in the 8th paragraph, and since the powder or particles are covered with a collection of fine particles, the surface of the powder or particles is fine. It is a processing apparatus that is a general-purpose processing method that is evenly covered by a gathering.

本発明に係わる粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第二特徴構成は、前記した第一特徴構成における回転体は、複数枚の羽根からなる撹拌部材の複数個を有し、該複数個の撹拌部材は、個々の撹拌部材の回転軸への取り付け位置が互いに異なるように、前記回転軸に直交して取り付けられた回転体である。  The second characteristic configuration of the processing apparatus for covering the powder or particles according to the present invention with a collection of fine particles, the rotating body in the first characteristic configuration described above has a plurality of stirring members composed of a plurality of blades, The plurality of stirring members are rotating bodies attached perpendicularly to the rotation shafts so that the mounting positions of the individual stirring members on the rotation shafts are different from each other.

つまり、本特徴構成に依れば、回転体に、複数枚の羽根からなる撹拌部材の複数個を、個々の撹拌部材の取り付け位置が互いに異なるように、回転軸に直交して取り付けたため、回転体の回転によって複数枚の羽根からなる撹拌部材の複数個が回転し、容器内の粉体ないしは粒子の集まりは、より離散的な状態で容器内を浮遊して循環する。このため、密度が大きい物質で粉体ないしは粒子が構成され、あるいは、粒子径が相対的に大きい粉体ないしは粒子の集まりであっても、また、大量の粉体ないしは粒子が容器内に充填されても、羽根の枚数と撹拌部材の個数とを増やせば、粉体ないしは粒子の集まりは、離散的な状態で容器内を浮遊して循環する。これによって、粉体ないしは粒子同士が凝集していたとしても、粉体ないしは粒子が、メッシュフィルターを通過する際に、粉体ないしは粒子同士の凝集が解除されやすくなる。
また、複数個の撹拌部材において、羽根の長さを異ならせると、容器内で旋回する旋回流の流れを循環させることに役立つ。つまり、回転体の傘状部材が円筒の上端部のメッシュフィルターの内側に配置される場合は、複数個の撹拌部材は、回転軸の上になるほど羽根の長さを長くすれば、複数個の撹拌部材の回転によって、スパイラル状の新たな流れが発生するため、容器内で旋回する旋回流の流れを循環させることに役立つ。反対に、回転体の傘状部材が円筒の下端部のメッシュフィルターの内側に配置される場合は、複数個の撹拌部材は、回転軸の下に行くほど羽根の長さを長くすればよい。これによって、容器内の粉体ないしは粒子の集まりは、より離散的な状態で容器内を浮遊して循環する。
以上に説明したように、複数枚の羽根からなる撹拌部材の複数個を、回転体の回転軸の複数個所に直交して取り付けたため、密度が大きい物質で粉体ないしは粒子が構成され、あるいは、粒子径が大きい粉体ないしは粒子の集まりであっても、また、大量の粉体ないしは粒子が容器内に充填されても、粉体ないしは粒子の集まりは、離散的な状態で容器内を浮遊して循環する。これによって、凝集した粉体ないしは粒子が、メッシュフィルターを通過する際に、凝集が解除されやすくなる。
In other words, according to this characteristic configuration, a plurality of stirring members composed of a plurality of blades are mounted on the rotating body so that the mounting positions of the individual stirring members are different from each other. By rotating the body, a plurality of agitation members composed of a plurality of blades rotate, and a collection of powder or particles in the container floats and circulates in the container in a more discrete state. For this reason, powders or particles are composed of a substance having a high density, or even a powder or a collection of particles having a relatively large particle diameter, or a large amount of powder or particles are filled in the container. However, if the number of blades and the number of stirring members are increased, a collection of powders or particles floats and circulates in the container in a discrete state. Accordingly, even if the powder or particles are aggregated, the aggregation of the powder or particles is easily released when the powder or particles pass through the mesh filter.
Further, if the blades have different lengths in the plurality of stirring members, it is useful for circulating the swirling flow that swirls within the container. In other words, when the umbrella-shaped member of the rotating body is disposed inside the mesh filter at the upper end of the cylinder, the plurality of stirring members can be formed by increasing the length of the blade toward the rotation axis. Since the spiral-shaped new flow is generated by the rotation of the stirring member, it is useful for circulating the swirling flow that swirls in the container. On the other hand, when the umbrella-shaped member of the rotating body is disposed inside the mesh filter at the lower end of the cylinder, the plurality of stirring members may have longer blades as they go below the rotating shaft. As a result, the powder or the collection of particles in the container floats and circulates in the container in a more discrete state.
As described above, since a plurality of stirring members composed of a plurality of blades are attached orthogonally to a plurality of locations of the rotating shaft of the rotating body, powder or particles are composed of a substance having a high density, or Even if it is a powder or a collection of particles with a large particle diameter, or a large amount of powder or particles are filled in the container, the powder or the collection of particles floats in the container in a discrete state. Circulate. Thus, the agglomerated powder or particles are easily released when passing through the mesh filter.

本発明に係わる粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第三特徴構成は、前記した第一特徴構成における円筒は、上端部がメッシュフィルターを有する円錐状に狭められた平面と、最上部が閉じられた平面で構成され、下端部がメッシュフィルターを有する逆さまの円錐状に狭められた平面と、最下部が閉じられた平面で構成され、該円筒は容器の上下の内面に接して配置される、と共に、前記した第一特徴構成における回転体の傘状部材は、外形が円錐台形状からなる筒状体で、上部が閉じられた平面で、下部が空間に開放され、側面にメッシュフィルターを有し、該傘状部材は前記円筒の上端部のメッシュフィルターの内側に配置される。  The third characteristic configuration of the processing apparatus for covering the powder or particles according to the present invention with a collection of fine particles, the cylinder in the first characteristic configuration described above is a plane narrowed in a conical shape having an upper end portion having a mesh filter, The uppermost part is composed of a closed plane, the lower end part is composed of an upside-down conical plane having a mesh filter, and the lowermost part is composed of a closed plane, and the cylinder is in contact with the upper and lower inner surfaces of the container. The umbrella-shaped member of the rotating body in the first characteristic configuration described above is a cylindrical body having an outer shape of a truncated cone shape, a flat surface with the upper part closed, and a lower part opened to the space. The umbrella-shaped member is disposed inside the mesh filter at the upper end of the cylinder.

つまり、本特徴構成に依れば、容器内の大気は、傘状部材の回転遠心力で、傘状部材の側面から容器の側面に押し出される。いっぽう、容器の側面の下部においては、傘状部材の回転遠心力で円筒の内側に引き込まれる。この結果、円筒の内側と外側とを、上下方向で互いに反対方向に旋回する一対の旋回流が容器内を循環する。従って、容器内に投入された粉体ないしは粒子の集まりは、一回の旋回で必ず3つのメッシュフィルターを通過し、粉体ないしは粒子同士の凝集が確実に解除される。また、粉体ないしは粒子が、傘状部材の側面と円筒の上端部との2つのメッシュフィルターを連続して通過した直後に、複数個の噴射手段から微粒子の集まりが噴射されるため、凝集が解除された粉体ないしは粒子の表面に、微粒子が衝突して摩擦で微粒子が付着し、これらの処理が繰り返されると、粉体ないしは粒子の表面が微粒子の集まりで満遍なく覆われる。
いっぽう、旋回流が循環する速度は、回転体の回転速度で一義的に決まり、容器内に投入される粉体ないしは粒子が有する密度や粒子の大きさに応じて、回転体の回転速度を変えれば、粉体ないしは粒子の集まりは、互いに離散された状態で容器内を浮遊して循環する。また、粉体ないしは粒子の集まりが循環する流路の大きさは、容器の大きさと円筒の長さとによって一義的に決まるため、容器の大きさと円筒の長さを変えることで、容器内に投入する粉体ないしは粒子の量を増やしたとしても、粉体ないしは粒子の集まりは、互いに離散された状態を維持して装置内を浮遊して循環する。これによって、大量の粉体ないしは粒子が一回の処理で、微粒子の集まりで満遍なく覆われる。
That is, according to this characteristic configuration, the air in the container is pushed out from the side surface of the umbrella-shaped member to the side surface of the container by the rotational centrifugal force of the umbrella-shaped member. On the other hand, in the lower part of the side surface of the container, the container is drawn inside the cylinder by the rotational centrifugal force of the umbrella-shaped member. As a result, a pair of swirl flows swirling in the opposite directions in the vertical direction between the inside and the outside of the cylinder circulate in the container. Therefore, the powder or particles gathered in the container always passes through the three mesh filters in one turn, and the aggregation of the powders or particles is reliably released. Further, immediately after the powder or particles have passed through the two mesh filters of the side surface of the umbrella-shaped member and the upper end of the cylinder, a collection of fine particles is ejected from a plurality of ejection means, so that aggregation occurs. When the surface of the released powder or particle collides with the fine particle and the fine particle adheres by friction, and these processes are repeated, the surface of the powder or particle is evenly covered with the collection of fine particles.
On the other hand, the speed at which the swirling flow circulates is uniquely determined by the rotational speed of the rotating body, and the rotating speed of the rotating body can be changed according to the density and size of the powder or particles put into the container. For example, the powder or the collection of particles floats and circulates in the container in a state of being separated from each other. In addition, since the size of the flow path through which powder or a collection of particles circulates is uniquely determined by the size of the container and the length of the cylinder, it can be put into the container by changing the size of the container and the length of the cylinder. Even if the amount of the powder or particles to be increased is increased, the powder or the collection of particles floats and circulates in the apparatus while maintaining a discrete state. As a result, a large amount of powder or particles are uniformly covered with a collection of fine particles in a single treatment.

本発明に係わる粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第四特徴構成は、前記した第三特徴構成における3つのメッシュフィルターは、第三特徴構成における円筒の上端部のメッシュフィルターの目の粗さが、他の2つのメッシュフィルターの目の粗さより細かいメッシュフィルターで構成される。  The fourth characteristic configuration of the processing apparatus for covering powder or particles according to the present invention with a collection of fine particles is that the three mesh filters in the third characteristic configuration described above are the mesh filters at the upper end of the cylinder in the third characteristic configuration. A mesh filter having a finer mesh than that of the other two mesh filters is used.

つまり、本特徴構成に依れば、粉体ないしは粒子は、一回の旋回で必ず3か所のメッシュフィルターを通過するため、粉体ないしは粒子の凝集が確実に解除される。さらに、内筒の上端部のメッシュフィルターの目の粗さが、他の2つのメッシュフィルターの目の粗さより細かいメッシュフィルターであるため、最も目の細かいメッシュフィルターを通過した粉体ないしは粒子に対し、微粒子の集まりが噴射されるため、凝集が解除された粉体ないしは粒子の表面に、微粒子が摩擦で付着する。こうした処理が繰り返されると、粉体ないしは粒子の表面が微粒子の集まりで満遍なく覆われる。  That is, according to this characteristic configuration, since the powder or particles always pass through the three mesh filters in one turn, the aggregation of the powder or particles is reliably released. In addition, the mesh filter at the upper end of the inner cylinder has a finer mesh filter than the other two mesh filters. Since the collection of fine particles is jetted, the fine particles adhere to the surface of the powder or particles from which aggregation has been released. When such treatment is repeated, the surface of the powder or particles is uniformly covered with a collection of fine particles.

本発明に係わる粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第五特徴構成は、前記した第一特徴構成における円筒は、上端部がメッシュフィルターを有する円錐状に狭められた平面と、最上部が閉じられた平面で構成され、下端部がメッシュフィルターを有する逆さまの円錐状に狭められた平面と、最下部が閉じられた平面で構成され、該円筒は容器の上下の内面に接して配置される、と共に、前記した第一特徴構成における回転体の傘状部材は、外形が円錐台を逆さまにした形状からなる筒状体で、上部が空間に開放され、下部が閉じられ平面で、側面にメッシュフィルターを有し、該傘状部材は前記円筒の下端部のメッシュフィルターの内側に配置される。  The fifth characteristic configuration of the processing apparatus for covering the powder or particles according to the present invention with a collection of fine particles is the cylinder in the first characteristic configuration described above, the upper end portion of which is narrowed into a conical shape having a mesh filter, The uppermost part is composed of a closed plane, the lower end part is composed of an upside-down conical plane having a mesh filter, and the lowermost part is composed of a closed plane, and the cylinder is in contact with the upper and lower inner surfaces of the container. The umbrella member of the rotating body in the first characteristic configuration described above is a cylindrical body whose outer shape is a shape obtained by inverting the truncated cone, the upper part being open to the space, the lower part being closed and the plane being Then, the side surface has a mesh filter, and the umbrella-like member is disposed inside the mesh filter at the lower end of the cylinder.

つまり、本特徴構成に依れば、前記した第三特徴構成における旋回流に対し、反対方向に旋回する一対の旋回流が容器内で循環する。すなわち、容器内の大気は、傘状部材の回転遠心力で容器の側面に押し出される。いっぽう、容器の側面の上部においては、回転遠心力で円筒の内側に引き込まれる。この結果、円筒の内側と外側とを、上下方向で互いに反対方向に旋回する一対の旋回流が循環する。従って、前記した第三特徴構成と同様に、容器内に投入された粉体ないしは粒子の集まりは、一回の旋回で必ず3つのメッシュフィルターを通過するため、粉体ないしは粒子同士の凝集が確実に解除される。また、粉体ないしは粒子が、傘状部材の側面と円筒の下端部との2つのメッシュフィルターを連続して通過した直後に、複数個の噴射手段から微粒子の集まりが噴射されるため、凝集が解除された粉体ないしは粒子の表面に微粒子が衝突し、摩擦で微粒子が付着する。こうした処理を繰り返すことで、粉体ないしは粒子の表面は微粒子の集まりで満遍なく覆われる。
いっぽう、旋回流が循環する速度は、前記した第三特徴構成と同様に、回転体の回転速度で一義的に決まり、粉体ないしは粒子の密度や粒子の大きさに応じて、回転体の回転速度を変えれば、粉体ないしは粒子の集まりは、互いに離散された状態で装置内を浮遊して循環する。また、前記した第三特徴構成と同様に、粉体ないしは粒子の集まりが循環する流路の大きさは、容器の大きさと円筒の長さで一義的に決まるため、容器の大きさと円筒の長さを変えることで、投入する粉体ないしは粒子の量を増やしても、粉体ないしは粒子の集まりは、互いに離散された状態を維持して装置内を浮遊して循環する。これによって、大量の粉体ないしは粒子が一回の処理で、微粒子の集まりで満遍なく覆われる。
That is, according to this feature configuration, a pair of swirl flows swirling in opposite directions with respect to the swirl flow in the third feature configuration described above circulates in the container. That is, the air in the container is pushed out to the side surface of the container by the rotational centrifugal force of the umbrella-shaped member. On the other hand, in the upper part of the side surface of the container, it is drawn into the inside of the cylinder by the rotational centrifugal force. As a result, a pair of swirling flows that swirl in the opposite directions in the vertical direction circulate between the inside and the outside of the cylinder. Therefore, as in the third characteristic configuration described above, the powder or particles gathered in the container always passes through the three mesh filters in one swivel, so the powder or particles are surely aggregated. Is released. Further, immediately after the powder or particles pass through the two mesh filters of the side surface of the umbrella-shaped member and the lower end of the cylinder, a collection of fine particles is ejected from a plurality of ejection means, so that aggregation occurs. Fine particles collide with the surface of the released powder or particles, and the fine particles adhere by friction. By repeating such treatment, the surface of the powder or particles is uniformly covered with a collection of fine particles.
On the other hand, the speed at which the swirling flow circulates is uniquely determined by the rotation speed of the rotating body, as in the third feature configuration described above, and the rotation of the rotating body depends on the powder or particle density and particle size. If the speed is changed, the powder or the collection of particles floats and circulates in the apparatus in a state of being separated from each other. Similarly to the third characteristic configuration described above, the size of the flow path through which the powder or particle aggregate circulates is uniquely determined by the size of the container and the length of the cylinder. By changing the size, even if the amount of powder or particles to be added is increased, the powder or the collection of particles floats and circulates in the apparatus while maintaining a discrete state. As a result, a large amount of powder or particles are uniformly covered with a collection of fine particles in a single treatment.

本発明に係わる粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第六特徴構成は、前記した第五特徴構成における3つのメッシュフィルターは、第五特徴構成における円筒の下端部のメッシュフィルターの目の粗さが、他の2つのメッシュフィルターの粗さより細かいメッシュフィルターで構成する。  The sixth characteristic configuration of the processing apparatus for covering powder or particles according to the present invention with a collection of fine particles is that the three mesh filters in the fifth characteristic configuration described above are the mesh filters at the lower end of the cylinder in the fifth characteristic configuration. The mesh filter has a finer mesh than the other two mesh filters.

つまり、本特徴構成に依れば、前記した第四特徴構成と同様に、粉体ないしは粒子は、一回の旋回で必ず3つのメッシュフィルターを通過するため、粉体ないしは粒子の凝集が確実に解除される。さらに、円筒の下端部のメッシュフィルターの目の粗さが、他の2つのメッシュフィルターの目の粗さより細かいメッシュフィルターであるため、最も目の細かいメッシュフィルターを通過した粉体ないしは粒子に対し、微粒子の集まりが噴射されるため、凝集が解除された粉体ないしは粒子の表面に微粒子が衝突し摩擦で付着する。こうした処理を繰り返すと、粉体ないしは粒子の表面が微粒子の集まりで満遍なく覆われる。  In other words, according to this feature configuration, as in the fourth feature configuration described above, the powder or particles always pass through the three mesh filters in one turn, so that the aggregation of the powder or particles is ensured. Canceled. Furthermore, the mesh filter at the bottom end of the cylinder has a finer mesh filter than the other two mesh filters, so the powder or particles that have passed through the finest mesh filter are Since the collection of fine particles is ejected, the fine particles collide with the surface of the powder or particles from which the aggregation has been released and adhere by friction. When such treatment is repeated, the surface of the powder or particles is uniformly covered with a collection of fine particles.

回転体の傘状部材が円筒の上端部のメッシュフィルターの内側に配置された処理装置の構成を説明する図である。It is a figure explaining the structure of the processing apparatus with which the umbrella-shaped member of the rotary body is arrange | positioned inside the mesh filter of the upper end part of a cylinder. 円筒の上端部の構成を説明する図である。It is a figure explaining the structure of the upper end part of a cylinder. 回転体の上部の構成を説明する図である。It is a figure explaining the structure of the upper part of a rotary body. 回転体の傘状部材が円筒の下端部のメッシュフィルターの内側に配置された処理装置の構成を説明する図である。It is a figure explaining the structure of the processing apparatus with which the umbrella-shaped member of the rotary body was arrange | positioned inside the mesh filter of the lower end part of a cylinder. 実施例の処理装置における円筒の構造を説明する図である。It is a figure explaining the structure of the cylinder in the processing apparatus of an Example. 実施例の処理装置における円筒の上端部と微粒子噴射手段との配置関係を説明する図である。It is a figure explaining the arrangement | positioning relationship between the upper end part of a cylinder in the processing apparatus of an Example, and particulate injection means. 実施例の処理装置における回転体の上端部の構造を説明する図である。It is a figure explaining the structure of the upper end part of the rotary body in the processing apparatus of an Example.

実施形態1Embodiment 1

本実施形態は、粉体ないしは粒子の表面を微粒子の集まりで覆う処理装置の第一の実施形態であり、回転体の傘状部材が円筒の上端部のメッシュフィルターの内側に配置された処理装置である。図1の平面図に処理装置1の全体構成を示す。処理装置1は、容器2と円筒3と回転体4とモータ5と複数個の微粒子噴射ノズル6とからなる。回転体4は、鉛直方向の回転軸に4枚の羽根からなる4組の撹拌部材が直交して設置されている。
図2は、前記した円筒3の上端部の構成を示す平面図である。円筒の上端部30は、メッシュフィルターを有する円錐状に狭められた平面31と、閉じられた平面からなる最上部32とからなり、最上部32は容器2の上面に接している。円筒3の下端部は図示しないが、上端部と同様に、メッシュフィルターを有する逆さまの円錐状に狭められた平面と、閉じられた平面からなる最下部とからなり、最下部は容器2の下面に接している。
図3は、回転体4の上端部40の構成を示す平面図である。回転体の上端部40は、メッシュフィルターを有する円錐状に狭められた平面41と、閉じられた平面からなる最上部42からなり、最上部42に回転軸43が結合し、前記した円筒の最上部32に接近している。
回転体4の回転軸43が回転すると、平面41の回転による遠心力で、平面41の内側にある大気は、平面41のメッシュフィルターと部位31のメッシュフィルターを通って、円筒3の外側の領域に押し出される。いっぽう、円筒3の下端部においては、平面41の回転による遠心力で、円筒3の内側に大気が引き込まれる。これによって、図1に大きな矢印で示したように、円筒3の外側と内側とを、上下方向で互いに反対方向に旋回する一対の旋回流が形成され、容器2の内部で大気が循環する。
前記した構成からなる処理装置において、容器2に粉体ないしは粒子の集まりを投入すると、円筒3の外側と内側とを旋回する大気と共に、粉体ないしは粒子の集まりは容器内を循環し、粉体ないしは粒子の集まりは、一回の旋回で必ず、回転体4の平面41のメッシュフィルターと、円筒3の上端部の円錐状に狭められた平面31のメッシュフィルターと、円筒3の下端部の逆さまの円錐状に狭められた平面のメッシュフィルターとの3つのメッシュフィルターを通過する。いっぽう、複数個の微粒子噴射ノズル6から連続噴射された微粒子は、粉体ないしは粒子に摩擦で付着し、粉体ないしは粒子同士が凝集したとしても、3つのメッシュフィルターを通過することによって、凝集が解除される。なかんずく、円筒3の円錐状に狭められた平面31のメッシュフィルターの目の粗さを、他の2つのメッシュフィルターの目の粗さより細かい目の粗さを持つメッシュフィルターで構成したため、円筒3の平面31のメッシュフィルターを通過して、粉体ないしは粒子の凝集が確実に解除される。凝集が解除された粉体ないしは粒子に、複数個の微粒子噴射ノズル6から微粒子が連続噴射されるため、付着した微粒子を介して粉体ないしは粒子同士が凝集することはなく、粉体ないしは粒子の表面が微粒子によって満遍なく覆われる。
This embodiment is a first embodiment of a processing apparatus that covers the surface of powder or particles with a collection of fine particles, and a processing apparatus in which an umbrella-like member of a rotating body is arranged inside a mesh filter at the upper end of a cylinder. It is. The overall configuration of the processing apparatus 1 is shown in the plan view of FIG. The processing apparatus 1 includes a container 2, a cylinder 3, a rotating body 4, a motor 5, and a plurality of fine particle injection nozzles 6. The rotating body 4 is provided with four sets of stirring members each having four blades orthogonal to a vertical rotating shaft.
FIG. 2 is a plan view showing the configuration of the upper end portion of the cylinder 3 described above. The upper end portion 30 of the cylinder includes a conical narrowed flat surface 31 having a mesh filter and an uppermost portion 32 formed of a closed flat surface, and the uppermost portion 32 is in contact with the upper surface of the container 2. Although the lower end portion of the cylinder 3 is not shown, like the upper end portion, it is composed of an upside-down conical plane having a mesh filter and a lowermost portion comprising a closed plane, and the lowermost portion is the lower surface of the container 2. Is in contact with
FIG. 3 is a plan view showing the configuration of the upper end portion 40 of the rotating body 4. The upper end portion 40 of the rotator is composed of a conically narrowed plane 41 having a mesh filter, and an uppermost portion 42 formed of a closed plane. It approaches the upper part 32.
When the rotating shaft 43 of the rotating body 4 rotates, the air inside the plane 41 passes through the mesh filter of the plane 41 and the mesh filter of the region 31 due to the centrifugal force generated by the rotation of the plane 41, and the region outside the cylinder 3. Extruded. On the other hand, at the lower end of the cylinder 3, the atmosphere is drawn inside the cylinder 3 by the centrifugal force generated by the rotation of the plane 41. As a result, as indicated by a large arrow in FIG. 1, a pair of swirl flows swirling in the opposite directions in the vertical direction on the outside and inside of the cylinder 3, and the atmosphere circulates inside the container 2.
In the processing apparatus having the above-described configuration, when powder or a collection of particles is put into the container 2, the powder or the collection of particles circulates in the container together with the atmosphere swirling outside and inside the cylinder 3, and the powder The collection of particles is always made in a single turn by the mesh filter on the plane 41 of the rotating body 4, the mesh filter on the plane 31 narrowed in a conical shape at the upper end of the cylinder 3, and the bottom end of the cylinder 3 upside down. Pass through three mesh filters with a flat mesh filter narrowed into a conical shape. On the other hand, the fine particles continuously ejected from the plurality of fine particle injection nozzles 6 are adhered to the powder or particles by friction, and even if the powder or particles are aggregated, the particles are aggregated by passing through the three mesh filters. Canceled. Among other things, since the mesh roughness of the mesh filter of the plane 31 narrowed into a conical shape of the cylinder 3 is composed of a mesh filter having a finer mesh roughness than the mesh roughness of the other two mesh filters, Aggregation of powder or particles is surely released through the mesh filter of the plane 31. Since the fine particles are continuously ejected from the plurality of fine particle injection nozzles 6 to the powder or particles from which the aggregation has been released, the powder or particles do not aggregate through the attached fine particles, and the powder or particles are not aggregated. The surface is evenly covered with fine particles.

実施形態2Embodiment 2

本実施形態は、粉体ないしは粒子を微細粒子の集まりで覆う処理装置の第二の実施形態であり、回転体の傘状部材が円筒の下端部のメッシュフィルターの内側に配置された処理装置である。図4の平面図に処理装置10の全体構成を示す。処理装置10の構成は、図1に示した円筒の上端部のメッシュフィルターの内側に配置された回転体の傘状部材が、本実施形態では円筒の下端部のメッシュフィルターの内側に配置した以外は、実施形態1と同様の構成であるため、円筒と回転体の詳細は図示しない。
このような構成からなる処理装置において、回転体の回転軸が回転すると、傘状部材の回転による遠心力で、傘状部材の内側にある大気は、傘状部材のメッシュフィルターと円筒下端部のメッシュフィルターを通って、円筒の外側の領域に押し出される。いっぽう、円筒の上端部においては、傘状部材の回転による遠心力で、円筒の内側に大気が引き込まれる。これによって、図4に矢印で示したように、円筒の外側と内側とを、図1に示した旋回流とは反対方向に旋回する一対の旋回流が形成され、大気が容器の内部で循環する。
実施形態1と同様に、容器に粉体ないしは粒子の集まりを投入すると、円筒の外側と内側とを旋回する大気と共に、粉体ないしは粒子の集まりは容器内を循環し、粉体ないしは粒子の集まりは、一回の旋回で必ず、回転体の傘状部材のメッシュフィルターと、円筒3の下端部のメッシュフィルターと、円筒の上端部のメッシュフィルターとの3つのメッシュフィルターを通過する。いっぽう、複数個の微粒子噴射ノズルから連続噴射された微粒子が、粉体ないしは粒子に摩擦で付着し、粉体ないしは粒子同士が凝集したとしても、3つのメッシュフィルターを通過することで凝集が解除される。なかんずく、円筒の下端部のメッシュフィルターの目の粗さを、他の2つのメッシュフィルターの目の粗さより細かい目の粗さで構成したため、円筒3の下端部のメッシュフィルターを通過することで、粉体ないしは粒子の凝集が確実に解除され、凝集が解除された粉体ないしは粒子に、複数個の微粒子噴射ノズルから微粒子が連続噴射されるため、付着した微粒子を介して粉体ないしは粒子同士が凝集することなく、粉体ないしは粒子の表面が微粒子で満遍なく覆われる。
This embodiment is a second embodiment of a processing apparatus that covers powder or particles with a collection of fine particles, and is a processing apparatus in which an umbrella-like member of a rotating body is arranged inside a mesh filter at the lower end of a cylinder. is there. The overall configuration of the processing apparatus 10 is shown in the plan view of FIG. The configuration of the processing apparatus 10 is such that the rotating umbrella member disposed inside the mesh filter at the upper end of the cylinder shown in FIG. 1 is disposed inside the mesh filter at the lower end of the cylinder in this embodiment. Since the configuration is the same as that of the first embodiment, details of the cylinder and the rotating body are not shown.
In the processing apparatus having such a configuration, when the rotating shaft of the rotating body rotates, the air inside the umbrella-shaped member is caused by centrifugal force generated by the rotation of the umbrella-shaped member, so that the mesh filter of the umbrella-shaped member and the lower end of the cylinder are It is pushed through the mesh filter into the area outside the cylinder. On the other hand, at the upper end of the cylinder, the atmosphere is drawn into the inside of the cylinder by the centrifugal force generated by the rotation of the umbrella-shaped member. As a result, as indicated by arrows in FIG. 4, a pair of swirling flows are formed that swirl outside and inside the cylinder in a direction opposite to the swirling flow illustrated in FIG. 1, and the atmosphere circulates inside the container. To do.
As in the first embodiment, when a powder or a collection of particles is put into the container, the powder or the collection of particles circulates in the container together with the atmosphere swirling between the outside and inside of the cylinder, and the collection of the powder or particles Always passes through three mesh filters: a mesh filter of an umbrella-like member of a rotating body, a mesh filter at the lower end of the cylinder 3, and a mesh filter at the upper end of the cylinder. On the other hand, even if the fine particles sprayed continuously from a plurality of fine particle injection nozzles adhere to the powder or particles by friction and the powder or particles aggregate, the aggregation is released by passing through the three mesh filters. The Above all, since the mesh roughness of the mesh filter at the lower end of the cylinder is configured with finer mesh than the mesh roughness of the other two mesh filters, by passing through the mesh filter at the lower end of the cylinder 3, Aggregation of the powder or particles is reliably released, and the particles or particles are continuously ejected from the plurality of particle injection nozzles to the powder or particles from which the aggregation has been released. The surface of the powder or particles is uniformly covered with fine particles without agglomeration.

最初に、下記に説明する4つの実施例において、粉体の表面を微粒子の集まりで覆う処理を行なった処理装置を説明する。装置を構成する容器は、直径が1mで高さが1.5mの円筒であり、この容器の内部にさらに円筒30を配置した。図5の平面図に示すように、円筒30は直径aが60cmで高さbが150cmであり、上下の両端部の双方は、20cmからなる幅cで円錐状に絞られた平面31および平面33を持ち、上端面32および下端面34は容器の上下面に接する。噴射装置60の先端が、上端部の平面31の近くに配置されるように、噴射装置60が容器の側壁に配置される。
図6は、噴射装置60と平面31との配置関係を説明する平面図である。円錐状に絞られた幅cが20cmからなる平面31は、そのうち15cmの幅dに、最も目の粗さが細かいメッシュフィルターが帯状に一回り形成されている。噴射ノズル61とメッシュフィルターとの距離eは5cmである。なお、20個からなる噴射装置60が、平面31と同一の5cmからなる距離eで等間隔に容器の側壁に設置される。また、噴射装置60は、噴射ノズル61とパイプ62とからなり、パイプ62の先は図示しない分配器に繋がり、分配器の先は後で説明する微粉砕機に繋がる。従って、微粉砕機で微粉砕された微粒子は、微粉砕機から分配器によって20本のパイプ62に分配され、パイプ62に繋がれた20個の噴射ノズル61から、微粉砕機において粒子を微粉砕した際の粉砕圧に近い圧力で、微粒子の集まりが連続して噴射される。
図7は、円筒30の円錐状に絞られた平面31の内側に配置する回転体の上端部40の構造を説明する平面図である。上端部40は、25cmからなる幅hで円錐状に絞られた平面41と、閉じられた平面からなる最上部42とからなる傘状体と、最上部42に結合した回転軸43とからなる。円錐状に絞られた平面41の最下端は直径fが56cmの円であり、最上部42は直径gが20cmの大きさからなる円である。平面41の幅hが25cmのうち20cmの幅iで、最も目の粗さが粗いメッシュフィルターが帯状に一回り形成されている。さらに、回転軸43には図示しない4枚からなる羽根の10組が、最上部42から25cmの距離から10cmの等間隔で10組が直交して結合されている。羽根の長さは、最下部においては最も短い15cmで、最上部で最も長い25cmで、上部になるほど羽根の長さが長くなる。さらに、回転軸43は、図示しない容器の下部に配置されたモータに直結し、モータの稼働で回転する。
以上に説明した処理装置を用いて、下記に代表的な事例として4つの実施例を説明するが、粉体の表面を微粒子の集まりで覆う事例はこれら4つの事例に限定されない。なぜならば、本処理装置は、10段落と12段落と14段落と16段落で説明した特徴構成を有するため、8段落で説明した10項目の要件を兼備する処理装置であり、粉体の表面が微粒子の集まりで覆われる汎用的な処理方法となる処理装置であるからである。
First, in four embodiments described below, a processing apparatus that performs processing for covering the surface of powder with a collection of fine particles will be described. The container constituting the apparatus was a cylinder having a diameter of 1 m and a height of 1.5 m, and a cylinder 30 was further arranged inside the container. As shown in the plan view of FIG. 5, the cylinder 30 has a diameter a of 60 cm and a height b of 150 cm, and both the upper and lower ends have a plane 31 and a plane which are constricted with a width c of 20 cm. The upper end surface 32 and the lower end surface 34 are in contact with the upper and lower surfaces of the container. The injection device 60 is arranged on the side wall of the container so that the tip of the injection device 60 is arranged near the flat surface 31 of the upper end portion.
FIG. 6 is a plan view for explaining the positional relationship between the injection device 60 and the plane 31. In the plane 31 having a conical constricted width c of 20 cm, a mesh filter with the finest roughness of the mesh is formed once in a band shape with a width d of 15 cm. The distance e between the spray nozzle 61 and the mesh filter is 5 cm. In addition, 20 injection devices 60 are installed on the side wall of the container at equal intervals with a distance e of 5 cm which is the same as the plane 31. The injection device 60 includes an injection nozzle 61 and a pipe 62. The tip of the pipe 62 is connected to a distributor (not shown), and the tip of the distributor is connected to a pulverizer described later. Accordingly, fine particles finely pulverized by the fine pulverizer are distributed from the fine pulverizer to the 20 pipes 62 by the distributor, and the fine particles are finely divided by the fine pulverizer from the 20 injection nozzles 61 connected to the pipes 62. A collection of fine particles is continuously ejected at a pressure close to the pulverization pressure at the time of pulverization.
FIG. 7 is a plan view for explaining the structure of the upper end portion 40 of the rotating body arranged inside the flat surface 31 of the cylinder 30 constricted in a conical shape. The upper end portion 40 includes an umbrella-shaped body including a flat surface 41 constricted with a width h of 25 cm, an uppermost portion 42 including a closed flat surface, and a rotating shaft 43 coupled to the uppermost portion 42. . The lowermost end of the conical constricted flat surface 41 is a circle having a diameter f of 56 cm, and the uppermost portion 42 is a circle having a diameter g of 20 cm. A mesh filter having the flatest surface roughness 41 having a width h of 20 cm out of 25 cm and the coarsest mesh is formed in a belt shape. Furthermore, 10 pairs of four blades (not shown) are coupled to the rotating shaft 43 at right angles from the distance of 25 cm from the uppermost portion 42 to 10 cm at right angles. The length of the blade is 15 cm, which is the shortest at the lowermost part, and 25 cm, which is the longest at the uppermost part. Furthermore, the rotating shaft 43 is directly connected to a motor arranged at the lower part of a container (not shown), and rotates by operation of the motor.
Four examples will be described below as representative examples using the processing apparatus described above, but examples of covering the surface of the powder with a collection of fine particles are not limited to these four examples. This is because the processing apparatus has the characteristic configuration described in the 10th, 12th, 14th and 16th paragraphs, and is a processing apparatus having the requirements of the 10 items described in the 8th paragraph. This is because the processing apparatus is a general-purpose processing method that is covered with a collection of fine particles.

前記した処理装置を用いて、鱗片状黒鉛粒子の表面をオクチル酸銅の微粒子で覆う処理を行なった。鱗片状黒鉛粒子(鱗状黒鉛粒子ともいう)は、日本黒鉛株式会社が製造する平均粒径が50μmで嵩密度が0.25Mg/mからなる品番CB150を用いた。また、オクチル酸銅Cu(C15COO)は、三津和薬品工業株式会社の製品を用いた。オクチル酸銅は粗粉砕の後、株式会社アイシンナノテクノロジーズが製造するナノジェットマイザーと呼ばれる微粉砕機型式NJ−100を用いて微粉砕した。本実施例では、1時間当たり5kgの割合でオクチル酸銅の5kgを微粉砕機に供給し、粉砕圧1MPaを加えてD50が1.2μmでD100が5μmの微粒子として微粉砕した。なお、ナノジェットマイザーは、高圧ガスで粒子を加速し、粒子間の衝突で微粉砕するジェットミル装置であり、ミル内部で高圧ジェット気流による同心円の旋回渦を発生する複数のノズルを有し、ジュールトムソン効果によって粒子の温度上昇を抑制するとともに、粒子の微粉砕が粒子間の衝突に依存するため、コンタミが少ないことを特徴とする微粉砕装置である。
微粉砕したオクチル酸銅の微粒子は、微粉砕機から分配器に供給され、さらに、分配器で20本のパイプに分配され、さらに、パイプに直結した20個の噴射ノズルに供給され、噴射ノズルから粉砕圧の1MPaに近い圧力でオクチル酸銅の微粒子を連続噴射した。噴射ノズルは、株式会社いけうちが製造する空円錐ノズル/微霧発生極小噴量形と呼ばれる型式1/4M KBN 80 063 TPA CV Wを用いた。この噴射ノズルは、ねじサイズが1/4Mで、噴角が80°で、噴量区分が063からなる。
いっぽう、メッシュフィルターは、株式会社三共金網製作所が製造する綾織ステンレス金網を用いた。噴射ノズルに近く、円筒の上端部に設けたメッシュフィルターは、最も目の粗さが細かい金網であり、線径が250μmでメッシュが50で目開きが278μmで空間率が30%からなる。次に、回転体の傘状部材の側面に設けたメッシュフィルターは、最も目の粗さが粗い金網であり、線径が340μmでメッシュが30で目開きが497μmで空間率が34%からなる。円筒の下端部に設けたメッシュフィルターは、中間の目の粗さを持つ金網であり、線径が290μmでメッシュが40で目開きが345μmで空間率が30%からなる。
以上に説明した処理装置を用いて、黒鉛粒子の表面をオクチル酸銅の微粒子で覆った。最初に黒鉛粒子の9kgを容器内に投入し、次にモータを600rpmの回転速度で回転させ、この後、微粉砕機を前記した条件で駆動した。モータの駆動で容器内の黒鉛粒子は循環し、また、微粉砕機の駆動によりオクチル酸銅の微粒子が噴射ノズルから連続して噴射される。こうして、容器内を循環する黒鉛粒子の集まりに、20個の噴射ノズルからオクチル酸銅の微粒子の集まりを1時間かけて噴射させ、さらに、オクチル酸銅の噴射が枯渇した後も、10分間モータを継続して稼働させ、黒鉛粒子の集まりを容器内で循環させ、黒鉛粒子の表面がオクチル酸銅の微粒子で満遍なく覆われた試料を作成した。
Using the above-described processing apparatus, the surface of the flaky graphite particles was covered with copper octylate fine particles. As the scaly graphite particles (also referred to as scaly graphite particles), product number CB150 having an average particle diameter of 50 μm and a bulk density of 0.25 Mg / m 3 manufactured by Nippon Graphite Co., Ltd. was used. Further, octyl copper Cu (C 7 H 15 COO) 2 was used the product of Mitsuwa Chemical Industries, Ltd.. The copper octylate was coarsely pulverized and then finely pulverized using a fine pulverizer model NJ-100 called Nano Jet Mizer manufactured by Aisin Nanotechnology Co., Ltd. In this example, 5 kg of copper octylate was supplied to a fine pulverizer at a rate of 5 kg per hour, and pulverized into fine particles having a D50 of 1.2 μm and a D100 of 5 μm by applying a pulverization pressure of 1 MPa. Nanojet Mizer is a jet mill device that accelerates particles with high-pressure gas and pulverizes them by collision between particles, and has a plurality of nozzles that generate concentric swirling vortices by high-pressure jet airflow inside the mill, This is a pulverizing apparatus characterized by suppressing particle temperature rise by the Joule-Thomson effect and having less contamination because the pulverization of particles depends on collisions between particles.
The finely pulverized copper octylate fine particles are supplied from a fine pulverizer to a distributor, further distributed to 20 pipes by the distributor, and further supplied to 20 injection nozzles directly connected to the pipes. Then, copper octylate fine particles were continuously sprayed at a pressure close to 1 MPa as the pulverization pressure. As the injection nozzle, a model 1 / 4M KBN 80 063 TPA CV W called an empty conical nozzle manufactured by Ikeuchi Co., Ltd./fine mist generation minimum injection amount type was used. This injection nozzle has a screw size of 1 / 4M, an injection angle of 80 °, and an injection amount section of 063.
On the other hand, the mesh filter used was a twill weave stainless wire mesh manufactured by Sankyo Wire Mesh Co., Ltd. The mesh filter provided near the injection nozzle and at the upper end of the cylinder is a wire mesh having the finest meshes, and has a wire diameter of 250 μm, a mesh of 50, an opening of 278 μm, and a space ratio of 30%. Next, the mesh filter provided on the side surface of the umbrella-shaped member of the rotating body is a wire mesh having the coarsest mesh, the wire diameter is 340 μm, the mesh is 30, the mesh is 497 μm, and the space ratio is 34%. . The mesh filter provided at the lower end of the cylinder is a wire mesh having intermediate roughness, and has a wire diameter of 290 μm, a mesh of 40, an opening of 345 μm, and a space ratio of 30%.
Using the processing apparatus described above, the surface of the graphite particles was covered with fine particles of copper octylate. First, 9 kg of graphite particles were put into the container, and then the motor was rotated at a rotational speed of 600 rpm, and then the pulverizer was driven under the conditions described above. The graphite particles in the container are circulated by the drive of the motor, and the fine particles of copper octylate are continuously jetted from the jet nozzle by the drive of the fine pulverizer. In this way, a collection of fine particles of copper octylate is sprayed over 20 hours from the 20 spray nozzles to a collection of graphite particles circulating in the container, and after the copper octylate spray is exhausted, the motor is operated for 10 minutes. Was continuously operated, and a collection of graphite particles was circulated in the container to prepare a sample in which the surface of the graphite particles was evenly covered with the fine particles of copper octylate.

次に、作成した試料の表面を電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社が所有する極低加速電圧SEMを用いた。この装置は、100Vからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。なお、反射電子線の1kVから900Vの間にあるエネルギーを抽出し、これを画像として映し出すと、画像の濃淡から物質の材質の違いが分かる。また、反射電子線の1kVから900Vの間にある2次電子線を取り出し、これを画像として映し出すと、表面の凹凸の状態が分かる。さらに、表面を構成する元素分布を頻度によって映し出すEDXの分析によって、表面を構成する物質が特定できる。
反射電子線の1kVから900Vの間にあるエネルギーを抽出した画像では、黒鉛粒子の表面の全体は白く光っていた。これは、電子によってオクチル酸銅がチャージアップされた結果である。さらに、反射電子線の1kVから900Vの間にある2次電子線を取り出した画像では、黒鉛粒子の表面全体は0.6μm〜5μmの微粒子で覆われていた。EDXの分析では、微粒子を構成する元素は炭素、酸素、銅の順番で析出頻度が高かった。これらの結果から、黒鉛粒子の表面全体がオクチル酸銅の微粒子で覆われていることが分かった。
Next, the surface of the prepared sample was observed with an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM owned by JFE Techno-Research Corporation was used. This apparatus is capable of observing the surface with an extremely low acceleration voltage from 100 V, and has the feature that the surface of the sample can be observed directly without forming a conductive film on the sample. In addition, when energy between 1 kV and 900 V of the reflected electron beam is extracted and displayed as an image, the difference in material of the material can be understood from the density of the image. Further, when a secondary electron beam between 1 kV and 900 V of the reflected electron beam is taken out and projected as an image, the surface unevenness state can be understood. Furthermore, the substance constituting the surface can be identified by analysis of EDX that reflects the distribution of elements constituting the surface with frequency.
In the image obtained by extracting the energy between 1 kV and 900 V of the reflected electron beam, the entire surface of the graphite particles was shining white. This is a result of the charge up of copper octylate by electrons. Further, in the image obtained by extracting the secondary electron beam between 1 kV and 900 V of the reflected electron beam, the entire surface of the graphite particle was covered with fine particles of 0.6 μm to 5 μm. In the analysis of EDX, the elements constituting the fine particles had the highest precipitation frequency in the order of carbon, oxygen, and copper. From these results, it was found that the entire surface of the graphite particles was covered with fine particles of copper octylate.

なお、オクチル酸銅の微粒子の集まりで覆われた黒鉛粒子は、大気雰囲気の熱処理において、1分以内に室温から330℃近くまで昇温すると、オクチル酸銅が熱分解し、黒鉛粒子は銅微粒子の集まりで覆われる。つまり、オクチル酸銅は、オクチル酸の沸点である228℃を超えると、オクチル酸と分子クラスター状態の銅に分解する。さらに昇温すると、オクチル酸は気化熱を奪って気化し、オクチル酸の気化が290℃で完了し、黒鉛粒子の表面に銅微粒子の集まりが析出し、オクチル酸銅の熱分解を終える。このため、オクチル酸銅の熱分解が始まる228℃から、オクチル酸銅の熱分解が完了する290℃の温度範囲においては、黒鉛粒子の表面において、オクチル酸が継続的に気化熱を奪いながら気化する。いっぽう、オクチル酸は発火点が371℃の液体である。従って、オクチル酸の気化が短時間で完了できなければ、オクチル酸は分子クラスター状の銅を伴って移動する。このため、10秒以内で粉体ないしは粒子を228℃から290℃に昇温し、オクチル酸の移動を抑制することで、黒鉛粒子が銅微粒の集まりで覆われる。いっぽう、オクチル酸は371℃で発火するため、オクチル酸の発火点近くまで昇温させることはできない。さらに、黒鉛粒子が昇温される温度が290℃以上になると、銅微粒子が熱エネルギーを得て成長し、微粒子の粗大化が徐々に進み、粗大化した粒子が黒鉛粒子の偏った場所に析出する。この結果、黒鉛粒子が銅微粒子の集まりで覆われない。このため、黒鉛粒子が昇温される温度は330℃程度までに抑えなければならい。従って、オクチル酸銅の微粒子で覆われた黒鉛粒子を、1分以内に室温から330℃近くまで昇温すると、黒鉛粒子は銅微粒子の集まりで覆われる。  The graphite particles covered with a collection of copper octylate fine particles are thermally decomposed when the temperature is raised from room temperature to near 330 ° C. within 1 minute in the heat treatment in the air atmosphere, and the graphite particles are copper fine particles. Covered with a gathering of. That is, when octyl acid exceeds 228 ° C., which is the boiling point of octylic acid, it is decomposed into octylic acid and copper in a molecular cluster state. When the temperature is further raised, the octylic acid takes the heat of vaporization and vaporizes, and the vaporization of the octylic acid is completed at 290 ° C., a collection of copper fine particles is deposited on the surface of the graphite particles, and the thermal decomposition of the copper octylate is finished. For this reason, in the temperature range from 228 ° C. where the thermal decomposition of copper octylate starts to 290 ° C. where the thermal decomposition of copper octylate is completed, octylic acid vaporizes while continuously taking heat of vaporization on the surface of the graphite particles. To do. On the other hand, octylic acid is a liquid having an ignition point of 371 ° C. Therefore, if vaporization of octylic acid cannot be completed in a short time, octylic acid moves with molecular clustered copper. Therefore, the temperature of the powder or particles is increased from 228 ° C. to 290 ° C. within 10 seconds, and the movement of octylic acid is suppressed, so that the graphite particles are covered with a collection of copper fine particles. On the other hand, since octylic acid ignites at 371 ° C., the temperature cannot be raised to near the ignition point of octylic acid. Furthermore, when the temperature at which the graphite particles are heated to 290 ° C. or higher, the copper fine particles grow by obtaining thermal energy, and the coarsening of the fine particles gradually progresses, and the coarsened particles are deposited at the uneven locations of the graphite particles. To do. As a result, the graphite particles are not covered with a collection of copper fine particles. For this reason, the temperature at which the graphite particles are heated must be suppressed to about 330 ° C. Therefore, when the graphite particles covered with the copper octylate fine particles are heated from room temperature to nearly 330 ° C. within one minute, the graphite particles are covered with a collection of copper fine particles.

この銅微粒子の集まりで覆われた黒鉛粒子は、直流モータ用の金属黒鉛質ブラシの新たな原料になる。このブラシは、火花放電が起こらず、電気ノイズが発生せず、動作寿命が極めて長い、画期的な性質を持つ。従来における金属黒鉛質ブラシは、黒鉛粒子と電解銅粉との混合物を所定の形状に圧縮成形し、この後、水素ガスの雰囲気で焼成することによって製造する。これに対し、新規の金属黒鉛質ブラシは、本実施例で製造した銅微粒子の集まりで覆われた黒鉛粒子の集まりを、所定の形状に圧縮成形するだけで製造される。  The graphite particles covered with the collection of copper fine particles become a new raw material for a metal graphite brush for a DC motor. This brush has an epoch-making property with no spark discharge, no electrical noise, and a very long operating life. Conventional metal graphite brushes are manufactured by compression-molding a mixture of graphite particles and electrolytic copper powder into a predetermined shape and then firing in a hydrogen gas atmosphere. On the other hand, the novel metal graphite brush is manufactured simply by compression molding the aggregate of graphite particles covered with the aggregate of copper fine particles manufactured in this embodiment into a predetermined shape.

従来における金属黒鉛質ブラシにおいては、火花放電現象は次の3つのステップを踏んで起こる。第一に、整流子とブラシが接触する直前に、両者で形成される間隙が極微小となり、大きな電界が間隙に発生する。この大きな電界が、黒鉛粒子の電気的磨耗と間隙における火花放電と電気ノイズとをもたらす電気的負荷になる。第二に、大きな電界が黒鉛粒子に印加されると、黒鉛粒子の表層の一部を形成する黒鉛結晶が有するπ電子はπ軌道から遊離して自由電子となる。π電子がπ軌道から遊離した黒鉛結晶の領域は、層間結合が破壊された領域となる。この現象が電気的磨耗である。第三に、自由電子となったπ電子は、集結して塊となって電界方向に向かって間隙をさまよう。このπ電子群が間隙をさまよう際に、空気の分子を瞬間的に励起させ、発光現象をもたらす。この発光現象が火花放電である。また、空気の分子が励起されることで電気ノイズが発生する。これらの3つのステップを踏んで、火花放電が断続的に瞬時の現象として極微小な間隙で発生する。  In the conventional metal graphite brush, the spark discharge phenomenon occurs through the following three steps. First, immediately before the commutator and the brush come into contact with each other, the gap formed between them becomes extremely small, and a large electric field is generated in the gap. This large electric field becomes an electrical load that leads to electrical wear of the graphite particles, spark discharge in the gaps and electrical noise. Second, when a large electric field is applied to the graphite particles, the π electrons of the graphite crystals forming part of the surface layer of the graphite particles are released from the π orbits and become free electrons. The region of the graphite crystal in which π electrons are released from the π orbital is a region where the interlayer bond is broken. This phenomenon is electrical wear. Third, the π electrons, which have become free electrons, gather together to form a lump and sandwich the gap in the direction of the electric field. When this π-electron group wanders through the gap, air molecules are instantaneously excited, causing a light emission phenomenon. This light emission phenomenon is a spark discharge. In addition, electrical noise is generated when air molecules are excited. By taking these three steps, spark discharge is intermittently generated in a very small gap as an instantaneous phenomenon.

火花放電が起こらず、これによって電気ノイズが発生せず、さらに、黒鉛粒子の電気的摩耗が起こらない新たな金属黒鉛質ブラシは、黒鉛粒子の表面を等電位面にすればよい。つまり、ブラシと整流子との摺接面に大きな電界が作用しても、黒鉛粒子の表面が等電位面であれば、等電位面を構成する自由電子が電界によるクーロン力によって電界方向に移動するだけで、等電位面の内側にある黒鉛粒子には電界が作用しない。また、等電位面が銅で形成すれば、黒鉛粒子は銅に近い抵抗値になるため、従来のように電解銅粉を混合することなくブラシの抵抗が低減でき、黒鉛粒子の使用量は激減される。
銅微粒子の集まりで覆われた黒鉛粒子は、銅微粒子の集まりが等電位面を形成する。さらに、黒鉛粒子の電気抵抗は、銅の電気抵抗に近づく。このため、銅微粒子の集まりで覆われた黒鉛粒子の圧縮成形体は、火花放電が起こらず、電気ノイズが発生せず、黒鉛粒子の摩耗量が激減する新たな金属黒鉛質ブラシの原料になる。
A new metallic graphite brush that does not cause spark discharge, does not generate electrical noise, and does not cause electrical wear of the graphite particles may have an equipotential surface. In other words, even if a large electric field acts on the sliding contact surface between the brush and the commutator, if the surface of the graphite particles is an equipotential surface, the free electrons constituting the equipotential surface move in the electric field direction by the Coulomb force due to the electric field. Simply, no electric field acts on the graphite particles inside the equipotential surface. In addition, if the equipotential surface is made of copper, the graphite particles have a resistance value close to that of copper, so that the resistance of the brush can be reduced without mixing electrolytic copper powder as in the past, and the amount of graphite particles used is drastically reduced. Is done.
In graphite particles covered with a collection of copper fine particles, a collection of copper fine particles forms an equipotential surface. Furthermore, the electrical resistance of the graphite particles approaches that of copper. For this reason, the compression molding of graphite particles covered with a collection of copper fine particles is a raw material for a new metal graphite brush that does not cause spark discharge, does not generate electrical noise, and greatly reduces the amount of wear of graphite particles. .

本実施例は、24段落で説明した処理装置を用いて、ガラスフレーク粉をオクチル酸銀の微粒子の集まりで覆った。ガラスフレーク粉は、日本板硝子株式会社が製造する製品記号がRCF−160のガラスフレーク粉を用いた。このガラスフレーク粉は、平均の厚みが5μmで、1700μm〜300μmの大きさが10%以下で、300μm〜150μmの大きさが65%以上で、45μmパスが5%以下である粒度分布を持ち、中心粒度が160μmである。また、嵩密度は0.35Mg/mである。銀の原料はオクチル酸銀Ag(C15COO)を用いた。なお、オクチル酸銀は市販されていないため、次の製法で新たに合成した。オクチル酸カリウム(例えば、東栄化工株式会社の製品)と硝酸銀(試薬1級品)とを反応させてオクチル酸銀を析出させ、この析出したオクチル酸銀を水洗してオクチル酸銀を得た。また、実施例1と同様に、オクチル酸銀は粗粉砕の後、微粉砕機型式NJ−100を用いて微粉砕した。本実施例では、1時間当たり5kgの割合で微粉砕されるオクチル酸銀の5kgを微粉砕機に供給し、粉砕圧1MPaを加えてD50が1.0μmでD100が4.8μmとして微粉砕した。
微粉砕したオクチル酸銀は、実施例1と同様に、微粉砕機から分配器に供給し、さらに、分配器で20本のパイプに分配し、さらに、パイプに直結した20個の噴射ノズルに供給され、20個の噴射ノズルから粉砕圧の1MPaに近い圧力でオクチル酸銀の微粒子を連続噴射した。噴射ノズルは、実施例1と同様に、空円錐ノズル/微霧発生極小噴量形を用いた。
メッシュフィルターは、株式会社三共金網製作所が製造する平織ステンレス金網を用いた。噴射ノズルに近く、円筒の上端部に設けたメッシュフィルターは、最も目の粗さが細かい金網であり、線径が210μmでメッシュが35で目開きが515μmで空間率が50%からなる。次に、回転体の傘状部材の側面に設けたメッシュフィルターは、最も目の粗さが粗い金網であり、線径が380μmでメッシュが20で目開きが890μmで空間率が49%からなる。円筒の下端部に設けたメッシュフィルターは、中間の目の粗さを持つ金網であり、線径が570μmでメッシュが20で目開きが700μmで空間率が30%からなる。
以上に説明した処理装置によって、ガラスフレーク粉の表面をオクチル酸銀の微粒子で覆う処理を行なった。最初にガラスフレーク粉の640gを容器内に投入し、次にモータを1200rpmの回転速度で回転させ、この後、微粉砕機を前記した条件で駆動した。モータの駆動で容器内のガラスフレーク粉は循環し、また、微粉砕機の駆動によりオクチル酸銀の微粒子が噴射ノズルから連続して噴射される。こうして、容器内を循環するガラスフレーク粉の集まりに、20個の噴射ノズルからオクチル酸銀の微粒子の集まりを1時間かけて噴射させ、さらに、オクチル酸銀の噴射が枯渇した後も、10分間モータを継続して稼働させ、ガラスフレーク粉の集まりを容器内で循環させ、ガラスフレーク粉の表面をオクチル酸銀の微粒子で覆われた試料を作成した。
In this example, the glass flake powder was covered with a collection of silver octylate fine particles using the processing apparatus described in paragraph 24. As the glass flake powder, glass flake powder having a product symbol RCF-160 manufactured by Nippon Sheet Glass Co., Ltd. was used. This glass flake powder has an average thickness of 5 μm, a size of 1700 μm to 300 μm is 10% or less, a size of 300 μm to 150 μm is 65% or more, and a 45 μm pass has a particle size distribution of 5% or less, The central particle size is 160 μm. The bulk density is 0.35 Mg / m 3 . Silver octylate Ag (C 7 H 15 COO) was used as a silver raw material. Since silver octylate is not commercially available, it was newly synthesized by the following production method. Potassium octylate (for example, a product of Toei Chemical Co., Ltd.) and silver nitrate (reagent grade 1 product) were reacted to precipitate silver octylate, and the precipitated silver octylate was washed with water to obtain silver octylate. Similarly to Example 1, the silver octylate was coarsely pulverized and then finely pulverized using a fine pulverizer model NJ-100. In this example, 5 kg of silver octylate finely pulverized at a rate of 5 kg per hour was supplied to a fine pulverizer and pulverized to a D50 of 1.0 μm and a D100 of 4.8 μm by applying a pulverization pressure of 1 MPa. .
The finely pulverized silver octylate is supplied from the fine pulverizer to the distributor as in Example 1, and further distributed to 20 pipes by the distributor, and further to 20 injection nozzles directly connected to the pipes. The fine particles of silver octylate were continuously jetted from 20 jet nozzles at a pressure close to 1 MPa as the grinding pressure. As in the case of Example 1, the injection nozzle used was an empty conical nozzle / a fine mist generation minimal injection amount type.
The mesh filter used was a plain weave stainless steel wire mesh manufactured by Sankyo Wire Mesh Co., Ltd. The mesh filter provided near the injection nozzle and at the upper end of the cylinder is a wire mesh having the finest meshes, having a wire diameter of 210 μm, a mesh of 35, an opening of 515 μm, and a space ratio of 50%. Next, the mesh filter provided on the side surface of the umbrella-shaped member of the rotating body is a wire mesh having the coarsest mesh, the wire diameter is 380 μm, the mesh is 20, the opening is 890 μm, and the space ratio is 49%. . The mesh filter provided at the lower end portion of the cylinder is a wire mesh having intermediate roughness, and has a wire diameter of 570 μm, a mesh of 20, a mesh opening of 700 μm, and a space ratio of 30%.
With the processing apparatus described above, the surface of the glass flake powder was covered with silver octylate fine particles. First, 640 g of glass flake powder was put into the container, and then the motor was rotated at a rotational speed of 1200 rpm, and then the pulverizer was driven under the conditions described above. The glass flake powder in the container circulates by driving the motor, and silver octylate fine particles are continuously sprayed from the spray nozzle by driving the fine pulverizer. In this way, a collection of silver octylate fine particles is sprayed over 20 hours from the 20 spray nozzles to a collection of glass flake powder circulating in the container, and 10 minutes after the silver octylate spray is exhausted. The motor was continuously operated, and a collection of glass flake powder was circulated in the container to prepare a sample in which the surface of the glass flake powder was covered with silver octylate fine particles.

次に、実施例1と同様に、作成した試料の表面を電子顕微鏡で観察した。反射電子線の1kVから900Vの間にあるエネルギーを抽出した画像では、ガラスフレーク粉の表面の全体は白く光っていた。これは、電子によってオクチル酸銀がチャージアップされた結果である。さらに、反射電子線の1kVから900Vの間にある2次電子線を取り出した画像では、ガラスフレーク粉の表面全体は0.5μm〜4.8μmの微粒子で覆われていた。また、EDXの分析では、微粒子を構成する元素は炭素、酸素、銀の順番で析出頻度が高かった。これらの結果から、ガラスフレーク粉がオクチル酸銀の微粒子で満遍なく覆われていることが分かった。  Next, similarly to Example 1, the surface of the prepared sample was observed with an electron microscope. In the image obtained by extracting the energy between 1 kV and 900 V of the reflected electron beam, the entire surface of the glass flake powder was shining white. This is a result of the charge-up of silver octylate by electrons. Further, in the image obtained by taking out the secondary electron beam between 1 kV and 900 V of the reflected electron beam, the entire surface of the glass flake powder was covered with fine particles of 0.5 μm to 4.8 μm. Further, in the EDX analysis, the elements constituting the fine particles had the highest precipitation frequency in the order of carbon, oxygen, and silver. From these results, it was found that the glass flake powder was evenly covered with silver octylate fine particles.

本実施例で製造したオクチル酸銀の微粒子で覆われたガラスフレーク粉は、大気雰囲気の熱処理において、1分以内に室温から330℃近くまで昇温すると、オクチル酸銀が熱分解し、ガラスフレーク粉は銀微粒子の集まりで覆われる。つまり、実施例1のオクチル酸銅と同様に、オクチル酸銀はオクチル酸金属化合物であるため、オクチル酸の沸点である228℃を超えると、オクチル酸と分子クラスター状態の銀に分解する。さらに昇温すると、オクチル酸は気化熱を奪って気化し、オクチル酸の気化が290℃で完了し、ガラスフレーク粉の表面に銀微粒子の集まりが析出し、オクチル酸銀の熱分解を終える。このため、オクチル酸銀の熱分解が始まる228℃から、オクチル酸銀の熱分解が完了する290℃の温度範囲においては、ガラスフレーク粉の表面において、オクチル酸が継続的に気化熱を奪いながら気化する。また、オクチル酸は発火点が371℃の液体である。従って、オクチル酸の気化が短時間で完了できなければ、オクチル酸は分子クラスター状の銀を伴って移動する。このため、10秒以内で粉体ないしは粒子を228℃から290℃に昇温し、オクチル酸の移動を抑制することで、ガラスフレーク粉が銀微粒の集まりで覆われる。いっぽう、オクチル酸は371℃で発火するため、オクチル酸の発火点近くまで昇温させることはできない。さらに、ガラスフレーク粉が昇温される温度が290℃以上になると、銀微粒子が熱エネルギーを得て成長し、微粒子の粗大化が徐々に進み、粗大化した粒子がガラスフレーク粉の偏った場所に析出する。この結果、ガラスフレーク粉が銀微粒子の集まりで覆われない。このため、ガラスフレーク粉の昇温される温度は330℃程度までに抑えなければならい。従って、オクチル酸銀の微粒子で覆われたガラスフレーク粉を、1分以内に室温から330℃近くまで昇温すると、ガラスフレーク粉は銀微粒子の集まりで覆われる。  When the glass flake powder covered with the silver octylate fine particles produced in this example was heated from room temperature to near 330 ° C. within 1 minute in the heat treatment in the air atmosphere, the silver octylate was thermally decomposed, and the glass flakes The powder is covered with a collection of silver particles. That is, like the copper octylate of Example 1, since silver octylate is an octylic acid metal compound, when it exceeds 228 degreeC which is a boiling point of octylic acid, it will decompose | disassemble into octylic acid and silver of a molecular cluster state. When the temperature is further raised, octylic acid takes the heat of vaporization and vaporizes, and the vaporization of octylic acid is completed at 290 ° C., a collection of silver fine particles is deposited on the surface of the glass flake powder, and the thermal decomposition of silver octylate is completed. For this reason, in the temperature range from 228 ° C. where the thermal decomposition of silver octylate starts to 290 ° C. where the thermal decomposition of silver octylate is completed, octylic acid continuously takes heat of vaporization on the surface of the glass flake powder. Vaporize. Octyl acid is a liquid having an ignition point of 371 ° C. Therefore, if the vaporization of octylic acid cannot be completed in a short time, octylic acid moves with molecular clustered silver. Therefore, the powder or particles are heated from 228 ° C. to 290 ° C. within 10 seconds, and the movement of octylic acid is suppressed, so that the glass flake powder is covered with a collection of silver fine particles. On the other hand, since octylic acid ignites at 371 ° C., the temperature cannot be raised to near the ignition point of octylic acid. Further, when the temperature at which the glass flake powder is heated is 290 ° C. or higher, the silver fine particles grow by obtaining thermal energy, and the coarsening of the fine particles gradually proceeds, where the coarsened particles are unevenly distributed in the glass flake powder. It precipitates in. As a result, the glass flake powder is not covered with a collection of silver fine particles. For this reason, the temperature at which the glass flake powder is heated must be suppressed to about 330 ° C. Therefore, when the glass flake powder covered with the silver octylate fine particles is heated from room temperature to nearly 330 ° C. within 1 minute, the glass flake powder is covered with a collection of silver fine particles.

銀微粒子の集まりで覆われたガラスフレーク粉は、金属元素の中で最も優れた熱伝導性と電気導電性を持ち、全ての可視光領域で最も高い反射率を持つ銀の性質を有するガラスフレーク粉となる。このため、ガラスフレーク粉は、導電性ペーストの導電性フィラーとして用いることができる。
またガラスフレーク粉は、ナノサイズの銀微粒子で覆われるため、表面はナノサイズの凹凸が形成され、光の白色散乱が殆どなく、彩度に優れた金属光沢を発する。また、銀微粒子の厚みを可視光の個別の色調の波長に相当する厚みとすると、銀微粒子の表面での反射光とガラスフレーク表面での反射光とが互いに干渉して増幅され、可視光の個別の色調が相対的に強い反射光となる。この結果、ガラスフレーク粉は、可視光の個別の色調が相対的に強い彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
Glass flake powder covered with a collection of silver fine particles is a glass flake with the property of silver that has the highest thermal conductivity and electrical conductivity among metal elements and has the highest reflectivity in all visible light region. It becomes powder. For this reason, glass flake powder can be used as a conductive filler of a conductive paste.
Further, since the glass flake powder is covered with nano-sized silver fine particles, the surface is formed with nano-sized irregularities, hardly emits white light, and emits a metallic luster with excellent saturation. Further, when the thickness of the silver fine particles is set to a thickness corresponding to the wavelength of the individual color tone of visible light, the reflected light on the surface of the silver fine particles and the reflected light on the surface of the glass flakes are interfered with each other and amplified. The individual color tone is a relatively strong reflected light. As a result, the glass flake powder can be used as a pigment for paints that emits a metallic luster with excellent saturation with a relatively strong individual color tone of visible light.

本実施例は、24段落で説明した処理装置を用いて、扁平鉄粉の表面をナフテン酸鉄の微粒子で覆った。扁平鉄粉は還元鉄粉を扁平化処理したもので、JFEスチール株式会社が製造する扁平鉄粉MG150Dを用いた。この扁平鉄粉は嵩密度が1.50Mg/mで、粒度分布が45μmのパスが14%で、45μm〜63μmが12%で、63μm〜75μmが6%で、75μm〜106μmが24%で、106μm〜150μmが42%で、150μm〜180μmが2%である。またナフテン酸鉄Fe(C2n−1COO)(五員環を持つ複数の飽和脂肪酸と鉄との化合物)は、東栄化工株式会社の製品を用いた。なお、ナフテン酸鉄は、粗粉砕の後、25段落で説明したオクチル酸銅と同様に、微粉砕機型式NJ−100を用いて微粉砕した。本実施例では1時間当たり3kgの割合で微粉砕されるナフテン酸鉄の2.6kgを微粉砕機に供給し、粉砕圧1MPaを加えてD50が0.9μmでD100が5μmの微粒子として微粉砕した。
微粉砕したナフテン酸鉄を、微粉砕機から分配器に供給し、さらに、分配器で20本のパイプに分配し、さらに、パイプに直結した20個の噴射ノズルに供給し、噴射ノズルから粉砕圧の1MPaに近い圧力でナフテン酸鉄の微粒子を連続噴射した。噴射ノズルは、25段落で説明したオクチル酸銅と同様に空円錐ノズル/微霧発生極小噴量形を用いた。
いっぽう、メッシュフィルターは、株式会社三共金網製作所が製造する平織ステンレス金網を用いた。噴射ノズルに近く、円筒の上端部に設けたメッシュフィルターは、最も目の粗さが細かい金網であり、線径が260μmでメッシュが40で目開きが375μmで空間率が35%からなる。次に、回転体の傘状部材の側面に設けたメッシュフィルターは、最も目の粗さが粗い金網であり、線径が290μmでメッシュが24で目開きが768μmで空間率が53%からなる。円筒の下端部に設けたメッシュフィルターは、中間の目の粗さを持つ金網であり、線径が280μmでメッシュが30で目開きが566μmで空間率が45%からなる。
以上に説明した処理装置によって、扁平鉄粉の表面をナフテン酸鉄の微粒子で覆った。最初に扁平鉄粉の150gを容器内に投入し、次にモータを1800rpmの回転速度で回転させ、さらに微粉砕機を前記した条件で駆動した。モータの駆動で容器内の扁平鉄粉は循環し、また、微粉砕機の駆動によりナフテン酸鉄の微粒子が噴射ノズルから連続して噴射される。こうして、容器内を循環する扁平鉄粉の集まりに、20個の噴射ノズルからナフテン酸鉄の微粒子の集まりを50分間噴射させ、さらに、ナフテン酸鉄の噴射が枯渇した後も、10分間モータを継続して稼働させ、扁平鉄粉の集まりを容器内で循環させ、扁平鉄粉の表面がナフテン酸鉄の微粒子で覆われた試料を作成した。
In this example, the surface of the flat iron powder was covered with fine particles of iron naphthenate using the processing apparatus described in paragraph 24. The flat iron powder is obtained by flattening reduced iron powder, and flat iron powder MG150D manufactured by JFE Steel Corporation was used. This flat iron powder has a bulk density of 1.50 Mg / m 3 and a particle size distribution of 14% in a path of 45 μm, 45% to 63 μm is 12%, 63 μm to 75 μm is 6%, and 75 μm to 106 μm is 24%. 106 μm to 150 μm is 42%, and 150 μm to 180 μm is 2%. The (compounds with more saturated fatty acids and iron with a 5-membered ring) iron naphthenate Fe (C n H 2n-1 COO) 2 was used the product of Toei Chemical Corporation. The iron naphthenate was finely pulverized after coarse pulverization using a fine pulverizer model NJ-100 in the same manner as copper octylate described in paragraph 25. In this example, 2.6 kg of iron naphthenate finely pulverized at a rate of 3 kg per hour is supplied to a fine pulverizer and pulverized as fine particles having a D50 of 0.9 μm and a D100 of 5 μm by applying a pulverization pressure of 1 MPa. did.
Finely pulverized iron naphthenate is supplied from a fine pulverizer to a distributor, further distributed to 20 pipes by the distributor, and further supplied to 20 injection nozzles directly connected to the pipes, and then pulverized from the injection nozzles. Fine particles of iron naphthenate were continuously jetted at a pressure close to 1 MPa. As the injection nozzle, an empty conical nozzle / a fine mist generating minimum injection amount form was used in the same manner as the copper octylate described in the 25th paragraph.
On the other hand, the mesh filter used was a plain weave stainless steel wire mesh manufactured by Sankyo Wire Mesh Co., Ltd. The mesh filter provided near the injection nozzle and at the upper end of the cylinder is a wire mesh having the finest mesh, has a wire diameter of 260 μm, a mesh of 40, an opening of 375 μm, and a space ratio of 35%. Next, the mesh filter provided on the side surface of the umbrella-shaped member of the rotating body is a wire mesh with the coarsest mesh, the wire diameter is 290 μm, the mesh is 24, the opening is 768 μm, and the space ratio is 53%. . The mesh filter provided at the lower end of the cylinder is a wire mesh having intermediate roughness, and has a wire diameter of 280 μm, a mesh of 30, a mesh opening of 566 μm, and a porosity of 45%.
By the processing apparatus described above, the surface of the flat iron powder was covered with fine particles of iron naphthenate. First, 150 g of flat iron powder was put into the container, and then the motor was rotated at a rotational speed of 1800 rpm, and the pulverizer was driven under the conditions described above. The flat iron powder in the container circulates by driving the motor, and fine particles of iron naphthenate are continuously jetted from the jet nozzle by driving the fine pulverizer. In this way, a collection of flat iron powder circulating in the container is sprayed with a collection of iron naphthenate fine particles from 20 injection nozzles for 50 minutes, and after the iron naphthenate injection is exhausted, the motor is run for 10 minutes. The sample was continuously operated and a collection of flat iron powder was circulated in the container to prepare a sample in which the surface of the flat iron powder was covered with fine particles of iron naphthenate.

次に、作成した試料の表面を、26段落と同様に電子顕微鏡を用いて観察した。反射電子線の1kVから900Vの間にあるエネルギーを抽出した画像では、扁平鉄粉の表面の全体は白く光っていた。これは、電子によってナフテン酸鉄がチャージアップされた結果である。さらに、反射電子線の1kVから900Vの間にある2次電子線を取り出した画像では、黒鉛粒子の表面全体は0.5μm〜5μmの微粒子で覆われていた。また、EDXの分析結果から、微粒子を構成する元素は炭素、酸素、鉄の順番で析出頻度が高かった。これらの分析結果から、扁平鉄粉の表面全体がナフテン酸鉄の微粒子で覆われていることが分かった。  Next, the surface of the prepared sample was observed using an electron microscope as in the 26th paragraph. In the image obtained by extracting the energy between 1 kV and 900 V of the reflected electron beam, the entire surface of the flat iron powder was shining white. This is a result of the iron naphthenate being charged up by electrons. Furthermore, in the image obtained by extracting the secondary electron beam between 1 kV and 900 V of the reflected electron beam, the entire surface of the graphite particle was covered with fine particles of 0.5 μm to 5 μm. Moreover, from the analysis result of EDX, the element which comprises microparticles | fine-particles had the high precipitation frequency in order of carbon, oxygen, and iron. From these analysis results, it was found that the entire surface of the flat iron powder was covered with fine particles of iron naphthenate.

本実施例で製造したナフテン酸鉄の微粒子で覆われた扁平鉄粉は、大気雰囲気の熱処理において、90秒以内に室温から330℃近くまで昇温すると、ナフテン酸鉄が熱分解し、扁平鉄粉は酸化鉄(II)FeOの微粒子の集まりで覆われる。つまり、ナフテン酸鉄は五員環を持つ複数の飽和脂肪酸と鉄との化合物であり、ナフテン酸鉄の微粒子で覆われた扁平鉄粉を大気中で加熱処理すると、ナフテン酸を構成する飽和脂肪酸の中で最も沸点が高い飽和脂肪酸の沸点である240℃を超えると、ナフテン酸鉄はナフテン酸と分子クラスター状の酸化鉄(II)FeOとに熱分解する。さらに昇温すると、ナフテン酸は気化熱を奪って気化し、ナフテン酸の気化が310℃で完了し、扁平鉄粉の表面に酸化鉄(II)の微粒子の集まりが析出し、ナフテン酸鉄の熱分解を終える。このため、240℃から熱分解が完了する310℃の温度範囲においては、扁平鉄粉の表面において、ナフテン酸が継続的に気化熱を奪って気化する。しかしながら、ナフテン酸は液体であるため、ナフテン酸の気化が短時間で完了できなければ、ナフテン酸は分子クラスター状の酸化鉄(II)を伴って移動する。このため、20秒以内で粉体ないしは粒子を240℃から310℃に昇温し、ナフテン酸の移動を抑制する必要がある。従って、ナフテン酸鉄の微粒子で覆われた扁平鉄粉を、90秒以内に室温から330℃近くまで昇温すると、扁平鉄粉は酸化鉄(II)の微粒子の集まりで覆われる。  The flat iron powder covered with the fine particles of iron naphthenate produced in this example was heated from room temperature to near 330 ° C. within 90 seconds in the heat treatment in the air atmosphere. The powder is covered with a collection of fine particles of iron (II) oxide. In other words, iron naphthenate is a compound of iron and a plurality of saturated fatty acids having a five-membered ring. When flat iron powder covered with iron naphthenate fine particles is heat-treated in the air, the saturated fatty acid that forms naphthenic acid When the temperature exceeds 240 ° C. which is the boiling point of the saturated fatty acid having the highest boiling point, iron naphthenate is thermally decomposed into naphthenic acid and molecular cluster iron (II) FeO. When the temperature is further increased, the naphthenic acid is vaporized by removing the heat of vaporization, vaporization of the naphthenic acid is completed at 310 ° C., and a collection of iron (II) oxide fine particles is deposited on the surface of the flat iron powder. Finish pyrolysis. For this reason, in the temperature range from 240 ° C. to 310 ° C. where the thermal decomposition is completed, naphthenic acid continuously takes the heat of vaporization and vaporizes on the surface of the flat iron powder. However, since naphthenic acid is a liquid, if vaporization of naphthenic acid cannot be completed in a short time, naphthenic acid moves with molecular cluster-like iron oxide (II). For this reason, it is necessary to raise the temperature of the powder or particles from 240 ° C. to 310 ° C. within 20 seconds to suppress the movement of naphthenic acid. Therefore, when the flat iron powder covered with the fine particles of iron naphthenate is heated from room temperature to nearly 330 ° C. within 90 seconds, the flat iron powder is covered with a collection of fine particles of iron (II) oxide.

この酸化鉄(II)FeOの微粒子の集まりで覆われた扁平鉄粉を、大気雰囲気での昇温速度を制御して、つまり、酸化鉄(II)FeOの2価の鉄イオンFe2+が3価の鉄イオンFe3+になる酸化反応を徐々に進行させ、390℃程度の温度に放置すると、酸化鉄(II)FeOの2価の鉄イオンFe2+が酸化して3価の鉄イオンFe3+になり、酸化鉄(II)FeOが酸化鉄(III)Feのγ相であるマグヘマイトγ−Feになる。例えば、20℃/min.の昇温速度で300℃まで昇温し、この後、300℃から1℃/min.の速度で390℃まで昇温し、390℃に30分間放置する。マグヘマイトγ−Feは、強磁性で絶縁性の酸化物である。これによって、扁平鉄粉の表面がマグヘマイト微粒子の集まりで絶縁化され、圧粉磁心の好適な原料になる。The flat iron powder covered with a collection of fine particles of iron (II) FeO is controlled at a rate of temperature rise in the air atmosphere, that is, 3 (II) Fe 2+ of iron (II) FeO divalent iron ions are added. When the oxidation reaction to become a valent iron ion Fe 3+ is gradually advanced and left at a temperature of about 390 ° C., the divalent iron ion Fe 2+ of iron (II) FeO is oxidized and the trivalent iron ion Fe 3+ is oxidized. Thus, iron (II) FeO becomes maghemite γ-Fe 2 O 3 which is the γ phase of iron (III) Fe 2 O 3 . For example, 20 ° C./min. The temperature was increased to 300 ° C. at a rate of temperature increase of 300 ° C., and thereafter from 300 ° C. to 1 ° C./min. The temperature is raised to 390 ° C. at a speed of 390 ° C. and left at 390 ° C. for 30 minutes. Maghemite γ-Fe 2 O 3 is a ferromagnetic and insulating oxide. As a result, the surface of the flat iron powder is insulated by the collection of maghemite fine particles, and becomes a suitable raw material for the dust core.

つまり、第一に、マグヘマイトは比抵抗が10Ωmの絶縁物質であるため、マグヘマイト微粒子で覆われた扁平鉄粉は絶縁体になる。鉄の比抵抗は10−7Ωmであり、鉄粉の渦電流損失は比抵抗に反比例するので、絶縁化された鉄粉の渦電流損失は著しく小さくなる。第二に、自発磁化を有するマグヘマイトは鉄粉に磁気吸着し、鉄粉の圧縮成形時に過大な圧力を加えても、磁気吸着したマグヘマイト微粒子は、微粒子であるがゆえに鉄粉から剥がれない。これによって、圧縮成形後の鉄粉の絶縁性が保たれる。また、絶縁層を形成するための鉄粉の前処理は一切不要になる。第三に、450℃近辺でヘマタイトに相転移する。このため、450℃以上の温度で成形体の磁気焼鈍を実施すると、マグヘマイトはヘマタイトに相転移する。なお、この相転移は不可逆変化である。ヘマタイトは10Ωmの比抵抗を持つ物質であり、焼鈍によって鉄粉の絶縁性がさらに一桁向上し、渦電流損失はさらに低減する。また、ヘマタイトは安定した酸化物、つまり、不動態であり、融点の1566℃に近い耐熱性を有する。このため、600℃以上の磁気焼鈍によってもヘマタイトの性質は変わらない。また、焼鈍時に鉄粉との界面における拡散現象が起らず、鉄粉が変質しない。ちなみに、鉄の融点は1535℃である。なお、ヘマタイトは化学式がα−Feで表され、酸化鉄(III)Feのα相であり、弱強磁性の性質を持ち、磁気キュリー点が950℃である。第四に、モース硬度が5.5であり、鉄ないしは鉄系の合金より硬い物質である。このため、圧縮成形時に圧力が加えられてもマグヘマイト微粒子は破壊されない。つまり、圧縮成形時において、マグヘマイト微粒子は磁気吸着した状態を維持し、この状態でマグヘマイトより硬度が小さい鉄粉が優先して塑性変形する。これによって、鉄粉同士が絡み合って鉄粉同士が結合する。この際、鉄粉の表面はマグヘマイト微粒子によって絶縁性が維持され、成形体の密度の増大によって圧粉磁心の磁束密度と機械的強度とが増大する。
なお、圧粉磁心の原料としては、還元鉄粉を扁平処理した扁平鉄粉に限らず、アトマイズ純鉄粉ないしはアトマイズ合金粉を扁平処理した磁性粉を用いることができる。
That is, first, since maghemite is an insulating material having a specific resistance of 10 6 Ωm, the flat iron powder covered with maghemite fine particles becomes an insulator. Since the specific resistance of iron is 10 −7 Ωm and the eddy current loss of iron powder is inversely proportional to the specific resistance, the eddy current loss of insulated iron powder is significantly reduced. Secondly, the maghemite having spontaneous magnetization is magnetically adsorbed to the iron powder, and even if an excessive pressure is applied during compression molding of the iron powder, the magnetically adsorbed maghemite fine particles are fine particles and thus do not peel off from the iron powder. Thereby, the insulation of the iron powder after compression molding is maintained. In addition, no pretreatment of iron powder for forming the insulating layer is required. Third, it transitions to hematite around 450 ° C. For this reason, when magnetic annealing of the compact is performed at a temperature of 450 ° C. or higher, maghemite undergoes phase transition to hematite. This phase transition is an irreversible change. Hematite is a substance having a specific resistance of 10 7 Ωm, and annealing improves the insulation of iron powder by an order of magnitude and further reduces eddy current loss. Hematite is a stable oxide, that is, passive, and has heat resistance close to the melting point of 1566 ° C. For this reason, the properties of hematite are not changed by magnetic annealing at 600 ° C. or higher. Further, the diffusion phenomenon at the interface with the iron powder does not occur during annealing, and the iron powder does not deteriorate. Incidentally, the melting point of iron is 1535 ° C. Hematite has a chemical formula of α-Fe 2 O 3 , is an α phase of iron (III) Fe 2 O 3 , has weak ferromagnetism, and has a magnetic Curie point of 950 ° C. Fourth, the Mohs hardness is 5.5, which is a material harder than iron or iron-based alloys. For this reason, even if pressure is applied during compression molding, the maghemite fine particles are not destroyed. That is, at the time of compression molding, the maghemite fine particles maintain a magnetically adsorbed state, and in this state, iron powder having a lower hardness than maghemite preferentially undergoes plastic deformation. As a result, the iron powders are intertwined and the iron powders are combined. At this time, the surface of the iron powder is kept insulative by the maghemite fine particles, and the magnetic flux density and the mechanical strength of the dust core increase as the density of the compact increases.
The raw material of the powder magnetic core is not limited to the flat iron powder obtained by flattening reduced iron powder, but may be a magnetic powder obtained by flattening atomized pure iron powder or atomized alloy powder.

本実施例は、24段落で説明した処理装置を用いて、酸化鉄粉の表面を金錯塩の微粒子で覆った。酸化鉄粉は、酸化鉄(III)Feのα相で、ヘマタイトないしは赤色酸化鉄と呼ばれる。融点が1566℃と高く、極めて安定した酸化物で、電気的には絶縁体で、弱強磁性という微弱な磁性を有する。粉体は赤褐色を示し、赤さびないしは弁柄として知られている。酸化鉄粉は、チタン工業株式会社が製造するAM−200を用いた。この酸化鉄粉は光の屈折率が3に近く、比表面積が1.5〜2.2m/gで、粒子径は2〜50μmであり、平均粒子径が12〜15μmで、平均粒子厚みが0.2〜0.3μmと薄く、嵩密度が0.3〜0.4g/cmである。
いっぽう、金錯塩はテトラクロロ金(III)酸水素H[Au(Cl)]を用いた。無機物の分子ないしはイオンからなる配位子が金イオンに配位結合する金錯イオンの中で、塩素イオンClが配位子となって金イオンAu3+に配位結合するテトラクロロ金錯イオン[Au(Cl)は最も容易に合成される金錯イオンである。さらに、テトラクロロ金(III)酸水素・4水和物H[Au(Cl)]・4HOは、金を王水に溶かすだけで、あるいは、塩化金(III)AuClを塩酸に溶かして結晶化させるだけで容易に合成できる。また、分子量が最も小さい無機塩であるため、アンモニアガスや水素ガスなどの還元性雰囲気で熱処理すると、配位結合部位が最初に分断され、金属と無機物とに分解され、無機物の分子量が小さいため、200℃程度の低い温度で無機物の気化が完了して金が析出する。テトラクロロ金(III)酸水素・4水和物は、和光純薬工業株式会社の製品を用いた。なお、テトラクロロ金(III)酸水素・4水和物は、粗粉砕の後、25段落で説明したオクチル酸銅と同様に、微粉砕機NJ−100を用いて微粉砕した。本実施例では1時間当たり1.5kgの割合で微粉砕されるテトラクロロ金(III)酸水素・4水和物の1.1kgを微粉砕機に供給し、1MPaの粉砕圧を加えてD50が1.0μmでD100が4.8μmの微粒子として微粉砕した。
微粉砕したテトラクロロ金(III)酸水素を、微粉砕機から分配器に供給し、さらに、分配器で20本のパイプに分配し、さらに、パイプに直結した20個の噴射ノズルに供給し、噴射ノズルから粉砕圧の1MPaに近い圧力で微粒子を連続噴射した。噴射ノズルは、25段落で説明したオクチル酸銅と同様に、空円錐ノズル/微霧発生極小噴量形を用いた。
メッシュフィルターは、株式会社三共金網製作所が製造する綾織ステンレス金網を用いた。噴射ノズルに近く、円筒の上端部に設けたメッシュフィルターは、最も目の粗さが細かい金網であり、線径が60μmでメッシュが190で目開きが73μmで空間率が29%からなる。次に、回転体の傘状部材の側面に設けたメッシュフィルターは、最も目の粗さが粗い金網であり、線径が230μmでメッシュが60で目開きが193μmで空間率が21%からなる。円筒の下端部に設けたメッシュフィルターは、中間の目の粗さを持つ金網であり、線径が120μmでメッシュが100で目開きが134μmで空間率が28%からなる。
以上に説明した処理装置によって、酸化鉄粉の表面をテトラクロロ金(III)酸水素・4水和物の微粒子で覆った。最初に酸化鉄粉の6.4kgを容器内に投入し、モータを900rpmの回転速度で回転させ、さらに微粉砕機を前記した条件で駆動した。モータの駆動で容器内の酸化鉄粉は循環し、また、微粉砕機の駆動によりテトラクロロ金(III)酸水素・4水和物の微粒子が噴射ノズルから連続して噴射される。こうして、容器内を循環する酸化鉄粉の集まりに、20個の噴射ノズルからテトラクロロ金(III)酸水素・4水和物の微粒子の集まりを45分間噴射させ、さらに、微粒子の噴射が枯渇した後も、10分間モータを継続して稼働させ、酸化鉄粉の集まりを容器内で循環させ、酸化鉄粉の表面がテトラクロロ金(III)酸水素・4水和物の微粒子で覆われた試料を作成した。
In this example, the surface of the iron oxide powder was covered with fine gold complex salt particles using the processing apparatus described in paragraph 24. The iron oxide powder is an α phase of iron (III) Fe 2 O 3 and is called hematite or red iron oxide. The melting point is as high as 1566 ° C., and it is an extremely stable oxide. It is an electrical insulator and has a weak magnetism of weak ferromagnetism. The powder is reddish brown and is known as red rust or petal. AM-200 manufactured by Titanium Industry Co., Ltd. was used as the iron oxide powder. This iron oxide powder has a refractive index of light close to 3, a specific surface area of 1.5 to 2.2 m 2 / g, a particle diameter of 2 to 50 μm, an average particle diameter of 12 to 15 μm, and an average particle thickness. Is as thin as 0.2 to 0.3 μm, and the bulk density is 0.3 to 0.4 g / cm 3 .
On the other hand, as the gold complex salt, hydrogen tetrachloroaurate (III) H [Au (Cl) 4 ] was used. Tetrachloro gold complex ion in which a chloride ion Cl serves as a ligand and coordinates to gold ion Au 3+ among a gold complex ion in which a ligand composed of an inorganic molecule or ion is coordinated to gold ion [Au (Cl) 4 ] is the most easily synthesized gold complex ion. Furthermore, tetrachlorogold (III) hydrogen tetrahydrate H [Au (Cl) 4 ] · 4H 2 O can be obtained by simply dissolving gold in aqua regia or by converting gold (III) chloride AuCl 3 into hydrochloric acid. It can be easily synthesized simply by melting and crystallizing. In addition, since it is the inorganic salt with the smallest molecular weight, when it is heat-treated in a reducing atmosphere such as ammonia gas or hydrogen gas, the coordination bond site is first divided and decomposed into metal and inorganic matter, and the molecular weight of the inorganic matter is small. The vaporization of the inorganic substance is completed at a temperature as low as about 200 ° C., and gold is deposited. Tetrachlorogold (III) oxyhydrogen tetrahydrate was a product of Wako Pure Chemical Industries, Ltd. Tetrachlorogold (III) hydrogen tetrahydrate was coarsely pulverized and then finely pulverized using a fine pulverizer NJ-100 in the same manner as copper octylate described in paragraph 25. In this example, 1.1 kg of tetrachloroauric (III) hydrogen tetrahydrate pulverized at a rate of 1.5 kg per hour was supplied to a pulverizer, and a pulverization pressure of 1 MPa was applied to obtain D50. Was finely pulverized as fine particles having a diameter of 1.0 μm and D100 of 4.8 μm.
Finely pulverized tetrachlorogold (III) oxyhydrogen is supplied from a fine pulverizer to a distributor, further distributed to 20 pipes by a distributor, and further supplied to 20 injection nozzles directly connected to the pipes. The fine particles were continuously jetted from the jet nozzle at a pressure close to 1 MPa as the pulverization pressure. As the injection nozzle, an empty conical nozzle / a fine mist generating minimum injection amount form was used in the same manner as the copper octylate described in the 25th paragraph.
The mesh filter used was a twill weave stainless wire mesh manufactured by Sankyo Wire Mesh Co., Ltd. The mesh filter provided near the injection nozzle and at the upper end of the cylinder is a wire mesh having the finest meshes, has a wire diameter of 60 μm, a mesh of 190, an opening of 73 μm, and a porosity of 29%. Next, the mesh filter provided on the side surface of the umbrella-shaped member of the rotating body is a wire mesh having the coarsest mesh, a wire diameter of 230 μm, a mesh of 60, an opening of 193 μm, and a space ratio of 21%. . The mesh filter provided at the lower end of the cylinder is a wire mesh having intermediate roughness, and has a wire diameter of 120 μm, a mesh of 100, an opening of 134 μm, and a space ratio of 28%.
With the processing apparatus described above, the surface of the iron oxide powder was covered with fine particles of tetrachloroauric (III) hydrogen hydride tetrahydrate. First, 6.4 kg of iron oxide powder was put into the container, the motor was rotated at a rotational speed of 900 rpm, and the fine pulverizer was driven under the conditions described above. The iron oxide powder in the container is circulated by driving the motor, and fine particles of tetrachloroauric (III) hydrogen oxyhydrogen tetrahydrate are continuously jetted from the jet nozzle by driving the fine pulverizer. Thus, a collection of fine particles of tetrachloroauric (III) hydrogen oxyhydrogen tetrahydrate is sprayed from the 20 spray nozzles to the collection of iron oxide powder circulating in the container for 45 minutes, and the spray of fine particles is depleted. After that, the motor was continuously operated for 10 minutes to circulate the iron oxide powder in the container, and the surface of the iron oxide powder was covered with fine particles of tetrachloroauric (III) hydrogen hydride tetrahydrate. A sample was prepared.

次に、作成した試料の表面を、26段落と同様に電子顕微鏡を用いて観察した。反射電子線の1kVから900Vの間にあるエネルギーを抽出した画像では、酸化鉄粉の表面の全体は白く光っていた。これは、電子によってテトラクロロ金(III)酸水素がチャージアップされた結果である。さらに、反射電子線の1kVから900Vの間にある2次電子線を取り出した画像では、黒鉛粒子の表面全体は0.5μm〜4.8μmの微粒子で覆われていた。また、EDXの分析結果から、微粒子を構成する元素は塩素、酸素、金の順番で析出頻度が高かった。これらの結果から、酸化鉄粉がテトラクロロ金(III)酸水素・4水和物の微粒子で覆われていることが分かった。  Next, the surface of the prepared sample was observed using an electron microscope as in the 26th paragraph. In the image obtained by extracting the energy between 1 kV and 900 V of the reflected electron beam, the entire surface of the iron oxide powder was shining white. This is a result of charging up the hydrogen of tetrachloroaurate (III) with electrons. Further, in the image obtained by extracting the secondary electron beam between 1 kV and 900 V of the reflected electron beam, the entire surface of the graphite particle was covered with fine particles of 0.5 μm to 4.8 μm. Moreover, from the analysis result of EDX, the element which comprises microparticles | fine-particles had the high precipitation frequency in order of chlorine, oxygen, and gold | metal | money. From these results, it was found that the iron oxide powder was covered with fine particles of tetrachloroauric (III) hydrogen hydride tetrahydrate.

このテトラクロロ金(III)酸水素H[Au(Cl)]の微粒子の集まりで覆われた酸化鉄粉を、水素ガスやアンモニアガスなどの還元雰囲気からなる200℃程度の温度に昇温すると、テトラクロロ金(III)酸水素H[Au(Cl)]が還元されて、酸化鉄粉が金微粒子で覆われる。
酸化鉄粉は、ナノサイズの大きさからなる金微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発する。また、金微粒子の厚みを、可視光の個別の色調の波長に相当する厚みとすると、金微粒子の表面での反射光と酸化鉄粉の表面での反射光とが互いに干渉して増幅され、可視光の個別の色調が相対的に強い反射光となる。この結果、酸化鉄粉は、酸化鉄粉の赤褐色に可視光の個別の色調が混合された彩度に優れた色の金属光沢を発する塗料用顔料として用いることができる。
When the iron oxide powder covered with the fine particles of tetrachlorogold (III) oxyhydrogen H [Au (Cl) 4 ] is heated to a temperature of about 200 ° C. composed of a reducing atmosphere such as hydrogen gas or ammonia gas. Then, tetrachlorogold (III) oxyhydrogen H [Au (Cl) 4 ] is reduced, and the iron oxide powder is covered with gold fine particles.
Since the iron oxide powder is covered with gold fine particles having a nano size, there is almost no white scattering of light, and it emits a brilliant brightness. Further, when the thickness of the gold fine particle is a thickness corresponding to the wavelength of the individual color tone of visible light, the reflected light on the surface of the gold fine particle and the reflected light on the surface of the iron oxide powder are amplified by interference with each other, The individual colors of visible light are reflected light that is relatively strong. As a result, the iron oxide powder can be used as a pigment for paints that emits metallic luster with excellent color saturation in which the individual shades of visible light are mixed with the reddish brown color of the iron oxide powder.

以上に、本発明に係わる処理装置を用いて、粉体の表面を微粒子の集まりで覆った4つの実施例を説明したが、粉体の表面を微粒子の集まりで覆う事例はこれらに限定されない。なぜならば、第一に、粉体の表面に衝突した微粒子が、摩擦で粉体の表面に繰り返し付着するため、粉体および微粒子の材質と形状の制約はない。第二に、大気雰囲気の室温での処理であるため、粉体および微粒子の材質の制約はない。第三に、粉体および微粒子について、表面の事前処理が不要になるため、粉体および微粒子の材質の制約はない。第四に、回転体が回転する際の遠心力で発生する旋回流を循環させるだけの処理であるため、粉体の材質上の制約はない。第五に、熱処理を伴わないため、粉体の投入量を増やしても、あるいは、粉体の粒子の大きさが相対的に大きくても、また、粉体の嵩密度が大きくても、旋回流の流路を延長し、旋回流の流速を速めれば、大量の粉体が微粒子の集まりで覆われる。第六に、粉体が3つのメッシュフィルターを繰り返し通過するため、粉体ないしは粒子同士の凝集が解除できる。
従って、本発明は粉体ないしは粒子および微粒子の材質と形状の制約の制約がなく、かつ、微粒子の集まりで覆われた粉体ないしは粒子が、安価な製造費用で大量に製造できるため、従来の用途に限らず新たな用途を含めた広範囲な用途に、本発明に基づく処理装置を用いることができる。このため、本発明に係わる粉体ないしは粒子を微粒子の集まりで覆う処理装置は、様々な材質と形状からなる粉体ないしは粒子の表面が、様々な材質と形状からなる微粒子の集まりで覆われる汎用的な処理方法となる処理装置である。
In the above, four embodiments have been described in which the surface of the powder is covered with a collection of fine particles using the processing apparatus according to the present invention. However, examples of covering the surface of the powder with a collection of fine particles are not limited thereto. This is because, firstly, the fine particles colliding with the surface of the powder repeatedly adhere to the surface of the powder by friction, so there is no restriction on the material and shape of the powder and fine particles. Second, since the treatment is performed at room temperature in an air atmosphere, there are no restrictions on the material of the powder and fine particles. Third, since powder and fine particles need no surface pretreatment, there is no restriction on the material of the powder and fine particles. Fourth, there is no restriction on the material of the powder because it is a process that only circulates the swirling flow generated by the centrifugal force generated when the rotating body rotates. Fifth, since there is no heat treatment, even if the amount of powder input is increased, or even if the particle size of the powder is relatively large or the bulk density of the powder is large, swirling If the flow path is extended and the flow velocity of the swirl flow is increased, a large amount of powder is covered with a collection of fine particles. Sixth, since the powder repeatedly passes through the three mesh filters, the aggregation of the powder or particles can be released.
Therefore, the present invention has no restrictions on the material and shape of the powder or particles and fine particles, and the powder or particles covered with the collection of fine particles can be produced in large quantities at a low production cost. The processing apparatus according to the present invention can be used for a wide range of applications including new applications as well as applications. For this reason, the processing apparatus for covering the powder or particles according to the present invention with a collection of fine particles is a general purpose in which the surface of the powder or particles made of various materials and shapes is covered with the collection of fine particles made of various materials and shapes. This is a processing apparatus that is a typical processing method.

1ないしは10 処理装置 2 容器 3ないしは30 円筒 31 円筒の上端部の側面 32 円筒の上端部の最上部 33 円筒の下端部の側面 34 円筒の下端部の最下部 4 回転体 40 傘状部材 41 傘状部材の側面 42 傘状部材の上端部 43 回転軸 5 モータ 6ないしは60 微粒子噴射装置 61 噴射ノズル 62 パイプ  DESCRIPTION OF SYMBOLS 1 thru | or 10 Processing apparatus 2 Container 3 thru | or 30 Cylinder 31 Side surface of upper end part of cylinder 32 Uppermost part of upper end part of cylinder 33 Side surface of lower end part of cylinder 34 Lowermost part of lower end part of cylinder 4 Rotating body 40 Umbrella-shaped member 41 Umbrella Side surface 42 of the member-like member Upper end portion of the umbrella-like member 43 Rotating shaft 5 Motor 6 or 60 Particulate injection device 61 Injection nozzle 62 Pipe

Claims (6)

粉体ないしは粒子の表面を微粒子の集まりで覆う処理を行なう処理装置は、
容器内に、上端部と下端部との双方にメッシュフィルターを有する円筒と、いずれか一方の前記メッシュフィルターの内側に配置され、鉛直方向の回転軸と該回転軸に直交して結合された側面にメッシュフィルターを有する傘状部材とからなる回転体とが設置され、さらに、微粒子の集まりを連続噴射する噴射手段が、前記円筒のいずれか一方の前記メッシュフィルターに近い前記容器の側壁に設置された処理装置であって、前記傘状部材の回転によって発生する遠心力で、前記容器内の大気が、前記円筒の内側と外側とを、上下方向で互いに反対方向に旋回する一対の旋回流として循環し、該旋回流と共に粉体ないしは粒子の集まりを前記容器内で循環させ、前記傘状部材のメッシュフィルターと、前記円筒のいずれか一方の前記メッシュフィルターとを通過した前記粉体ないしは粒子に対し、前記微粒子の集まりが噴射される処理を繰り返えすことによって、前記粉体ないしは粒子の表面が前記微粒子の集まりで覆われる処理がなされることを特徴とする処理装置である。
A processing apparatus that performs processing to cover the surface of powder or particles with a collection of fine particles,
Inside the container, a cylinder having a mesh filter on both the upper end and the lower end, and a side surface that is disposed inside one of the mesh filters and is coupled perpendicularly to the vertical rotation axis. A rotating body made of an umbrella-shaped member having a mesh filter is installed on the side wall of the container near the mesh filter of one of the cylinders. And a pair of swirling flows in which the atmosphere in the container swirls in an up and down direction in opposite directions by centrifugal force generated by the rotation of the umbrella-shaped member. Circulate and circulate a powder or a collection of particles together with the swirl flow in the container, and the mesh filter of the umbrella-shaped member and the mesh of any one of the cylinders The powder or particles that have passed through the filter are repeatedly subjected to the process of spraying the collection of fine particles, whereby the surface of the powder or particles is covered with the collection of fine particles. It is the processing apparatus characterized.
請求項1における回転体は、複数枚の羽根からなる撹拌部材の複数個を有し、該複数個の撹拌部材は、個々の撹拌部材の回転軸への取り付け位置が互いに異なるように、前記回転軸に直交して取り付けられたことを特徴とする請求項1に記載した回転体。  The rotating body according to claim 1 has a plurality of stirring members composed of a plurality of blades, and the plurality of stirring members rotate in such a manner that mounting positions of the individual stirring members on the rotation shafts are different from each other. The rotating body according to claim 1, wherein the rotating body is attached perpendicular to the axis. 請求項1における円筒は、上端部がメッシュフィルターを有する円錐状に狭められた平面と、最上部が閉じられた平面で構成され、下端部がメッシュフィルターを有する逆さまの円錐状に狭められた平面と、最下部が閉じられた平面で構成され、該円筒は容器の上下の内面に接して配置されることを特徴とし、請求項1における回転体の傘状部材は、外形が円錐台形状からなる筒状体であり、上部が閉じられた平面で、下部が空間に開放され、側面にメッシュフィルターを有し、該傘状部材は前記円筒の上端部のメッシュフィルターの内側に配置されることを特徴とする、請求項1に記載した円筒および回転体の傘状部材。  The cylinder according to claim 1 is composed of a plane narrowed in a conical shape having an upper end portion having a mesh filter and a plane closed in an uppermost portion, and a plane narrowed in an inverted conical shape having a lower end portion having a mesh filter. And the cylindrical part is disposed in contact with the upper and lower inner surfaces of the container, and the umbrella-shaped member of the rotating body according to claim 1 has a truncated cone shape. A cylindrical body having a closed upper surface, a lower portion opened to a space, a mesh filter on a side surface, and the umbrella-shaped member disposed inside the mesh filter at the upper end of the cylinder. The umbrella-shaped member of the cylinder and the rotary body according to claim 1, wherein 請求項3における3つのメッシュフィルターは、請求項3における円筒の上端部のメッシュフィルターの目の粗さが、他の2つのメッシュフィルターの目の粗さより細かいメッシュフィルターで構成されることを特徴とする請求項3に記載した3つのメッシュフィルター。  The three mesh filters in claim 3 are configured by a mesh filter in which the mesh filter of the upper end of the cylinder in claim 3 is finer than the mesh sizes of the other two mesh filters. The three mesh filters according to claim 3. 請求項1における円筒は、上端部がメッシュフィルターを有する円錐状に狭められた平面と、最上部が閉じられた平面で構成され、下端部がメッシュフィルターを有する逆さまの円錐状に狭められた平面と、最下部が閉じられた平面で構成され、該円筒は容器の上下の内面に接して配置されることを特徴とし、請求項1における回転体の傘状部材は、外形が円錐台を逆さまにした形状からなる筒状体であり、上部が空間に開放され、下部が閉じられ平面で、側面にメッシュフィルターを有し、該傘状部材は前記円筒の下端部のメッシュフィルターの内側に配置されることを特徴とする、請求項1に記載した円筒および回転体の傘状部材。  The cylinder according to claim 1 is composed of a plane narrowed in a conical shape having an upper end portion having a mesh filter and a plane closed in an uppermost portion, and a plane narrowed in an inverted conical shape having a lower end portion having a mesh filter. And the bottom part of the umbrella-shaped member of the rotating body according to claim 1 is arranged upside down on the truncated cone. A cylindrical body having an upper shape open to a space, a lower portion is closed and a flat surface, and a mesh filter is provided on a side surface, and the umbrella-shaped member is disposed inside the mesh filter at the lower end of the cylinder. The cylindrical and rotating umbrella-shaped member according to claim 1, wherein 請求項5における3つのメッシュフィルターは、請求項5における円筒の下端部のメッシュフィルターの目の粗さが、他の2つのメッシュフィルターの目の粗さより細かいメッシュフィルターで構成されることを特徴とする請求項5に記載した3つのメッシュフィルター。  The three mesh filters according to claim 5 are characterized in that the mesh filter at the lower end of the cylinder according to claim 5 is composed of a mesh filter finer than the mesh roughness of the other two mesh filters. The three mesh filters according to claim 5.
JP2014105675A 2014-05-01 2014-05-01 Surface treatment equipment that covers the surface of powder or particles with a collection of fine particles Expired - Fee Related JP6345985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105675A JP6345985B2 (en) 2014-05-01 2014-05-01 Surface treatment equipment that covers the surface of powder or particles with a collection of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105675A JP6345985B2 (en) 2014-05-01 2014-05-01 Surface treatment equipment that covers the surface of powder or particles with a collection of fine particles

Publications (3)

Publication Number Publication Date
JP2015211953A true JP2015211953A (en) 2015-11-26
JP2015211953A5 JP2015211953A5 (en) 2017-04-13
JP6345985B2 JP6345985B2 (en) 2018-06-20

Family

ID=54696584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105675A Expired - Fee Related JP6345985B2 (en) 2014-05-01 2014-05-01 Surface treatment equipment that covers the surface of powder or particles with a collection of fine particles

Country Status (1)

Country Link
JP (1) JP6345985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284105A (en) * 2019-06-25 2019-09-27 郑州航空工业管理学院 A kind of powder surface metallizing method and device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148291A (en) * 2002-09-04 2004-05-27 Pauretsuku:Kk Fluidized bed equipment
JP2009072679A (en) * 2007-09-20 2009-04-09 Utsunomiya Univ Coating method/device and composite particle
JP2009189935A (en) * 2008-02-13 2009-08-27 Ricoh Co Ltd Apparatus for treating powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148291A (en) * 2002-09-04 2004-05-27 Pauretsuku:Kk Fluidized bed equipment
JP2009072679A (en) * 2007-09-20 2009-04-09 Utsunomiya Univ Coating method/device and composite particle
JP2009189935A (en) * 2008-02-13 2009-08-27 Ricoh Co Ltd Apparatus for treating powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284105A (en) * 2019-06-25 2019-09-27 郑州航空工业管理学院 A kind of powder surface metallizing method and device thereof
CN110284105B (en) * 2019-06-25 2024-02-09 郑州航空工业管理学院 Powder surface metallization method and device

Also Published As

Publication number Publication date
JP6345985B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
Kundu et al. Formation of shape-selective magnetic cobalt oxide nanowires: environmental application in catalysis studies
KR102103711B1 (en) Method for manufacturing metal microparticles
Jeevanandam et al. Synthesis of monodisperse silver nanoparticles and their self-assembly through simple thermal decomposition approach
JP6163679B2 (en) Nano-sized spherical ferrite particles and method for producing the same
JP2009531539A (en) Method for producing silver-based powder composite for electrical contact materials and powder composite produced thereby
KR100520697B1 (en) Magnetic fluid and process for the production thereof
Kandiban et al. Synthesis and characterization of MgO nanoparticles for photocatalytic applications
CN110405218A (en) A kind of high sphericity nanostructure powder of stainless steel and preparation method thereof
Bing et al. Preparation of micro-sized and uniform spherical Ag powders by novel wet-chemical method
Ye et al. Self-assembly of superparamagnetic magnetite particles into peapod-like structures and their application in optical modulation
JP6395248B2 (en) Method for producing scaly substrate covered with a collection of fine particles
JP2010180471A (en) Flaky silver powder and method for producing the same, and conductive paste
JP6345985B2 (en) Surface treatment equipment that covers the surface of powder or particles with a collection of fine particles
JP2015161027A5 (en)
JP6916022B2 (en) Ε Iron oxide powder in which a part of iron sites is replaced with a metal element other than iron, its manufacturing method, and paste
JP2015211953A5 (en)
RU2486033C1 (en) Method of producing nano-sized powders of iron-nickel solid solution
JP2019112532A (en) Method for forming lubricant film consisting of collection of powders in which powders having lubricating action overlap each other
Khezri et al. Effect of characteristics of media on cobalt and iron nanoparticles prepared by arc discharge method
Singh et al. Glycerol mediated low temperature synthesis of nickel nanoparticles by solution reduction method
JP2016160531A (en) Production of assembly of fine particles dispersed in organic compound and production method thereof
JP2016160531A5 (en)
JP3932336B2 (en) Method for producing copper powder for conductive paste
JP4961315B2 (en) Method for producing metal-coated nickel powder
JP2005524249A (en) Method and apparatus for making a product of ferrite material and product produced thereby

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180524

R150 Certificate of patent or registration of utility model

Ref document number: 6345985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees