JP2015210976A - Method of manufacturing separator of fuel battery and thermal crimping device - Google Patents
Method of manufacturing separator of fuel battery and thermal crimping device Download PDFInfo
- Publication number
- JP2015210976A JP2015210976A JP2014092585A JP2014092585A JP2015210976A JP 2015210976 A JP2015210976 A JP 2015210976A JP 2014092585 A JP2014092585 A JP 2014092585A JP 2014092585 A JP2014092585 A JP 2014092585A JP 2015210976 A JP2015210976 A JP 2015210976A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- sheet member
- heating
- filler
- thermocompression bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000002788 crimping Methods 0.000 title abstract 2
- 238000010438 heat treatment Methods 0.000 claims abstract description 95
- 239000000945 filler Substances 0.000 claims abstract description 58
- 239000000463 material Substances 0.000 claims abstract description 42
- 239000011248 coating agent Substances 0.000 claims abstract description 23
- 238000000576 coating method Methods 0.000 claims abstract description 23
- 239000011230 binding agent Substances 0.000 claims abstract description 13
- 229920005989 resin Polymers 0.000 claims abstract description 6
- 239000011347 resin Substances 0.000 claims abstract description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 6
- 229920001971 elastomer Polymers 0.000 claims description 20
- 238000003825 pressing Methods 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 4
- 239000013013 elastic material Substances 0.000 claims description 3
- 238000004381 surface treatment Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910002804 graphite Inorganic materials 0.000 abstract description 4
- 239000010439 graphite Substances 0.000 abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 4
- 239000010935 stainless steel Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 16
- 239000012528 membrane Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 12
- 239000004744 fabric Substances 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池のセパレータの製造方法及び同セパレータの製造に適する熱圧着装置に関する。 The present invention relates to a method of manufacturing a separator for a fuel cell and a thermocompression bonding apparatus suitable for manufacturing the separator.
従来、ステンレス鋼板などの金属板材をプレス成形することにより固体高分子型燃料電池のセパレータを製造する技術が周知である(特許文献1参照)。こうしたセパレータの基材の表面には酸化被膜が存在しており、こうした酸化被膜は基材本体に比べて電気抵抗が大きい。そのため、燃料電池の発電時に、セパレータの表面と膜電極接合体との接触部分で多量のジュール熱が発生することとなり、燃料電池の発電効率を低下させる一因となっている。 2. Description of the Related Art Conventionally, a technique for producing a polymer electrolyte fuel cell separator by press-molding a metal plate such as a stainless steel plate is well known (see Patent Document 1). An oxide film is present on the surface of the base material of such a separator, and such an oxide film has a higher electrical resistance than the base body. Therefore, during power generation of the fuel cell, a large amount of Joule heat is generated at the contact portion between the separator surface and the membrane electrode assembly, which is a cause of reducing the power generation efficiency of the fuel cell.
これに対して、特許文献1では、基材の表面を酸洗することによって酸化被膜を除去し、その表面に、グラファイト粉末とカーボンブラックとの混合粉末を含む塗膜を形成するようにしている。こうしたセパレータによれば酸化被膜が除去されることによって基材の表面の電気抵抗が小さくなることから、セパレータと膜電極接合体との接触抵抗が低下するとされている。 On the other hand, in Patent Document 1, an oxide film is removed by pickling the surface of the base material, and a coating film containing a mixed powder of graphite powder and carbon black is formed on the surface. . According to such a separator, the electrical resistance of the surface of the base material is reduced by removing the oxide film, so that the contact resistance between the separator and the membrane electrode assembly is reduced.
ところが、特許文献1に記載の技術の場合、セパレータの基材の表面を酸洗する必要があるため、セパレータの製造が煩雑となる。
本発明の目的は、接触抵抗の小さい燃料電池のセパレータを効率よく容易に製造することができる燃料電池のセパレータの製造方法を提供することにある。
However, in the case of the technique described in Patent Document 1, since the surface of the separator substrate needs to be pickled, the manufacture of the separator becomes complicated.
The objective of this invention is providing the manufacturing method of the separator of a fuel cell which can manufacture the separator of a fuel cell with small contact resistance efficiently and easily.
また、本発明の他の目的は、稼動効率を高めることができる熱圧着装置を提供することにある。 Another object of the present invention is to provide a thermocompression bonding apparatus that can increase the operation efficiency.
上記目的を達成するための燃料電池のセパレータの製造方法は、金属材料よりなる基材の表面に、熱硬化性樹脂よりなる結合材と前記基材の被膜よりも硬度が高く、且つ導電性を有する第1充填材とを含む第1の層を形成し、同第1の層の表面に前記第1充填材よりも硬度が低く、且つ導電性を有する第2充填材を含む第2の層を形成してワークを形成する第1工程と、熱圧着装置の上型の加熱部の下面と下型の加熱部の上面との間においてこれら加熱部から離間された位置に前記ワークを載置する第2工程と、前記上型の加熱部の下面と前記下型の加熱部の上面とにより前記ワークを挟圧しつつ加熱する第3工程と、を備える。 In order to achieve the above object, a method of manufacturing a separator for a fuel cell is characterized in that the surface of a base material made of a metal material has a higher hardness and higher conductivity than a binder made of a thermosetting resin and the coating film of the base material. A first layer including the first filler and a second layer including a second filler having a lower hardness than the first filler and having conductivity on the surface of the first layer. The workpiece is placed at a position spaced apart from the heating unit between the lower surface of the upper heating unit of the thermocompression bonding apparatus and the upper surface of the lower heating unit. And a third step of heating while pressing the workpiece between the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit.
同方法によれば、熱圧着装置の上型の加熱部の下面と下型の加熱部の上面との間においてこれら加熱部から離間された位置にワークが載置され、その状態からワークが加圧されるとともに加熱される。このため、ワークが加圧される前に、下型の加熱部の上面にワークが当接することはなく、加熱部からの受熱によってワークの温度が上昇して結合材が硬化することを抑制することができる。このように、結合材が硬化する前にワークを加圧することによって、結合材の間を第1充填材及び第2充填材が移動しやすくなる。従って、第1充填材を、基材の被膜を貫通させて母材に接触させるとともに、第1充填材と第2充填材とを互いに接触させることができる。すなわち、基材と第1充填材との界面や、第1充填材と第2充填材との界面に結合材の層が形成されることを抑制することができる。 According to this method, the work is placed at a position spaced apart from the lower surface of the upper heating unit of the thermocompression bonding apparatus and the upper surface of the lower heating unit, and the work is added from that state. Pressed and heated. For this reason, before the work is pressurized, the work does not come into contact with the upper surface of the lower heating part, and the temperature of the work rises due to the heat received from the heating part and the bonding material is hardened. be able to. Thus, by pressurizing the workpiece before the binder is cured, the first filler and the second filler are easily moved between the binders. Therefore, the first filler can be brought into contact with the base material through the coating of the base material, and the first filler and the second filler can be brought into contact with each other. That is, it is possible to suppress the formation of the binder layer at the interface between the base material and the first filler or at the interface between the first filler and the second filler.
これらのことから、基材の表面に被膜が存在していても、基材の母材、第1充填材、及び第2充填材によって、電気抵抗の大きい被膜を経由しない導電経路が形成される。また、結合材の表面が、第1充填材に比べて硬度の低い第2充填材によって覆われるため、セパレータが接触する膜電極接合体などが傷つくことを抑制することができる。 For these reasons, even if a coating film is present on the surface of the substrate, a conductive path that does not pass through the coating film having a large electrical resistance is formed by the base material, the first filler, and the second filler of the substrate. . Moreover, since the surface of the binding material is covered with the second filler having a lower hardness than the first filler, it is possible to suppress damage to the membrane electrode assembly and the like with which the separator contacts.
また、上記方法によれば、直前のワークの熱圧着工程において加熱部が加熱されていた場合であっても、ワークを載置する際に加熱部が冷却されるまで待つ必要がない。
また、上記目的を達成するための熱圧着装置は、加熱部をそれぞれ有する上型及び下型を備え、前記上型の加熱部の下面と前記下型の加熱部の上面とによりワークを挟圧しつつ加熱することにより同ワークの表面処理を行なう熱圧着装置であって、前記上型の加熱部の下面と前記下型の加熱部の上面との間においてこれら加熱部から離間された位置で前記ワークを支持可能な支持部材が設けられている。
Moreover, according to the said method, even if it is a case where the heating part is heated in the thermocompression bonding process of the workpiece | work just before, it is not necessary to wait until a heating part is cooled when mounting a workpiece | work.
In addition, a thermocompression bonding apparatus for achieving the above object includes an upper mold and a lower mold each having a heating unit, and a workpiece is sandwiched between the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit. A thermocompression bonding apparatus that performs surface treatment of the workpiece by heating while being heated at a position spaced apart from these heating parts between the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit. A support member capable of supporting the workpiece is provided.
同構成によれば、上型の加熱部の下面と下型の加熱部の上面とから離間された位置で支持部材によってワークが支持され、その状態から上型を下降させることによりワークを加圧するとともに加熱することができる。このため、ワークが加圧される前に、下型の加熱部の上面にワークが当接することはなく、加熱部からの受熱によってワークの温度が上昇することを抑制することができる。このことにより、ワークが加圧される前に同ワークの温度上昇が進むことに起因して同ワークの熱圧着を適切に行なうことができないといった問題の発生を抑制することができる。 According to this configuration, the work is supported by the support member at a position separated from the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit, and the upper mold is lowered from that state to pressurize the work. Can be heated together. For this reason, before a workpiece | work is pressurized, a workpiece | work does not contact | abut on the upper surface of a lower mold | type heating part, and it can suppress that the temperature of a workpiece | work raises by the heat receiving from a heating part. As a result, it is possible to suppress the occurrence of a problem that the workpiece cannot be properly thermocompression bonded due to the temperature rise of the workpiece before the workpiece is pressurized.
また、上記構成によれば、直前のワークの熱圧着工程において加熱部が加熱されていた場合であっても、ワークを載置する際に加熱部が冷却されるまで待つ必要がない。 Moreover, according to the said structure, even if it is a case where the heating part is heated in the thermocompression bonding process of the workpiece | work just before, it is not necessary to wait until a heating part is cooled when mounting a workpiece | work.
本発明によれば、接触抵抗の小さい燃料電池のセパレータを効率よく容易に製造することができる。また、本発明によれば、熱圧着装置の稼動効率を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, the separator of a fuel cell with small contact resistance can be manufactured efficiently and easily. Moreover, according to this invention, the operating efficiency of a thermocompression bonding apparatus can be improved.
以下、図1〜図7を参照して、一実施形態について説明する。
固体高分子型燃料電池(以下、燃料電池と略称する。)は、膜電極接合体91と、膜電極接合体91を挟む一対のセパレータ92,93とを有するセル90を備え、セル90が積層されることによって構成されている。膜電極接合体91は、固体高分子膜よりなる電解質膜が図示しない燃料極と空気極とによって挟まれたものであり、所謂MEA(Membrane Electrode Assembly)と称される。
Hereinafter, an embodiment will be described with reference to FIGS.
A polymer electrolyte fuel cell (hereinafter abbreviated as a fuel cell) includes a cell 90 having a membrane electrode assembly 91 and a pair of separators 92 and 93 sandwiching the membrane electrode assembly 91, and the cells 90 are stacked. It is configured by being. The membrane electrode assembly 91 is formed by sandwiching an electrolyte membrane made of a solid polymer membrane between a fuel electrode and an air electrode (not shown), and is referred to as so-called MEA (Membrane Electrode Assembly).
図1及び図2に示すように、第1セパレータ92の下面及び上面には、凹溝92a,92bが交互に形成されている。第1セパレータ92の下面には膜電極接合体91が接しており、第1セパレータ92の上面にはフラットセパレータ94が接している。第1セパレータ92の下面側、すなわち膜電極接合体91側の凹溝92aが燃料ガスの流路とされ、第1セパレータ92の上面側、すなわちフラットセパレータ94側の凹溝92bが冷却水の流路とされている。 As shown in FIGS. 1 and 2, concave grooves 92 a and 92 b are alternately formed on the lower surface and the upper surface of the first separator 92. The membrane electrode assembly 91 is in contact with the lower surface of the first separator 92, and the flat separator 94 is in contact with the upper surface of the first separator 92. The concave surface 92a on the lower surface side of the first separator 92, that is, the membrane electrode assembly 91 side is used as a fuel gas flow path, and the upper surface side of the first separator 92, that is, the concave groove 92b on the flat separator 94 side, It is considered a road.
図1に示すように、第2セパレータ93は、フラットセパレータ94と、フラットセパレータ94と膜電極接合体91との間に介設された多孔体流路板95とによって構成されている。フラットセパレータ94及び多孔体流路板95は共にステンレス鋼板によって形成されている。 As shown in FIG. 1, the second separator 93 includes a flat separator 94 and a porous channel plate 95 interposed between the flat separator 94 and the membrane electrode assembly 91. Both the flat separator 94 and the porous channel plate 95 are formed of stainless steel plates.
多孔体流路板95には、多数の貫通孔96aが形成されており、これら貫通孔96aによって酸化剤ガスの流路96が構成されている。
図3に示すように、第1セパレータ92の基材51における膜電極接合体91に接する表面及びフラットセパレータ94に接する表面には、導電性を有する塗膜58が形成されている。
A large number of through-holes 96a are formed in the porous flow path plate 95, and an oxidant gas flow path 96 is constituted by these through-holes 96a.
As shown in FIG. 3, a conductive coating 58 is formed on the surface of the substrate 51 of the first separator 92 that contacts the membrane electrode assembly 91 and the surface that contacts the flat separator 94.
この塗膜58は、エポキシ樹脂などの熱硬化性樹脂よりなる結合材53と、基材51の酸化被膜51bよりも硬度が高く、且つ導電性を有する粒状の窒化チタンよりなる第1充填材54と、粒状のグラファイトよりなる第2充填材56とが含まれている。グラファイトは窒化チタンよりも硬度が低く、且つ導電性を有する材料である。第1充填材54は塗膜58の厚さ方向において基材51側に多く分布しており、その一部は基材51の酸化被膜51bを貫通して基材本体51aに接触している。また、第2充填材56は塗膜58の厚さ方向において塗膜58の表面側に多く分布しており、その一部は第1充填材54と接触している。 The coating 58 includes a binder 53 made of a thermosetting resin such as an epoxy resin, and a first filler 54 made of granular titanium nitride having higher hardness and conductivity than the oxide coating 51b of the base 51. And a second filler 56 made of granular graphite. Graphite is a material having lower hardness than titanium nitride and having conductivity. A large amount of the first filler 54 is distributed on the substrate 51 side in the thickness direction of the coating film 58, and a part of the first filler 54 penetrates through the oxide film 51 b of the substrate 51 and is in contact with the substrate body 51 a. The second filler 56 is distributed in a large amount on the surface side of the coating film 58 in the thickness direction of the coating film 58, and a part of the second filler 56 is in contact with the first filler 54.
次に、第1セパレータ92の製造の手順について説明する。
第1セパレータ92の製造に際しては、まず、図示しないプレス装置によってステンレス鋼板をプレス成形することにより図2に示す所定の凹凸形状を有する基材51が形成される。
Next, a procedure for manufacturing the first separator 92 will be described.
When the first separator 92 is manufactured, first, a stainless steel plate is press-formed by a pressing device (not shown) to form the base material 51 having a predetermined uneven shape shown in FIG.
次に、図4(a)に示すように、基材51の表面に対して、上記結合材53と第1充填材54とを含む第1の塗料が塗布されて第1の層52が形成される。
次に、図4(b)に示すように、第1の層52の表面に上記第2充填材56よりなる第2の塗料が塗布されて第2の層55が形成されることによりワーク50が形成される。なお、第1の層52及び第2の層55を形成する工程が第1工程に相当する。
Next, as shown in FIG. 4A, the first layer 52 is formed by applying the first paint containing the binding material 53 and the first filler 54 to the surface of the base material 51. Is done.
Next, as shown in FIG. 4B, the second layer 55 is formed by applying the second paint made of the second filler 56 to the surface of the first layer 52, thereby forming the workpiece 50. Is formed. Note that the step of forming the first layer 52 and the second layer 55 corresponds to the first step.
ここで、第1の層52及び第2の層55を基材51の表面に熱圧着するための熱圧着装置10の構成について説明する。
図5(a),(b)に示すように、熱圧着装置10は、下型20と、下型20に固設され、上方に向けて延びる案内柱12と、下型20の上方に位置し、案内柱12により案内されることで上下降可能に設けられた上型30とを備えている。下型20は金属材料よりなり、中央部が上方に突出された加熱部21を有しており、加熱部21には電熱線22が内蔵されている。上型30は金属材料よりなり、中央部が下方に突出された加熱部31を有しており、加熱部31には電熱線32が内蔵されている。
Here, the configuration of the thermocompression bonding apparatus 10 for thermocompression bonding the first layer 52 and the second layer 55 to the surface of the substrate 51 will be described.
As shown in FIGS. 5A and 5B, the thermocompression bonding apparatus 10 is positioned above the lower mold 20, the guide pillar 12 fixed to the lower mold 20 and extending upward, and the lower mold 20. And an upper mold 30 provided so as to be able to move up and down by being guided by the guide pillar 12. The lower mold 20 is made of a metal material, and has a heating portion 21 whose central portion protrudes upward, and a heating wire 22 is built in the heating portion 21. The upper mold 30 is made of a metal material, and has a heating part 31 whose central part protrudes downward, and a heating wire 32 is built in the heating part 31.
下型20の加熱部21の上部及び上型30の加熱部31の上部には、弾性材料よりなるシート部材40が接着されている。
図6に示すように、シート部材40は、フッ素ゴムなどの耐熱性のゴム材料よりなる一対のゴムシート41と、一対のゴムシート41の間に接着されたガラス繊維よりなる補強クロス42と、を有している。
A sheet member 40 made of an elastic material is bonded to the upper part of the heating part 21 of the lower mold 20 and the upper part of the heating part 31 of the upper mold 30.
As shown in FIG. 6, the sheet member 40 includes a pair of rubber sheets 41 made of a heat-resistant rubber material such as fluororubber, a reinforcing cloth 42 made of glass fibers bonded between the pair of rubber sheets 41, have.
図5(a),(b)に示すように、下型20には、下型20のシート部材40の上面と上型30のシート部材40の下面との間においてこれらシート部材40から離間された位置でワーク50を支持可能な複数の支持部材27がシート部材40を挟んで複数設けられている。支持部材27の下端は、下型20の収容孔25内に、ばね28を介して収容されている。このため、支持部材27は、ばね28によって上方に向けて付勢されている。図5(a)に示すように、支持部材27の支持面27aは、下型20のシート部材40及び上型30のシート部材40がワーク50から離間している状態において、下型20のシート部材40の上面と、上型30のシート部材40の下面との間に位置している。 As shown in FIGS. 5A and 5B, the lower mold 20 is separated from the sheet member 40 between the upper surface of the sheet member 40 of the lower mold 20 and the lower surface of the sheet member 40 of the upper mold 30. A plurality of support members 27 that can support the workpiece 50 at a certain position are provided across the sheet member 40. The lower end of the support member 27 is accommodated in the accommodation hole 25 of the lower mold 20 via a spring 28. For this reason, the support member 27 is urged upward by the spring 28. As shown in FIG. 5A, the support surface 27 a of the support member 27 is configured such that the sheet member 40 of the lower mold 20 and the sheet member 40 of the upper mold 30 are separated from the workpiece 50 in the state where the sheet member 40 of the lower mold 20 is separated from the workpiece 50. It is located between the upper surface of the member 40 and the lower surface of the sheet member 40 of the upper mold 30.
次に、ワーク50の表面に第1の層52及び第2の層55を熱圧着して塗膜58を形成する手順について説明する。
図5(a)に示すように、熱圧着に際しては、まず、熱圧着装置10における支持部材27の支持面27a上にワーク50が載置される(第2工程)。なお、シート部材40とワーク50との間に、必要に応じて離型紙を配置してもよい。
Next, a procedure for forming the coating film 58 by thermocompression bonding the first layer 52 and the second layer 55 to the surface of the work 50 will be described.
As shown in FIG. 5A, in thermocompression bonding, first, the workpiece 50 is placed on the support surface 27a of the support member 27 in the thermocompression bonding apparatus 10 (second process). Note that a release paper may be disposed between the sheet member 40 and the workpiece 50 as necessary.
次に、上型30を下降させていくと、上型30のシート部材40の下面がワーク50の上面に当接される。その後、ばね28の付勢力に抗して上型30を更に下降させていくと、ワーク50の周縁及び支持部材27を介してばね28が圧縮されることで支持部材27の下降が許容され、図5(b)に示すように、ワーク50の下面が下型20のシート部材40の上面に当接される。このようにして上型30のシート部材40と下型20のシート部材40とによってワーク50が挟圧される。 Next, when the upper mold 30 is lowered, the lower surface of the sheet member 40 of the upper mold 30 is brought into contact with the upper surface of the workpiece 50. Thereafter, when the upper mold 30 is further lowered against the urging force of the spring 28, the spring 28 is compressed via the peripheral edge of the workpiece 50 and the support member 27, thereby allowing the support member 27 to be lowered. As shown in FIG. 5B, the lower surface of the work 50 is brought into contact with the upper surface of the sheet member 40 of the lower mold 20. In this way, the workpiece 50 is pinched by the sheet member 40 of the upper mold 30 and the sheet member 40 of the lower mold 20.
その後、ワーク50が加圧された状態のままで電熱線22,32に電流を供給することにより、ワーク50が所定の温度まで加熱される(第3工程)。この所定の温度は、熱硬化性樹脂である結合材53が硬化する温度であり、百数十℃〜二百数十℃程度である。 Thereafter, the work 50 is heated to a predetermined temperature by supplying current to the heating wires 22 and 32 while the work 50 is being pressurized (third step). This predetermined temperature is a temperature at which the binding material 53, which is a thermosetting resin, is cured, and is about a few hundred tens of degrees Celsius to two hundreds tens of degrees Celsius.
その後、電熱線22,32への電流の供給を停止し、上型30を上昇させていくと、ばね28の付勢力によって支持部材27と共にワーク50が図5(a)に示す位置まで上昇され、下型20の加熱部21のシート部材40の上面からワーク50が離間する。 Thereafter, when the supply of current to the heating wires 22 and 32 is stopped and the upper mold 30 is raised, the work 50 is lifted to the position shown in FIG. The workpiece 50 is separated from the upper surface of the sheet member 40 of the heating unit 21 of the lower mold 20.
次に、本実施形態の作用について説明する。
上型30のシート部材40の下面と下型20のシート部材40の上面との間においてこれらシート部材40から離間された位置にワーク50が載置され、その状態からワーク50が加圧されるとともに加熱される。このため、ワーク50が加圧される前に、下型20のシート部材40の上面にワーク50が当接することはなく、シート部材40からの受熱によってワーク50の温度が上昇して結合材53が硬化することを抑制することができる。このように、結合材53が硬化する前にワーク50を加圧することによって、結合材53の間を第1充填材54及び第2充填材56が移動しやすくなる。従って、第1充填材54を、基材51の酸化被膜51bを貫通させて基材本体51aに接触させるとともに、第1充填材54と第2充填材56とを互いに接触させることができる。すなわち、基材51と第1充填材54との界面や、第1充填材54と第2充填材56との界面に結合材53の層が形成されることを抑制することができる。
Next, the operation of this embodiment will be described.
The workpiece 50 is placed between the lower surface of the sheet member 40 of the upper mold 30 and the upper surface of the sheet member 40 of the lower mold 20 at a position separated from the sheet member 40, and the workpiece 50 is pressurized from this state. Heated with. For this reason, before the work 50 is pressurized, the work 50 does not come into contact with the upper surface of the sheet member 40 of the lower mold 20, and the temperature of the work 50 rises due to heat received from the sheet member 40, and the bonding material 53. Can be cured. As described above, the first filler 54 and the second filler 56 are easily moved between the binders 53 by pressurizing the workpiece 50 before the binder 53 is cured. Therefore, the first filler 54 can be brought into contact with the substrate main body 51a through the oxide film 51b of the substrate 51, and the first filler 54 and the second filler 56 can be brought into contact with each other. That is, it is possible to suppress the formation of the layer of the binding material 53 at the interface between the base material 51 and the first filler 54 or at the interface between the first filler 54 and the second filler 56.
これに対して、支持部材27を備えていない熱圧着装置を用いて熱圧着を行なった場合には、下型20のシート部材40の上面にワーク50が載置されることとなる。そのため、シート部材40からの受熱によってワーク50の温度が上昇し、ワーク50が加圧される前に結合材53が硬化することとなる。その結果、結合材53の間を第1充填材54及び第2充填材56が移動することはほとんどなく、図7に示すように、基材51と第1充填材54との界面や、第1充填材54と第2充填材56との界面に結合材53の層が形成されることとなる。また、冷却された状態の加熱部31,21によってワーク50を挟圧し、その状態から加熱部31,21を加熱することが考えられるが、この場合には、直前のワーク50の熱圧着工程において加熱部31,21が加熱されていた場合には、加熱部31,21が冷却されるまで待たなければならず、熱圧着装置10の稼動効率を高めることが困難となる。 On the other hand, when thermocompression bonding is performed using a thermocompression bonding apparatus that does not include the support member 27, the work 50 is placed on the upper surface of the sheet member 40 of the lower mold 20. Therefore, the temperature of the workpiece 50 rises due to the heat received from the sheet member 40, and the binding material 53 is cured before the workpiece 50 is pressurized. As a result, the first filler 54 and the second filler 56 hardly move between the binders 53, and as shown in FIG. 7, the interface between the base material 51 and the first filler 54, A layer of the binder 53 is formed at the interface between the first filler 54 and the second filler 56. In addition, it is conceivable that the workpiece 50 is clamped by the cooled heating units 31 and 21 and the heating units 31 and 21 are heated from that state. In this case, in the thermocompression bonding process of the immediately preceding workpiece 50. When the heating units 31 and 21 are heated, it is necessary to wait until the heating units 31 and 21 are cooled, and it is difficult to increase the operation efficiency of the thermocompression bonding apparatus 10.
これらのことから、本実施形態によれば、基材51の表面に酸化被膜51bが存在していても、基材51の基材本体51a、第1充填材54、及び第2充填材56によって、電気抵抗の大きい酸化被膜51bを経由しない導電経路が形成される。また、結合材53の表面が、柔らかい第2充填材56によって覆われるため、第1セパレータ92が接触する膜電極接合体91などが傷つくことを抑制することができる。 From these things, according to this embodiment, even if the oxide film 51b exists on the surface of the base 51, the base body 51a of the base 51, the first filler 54, and the second filler 56 Thus, a conductive path that does not pass through the oxide film 51b having a large electric resistance is formed. In addition, since the surface of the binding material 53 is covered with the soft second filler 56, it is possible to prevent the membrane electrode assembly 91 and the like that are in contact with the first separator 92 from being damaged.
また、直前のワーク50の熱圧着工程において加熱部31,21が加熱されていた場合であっても、ワーク50を載置する際に加熱部31,21が冷却されるまで待つ必要がない。よって、熱圧着装置10の稼動効率を高めることができ、接触抵抗の小さい第1セパレータ92を効率よく製造することができる。 Even when the heating units 31 and 21 are heated in the thermocompression bonding process of the immediately preceding workpiece 50, there is no need to wait until the heating units 31 and 21 are cooled when the workpiece 50 is placed. Therefore, the operating efficiency of the thermocompression bonding apparatus 10 can be increased, and the first separator 92 having a small contact resistance can be efficiently manufactured.
以上説明した本実施形態に係る燃料電池のセパレータの製造方法及び熱圧着装置によれば、以下に示す効果が得られるようになる。
(1)第1セパレータ92の製造方法は、基材51の表面に、熱硬化性樹脂よりなる結合材53と第1充填材54とを含む第1の塗料を塗布して第1の層52を形成し、第1の層52の表面に第1充填材54よりも硬度が低い第2充填材56を含む第2の塗料を塗布して第2の層55を形成することによりワーク50を形成する第1工程を備える。また、上記製造方法は、熱圧着装置10の上型30の加熱部31に設けられたシート部材40の下面と下型20の加熱部21に設けられたシート部材40の上面との間においてこれらシート部材40から離間された位置にワーク50を載置する第2工程を備える。また、上記製造方法は、上型30のシート部材40の下面と下型20のシート部材40の上面とによりワーク50を挟圧しつつ加熱する第3工程と、を備える。
According to the separator manufacturing method and the thermocompression bonding apparatus according to the present embodiment described above, the following effects can be obtained.
(1) The manufacturing method of the 1st separator 92 applies the 1st coating material which contains the binder 53 and the 1st filler 54 which consist of a thermosetting resin to the surface of the base material 51, and is the 1st layer 52. The second layer 55 is formed by applying a second paint containing a second filler 56 having a hardness lower than that of the first filler 54 to the surface of the first layer 52, thereby forming the workpiece 50. A first step of forming. Further, the manufacturing method described above is performed between the lower surface of the sheet member 40 provided in the heating unit 31 of the upper mold 30 of the thermocompression bonding apparatus 10 and the upper surface of the sheet member 40 provided in the heating unit 21 of the lower mold 20. A second step of placing the workpiece 50 at a position separated from the sheet member 40 is provided. The manufacturing method includes a third step of heating the workpiece 50 while pressing the workpiece 50 between the lower surface of the sheet member 40 of the upper mold 30 and the upper surface of the sheet member 40 of the lower mold 20.
上記方法によれば、ワーク50が加圧される前に、下型20のシート部材40の上面にワーク50が当接することはなく、シート部材40からの受熱によってワーク50の温度が上昇することを抑制することができる。このため、第1充填材54を、基材51の酸化被膜51bを貫通させて基材本体51aに接触させるとともに、第1充填材54と第2充填材56とを互いに接触させることができる。従って、基材51の表面に酸化被膜51bが存在していても、基材51の基材本体51a、第1充填材54、及び第2充填材56によって、電気抵抗の大きい酸化被膜51bを経由しない導電経路が形成される。また、結合材53の表面が、第1充填材54よりも硬度が低い第2充填材56によって覆われるため、第1セパレータ92が接触する膜電極接合体91などが傷つくことを適切に抑制することができる。 According to the above method, the workpiece 50 does not contact the upper surface of the sheet member 40 of the lower mold 20 before the workpiece 50 is pressurized, and the temperature of the workpiece 50 rises due to heat received from the sheet member 40. Can be suppressed. Therefore, the first filler 54 can be brought into contact with the base body 51a through the oxide film 51b of the base 51, and the first filler 54 and the second filler 56 can be brought into contact with each other. Therefore, even if the oxide film 51b exists on the surface of the base material 51, the base material body 51a, the first filler 54, and the second filler 56 of the base material 51 pass through the oxide film 51b having a large electric resistance. A conductive path is formed. Further, since the surface of the binding material 53 is covered with the second filler 56 having a hardness lower than that of the first filler 54, the membrane electrode assembly 91 and the like with which the first separator 92 contacts are appropriately prevented from being damaged. be able to.
また、上記方法によれば、直前のワーク50の熱圧着工程において加熱部31,21が加熱されていた場合であっても、ワーク50を載置する際に加熱部31,21が冷却されるまで待つ必要がない。よって、接触抵抗の小さい第1セパレータ92を効率よく容易に製造することができる。 Moreover, according to the said method, even if it is a case where the heating parts 31 and 21 are heated in the thermocompression bonding process of the workpiece | work 50 immediately before, the heating parts 31 and 21 are cooled when mounting the workpiece | work 50. There is no need to wait until. Therefore, the 1st separator 92 with small contact resistance can be manufactured efficiently and easily.
(2)熱圧着装置10は、加熱部31,21をそれぞれ有する上型30及び下型20を備え、上型30の加熱部31の下面と下型20の加熱部21の上面とによりワーク50を挟圧しつつ加熱することによりワーク50の表面処理を行なう。上型30の加熱部31に設けられたシート部材40の下面と下型20の加熱部21に設けられたシート部材40の上面との間においてこれらシート部材40から離間された位置でワーク50を支持可能な支持部材27が設けられている。 (2) The thermocompression bonding apparatus 10 includes an upper mold 30 and a lower mold 20 each having heating units 31 and 21, and the work 50 is formed by the lower surface of the heating unit 31 of the upper mold 30 and the upper surface of the heating unit 21 of the lower mold 20. The surface treatment of the workpiece 50 is performed by heating while pressing. The workpiece 50 is placed at a position spaced from the sheet member 40 between the lower surface of the sheet member 40 provided in the heating unit 31 of the upper mold 30 and the upper surface of the sheet member 40 provided in the heating unit 21 of the lower mold 20. A support member 27 that can be supported is provided.
こうした構成によれば、直前のワーク50の熱圧着工程において加熱部31,21が加熱されていた場合であっても、ワーク50を載置する際に加熱部31,21が冷却されるまで待つ必要がないため、熱圧着装置10の稼動効率を高めることができる。 According to such a configuration, even when the heating units 31 and 21 are heated in the thermocompression bonding process of the immediately preceding workpiece 50, the process waits until the heating units 31 and 21 are cooled when the workpiece 50 is placed. Since it is not necessary, the operating efficiency of the thermocompression bonding apparatus 10 can be increased.
(3)支持部材27は、下型20のシート部材40を挟んで複数設けられている。下型20には、支持部材27を上方に向けて付勢するばね28が設けられている。
こうした構成によれば、下型20のシート部材40の上面からワーク50が離間されている位置と、同シート部材40の上面にワーク50が当接されている位置との間において、支持部材27を変位させることがばね28によって容易にできる。
(3) A plurality of support members 27 are provided across the sheet member 40 of the lower mold 20. The lower mold 20 is provided with a spring 28 that urges the support member 27 upward.
According to such a configuration, the support member 27 is between the position where the work 50 is separated from the upper surface of the sheet member 40 of the lower mold 20 and the position where the work 50 is in contact with the upper surface of the sheet member 40. Can be easily displaced by the spring 28.
(4)下型20の加熱部21の上面及び上型30の加熱部31の下面の双方には、耐熱性のゴム材料よりなるシート部材40が設けられている。
各加熱部の加圧面が金属板などの剛体によって形成されている場合には、各加熱部の加圧面によってワーク50が挟圧されると、ワーク50が塑性変形するおそれがある。
(4) Sheet members 40 made of a heat-resistant rubber material are provided on both the upper surface of the heating unit 21 of the lower mold 20 and the lower surface of the heating unit 31 of the upper mold 30.
When the pressing surface of each heating unit is formed of a rigid body such as a metal plate, the workpiece 50 may be plastically deformed when the workpiece 50 is clamped by the pressing surface of each heating unit.
この点、本実施形態によれば、各加熱部31,21に設けられたシート部材40によってワーク50が挟圧されても、ワーク50の塑性変形を抑制することができる。従って、ワーク50の形状を保持することができる。 In this regard, according to the present embodiment, even when the workpiece 50 is pinched by the sheet member 40 provided in each heating unit 31, 21, plastic deformation of the workpiece 50 can be suppressed. Therefore, the shape of the workpiece 50 can be maintained.
(5)シート部材40は、耐熱性の一対のゴムシート41と、ゴムシート41に設けられてゴムシート41の加圧面である上面或いは下面に沿った方向へのゴムシート41の伸びを規制する補強クロス42と、を有している。 (5) The sheet member 40 is provided with a pair of heat-resistant rubber sheets 41 and regulates the extension of the rubber sheet 41 in the direction along the upper surface or the lower surface, which is the pressure surface of the rubber sheet 41, provided on the rubber sheet 41. And a reinforcing cloth 42.
こうした構成によれば、ゴムシート41の下面或いは上面に沿った方向へのゴムシート41の伸びが補強クロス42によって規制されるため、各シート部材40によってワーク50が挟圧された際に、前記方向へゴムシート41が伸びることに伴ってワーク50が塑性変形することを適切に抑制することができる。 According to such a configuration, since the expansion of the rubber sheet 41 in the direction along the lower surface or the upper surface of the rubber sheet 41 is regulated by the reinforcing cloth 42, when the workpiece 50 is clamped by each sheet member 40, It is possible to appropriately suppress the plastic deformation of the workpiece 50 as the rubber sheet 41 extends in the direction.
なお、上記実施形態は、例えば以下のように変更することもできる。
・上記実施形態では、熱圧着装置10の上型30を上昇させてワーク50を取り出すに先立ち、電熱線22,32への電流の供給を停止するようにした。これに代えて、電熱線22,32への電流の供給を停止しないようにすることもできる。また、上記実施形態では、上型30のシート部材40と下型20のシート部材40とによってワーク50を加圧した状態で、電熱線22,32に電流を供給してワーク50を加熱するようにした。これに代えて、電熱線22,32に電流が供給されている状態で、ワーク50を加圧するようにしてもよい。
In addition, the said embodiment can also be changed as follows, for example.
In the above embodiment, the current supply to the heating wires 22 and 32 is stopped before the upper die 30 of the thermocompression bonding apparatus 10 is raised and the workpiece 50 is taken out. Alternatively, the supply of current to the heating wires 22 and 32 can be prevented from stopping. Moreover, in the said embodiment, in the state which pressurized the workpiece | work 50 with the sheet | seat member 40 of the upper mold | type 30, and the sheet | seat member 40 of the lower mold | type 20, current is supplied to the heating wires 22 and 32 so that the workpiece | work 50 may be heated. I made it. Instead of this, the workpiece 50 may be pressurized in a state where current is supplied to the heating wires 22 and 32.
・上記実施形態では、ワーク50の基材51の表面に第1の塗料を塗布して第1の層52を形成し、第1の層52の表面に第2の塗料を塗布して第2の層55を形成した。これに代えて、熱転写などによって第1の層及び第2の層を形成することもできる。 In the above embodiment, the first coating 52 is applied to the surface of the base material 51 of the workpiece 50 to form the first layer 52, and the second coating is applied to the surface of the first layer 52. Layer 55 was formed. Alternatively, the first layer and the second layer can be formed by thermal transfer or the like.
・グラファイトに代えてカーボンブラックなどの他の導電性材料を第2充填材として用いることもできる。
・窒化チタンに代えて炭化チタンなどの他の導電性材料を第1充填材として用いることもできる。
Other conductive materials such as carbon black can be used as the second filler instead of graphite.
Other conductive materials such as titanium carbide can be used as the first filler instead of titanium nitride.
・図8に示すように、熱圧着装置110における下型120の加熱部121の上面に凹部123を形成し、凹部123内に耐熱性のゴム材料よりなるシート部材140を嵌め込むようにしてもよい。また、上型130の加熱部131の下面に凹部133を形成し、凹部133内にシート部材140を嵌め込むようにしてもよい。 As shown in FIG. 8, a recess 123 may be formed on the upper surface of the heating part 121 of the lower mold 120 in the thermocompression bonding apparatus 110, and a sheet member 140 made of a heat-resistant rubber material may be fitted into the recess 123. Alternatively, a recess 133 may be formed on the lower surface of the heating unit 131 of the upper mold 130 and the sheet member 140 may be fitted into the recess 133.
この場合、シート部材140の周縁が凹部123,133の内周壁である規制壁124,134に当接することによってシート部材140の加圧面に沿った方向への伸びが規制されるため、上記実施形態の効果(5)に準じた効果を奏することができる。また、上記実施形態のシート部材40を下型120及び上型130の凹部123,133内に嵌め込むようにしてもよい。 In this case, since the peripheral edge of the sheet member 140 is in contact with the regulating walls 124 and 134 that are the inner circumferential walls of the recesses 123 and 133, the expansion in the direction along the pressing surface of the sheet member 140 is regulated. The effect according to the effect (5) can be achieved. Further, the sheet member 40 of the above embodiment may be fitted into the recesses 123 and 133 of the lower mold 120 and the upper mold 130.
・シート部材40の加圧面に沿った方向へのゴムシート41の伸びに起因したワーク50の塑性変形が無視できるのであれば、補強クロス42を省略することもできる。
・ゴムシート41をシリコンゴムなどの他の耐熱性のゴム材料によって形成することもできる。
If the plastic deformation of the workpiece 50 due to the elongation of the rubber sheet 41 in the direction along the pressing surface of the sheet member 40 can be ignored, the reinforcing cloth 42 can be omitted.
The rubber sheet 41 can be formed of other heat resistant rubber material such as silicon rubber.
・下型20の加熱部21及び上型30の加熱部31のいずれか一方にシート部材40を設けることもできる。
・ワーク50に塑性変形が生じないのであれば、シート部材40を省略することもできる。
The sheet member 40 can be provided on either the heating part 21 of the lower mold 20 or the heating part 31 of the upper mold 30.
-If the workpiece 50 is not plastically deformed, the sheet member 40 can be omitted.
10,110…熱圧着装置、12,112…案内柱、20,120…下型、21,121…加熱部、22,122…電熱線、25,125…収容孔、27,127…支持部材、27a,127a…支持面、28,128…ばね(付勢部材)、30,130…上型、31,131…加熱部、32,132…電熱線、40,140…シート部材、41…ゴムシート、42…補強クロス(規制部材)、50,150…ワーク、51…基材、51a…基材本体、51b…酸化被膜、52…第1の層、53…結合材、54…第1充填材、55…第2の層、56…第2充填材、58…塗膜、90…セル、91…膜電極接合体、92…第1セパレータ(セパレータ)、92a,92b…凹溝、93…第2セパレータ、94…フラットセパレータ、95…多孔体流路板、96…酸化剤ガスの流路、96a…貫通孔、123,133…凹部、124,134…規制壁。 DESCRIPTION OF SYMBOLS 10,110 ... Thermocompression bonding apparatus, 12,112 ... Guide pillar, 20,120 ... Lower mold | type, 21,121 ... Heating part, 22,122 ... Heating wire, 25,125 ... Housing hole, 27,127 ... Supporting member, 27a, 127a ... support surface, 28, 128 ... spring (biasing member), 30, 130 ... upper mold, 31, 131 ... heating section, 32, 132 ... heating wire, 40, 140 ... sheet member, 41 ... rubber sheet 42 ... Reinforcement cloth (regulating member), 50, 150 ... Workpiece, 51 ... Substrate, 51a ... Substrate body, 51b ... Oxide coating, 52 ... First layer, 53 ... Binder, 54 ... First filler 55 ... second layer 56 ... second filler 58 ... coating film 90 ... cell 91 ... membrane electrode assembly 92 ... first separator (separator) 92a, 92b ... concave groove 93 ... first 2 separators, 94 ... flat separator, 95 ... porous Channel plate, 96 ... flow path of the oxidant gas, 96a ... through holes, 123 and 133 ... recess, 124, 134 ... restricting wall.
Claims (7)
熱圧着装置の上型の加熱部の下面と下型の加熱部の上面との間においてこれら加熱部から離間された位置に前記ワークを載置する第2工程と、
前記上型の加熱部の下面と前記下型の加熱部の上面とにより前記ワークを挟圧しつつ加熱する第3工程と、を備える、
燃料電池のセパレータの製造方法。 On the surface of the base material made of a metal material, a first layer including a binder made of a thermosetting resin and a first filler having higher hardness and conductivity than the coating film of the base material is formed, A first step of forming a workpiece by forming a second layer including a second filler having a lower hardness and conductivity than the first filler on the surface of the first layer;
A second step of placing the workpiece at a position spaced from these heating parts between the lower surface of the upper heating part of the thermocompression bonding apparatus and the upper surface of the lower heating part;
A third step of heating while pressing the workpiece with the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit,
A method of manufacturing a separator for a fuel cell.
請求項1に記載の燃料電池のセパレータの製造方法。 At least one of the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit is provided with a sheet member made of a heat-resistant elastic material,
The manufacturing method of the separator of the fuel cell of Claim 1.
前記上型の加熱部の下面と前記下型の加熱部の上面との間においてこれら加熱部から離間された位置で前記ワークを支持可能な支持部材が設けられている、
熱圧着装置。 Thermocompression bonding comprising an upper die and a lower die each having a heating portion, and performing surface treatment of the workpiece by heating while pressing the workpiece between the lower surface of the upper die heating portion and the upper surface of the lower die heating portion. A device,
A support member capable of supporting the workpiece at a position spaced from the heating unit between the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit is provided.
Thermocompression bonding equipment.
前記下型には、前記支持部材を上方に向けて付勢する付勢部材が設けられている、
請求項3に記載の熱圧着装置。 A plurality of the support members are provided across the heating part of the lower mold,
The lower mold is provided with a biasing member that biases the support member upward.
The thermocompression bonding apparatus according to claim 3.
請求項3又は請求項4に記載の熱圧着装置。 At least one of the lower surface of the upper mold heating unit and the upper surface of the lower mold heating unit is provided with a sheet member made of a heat-resistant elastic material,
The thermocompression bonding apparatus according to claim 3 or 4.
請求項5に記載の熱圧着装置。 The sheet member includes a heat-resistant rubber sheet, and a regulating member that is provided on the rubber sheet and regulates the extension of the rubber sheet in a direction along the pressure surface of the rubber sheet.
The thermocompression bonding apparatus according to claim 5.
請求項5又は請求項6に記載の熱圧着装置。 At least one of the upper mold heating section and the lower mold heating section is a regulating wall that abuts the periphery of the sheet member and regulates the extension of the sheet member in the direction along the pressure surface of the sheet member Is formed,
The thermocompression bonding apparatus according to claim 5 or 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014092585A JP6137042B2 (en) | 2014-04-28 | 2014-04-28 | Fuel cell separator manufacturing method and thermocompression bonding apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014092585A JP6137042B2 (en) | 2014-04-28 | 2014-04-28 | Fuel cell separator manufacturing method and thermocompression bonding apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015210976A true JP2015210976A (en) | 2015-11-24 |
JP6137042B2 JP6137042B2 (en) | 2017-05-31 |
Family
ID=54613017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014092585A Active JP6137042B2 (en) | 2014-04-28 | 2014-04-28 | Fuel cell separator manufacturing method and thermocompression bonding apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6137042B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3346530A4 (en) * | 2015-08-31 | 2019-08-07 | Toyota Shatai Kabushiki Kaisha | Device for forming coating for fuel cell separator, and fuel cell separator |
JP2020102394A (en) * | 2018-12-25 | 2020-07-02 | トヨタ車体株式会社 | Surface processing method for separator for fuel cell |
US11205784B2 (en) | 2018-04-24 | 2021-12-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and method for manufacturing separator for fuel cell including conductive particles and carbon fibers buried in projecting parts |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7082557B2 (en) | 2018-09-28 | 2022-06-08 | 三和シヤッター工業株式会社 | Shutter case |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260441A (en) * | 1999-03-05 | 2000-09-22 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell |
JP2001076740A (en) * | 1999-09-02 | 2001-03-23 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell |
US20050142413A1 (en) * | 2002-03-20 | 2005-06-30 | Sansho Kakou Co., Ltd. | Separator for fuel cell, method for producing the same, and fuel cell using the same |
JP2006044120A (en) * | 2004-08-06 | 2006-02-16 | Meiki Co Ltd | Molding apparatus and molding method of resin-molded article |
JP2008004291A (en) * | 2006-06-20 | 2008-01-10 | Toyota Motor Corp | Manufacturing method of press metal separator for fuel cell |
WO2014010491A1 (en) * | 2012-07-11 | 2014-01-16 | トヨタ車体 株式会社 | Fuel cell separator and method for manufacturing same |
-
2014
- 2014-04-28 JP JP2014092585A patent/JP6137042B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260441A (en) * | 1999-03-05 | 2000-09-22 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell |
JP2001076740A (en) * | 1999-09-02 | 2001-03-23 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell |
US20050142413A1 (en) * | 2002-03-20 | 2005-06-30 | Sansho Kakou Co., Ltd. | Separator for fuel cell, method for producing the same, and fuel cell using the same |
JP2006044120A (en) * | 2004-08-06 | 2006-02-16 | Meiki Co Ltd | Molding apparatus and molding method of resin-molded article |
JP2008004291A (en) * | 2006-06-20 | 2008-01-10 | Toyota Motor Corp | Manufacturing method of press metal separator for fuel cell |
WO2014010491A1 (en) * | 2012-07-11 | 2014-01-16 | トヨタ車体 株式会社 | Fuel cell separator and method for manufacturing same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3346530A4 (en) * | 2015-08-31 | 2019-08-07 | Toyota Shatai Kabushiki Kaisha | Device for forming coating for fuel cell separator, and fuel cell separator |
US11205784B2 (en) | 2018-04-24 | 2021-12-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and method for manufacturing separator for fuel cell including conductive particles and carbon fibers buried in projecting parts |
JP2020102394A (en) * | 2018-12-25 | 2020-07-02 | トヨタ車体株式会社 | Surface processing method for separator for fuel cell |
JP7095588B2 (en) | 2018-12-25 | 2022-07-05 | トヨタ車体株式会社 | Surface treatment method for fuel cell separators |
Also Published As
Publication number | Publication date |
---|---|
JP6137042B2 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6137042B2 (en) | Fuel cell separator manufacturing method and thermocompression bonding apparatus | |
US9570758B2 (en) | Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell | |
US20160104909A1 (en) | Method of manufacturing unit fuel cell | |
JP6402831B2 (en) | Fuel cell separator coating film forming apparatus and fuel cell separator | |
KR100957305B1 (en) | Heat pressure-type jig for manufacturing 5-layer membrane | |
WO2019225114A1 (en) | Fuel cell separator and method for manufacturing fuel cell separator | |
JP6163934B2 (en) | Manufacturing method of fuel cell separator | |
JP2011071049A (en) | Method and device for manufacturing membrane electrode assembly | |
EP1969663A1 (en) | Method for manufacturing membrane electrode assembly and reinforced electrolyte membrane in polymer electrolyte fuel cell, and membrane electrode assembly and reinforced electrolyte membrane obtained by the manufacturing method | |
JP2006134611A (en) | Manufacturing device and manufacturing method of junction | |
JP2016126911A (en) | Fuel battery single cell | |
JP2016162648A (en) | Manufacturing method for fuel battery single cell | |
JP2016162650A (en) | Method for manufacturing fuel battery single cell | |
JPWO2013011553A1 (en) | Electric heating apparatus and method | |
JP2019192503A (en) | Fuel cell and manufacturing method thereof | |
JP5239406B2 (en) | Apparatus and method for forming gas diffusion layer for fuel cell | |
JP2016143468A (en) | Electrolyte membrane for fuel cell, method of manufacturing electrode structure | |
JP5298453B2 (en) | Method and apparatus for manufacturing fuel cell | |
JP2011070911A (en) | Jig for pressing, andd manufacturing method of catalyst layer-electrolyte film laminate using the same | |
JP2022067828A (en) | Manufacturing method for fuel cell separator | |
JP2019121523A (en) | Method of manufacturing fuel cell separator | |
JP7095588B2 (en) | Surface treatment method for fuel cell separators | |
JP2009004384A (en) | Manufacturing method of membrane electrode assembly of polymer electrolyte fuel cell | |
US20190097197A1 (en) | Manufacturing method for fuel cell separator | |
JP7031526B2 (en) | Fuel cell cell manufacturing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6137042 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |