JP2015211626A - Magneto-striction type vibration power generator - Google Patents

Magneto-striction type vibration power generator Download PDF

Info

Publication number
JP2015211626A
JP2015211626A JP2014094223A JP2014094223A JP2015211626A JP 2015211626 A JP2015211626 A JP 2015211626A JP 2014094223 A JP2014094223 A JP 2014094223A JP 2014094223 A JP2014094223 A JP 2014094223A JP 2015211626 A JP2015211626 A JP 2015211626A
Authority
JP
Japan
Prior art keywords
strength member
power generation
generation element
length direction
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014094223A
Other languages
Japanese (ja)
Other versions
JP6232337B2 (en
Inventor
貴範 村瀬
Takanori Murase
貴範 村瀬
長谷川 浩一
Koichi Hasegawa
浩一 長谷川
甫 栗熊
Hajime Kurikuma
甫 栗熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2014094223A priority Critical patent/JP6232337B2/en
Publication of JP2015211626A publication Critical patent/JP2015211626A/en
Application granted granted Critical
Publication of JP6232337B2 publication Critical patent/JP6232337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magneto-striction type vibration power generator capable of also improving power generation efficiency while preventing durability of a strength member from being reduced by stress concentration.SOLUTION: In a magneto-striction type vibration power generator 10, a power generation element formed from a magnetostrictive material is fitted in parallel to a long strength member 12 which is formed from a ferromagnetic material and of which one end is fixed to a vibration member 20, and a voltage is generated in a coil 40 on the basis of a cange in a magnetic permeability relative to a distortion of the power generation element 14. Flexure stiffness in a deformable part 28 of the strength member 12 arranged in parallel with the power generation element 14 is varied in a length direction of the strength member 12 and in the deformable part 28, and a portion with minimum flexure stiffness is eccentric closer to a free end of the strength member 12 than a center of the deformable part 28 in the length direction.

Description

本発明は、磁歪材料で形成された発電素子の歪みに対する透磁率の変化を利用して、振動エネルギーを電気エネルギーに変換する磁歪式振動発電装置に関するものである。   The present invention relates to a magnetostrictive vibration power generation apparatus that converts vibration energy into electric energy by utilizing a change in magnetic permeability with respect to strain of a power generation element formed of a magnetostrictive material.

従来から、振動エネルギーを電気エネルギーに変換する振動発電装置の一種として、磁歪材料で形成された発電素子を用いた磁歪式振動発電装置がある。例えば、特許第4905820号公報(特許文献1)に示された磁歪式振動発電装置では、強磁性材料で形成された強度部材(11b)と磁歪材料で形成された発電素子(11a)とを並列的に配して、発電素子に磁石(14)によるバイアス磁界を印加すると共に、発電素子を含んで構成された閉磁路上にコイル(12)を巻回して設けた構造を有している。そして、振動入力時に、強度部材の変形によって発電素子に長さ方向の歪みが入力されることにより、発電素子の透磁率が変化して、コイルに電磁誘導による電圧が生ぜしめられるようになっている。   2. Description of the Related Art Conventionally, there is a magnetostrictive vibration power generation apparatus using a power generation element formed of a magnetostrictive material as a type of vibration power generation apparatus that converts vibration energy into electric energy. For example, in the magnetostrictive vibration power generation device disclosed in Japanese Patent No. 4905820 (Patent Document 1), a strength member (11b) formed of a ferromagnetic material and a power generation element (11a) formed of a magnetostrictive material are arranged in parallel. In addition, a bias magnetic field generated by the magnet (14) is applied to the power generation element, and the coil (12) is wound around a closed magnetic path including the power generation element. In addition, when vibration is input, distortion in the length direction is input to the power generation element due to deformation of the strength member, so that the magnetic permeability of the power generation element changes and a voltage due to electromagnetic induction is generated in the coil. Yes.

ところで、磁歪式振動発電装置において発電効率の向上を実現するためには、強度部材の変形を適切にコントロールして、発電素子の全体に一様な応力を分散して及ぼすことが望ましい。蓋し、発電素子の透磁率は、歪みに対して線形的に変化するものではなく、歪みが大きくなるに従って変化率が小さくなるからである。具体的には、振動入力時に強度部材に及ぼされる応力を、著しく集中することなく分散して作用させることにより、発電素子に及ぼされる応力の分散化も図られる。   By the way, in order to improve the power generation efficiency in the magnetostrictive vibration power generation apparatus, it is desirable to appropriately control the deformation of the strength member and distribute the uniform stress over the entire power generation element. This is because the permeability of the power generating element does not change linearly with respect to the strain, and the rate of change decreases as the strain increases. Specifically, the stress exerted on the power generating element can be dispersed by causing the stress exerted on the strength member at the time of vibration input to act in a dispersed manner without being concentrated.

ところが、特許文献1の構造では、強度部材の一端が振動部材に取り付けられた片端支持の装着状態で振動が入力されると、発電素子には強度部材の固定端側に行くに従って大きなモーメントが作用することから、発電素子の歪みが一様にはなり難く、発電効率の向上を図り難かった。なお、強度部材と連結ヨーク(10a,10b)を一体化した構造においても、同様の問題が生じ得る。   However, in the structure of Patent Document 1, when vibration is input in a state where one end of the strength member is attached to the vibration member and one end support is attached, a large moment acts on the power generating element as it goes to the fixed end side of the strength member. Therefore, the distortion of the power generation element is difficult to be uniform, and it is difficult to improve the power generation efficiency. A similar problem may occur even in a structure in which the strength member and the connecting yoke (10a, 10b) are integrated.

特許第4905820号公報Japanese Patent No. 4905820

本発明は、上述の事情を背景に為されたものであって、その解決課題は、応力集中による強度部材の耐久性の低下を防ぎながら、発電効率の向上も図られる、新規な構造の磁歪式振動発電装置を提供することにある。   The present invention has been made in the background of the above-described circumstances, and its solution is to prevent magnetostriction of a novel structure that can improve power generation efficiency while preventing deterioration of durability of the strength member due to stress concentration. An object of the present invention is to provide a vibration generator.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

すなわち、本発明の第一の態様は、強磁性材料で形成されて振動部材に一端を固定される長手状の強度部材には磁歪材料で形成された発電素子が並列的に取り付けられて、該発電素子にバイアス磁界を印加する磁石が設けられていると共に、該発電素子を含んで構成される閉磁路上にコイルが巻回されて配設されており、該発電素子の歪みに対する透磁率の変化に基づいて該コイルに電圧が生じるようにされた磁歪式振動発電装置において、
前記発電素子と並列に配された前記強度部材の変形部における曲げ剛性が該強度部材の長さ方向で変化せしめられており、該変形部における曲げ剛性を最小とされた部分が該変形部の長さ方向中央よりも該強度部材の自由端側に偏倚していることを、特徴とする。
That is, according to the first aspect of the present invention, a power generation element formed of a magnetostrictive material is attached in parallel to a longitudinal strength member formed of a ferromagnetic material and fixed at one end to the vibration member. A magnet for applying a bias magnetic field to the power generation element is provided, and a coil is wound around a closed magnetic path including the power generation element, and the change in permeability with respect to distortion of the power generation element In the magnetostrictive vibration power generator configured to generate a voltage in the coil based on
The bending rigidity in the deformed portion of the strength member arranged in parallel with the power generating element is changed in the length direction of the strength member, and the portion where the bending rigidity in the deformed portion is minimized is the deformation portion. It is characterized by being biased toward the free end side of the strength member from the center in the length direction.

このような第一の態様に従う構造とされた磁歪式振動発電装置によれば、振動荷重が入力されると、片持ち梁構造で振動部材に取り付けられる強度部材には、曲げモーメントが固定端側に行くに従って大きくなるように作用することから、固定端側に大きな応力が作用し易い。ここにおいて、変形部における曲げ剛性を最小とされた部分が、強度部材の自由端側に偏倚していることによって、変形部には長さ方向の広い範囲に分散して応力が及ぼされる。これにより、強度部材の耐久性の向上が図られると共に、変形部と並列に配された発電素子にも長さ方向で分散して応力が及ぼされることから、発電素子の耐久性と発電効率の向上が実現される。   According to the magnetostrictive vibration power generator configured as described above according to the first aspect, when a vibration load is input, a bending moment is applied to the strength member attached to the vibration member with a cantilever structure. Since it acts so that it becomes large as it goes to, large stress tends to act on the fixed end side. Here, since the portion where the bending rigidity in the deformed portion is minimized is biased toward the free end side of the strength member, the deformed portion is distributed and stressed over a wide range in the length direction. As a result, the durability of the power generating element is improved and the power generating element arranged in parallel with the deformed portion is dispersed and stressed in the length direction. Improvement is realized.

本発明の第二の態様は、第一の態様に記載された磁歪式振動発電装置において、前記強度部材の前記変形部における曲げ剛性を最小とされた部分が該強度部材の幅方向で直線的に延びているものである。   According to a second aspect of the present invention, in the magnetostrictive vibration power generating device described in the first aspect, the portion of the strength member where the bending rigidity in the deformed portion is minimized is linear in the width direction of the strength member. It is what extends.

第二の態様によれば、前記変形部における曲げ剛性を最小とされた部分が該強度部材の幅方向で直線的に延びていることで、変形部の曲げ変形が曲げ剛性の最小部分で効率的に生じることから、発電素子に長さ方向の歪みが効率的に生じて、発電効率の向上が実現される。   According to the second aspect, since the portion where the bending rigidity in the deformed portion is minimized extends linearly in the width direction of the strength member, the bending deformation of the deformed portion is efficient in the minimum portion of the bending rigidity. Therefore, the power generation element is efficiently distorted in the length direction, and the power generation efficiency is improved.

本発明の第三の態様は、第一又は第二の態様に記載された磁歪式振動発電装置において、前記強度部材における前記変形部よりも自由端側が固定端側より長尺とされているものである。   According to a third aspect of the present invention, in the magnetostrictive vibration power generator described in the first or second aspect, the free end side is longer than the fixed end side than the deformed portion of the strength member. It is.

第三の態様によれば、振動入力時にマスとして機能する強度部材の変形部よりも自由端側が、固定端側に比して長尺とされていることから、振動入力時に変形部の弾性変形量が大きくされて、発電素子の歪みが大きくなる。それ故、発電素子の逆磁歪効果による透磁率の変化が大きく生じて、優れた発電効率が実現される。   According to the third aspect, since the free end side is longer than the fixed end side of the deformable portion of the strength member that functions as a mass at the time of vibration input, the elastic deformation of the deformable portion at the time of vibration input. The amount is increased and the distortion of the power generation element is increased. Therefore, a large change in the magnetic permeability due to the inverse magnetostriction effect of the power generation element occurs, and excellent power generation efficiency is realized.

本発明の第四の態様は、第一〜第三の何れか一つの態様に記載された磁歪式振動発電装置において、前記発電素子の曲げ剛性が前記変形部の最小曲げ剛性よりも小さくされているものである。   According to a fourth aspect of the present invention, in the magnetostrictive vibration power generation device described in any one of the first to third aspects, the bending rigidity of the power generation element is made smaller than the minimum bending rigidity of the deformable portion. It is what.

第四の態様によれば、並列に配された強度部材の変形部と発電素子の曲げ変形についての中立軸が、変形部側に偏倚して設定される。それ故、変形部の曲げ変形に対して、発電素子の長さ方向の歪みが効率的に生ぜしめられて、逆磁歪効果による発電の効率向上が図られる。   According to the 4th aspect, the neutral axis | shaft about the deformation | transformation part of the intensity | strength member arranged in parallel and the bending deformation of an electric power generation element is biased and set to the deformation | transformation part side. Therefore, the distortion in the length direction of the power generation element is efficiently generated with respect to the bending deformation of the deformation portion, and the power generation efficiency is improved by the inverse magnetostriction effect.

本発明の第五の態様は、第一〜第四の何れか一つの記載された磁歪式振動発電装置において、前記強度部材には長さ方向の中間部分を幅方向全長に亘って延びる凹溝が形成されており、前記発電素子が該凹溝を跨いで配設されて該強度部材における該凹溝の形成部分が前記変形部とされているものである。   According to a fifth aspect of the present invention, in the magnetostrictive vibration power generation device according to any one of the first to fourth aspects, the strength member has a groove extending in the middle in the length direction over the entire length in the width direction. The power generating element is disposed across the concave groove, and a portion where the concave groove is formed in the strength member is the deformed portion.

第五の態様によれば、強度部材が凹溝の形成によって曲げ剛性を変化せしめられて、曲げ剛性が小さくされていることにより、振動入力による強度部材の変形が凹溝の形成部分である変形部に集中的に生じて、凹溝を跨いで配設される発電素子に長さ方向の歪みを有利に生じさせることができる。しかも、略一定の断面形状で延びる強度部材に凹溝を形成すれば、凹溝の形成部分において曲げ剛性の小さい変形部を簡単に設定することができる。なお、主たる振動の入力方向を凹溝の深さ方向とすることにより、強度部材の曲げ剛性を小さく設定し易くなって、発電素子の歪みを大きく得ることで発電効率の向上が有利に図られる。   According to the fifth aspect, since the bending strength is changed by forming the concave groove and the bending rigidity is reduced, the deformation of the strength member due to vibration input is a deformation portion of the concave groove. It is possible to advantageously cause distortion in the length direction in the power generating element that is intensively generated in the portion and disposed across the concave groove. In addition, if the groove is formed in the strength member extending with a substantially constant cross-sectional shape, a deformed portion having a small bending rigidity can be easily set in the portion where the groove is formed. By setting the main vibration input direction to the depth direction of the concave groove, it becomes easy to set the bending rigidity of the strength member small, and the power generation efficiency is advantageously improved by obtaining a large distortion of the power generation element. .

本発明の第六の態様は、第五の態様に記載された磁歪式振動発電装置において、前記強度部材の長さ方向における前記凹溝の中間部分には深さが最大となる最深部を有しており、該最深部において該強度部材の曲げ剛性が最小とされていると共に、該凹溝の底壁内面には該最深部から該強度部材の長さ方向外方に行くに従って該凹溝の開口側に傾斜する傾斜底面が設けられているものである。   According to a sixth aspect of the present invention, in the magnetostrictive vibration power generation device described in the fifth aspect, the intermediate portion of the concave groove in the length direction of the strength member has a deepest portion having a maximum depth. The bending strength of the strength member is minimized at the deepest portion, and the concave groove is formed on the inner surface of the bottom wall of the concave groove from the deepest portion to the outside in the length direction of the strength member. An inclined bottom surface that is inclined toward the opening side is provided.

第六の態様によれば、凹溝の深さが最大とされて曲げ剛性を小さく設定し易い最深部において、変形部の曲げ剛性を容易に最小とすることができる。しかも、凹溝の底壁内面が最深部の両側において傾斜底面で構成されていることにより、変形部の断面形状を最深部に向かって徐々に変化させて、断面形状の急激な変化による応力集中も緩和される。   According to the sixth aspect, the bending rigidity of the deformed portion can be easily minimized at the deepest portion where the depth of the concave groove is maximized and the bending rigidity can be easily set small. Moreover, the inner surface of the bottom wall of the concave groove is composed of inclined bottom surfaces on both sides of the deepest part, so that the cross-sectional shape of the deformed part gradually changes toward the deepest part, and stress concentration due to a sudden change in the cross-sectional shape. Is also eased.

本発明の第七の態様は、第五又は第六の態様に記載された磁歪式振動発電装置において、前記凹溝の底壁内面が前記強度部材の長さ方向で湾曲する開口側に凹の湾曲面とされているものである。   According to a seventh aspect of the present invention, in the magnetostrictive vibration power generation device according to the fifth or sixth aspect, the inner surface of the bottom wall of the concave groove is concave on the opening side curved in the length direction of the strength member. It is a curved surface.

第七の態様によれば、凹溝の深さ方向に振動が入力されて、強度部材が変形部で曲げ変形する際に、凹溝の底壁内面が湾曲面とされていることで応力集中が防止されて、強度部材の耐久性の向上が図られる。   According to the seventh aspect, when vibration is input in the depth direction of the groove and the strength member is bent and deformed by the deformed portion, the stress concentration is caused by the inner surface of the bottom wall of the groove being a curved surface. Is prevented, and the durability of the strength member is improved.

本発明の第八の態様は、第五〜第七の何れか一つの態様に記載された磁歪式振動発電装置において、前記凹溝の開口縁部内面が凸形のR面とされているものである。   According to an eighth aspect of the present invention, in the magnetostrictive vibration power generator described in any one of the fifth to seventh aspects, the inner surface of the opening edge of the concave groove is a convex R surface. It is.

第八の態様によれば、凹溝の開口縁部内面が開口側に向かって拡開する形状とされることで、発電素子が曲げ変形する際に、発電素子が凹溝の開口縁部内面に押し当てられるのを防いで、発電素子の損傷が防止される。しかも、凹溝の開口縁部内面が凸形のR面とされていることにより、凹溝の開口縁部内面が、強度部材における凹溝の開口する面に対して、段差や折れ線を形成することなく滑らかに連続して設けられて、振動入力時に発電素子と強度部材の当接部分において応力集中が防止されて、耐久性の向上が実現される。   According to the eighth aspect, when the power generating element is bent and deformed by the shape of the inner surface of the opening edge of the concave groove expanding toward the opening side, the inner surface of the opening edge of the concave groove This prevents the power generating element from being damaged. Moreover, since the inner surface of the opening edge of the groove is a convex R surface, the inner surface of the opening edge of the groove forms a step or a broken line with respect to the surface of the strength member where the groove is opened. It is provided smoothly and continuously, and stress concentration is prevented at the contact portion between the power generation element and the strength member at the time of vibration input, thereby improving durability.

本発明によれば、強度部材が発電素子を並列配置された変形部を備えており、変形部の曲げ剛性が長さ方向で変化していると共に、変形部における曲げ剛性を最小とされた部分が、変形部の長さ方向中央よりも強度部材の自由端側にずれて配置されている。これにより、振動入力による変形部の変形中心が自由端側にずれて設定されて、変形部に作用する曲げモーメントが長さ方向でより平均化される。その結果、強度部材の変形部における応力分散によって耐久性の向上が図られると共に、変形部と並列に配される発電素子にも応力が長さ方向に分散して及ぼされて、耐久性と発電効率の向上が実現される。   According to the present invention, the strength member includes the deforming portion in which the power generation elements are arranged in parallel, and the bending rigidity of the deforming portion changes in the length direction, and the bending rigidity in the deforming portion is minimized. However, it is arranged so as to be shifted to the free end side of the strength member from the longitudinal center of the deformable portion. As a result, the deformation center of the deforming portion due to vibration input is set so as to deviate toward the free end, and the bending moment acting on the deforming portion is further averaged in the length direction. As a result, the durability is improved by the stress dispersion in the deformed portion of the strength member, and the stress is also distributed in the length direction to the power generating element arranged in parallel with the deformed portion, so that the durability and power generation are improved. Increased efficiency is realized.

本発明の第一の実施形態としての磁歪式振動発電装置を示す斜視図。1 is a perspective view showing a magnetostrictive vibration power generation apparatus as a first embodiment of the present invention. 図1に示す磁歪式振動発電装置の平面図。FIG. 2 is a plan view of the magnetostrictive vibration power generator shown in FIG. 1. 図2のIII−III断面図。III-III sectional drawing of FIG. 図1に示す磁歪式振動発電装置を構成する強度部材の斜視図。The perspective view of the intensity | strength member which comprises the magnetostrictive vibration electric power generating apparatus shown in FIG. 図4に示す強度部材の要部を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part of the intensity | strength member shown in FIG. 図1に示す磁歪式振動発電装置を構成する強度部材および発電素子に曲げ荷重を加えた状態の応力分布図。FIG. 2 is a stress distribution diagram in a state in which a bending load is applied to a strength member and a power generation element that constitute the magnetostrictive vibration power generation device illustrated in FIG. 1. 従来構造の磁歪式振動発電装置を構成する強度部材および発電素子に曲げ荷重を加えた状態の応力分布図。The stress distribution figure of the state which added the bending load to the intensity | strength member and electric power generating element which comprise the magnetostrictive vibration electric power generating apparatus of the conventional structure. 本発明の第二の実施形態としての磁歪式振動発電装置を構成する強度部材の斜視図。The perspective view of the intensity | strength member which comprises the magnetostrictive vibration electric power generating apparatus as 2nd embodiment of this invention. 図8に示す強度部材の要部を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part of the intensity | strength member shown in FIG. 本発明の第三の実施形態としての磁歪式振動発電装置を構成する強度部材の要部を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part of the intensity | strength member which comprises the magnetostrictive vibration electric power generating apparatus as 3rd embodiment of this invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜3には、本発明の第一の実施形態としての磁歪式振動発電装置(以下、振動発電装置)10が示されている。振動発電装置10は、長手状の強度部材12に発電素子14を取り付けた構造を有している。以下の説明において、原則として、長さ方向とは左右方向である図2中の左右方向を、幅方向とは前後方向である図2中の上下方向を、厚さ方向とは上下方向である図3中の上下方向を、それぞれ言う。   1 to 3 show a magnetostrictive vibration power generation apparatus (hereinafter referred to as vibration power generation apparatus) 10 as a first embodiment of the present invention. The vibration power generation apparatus 10 has a structure in which a power generation element 14 is attached to a longitudinal strength member 12. In the following description, in principle, the length direction is the left-right direction in FIG. 2, which is the left-right direction, the width direction is the up-down direction in FIG. 2, which is the front-rear direction, and the thickness direction is the up-down direction. The vertical directions in FIG.

より詳細には、強度部材12は、図4に示すように、ステンレス鋼(マルテンサイト系ステンレス鋼やフェライト系ステンレス鋼、析出硬化系ステンレス鋼など)や鉄などの強磁性材料で形成された略矩形ロッド形状の部材であって、長さ方向一方の端部(図2中の左端部)には厚さ方向に貫通する取付孔16が形成されている。そして、図3に2点鎖線で示すように、強度部材12の取付孔16に挿通される取付用ボルト18が振動部材20に螺着されることにより、強度部材12の長さ方向一方の端部が振動部材20に固定されるようになっている。なお、振動部材20への装着状態において、強度部材12は、一端(図2中、左端)が振動部材20に固定された固定端とされると共に、他端(図2中、右端)が自由端とされる。   More specifically, as shown in FIG. 4, the strength member 12 is substantially formed of a ferromagnetic material such as stainless steel (such as martensitic stainless steel, ferritic stainless steel, precipitation hardening stainless steel) or iron. It is a rectangular rod-shaped member, and an attachment hole 16 penetrating in the thickness direction is formed at one end portion in the length direction (left end portion in FIG. 2). Then, as shown by a two-dot chain line in FIG. 3, when the mounting bolt 18 inserted through the mounting hole 16 of the strength member 12 is screwed to the vibration member 20, one end in the length direction of the strength member 12 is obtained. The portion is fixed to the vibration member 20. In addition, in the mounting state on the vibration member 20, the strength member 12 has one end (left end in FIG. 2) as a fixed end fixed to the vibration member 20, and the other end (right end in FIG. 2) is free. It is considered as an end.

また、強度部材12の長さ方向中間部分には、図3,5に示すように、厚さ方向一方(図3中の上方)に向かって開口する凹溝22が形成されている。凹溝22は、強度部材12の長さ方向で中央よりも固定端側(図3中、左側)にずれた位置に形成されており、強度部材12の幅方向全長に亘って、略一定の断面形状で連続して延びている。このような凹溝22が形成されていることにより、強度部材12は、凹溝22よりも固定端側に位置する取付部24と、凹溝22よりも自由端側に位置するマス部26と、凹溝22の底壁部であって取付部24とマス部26を相互に連結する変形部28とを、一体的に備えた構造とされている。なお、凹溝22が強度部材12の長さ方向中央よりも固定端側に位置していることから、マス部26が取付部24よりも長尺とされている。また、強度部材12の凹溝22に対する長さ方向両側には、厚さ方向上下に貫通するねじ孔30がそれぞれ形成されている。   Further, as shown in FIGS. 3 and 5, a concave groove 22 that opens toward one side in the thickness direction (upward in FIG. 3) is formed in the intermediate portion in the length direction of the strength member 12. The concave groove 22 is formed at a position shifted from the center to the fixed end side (left side in FIG. 3) in the length direction of the strength member 12, and is substantially constant over the entire length of the strength member 12 in the width direction. The cross-sectional shape extends continuously. By forming such a concave groove 22, the strength member 12 includes an attachment portion 24 positioned on the fixed end side with respect to the concave groove 22, and a mass portion 26 positioned on the free end side with respect to the concave groove 22. The bottom wall portion of the concave groove 22 and the deformation portion 28 that connects the attachment portion 24 and the mass portion 26 to each other are integrally provided. In addition, since the concave groove 22 is located on the fixed end side with respect to the center in the length direction of the strength member 12, the mass portion 26 is longer than the attachment portion 24. Further, screw holes 30 penetrating vertically in the thickness direction are formed on both sides of the strength member 12 with respect to the concave groove 22 in the length direction.

さらに、強度部材12の長さ方向における凹溝22の中間部分には、強度部材12の幅方向に直線状に延びる最深部32が設定されており、底壁内面が最深部32から強度部材12の長さ方向で外方に行くに従って次第に開口側へ上傾する傾斜底面34a,34bを備えている。換言すれば、凹溝22の底壁内面には、傾斜底面34a,34bが滑らかに連続して設けられており、それら傾斜底面34a,34bの境界において、凹溝22の深さが最大となる最深部32が設定されている。本実施形態では、傾斜底面34a,34bがそれぞれ上方に凹の湾曲面とされており、凹溝22の底壁内面の全体が上方に凹の連続的な湾曲面で構成されて、凹溝22の深さ寸法が強度部材12の長さ方向で徐々に変化している。なお、本実施形態の強度部材12は、変形部28を含む全長に亘って、前後幅寸法が略一定とされていると共に、下面(図3中の下面)が平面とされており、変形部28において最も薄肉となる最深部32において厚さ方向の曲げ剛性が最小となっている。   Further, a deepest portion 32 that extends linearly in the width direction of the strength member 12 is set at an intermediate portion of the concave groove 22 in the length direction of the strength member 12, and the bottom wall inner surface extends from the deepest portion 32 to the strength member 12. Are provided with inclined bottom surfaces 34a, 34b that gradually incline upward toward the opening as they go outward in the length direction. In other words, the inclined bottom surface 34a, 34b is provided smoothly and continuously on the inner surface of the bottom wall of the concave groove 22, and the depth of the concave groove 22 is maximized at the boundary between the inclined bottom surface 34a, 34b. The deepest part 32 is set. In the present embodiment, the inclined bottom surfaces 34a and 34b are curved surfaces that are concave upward, and the entire inner surface of the bottom wall of the concave groove 22 is formed of a continuous curved surface that is concave upward. Is gradually changed in the length direction of the strength member 12. The strength member 12 of the present embodiment has a front-rear width dimension that is substantially constant over the entire length including the deformed portion 28, and a lower surface (the lower surface in FIG. 3) is a flat surface. The bending rigidity in the thickness direction is minimum at the deepest portion 32 where the thinnest portion 28 is provided.

更にまた、凹溝22の一対の側壁内面は、それぞれ強度部材12の長さ方向に略直交して広がる平坦面とされていると共に、上端部が開口側(図3中、上側)に向かって次第に強度部材12の長さ方向外方に傾斜しており、本実施形態では、凹溝22の開口縁部内面が、開口側および溝内方に向かって凸となる円弧状断面のR面36とされている。なお、凹溝22の一対の側壁内面は、凹溝22の傾斜底面34a,34bの各一方と滑らかに連続しており、凹溝22の内面全体が強度部材12の長さ方向で折れ点や段差などを持たない連続的な面で構成されている。   Furthermore, the inner surfaces of the pair of side walls of the concave groove 22 are flat surfaces that extend substantially perpendicular to the length direction of the strength member 12, and the upper end portion is directed toward the opening side (upper side in FIG. 3). The strength member 12 is gradually inclined outward in the length direction. In this embodiment, the inner surface of the opening edge of the concave groove 22 has an arcuate cross-sectional R surface 36 that is convex toward the opening side and the inner side of the groove. It is said that. The inner surfaces of the pair of side walls of the concave groove 22 are smoothly continuous with one of the inclined bottom surfaces 34 a and 34 b of the concave groove 22, and the entire inner surface of the concave groove 22 is broken in the length direction of the strength member 12. It consists of a continuous surface with no steps.

発電素子14は、磁歪材料で形成されて略一定の矩形断面で延びる長手板形状の部材であって、両端部分が強度部材12の上面に重ね合わされて、ねじ孔30に螺着される取付ねじ38によって強度部材12に固定されている。これにより、発電素子14は、凹溝22の開口を強度部材12の長さ方向に跨いで延びており、強度部材12の変形部28と上下に離隔して並列的に配設されている。   The power generation element 14 is a long plate-shaped member formed of a magnetostrictive material and extending in a substantially constant rectangular cross section, and both end portions are superimposed on the upper surface of the strength member 12 and screwed into the screw hole 30. It is fixed to the strength member 12 by 38. As a result, the power generation element 14 extends across the opening of the concave groove 22 in the length direction of the strength member 12, and is arranged in parallel with the deformed portion 28 of the strength member 12 so as to be vertically separated.

なお、発電素子14の形成材料となる磁歪材料は、特に限定されるものではないが、鉄−ガリウム合金や鉄−ニッケル合金、鉄−コバルト合金などが好適に採用され、それらの2種以上を組み合わせて用いることもできる。また、上述の発電素子14を形成する磁歪材料に、イットリウム(Y)やプラセオジム(Pr)などの希土類元素の少なくとも一種を含ませることにより、後述する発電素子14の透磁率の変化を大きく得ることもできる。更に、好適には、発電素子14の曲げ剛性が、強度部材12の変形部28における最小曲げ剛性よりも小さくされており、発電素子14が強度部材12よりも曲げ変形を生じ易くなっている。   The magnetostrictive material used as the material for forming the power generation element 14 is not particularly limited, but iron-gallium alloy, iron-nickel alloy, iron-cobalt alloy, and the like are preferably employed. It can also be used in combination. In addition, the magnetostrictive material forming the power generation element 14 includes at least one kind of rare earth elements such as yttrium (Y) and praseodymium (Pr), thereby obtaining a large change in magnetic permeability of the power generation element 14 described later. You can also. Further, preferably, the bending rigidity of the power generation element 14 is made smaller than the minimum bending rigidity in the deformation portion 28 of the strength member 12, and the power generation element 14 is more likely to bend and deform than the strength member 12.

また、発電素子14には、コイル40が取り付けられている。コイル40は、発電素子14に巻回される導電性の金属線材によって形成されており、発電素子14の磁束の変化に応じてコイル40に電磁誘導による誘導起電力が生じるようになっている。更に、コイル40は、発電素子14の強度部材12への取付け状態において、強度部材12の凹溝22に入り込んでおり、コイル40と強度部材12の干渉が回避されている。なお、図中では明らかではないが、コイル40を構成する金属線材の両端は、蓄電池や電気機器(LEDや電子回路など)に電気的に接続されている。   A coil 40 is attached to the power generation element 14. The coil 40 is formed of a conductive metal wire wound around the power generation element 14, and an induced electromotive force is generated in the coil 40 by electromagnetic induction according to a change in magnetic flux of the power generation element 14. Further, the coil 40 enters the concave groove 22 of the strength member 12 when the power generating element 14 is attached to the strength member 12, and interference between the coil 40 and the strength member 12 is avoided. In addition, although it is not clear in the drawing, both ends of the metal wire constituting the coil 40 are electrically connected to a storage battery or an electric device (such as an LED or an electronic circuit).

また、強度部材12の幅方向前後両側には、それぞれ磁石42a,42bが配設されている。磁石42としては、フェライト磁石やアルニコ磁石、ネオジム磁石などの各種公知の永久磁石が採用されており、強度部材12の前後方向に着磁されている。そして、磁石42aが強度部材12における取付部24の側面に固着されていると共に、磁石42bが強度部材12におけるマス部26の側面に固着されている。更に、磁石42aと磁石42bは、互いに逆向きに着磁されており、例えば、磁石42aの強度部材12側がN極とされる場合には、磁石42bの強度部材12側がS極とされる。更にまた、一対の磁石42a,42aが、強度部材12に対して、長さ方向の略同じ位置で、前後各一方の側から固着されていると共に、一対の磁石42b,42bが、強度部材12に対して、長さ方向の略同じ位置で、前後各一方の側から固着されている。なお、磁石42の強度部材12への固着手段は、特に限定されないが、例えば、磁石42の磁気的な引力や接着剤、機械的な係止などによって実現され得る。   Magnets 42a and 42b are disposed on both sides of the strength member 12 in the front-rear direction. As the magnet 42, various known permanent magnets such as a ferrite magnet, an alnico magnet, and a neodymium magnet are employed, and are magnetized in the front-rear direction of the strength member 12. The magnet 42 a is fixed to the side surface of the mounting portion 24 in the strength member 12, and the magnet 42 b is fixed to the side surface of the mass portion 26 in the strength member 12. Further, the magnet 42a and the magnet 42b are magnetized in opposite directions. For example, when the strength member 12 side of the magnet 42a is an N pole, the strength member 12 side of the magnet 42b is an S pole. Furthermore, the pair of magnets 42a and 42a are fixed to the strength member 12 at substantially the same position in the length direction from one side of the front and rear, and the pair of magnets 42b and 42b are provided with the strength member 12. On the other hand, at substantially the same position in the length direction, they are fixed from one side of the front and rear. The means for fixing the magnet 42 to the strength member 12 is not particularly limited. For example, the magnet 42 may be realized by a magnetic attraction, adhesive, mechanical locking, or the like of the magnet 42.

さらに、強度部材12の前後両側には、ヨーク部材44が並列的に配設されている。ヨーク部材44は、強度部材12と略平行に延びるロッド形状乃至は長手板形状とされており、強度部材12と同様にステンレス鋼や鉄などの強磁性材料で形成されている。そして、ヨーク部材44は、磁石42aと磁石42bに跨って延びており、一方の端部が磁石42aの前後外面に重ね合わされて固着されていると共に、他方の端部が磁石42bの前後外面に重ね合わされて固着されている。なお、ヨーク部材44の磁石42への固着手段も、特に限定されないが、例えば、磁石42の磁気的な引力や接着剤、機械的な係止などによって実現され得る。   Furthermore, yoke members 44 are arranged in parallel on the front and rear sides of the strength member 12. The yoke member 44 has a rod shape or a longitudinal plate shape extending substantially parallel to the strength member 12, and is formed of a ferromagnetic material such as stainless steel or iron, like the strength member 12. The yoke member 44 extends over the magnet 42a and the magnet 42b, and has one end overlapped and fixed to the front and rear outer surfaces of the magnet 42a, and the other end to the front and rear outer surfaces of the magnet 42b. It is overlapped and fixed. The means for fixing the yoke member 44 to the magnet 42 is not particularly limited, and may be realized by, for example, magnetic attraction, adhesive, mechanical locking, or the like of the magnet 42.

このように、磁石42a,42bの前後一組と、ヨーク部材44の前後一組とが、強度部材12の両側面に取り付けられることにより、強度部材12と発電素子14と磁石42a,42bとヨーク部材44とによって、閉磁路46が形成されている。そして、閉磁路46を構成する発電素子14には、磁石42a,42bによるバイアス磁界が印加されている。なお、コイル40は、発電素子14に巻回されることにより、閉磁路46上に配されている。   In this manner, the front and rear set of magnets 42a and 42b and the front and rear set of yoke member 44 are attached to both side surfaces of the strength member 12, whereby the strength member 12, the power generating element 14, the magnets 42a and 42b, and the yoke. A closed magnetic path 46 is formed by the member 44. A bias magnetic field from the magnets 42 a and 42 b is applied to the power generation element 14 constituting the closed magnetic path 46. The coil 40 is disposed on the closed magnetic path 46 by being wound around the power generation element 14.

かくの如き構造とされた振動発電装置10は、図3に示す振動部材20への装着状態において、強度部材12に上下方向の振動が入力されると、上下方向で薄肉とされた凹溝22の形成部分(変形部28)において強度部材12が弾性変形せしめられる。これにより、発電素子14に対して圧縮/引張方向の応力が効率的に生ぜしめられることとなり、磁歪材料で形成された発電素子14の透磁率が逆磁歪効果(歪みによって透磁率が変化する効果)によって変化する。その結果、コイル40を貫通する磁束が変化することから、コイル40に電磁誘導による電圧(誘導起電力)が発生して、コイル40に接続された蓄電池の充電或いは電気機器の作動などに用いられる。   When the vibration power generation apparatus 10 having such a structure is attached to the vibration member 20 shown in FIG. 3, when vertical vibration is input to the strength member 12, the concave groove 22 that is thin in the vertical direction. The strength member 12 is elastically deformed at the formation portion (deformation portion 28). Thereby, a stress in the compression / tensile direction is efficiently generated with respect to the power generation element 14, and the magnetic permeability of the power generation element 14 formed of a magnetostrictive material becomes an inverse magnetostriction effect (an effect of changing the magnetic permeability due to strain). ). As a result, since the magnetic flux penetrating the coil 40 changes, a voltage (inductive electromotive force) due to electromagnetic induction is generated in the coil 40 and used for charging a storage battery connected to the coil 40 or operating an electrical device. .

ここにおいて、本実施形態では、強度部材12の前後幅寸法が略一定とされていると共に、凹溝22の底壁内面が湾曲面とされて変形部28の厚さ寸法が強度部材12の長さ方向で変化していることから、変形部28の曲げ剛性が強度部材12の長さ方向で変化している。更に、凹溝22の最深部32が、強度部材12の長さ方向における凹溝22の中央(図5中のA)に対して、強度部材12の自由端側にずれて設けられて(図5中のB)おり、変形部28において最も薄肉で曲げ剛性が最小となる最深部32が、凹溝22の中央に対して強度部材12の自由端側に偏倚して配置されている。その結果、変形部28に作用する曲げモーメントが長さ方向でより平均化されて、発電素子14と並列に延びる変形部28において、長さ方向で応力の分散化が図られて、変形部28の耐久性の向上が図られる。   Here, in the present embodiment, the front-rear width dimension of the strength member 12 is substantially constant, the inner surface of the bottom wall of the concave groove 22 is a curved surface, and the thickness dimension of the deformed portion 28 is the length of the strength member 12. Since it changes in the vertical direction, the bending rigidity of the deformable portion 28 changes in the length direction of the strength member 12. Further, the deepest portion 32 of the concave groove 22 is provided so as to be shifted to the free end side of the strength member 12 with respect to the center (A in FIG. 5) of the concave groove 22 in the length direction of the strength member 12 (FIG. 5), the deepest portion 32 having the thinnest thickness and the minimum bending rigidity in the deformed portion 28 is arranged so as to be biased toward the free end of the strength member 12 with respect to the center of the concave groove 22. As a result, the bending moment acting on the deformable portion 28 is further averaged in the length direction, and in the deformable portion 28 extending in parallel with the power generation element 14, stress is dispersed in the length direction, and the deformable portion 28 Durability is improved.

さらに、変形部28において応力の分散化が図られることにより、発電素子14に及ぼされる応力も長さ方向のより広い範囲に分散することから、発電素子14の広い範囲に歪みが平均的に生ぜしめられて、局所的に大きな歪みが生ぜしめられる場合に比して、発電素子14の耐久性の向上や発電効率の向上などが実現される。蓋し、発電素子14の発電量は、発電素子14の歪み量に対して非線形に対応しており、発電素子14の歪み量が大きくなるに従って、歪みの変化に対する発電量の変化率は低下するからである。   Further, since the stress is dispersed in the deformed portion 28, the stress exerted on the power generating element 14 is also distributed in a wider range in the length direction, and therefore, distortion is generated in the wide range of the power generating element 14 on the average. As a result, the durability of the power generation element 14 and the power generation efficiency are improved as compared with the case where a large strain is locally generated. The power generation amount of the power generation element 14 corresponds non-linearly to the strain amount of the power generation element 14, and as the strain amount of the power generation element 14 increases, the rate of change of the power generation amount with respect to the change in strain decreases. Because.

なお、最深部32を凹溝22の中央から強度部材12の長さ方向でどれだけ偏倚させるかは、強度部材12における取付部24とマス部26の長さの違いや、強度部材12の変形部28と発電素子14との曲げ剛性の違いなどに応じて設定される。   Note that how much the deepest portion 32 is biased in the length direction of the strength member 12 from the center of the concave groove 22 depends on the difference in length between the mounting portion 24 and the mass portion 26 in the strength member 12 or the deformation of the strength member 12. It is set according to the difference in bending rigidity between the portion 28 and the power generation element 14.

このような本実施形態の構造において、強度部材12と発電素子14に作用する応力が、従来構造よりも分散することは、シミュレーションによって確認されている。即ち、図6に示すように、本実施形態の構造(実施例)では、強度部材12における凹溝22の底壁部に対して、比較的に小さな応力が広い範囲に亘って及ぼされており、耐久性が十分に確保されると共に、発電素子14の全体に応力が有効に及ぼされていることから、優れた発電効率が実現されると予測される。一方、図7に示すように、矩形溝形状の凹溝を強度部材に設けた従来構造(比較例)では、強度部材100における凹溝102の底壁部に対して、長さ方向両端の角部に応力が集中しており、強度部材100の耐久性に対する悪影響が問題になると共に、強度部材100の自由端側に固定された発電素子104の端部に及ぼされる応力が著しく小さくなっており、発電効率の低下が予測される。   It has been confirmed by simulation that the stress acting on the strength member 12 and the power generation element 14 is more dispersed than in the conventional structure in the structure of this embodiment. That is, as shown in FIG. 6, in the structure (example) of the present embodiment, a relatively small stress is exerted over a wide range on the bottom wall portion of the concave groove 22 in the strength member 12. In addition, sufficient durability is ensured, and stress is effectively applied to the entire power generation element 14, so that it is predicted that excellent power generation efficiency will be realized. On the other hand, as shown in FIG. 7, in the conventional structure (comparative example) in which the rectangular groove-shaped concave grooves are provided in the strength member, the corners at both ends in the length direction with respect to the bottom wall portion of the concave groove 102 in the strength member 100. The stress is concentrated on the portion, and the adverse effect on the durability of the strength member 100 becomes a problem, and the stress exerted on the end portion of the power generation element 104 fixed to the free end side of the strength member 100 is remarkably reduced. A decrease in power generation efficiency is expected.

また、本実施形態の強度部材12における凹溝22の底壁内面には、強度部材12の長さ方向外方に行くに従って次第に上傾する傾斜底面34a,34bが設定されていると共に、傾斜底面34a,34bがそれぞれ凹状の湾曲面とされて、それら傾斜底面34a,34bが共通接線をもって相互に滑らかに連続している。これにより、凹溝22の底壁部である変形部28が振動入力によって厚さ方向に変形する際に、断面形状の急激な変化による応力集中が防止されて、強度部材12の耐久性の向上が図られる。   In addition, inclined bottom surfaces 34a and 34b are set on the inner surface of the bottom wall of the concave groove 22 in the strength member 12 of the present embodiment. 34a and 34b are concave curved surfaces, respectively, and the inclined bottom surfaces 34a and 34b are smoothly connected to each other with a common tangent line. Thereby, when the deformed portion 28 which is the bottom wall portion of the concave groove 22 is deformed in the thickness direction by vibration input, stress concentration due to a sudden change in the cross-sectional shape is prevented, and the durability of the strength member 12 is improved. Is planned.

さらに、本実施形態の強度部材12は、傾斜底面34a,34bの境界に設定される凹溝22の最深部32が、強度部材12の幅方向に直線状に延びている。これにより、振動入力時に強度部材12が最薄部分で効率的に曲げ変形せしめられて、発電素子14の歪みが有効に生ぜしめられることから、発電素子14における透磁率の変化が有利に惹起されて、発電効率の向上が図られる。   Further, in the strength member 12 of the present embodiment, the deepest portion 32 of the concave groove 22 set at the boundary between the inclined bottom surfaces 34 a and 34 b extends linearly in the width direction of the strength member 12. As a result, the strength member 12 is efficiently bent and deformed at the thinnest portion at the time of vibration input, and distortion of the power generation element 14 is effectively generated. Therefore, a change in magnetic permeability in the power generation element 14 is advantageously caused. As a result, the power generation efficiency is improved.

また、凹溝22が強度部材12の長さ方向中央よりも固定端側にずれた位置に形成されており、強度部材12のマス部26が取付部24よりも長尺とされている。これにより、強度部材12におけるマス部26の質量が大きく設定されて、強度部材12の変形が効率的に生ぜしめられることから、発電効率の向上が図られる。   Further, the concave groove 22 is formed at a position shifted from the center in the length direction of the strength member 12 toward the fixed end, and the mass portion 26 of the strength member 12 is longer than the attachment portion 24. Thereby, the mass of the mass portion 26 in the strength member 12 is set to be large, and the deformation of the strength member 12 is efficiently generated, so that the power generation efficiency is improved.

また、凹溝22の開口縁部内面が、開口側に向かって次第に拡開していることから、強度部材12および発電素子14の変形時に、発電素子14が凹溝22の開口縁部に干渉するのを防いで、発電素子14の変形を効率的に生ぜしめることができる。更に、凹溝22の開口縁部内面が凸形のR面36とされていることから、凹溝22の開口縁部内面を強度部材12の上面と滑らかに連続して設けることができて、凹溝22の開口縁部内面と強度部材12の上面との境界部分に発電素子14が押し付けられても、発電素子14に集中的な応力が作用するのを回避することができる。   Further, since the inner surface of the opening edge of the concave groove 22 is gradually expanded toward the opening side, the power generating element 14 interferes with the opening edge of the concave groove 22 when the strength member 12 and the power generating element 14 are deformed. This can prevent the generation element 14 from being deformed efficiently. Furthermore, since the inner surface of the opening edge of the groove 22 is a convex R surface 36, the inner surface of the opening edge of the groove 22 can be provided smoothly and continuously with the upper surface of the strength member 12, Even if the power generation element 14 is pressed against the boundary portion between the inner surface of the opening edge of the groove 22 and the upper surface of the strength member 12, it is possible to avoid intensive stress acting on the power generation element 14.

また、発電素子14の曲げ剛性が、強度部材12における変形部28の最小曲げ剛性よりも小さくされて、発電素子14が変形部28よりも変形し易くされていることから、強度部材12の変形に対して発電素子14の歪みが十分に生ぜしめられて、発電素子14の発電効率を高めることができる。即ち、曲げ変形における中立軸が発電素子14よりも強度部材12側に偏倚して設定されていることにより、曲げ変形特性に関して強度部材12の影響が支配的となり、発電素子14に対する圧縮/引張応力が一層効率的に生ぜしめられることとなる。   Further, since the bending rigidity of the power generation element 14 is made smaller than the minimum bending rigidity of the deformation portion 28 in the strength member 12, the power generation element 14 is more easily deformed than the deformation portion 28. In contrast, the power generation element 14 is sufficiently distorted, and the power generation efficiency of the power generation element 14 can be increased. That is, since the neutral axis in bending deformation is set so as to be biased toward the strength member 12 relative to the power generation element 14, the influence of the strength member 12 is dominant on the bending deformation characteristics, and the compression / tensile stress on the power generation element 14 is determined. Will be generated more efficiently.

図8には、本発明の第二の実施形態としての磁歪式振動発電装置を構成する強度部材50が示されている。なお、図8において省略されている発電素子14、磁石42a,42bの一組、ヨーク部材44の一組は、何れも第一の実施形態と同一のものが採用され得る。更に、以下の説明において、第一の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことにより、説明を省略する。   FIG. 8 shows a strength member 50 constituting a magnetostrictive vibration power generation apparatus as a second embodiment of the present invention. Note that the power generation element 14, the pair of magnets 42 a and 42 b, and the pair of yoke members 44 that are omitted in FIG. 8 can all be the same as those in the first embodiment. Further, in the following description, members and portions that are substantially the same as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

すなわち、強度部材50は、図8,9に示すように、中間部分に凹溝52を備えている。凹溝52は、強度部材50の長さ方向で固定端側に偏倚した位置に設けられており、厚さ方向一方(図9中、上方)に開口して、強度部材50の幅方向に全長に亘って連続して延びている。更に、凹溝52の底壁内面は、傾斜底面54a,54bを備えている。傾斜底面54a,54bは、それぞれ凹溝52の最深部32から強度部材50の長さ方向で外方に行くに従って次第に上傾する傾斜平面とされており、略谷形折れ線状をなして相互に連続している。なお、傾斜底面54a,54bの境界部分によって、強度部材50の幅方向で直線的に延びる最深部32が形成されている。   That is, as shown in FIGS. 8 and 9, the strength member 50 includes a concave groove 52 in the intermediate portion. The concave groove 52 is provided at a position biased to the fixed end side in the length direction of the strength member 50, opens in one direction in the thickness direction (upward in FIG. 9), and extends in the width direction of the strength member 50. Extending continuously. Further, the inner surface of the bottom wall of the concave groove 52 includes inclined bottom surfaces 54a and 54b. The inclined bottom surfaces 54a and 54b are inclined planes that gradually incline upward from the deepest portion 32 of the concave groove 52 in the length direction of the strength member 50, and are formed in a substantially valley-shaped broken line. It is continuous. The deepest portion 32 linearly extending in the width direction of the strength member 50 is formed by the boundary portion between the inclined bottom surfaces 54a and 54b.

また、第一の実施形態と同様に、凹溝52の最深部32は、凹溝52の中央(図9中の一点鎖線A)に対して、強度部材50の長さ方向で自由端側にずれて位置せしめられている。これにより、強度部材50の変形部28に及ぼされる応力の分散化が図られて、強度部材50および発電素子14の耐久性の向上や、発電素子14の歪みの分散化による発電効率の向上などが図られる。なお、図9中の一点鎖線Bは、最深部32の位置を示す。   Further, as in the first embodiment, the deepest portion 32 of the concave groove 52 is on the free end side in the length direction of the strength member 50 with respect to the center of the concave groove 52 (one-dot chain line A in FIG. 9). It is positioned so as to be shifted. As a result, the stress exerted on the deformed portion 28 of the strength member 50 can be dispersed, the durability of the strength member 50 and the power generation element 14 can be improved, and the power generation efficiency can be improved by dispersing the distortion of the power generation element 14. Is planned. Note that a one-dot chain line B in FIG. 9 indicates the position of the deepest portion 32.

図10には、本発明の第三の実施形態としての磁歪式振動発電装置を構成する強度部材60の要部が拡大されて示されている。本実施形態の強度部材60には、上面に開口して幅方向の全長に延びる凹溝62が形成されている。なお、図中では必ずしも明らかではないが、第一, 第二の実施形態と同様に、凹溝62は、強度部材60の固定端側にずれた位置に形成されている。   FIG. 10 is an enlarged view of a main part of a strength member 60 constituting a magnetostrictive vibration power generation apparatus as a third embodiment of the present invention. The strength member 60 of the present embodiment is formed with a concave groove 62 that opens on the upper surface and extends the entire length in the width direction. Although not necessarily clear in the drawing, the concave groove 62 is formed at a position shifted to the fixed end side of the strength member 60 as in the first and second embodiments.

凹溝62は、傾斜底面34a,34bの間に、強度部材60の厚さ方向(図10の上下方向)に対して略直交して広がる接続底面64が形成されており、最深部32が強度部材60の長さ方向に所定の幅で広がって設けられている。なお、接続底面64が傾斜底面34a,34bの共通接線方向に広がっており、それら接続底面64と傾斜底面34a,34bが折れ点なく滑らかに連続している。そして、最深部32の中央(図10中の一点鎖線B)が、凹溝62の中央(図10中の一点鎖線A)に対して、強度部材60の自由端側に位置している。   The concave groove 62 is formed with a connection bottom surface 64 that extends substantially perpendicular to the thickness direction of the strength member 60 (vertical direction in FIG. 10) between the inclined bottom surfaces 34a and 34b, and the deepest portion 32 has a strength. The member 60 is provided with a predetermined width in the length direction. The connection bottom surface 64 extends in the common tangential direction of the inclined bottom surfaces 34a and 34b, and the connection bottom surface 64 and the inclined bottom surfaces 34a and 34b are smoothly continuous without breaks. The center of the deepest portion 32 (the chain line B in FIG. 10) is located on the free end side of the strength member 60 with respect to the center of the concave groove 62 (the chain line A in FIG. 10).

なお、本実施形態では、変形部28の固定端側の端部の厚さ寸法(t1 )が、変形部28の自由端側の端部の厚さ寸法(t2 )よりも大きく設定されている。これにより、振動入力時に作用する曲げモーメントが大きくなり易い変形部28の固定端側の端部において、変形部28の耐久性が有利に確保される。 In the present embodiment, the thickness dimension (t 1 ) of the end portion on the fixed end side of the deformable portion 28 is set larger than the thickness dimension (t 2 ) of the end portion on the free end side of the deformable portion 28. ing. As a result, the durability of the deformable portion 28 is advantageously ensured at the end portion on the fixed end side of the deformable portion 28 where the bending moment acting upon vibration input is likely to increase.

このような本実施形態に従う構造とされた強度部材60を採用する場合にも、第一, 第二の実施形態と同様に、応力の分散化による耐久性および発電効率の向上が実現される。特に、接続底面64と傾斜底面34a,34bが滑らかに連続して設けられることにより、それら接続底面64と傾斜底面34a,34bとの接続部分において応力集中が生じるのも防止できる。   Even when the strength member 60 having such a structure according to the present embodiment is employed, durability and power generation efficiency can be improved by distributing the stress as in the first and second embodiments. In particular, by providing the connection bottom surface 64 and the inclined bottom surfaces 34a and 34b smoothly and continuously, it is possible to prevent stress concentration from occurring at the connection portion between the connection bottom surface 64 and the inclined bottom surfaces 34a and 34b.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態では、磁石42a,42bとヨーク部材44が強度部材12の前後両側に設けられた構造が例示されているが、磁石42a,42bとヨーク部材44は、前後何れか一方だけでも良い。更に、磁石42aと磁石42bは何れか一方だけでも良い。更にまた、例えば、磁石を強度部材と発電素子の間に配設することも可能であり、その場合には、ヨーク部材が不要となり得る。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, in the above-described embodiment, the structure in which the magnets 42a and 42b and the yoke member 44 are provided on both the front and rear sides of the strength member 12 is illustrated. However, the magnets 42a and 42b and the yoke member 44 may be only one of the front and rear. good. Furthermore, only one of the magnet 42a and the magnet 42b may be used. Furthermore, for example, a magnet can be disposed between the strength member and the power generation element, in which case the yoke member may be unnecessary.

また、コイル40は、閉磁路46上にあれば良く、例えば、並列に配された発電素子14と変形部28との両方に一つのコイル40が巻回されて、それら発電素子14と変形部28の両方がコイル40に挿通されていても良い。   Moreover, the coil 40 should just be on the closed magnetic circuit 46, for example, the one coil 40 is wound by both the power generation element 14 and the deformation | transformation part 28 which were distribute | arranged in parallel, these power generation element 14 and a deformation | transformation part. 28 may be inserted into the coil 40.

また、前記実施形態では、強度部材12の長さ方向において凹溝22の深さ寸法を変化させることで、変形部28の曲げ剛性を長さ方向に変化させているが、変形部の幅寸法を変化させることで、変形部の曲げ剛性を変化させることもできる。   Moreover, in the said embodiment, the bending rigidity of the deformation | transformation part 28 is changed to the length direction by changing the depth dimension of the ditch | groove 22 in the length direction of the strength member 12, However, The width dimension of a deformation | transformation part is changed. By changing, the bending rigidity of the deformed portion can be changed.

強度部材12の変形部28は、振動入力時の変形によって発電素子14に応力を生ぜしめるものであれば良く、例えば、発電素子14に対して傾斜していても良いし、発電素子14とは長さ方向の寸法が異なっていても良い。   The deformation portion 28 of the strength member 12 may be any member that generates stress in the power generation element 14 due to deformation during vibration input. For example, the deformation portion 28 may be inclined with respect to the power generation element 14. The lengthwise dimension may be different.

また、発電素子14の強度部材12への固定方法は、ねじ止めに限定されるものではなく、接着剤を用いた接着や、他部材と強度部材12の間で発電素子14を挟持するなどの方法も採用され得る。   Further, the fixing method of the power generation element 14 to the strength member 12 is not limited to screwing, and adhesion such as using an adhesive or sandwiching the power generation element 14 between another member and the strength member 12 is possible. A method may also be employed.

また、振動部材20に対する強度部材12の取付構造は、前記実施形態で例示したボルト固定に特に限定されるものではない。   Further, the attachment structure of the strength member 12 to the vibration member 20 is not particularly limited to the bolt fixing exemplified in the embodiment.

10:磁歪式振動発電装置、12,50,60:強度部材、14:発電素子、20:振動部材、22,52,62:凹溝、28:変形部、32:最深部、34,54:傾斜底面、36:R面、40:コイル、42:磁石、46:閉磁路 10: Magnetostrictive vibration power generator, 12, 50, 60: Strength member, 14: Power generation element, 20: Vibration member, 22, 52, 62: Concave groove, 28: Deformation part, 32: Deepest part, 34, 54: Inclined bottom surface, 36: R surface, 40: coil, 42: magnet, 46: closed magnetic circuit

Claims (8)

強磁性材料で形成されて振動部材に一端を固定される長手状の強度部材には磁歪材料で形成された発電素子が並列的に取り付けられて、該発電素子にバイアス磁界を印加する磁石が設けられていると共に、該発電素子を含んで構成される閉磁路上にコイルが巻回されて配設されており、該発電素子の歪みに対する透磁率の変化に基づいて該コイルに電圧が生じるようにされた磁歪式振動発電装置において、
前記発電素子と並列に配された前記強度部材の変形部における曲げ剛性が該強度部材の長さ方向で変化せしめられており、該変形部における曲げ剛性を最小とされた部分が該変形部の長さ方向中央よりも該強度部材の自由端側に偏倚していることを特徴とする磁歪式振動発電装置。
A longitudinal strength member made of a ferromagnetic material and fixed at one end to the vibration member is attached in parallel with a power generation element formed of a magnetostrictive material, and a magnet for applying a bias magnetic field to the power generation element is provided. And a coil is wound around a closed magnetic path including the power generation element so that a voltage is generated in the coil based on a change in permeability with respect to distortion of the power generation element. In the magnetostrictive vibration power generator
The bending rigidity in the deformed portion of the strength member arranged in parallel with the power generating element is changed in the length direction of the strength member, and the portion where the bending rigidity in the deformed portion is minimized is the deformation portion. A magnetostrictive vibration power generator characterized by being biased toward the free end side of the strength member from the center in the length direction.
前記強度部材の前記変形部における曲げ剛性を最小とされた部分が該強度部材の幅方向で直線的に延びている請求項1に記載の磁歪式振動発電装置。   The magnetostrictive vibration power generator according to claim 1, wherein a portion of the strength member where the bending rigidity of the deformed portion is minimized extends linearly in the width direction of the strength member. 前記強度部材における前記変形部よりも自由端側が固定端側より長尺とされている請求項1又は2に記載の磁歪式振動発電装置。   The magnetostrictive vibration power generator according to claim 1 or 2, wherein a free end side of the strength member is longer than a fixed end side of the deformable portion. 前記発電素子の曲げ剛性が前記変形部の最小曲げ剛性よりも小さくされている請求項1〜3の何れか一項に記載の磁歪式振動発電装置。   The magnetostrictive vibration power generator according to any one of claims 1 to 3, wherein a bending rigidity of the power generation element is smaller than a minimum bending rigidity of the deformable portion. 前記強度部材には長さ方向の中間部分を幅方向全長に亘って延びる凹溝が形成されており、前記発電素子が該凹溝を跨いで配設されて該強度部材における該凹溝の形成部分が前記変形部とされている請求項1〜4の何れか一項に記載の磁歪式振動発電装置。   The strength member is formed with a groove extending in the middle in the length direction over the entire length in the width direction, and the power generating element is disposed across the groove to form the groove in the strength member. The magnetostrictive vibration power generator according to any one of claims 1 to 4, wherein the portion is the deforming portion. 前記強度部材の長さ方向における前記凹溝の中間部分には深さが最大となる最深部を有しており、該最深部において該強度部材の曲げ剛性が最小とされていると共に、該凹溝の底壁内面には該最深部から該強度部材の長さ方向外方に行くに従って該凹溝の開口側に傾斜する傾斜底面が設けられている請求項5に記載の磁歪式振動発電装置。   An intermediate portion of the concave groove in the length direction of the strength member has a deepest portion having a maximum depth, and the bending rigidity of the strength member is minimized at the deepest portion, and the concave portion The magnetostrictive vibration power generator according to claim 5, wherein an inclined bottom surface is provided on the inner surface of the bottom wall of the groove so as to incline toward the opening side of the recessed groove as it goes outward in the length direction of the strength member from the deepest portion. . 前記凹溝の底壁内面が前記強度部材の長さ方向で湾曲する開口側に凹の湾曲面とされている請求項5又は6に記載の磁歪式振動発電装置。   The magnetostrictive vibration power generator according to claim 5 or 6, wherein the inner surface of the bottom wall of the concave groove is a concave curved surface on the opening side curved in the length direction of the strength member. 前記凹溝の開口縁部内面が凸形のR面とされている請求項5〜7の何れか一項に記載の磁歪式振動発電装置。   The magnetostrictive vibration power generator according to any one of claims 5 to 7, wherein an inner surface of the opening edge of the groove is a convex R surface.
JP2014094223A 2014-04-30 2014-04-30 Magnetostrictive vibration power generator Expired - Fee Related JP6232337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094223A JP6232337B2 (en) 2014-04-30 2014-04-30 Magnetostrictive vibration power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094223A JP6232337B2 (en) 2014-04-30 2014-04-30 Magnetostrictive vibration power generator

Publications (2)

Publication Number Publication Date
JP2015211626A true JP2015211626A (en) 2015-11-24
JP6232337B2 JP6232337B2 (en) 2017-11-15

Family

ID=54613443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094223A Expired - Fee Related JP6232337B2 (en) 2014-04-30 2014-04-30 Magnetostrictive vibration power generator

Country Status (1)

Country Link
JP (1) JP6232337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124017A (en) * 2019-01-29 2020-08-13 住友金属鉱山株式会社 Vibration power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117939A (en) * 2007-11-02 2009-05-28 Epson Toyocom Corp Piezoelectric vibration chip, piezoelectric vibrator, and acceleration sensor
JP2010230031A (en) * 2009-03-26 2010-10-14 Tokai Rubber Ind Ltd Leaf spring suspension type damping device
WO2010147080A1 (en) * 2009-06-15 2010-12-23 株式会社村田製作所 Piezoelectric electricity-generating device
JP2013146143A (en) * 2012-01-13 2013-07-25 Kohei Hayamizu Vibration force power generating apparatus
JP2014023368A (en) * 2012-07-23 2014-02-03 Mitsumi Electric Co Ltd Power generation element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117939A (en) * 2007-11-02 2009-05-28 Epson Toyocom Corp Piezoelectric vibration chip, piezoelectric vibrator, and acceleration sensor
JP2010230031A (en) * 2009-03-26 2010-10-14 Tokai Rubber Ind Ltd Leaf spring suspension type damping device
WO2010147080A1 (en) * 2009-06-15 2010-12-23 株式会社村田製作所 Piezoelectric electricity-generating device
JP2013146143A (en) * 2012-01-13 2013-07-25 Kohei Hayamizu Vibration force power generating apparatus
JP2014023368A (en) * 2012-07-23 2014-02-03 Mitsumi Electric Co Ltd Power generation element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124017A (en) * 2019-01-29 2020-08-13 住友金属鉱山株式会社 Vibration power generation device
JP7172660B2 (en) 2019-01-29 2022-11-16 住友金属鉱山株式会社 Vibration power generation device

Also Published As

Publication number Publication date
JP6232337B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US10491090B2 (en) Vibrating motor and electronic device
US10847296B2 (en) Vibration generating device
JP5088348B2 (en) Electromagnet device and electromagnetic contactor
JP5637028B2 (en) Vibration generator
WO2020079863A1 (en) Power generation element and actuator
WO2014119202A1 (en) Magnetostrictive vibration power generation device
JP6232337B2 (en) Magnetostrictive vibration power generator
JP6125344B2 (en) Magnetostrictive vibration power generator
JP6155009B2 (en) Power generator
WO2015162988A1 (en) Electricity generation device
KR101601620B1 (en) Movable element and linear motor provided with same
JP5414419B2 (en) Ribbon microphone unit and ribbon microphone
JP6125366B2 (en) Vibration power generator using magnetostrictive element
JP2016077037A (en) Power generation device, and design method for power generation device
JP4734757B2 (en) Three-phase winding core
JP7228959B2 (en) vibration motor
WO2019130862A1 (en) Power generation device
JP2013208026A (en) Power generation element
US20200021917A1 (en) Speaker
JP6239431B2 (en) Power generation element
TWI835777B (en) Power generation components and actuators
JP6068187B2 (en) Power generation element
JP6240556B2 (en) Magnetostrictive vibration power generator
JP6239411B2 (en) Power generator
JP2006351673A (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6232337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees