JP2015210477A - Electrophotographic photoreceptor, cartridge, and image forming apparatus - Google Patents

Electrophotographic photoreceptor, cartridge, and image forming apparatus Download PDF

Info

Publication number
JP2015210477A
JP2015210477A JP2014093718A JP2014093718A JP2015210477A JP 2015210477 A JP2015210477 A JP 2015210477A JP 2014093718 A JP2014093718 A JP 2014093718A JP 2014093718 A JP2014093718 A JP 2014093718A JP 2015210477 A JP2015210477 A JP 2015210477A
Authority
JP
Japan
Prior art keywords
layer
undercoat layer
resin
mass
preparation example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014093718A
Other languages
Japanese (ja)
Other versions
JP6357853B2 (en
Inventor
愛子 原田
Aiko Harada
愛子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014093718A priority Critical patent/JP6357853B2/en
Publication of JP2015210477A publication Critical patent/JP2015210477A/en
Application granted granted Critical
Publication of JP6357853B2 publication Critical patent/JP6357853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor that reduces a surface potential and a residual potential at the initial stage and after repeated use of the electrophotographic photoreceptor to an exposure energy during writing of latent images and prevents the occurrence of image defects, and to provide a cartridge and an image forming apparatus.SOLUTION: There is provided an electrophotographic photoreceptor that has an undercoat layer and a photosensitive layer on a conductive support, where the undercoat layer contains an electron absorbing compound; the electron absorbing compound has a LUMO energy level of -2.50 to -3.20 eV and a polarizability of 27 to 43Å; and the photosensitive layer contains a polycarbonate resin.

Description

本発明は、複写機やプリンター等に用いられる電子写真感光体および画像形成装置、カートリッジに関するものである。より詳しくは、導電性支持体上に、下引き層及び感光層を有する電子写真感光体において、前記下引き層に特定構造の物質を含有することにより、潜像書き込み時の表面電位、及び残留電位を低減し、機械特性、電気特性に優れた性能を発揮する電子写真感光体、カートリッジ及び画像形成装置に関するものである。   The present invention relates to an electrophotographic photosensitive member, an image forming apparatus, and a cartridge used for a copying machine, a printer, and the like. More specifically, in an electrophotographic photosensitive member having an undercoat layer and a photosensitive layer on a conductive support, a surface potential at the time of writing a latent image and a residual content can be obtained by containing a substance having a specific structure in the undercoat layer. The present invention relates to an electrophotographic photosensitive member, a cartridge, and an image forming apparatus that reduce potential and exhibit performance that is excellent in mechanical characteristics and electrical characteristics.

電子写真技術は、即時性に優れ、且つ、高品質の画像が得られること等から、複写機、各種プリンター、印刷機等の分野で広く使われている。電子写真技術の中核となる電子写真感光体として、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した電子写真感光体(以下に、単に「感光体」ともいう。)が使用されている。   The electrophotographic technique is widely used in the fields of copiers, various printers, printing presses and the like because of its excellent immediacy and high quality images. As an electrophotographic photosensitive member that is the core of the electrophotographic technology, an electrophotographic photosensitive member using an organic photoconductive material having advantages such as non-pollution, easy film formation, and easy manufacture (hereinafter simply referred to as “ Also referred to as “photoreceptor”).

有機系の光導電材料を使用した電子写真感光体としては、光導電性微粉末をバインダー樹脂中に分散させた、いわゆる分散型の単層型感光体や、導電性支持基体上に電荷発生層及び電荷輸送層を積層した、積層型感光体が知られている。導電性支持基体上に直接感光層を塗布する電子写真感光体では、導電性支持基体と感光層が近接するため電荷が感光層に注入するおそれがあり、微視的な表面電荷の消失もしくは減少により画像欠陥が発生することがある。このような画像欠陥の防止を意図して、導電性支持基体からの電荷注入阻止、導電性支持基体表面欠陥の隠蔽、感光層と基体の接着性向上などのために、導電性支持基体と感光層の間に、下引き層を設けることが行われている(特許文献1)。   As an electrophotographic photoreceptor using an organic photoconductive material, a so-called dispersion type single-layer photoreceptor in which a photoconductive fine powder is dispersed in a binder resin, or a charge generation layer on a conductive support substrate. In addition, a multilayer photoreceptor in which a charge transport layer is laminated is known. In an electrophotographic photosensitive member in which a photosensitive layer is directly coated on a conductive support substrate, charges may be injected into the photosensitive layer because the conductive support substrate and the photosensitive layer are close to each other, and microscopic surface charge disappears or decreases. May cause image defects. In order to prevent such image defects, in order to prevent charge injection from the conductive support substrate, conceal defects on the surface of the conductive support substrate, improve the adhesion between the photosensitive layer and the substrate, etc., An undercoat layer is provided between the layers (Patent Document 1).

電子写真方式の画像形成装置は、年々高画質化、高速化、高耐久化しており、特に高画質化については、電子写真感光体側にさらなる改良が求められている。一方、電子写真感光体は、高性能であるとともに安価であることも継続的に求められている。このような要求を満たす技術の一つとして、安価な導電性基体上に下引き層を導入し、電気特性の安定化、画像特性の安定化を図る手法が知られている。   Electrophotographic image forming apparatuses are becoming higher in image quality, faster and more durable year by year. In particular, further improvement is demanded on the electrophotographic photosensitive member side for higher image quality. On the other hand, electrophotographic photoreceptors are continuously required to be high performance and inexpensive. As one of the techniques that satisfy such a requirement, a method is known in which an undercoat layer is introduced on an inexpensive conductive substrate to stabilize electrical characteristics and image characteristics.

例えば、導電性支持体表面の粗さに起因する光学干渉や基体表面の欠陥に起因する画像欠陥を回避するために、下引き層を導入する技術が開示されている(特許文献2、3)。また、下引き層に着目すると、電子写真感光体の機能向上を目指すために、下引き層に特定の化合物を使用する技術がある。例えば、下引き層中に種々の電子輸送性有機化合物を含有し、電子写真感光体の環境特性や画像特性を改良する技術が開示されている(特許文献4−6)。さらに、下引き層にアントラキノン構造を含む反応性電子吸引性化合物を含有することで、前サイクルの作像履歴が次サイクルに残りにくい電子写真感光体が開示されている(特許文献7)。一方、シアノ含有フェノール誘導体、スルホン酸エステル誘導体等の化合物を電子写真感光体の感光層に使用し、電子写真感光体の耐久性を改良する技術が知られている(特許文献8、9)が、下引き層に使用することについて開示はない。感光層と下引き層との担う機能の違いから、特定の化合物を含有する層が異なると、該化合物を含有することによる効果も異なる。   For example, in order to avoid optical interference caused by roughness of the surface of the conductive support and image defects caused by defects on the surface of the substrate, techniques for introducing an undercoat layer are disclosed (Patent Documents 2 and 3). . Focusing on the undercoat layer, there is a technique of using a specific compound for the undercoat layer in order to improve the function of the electrophotographic photosensitive member. For example, a technique for improving the environmental characteristics and image characteristics of an electrophotographic photoreceptor by containing various electron transporting organic compounds in the undercoat layer is disclosed (Patent Documents 4-6). Furthermore, an electrophotographic photosensitive member is disclosed in which a reactive electron-withdrawing compound containing an anthraquinone structure is contained in the undercoat layer so that the image formation history of the previous cycle hardly remains in the next cycle (Patent Document 7). On the other hand, there is known a technique for improving the durability of an electrophotographic photosensitive member by using a compound such as a cyano-containing phenol derivative or a sulfonic acid ester derivative in the photosensitive layer of the electrophotographic photosensitive member (Patent Documents 8 and 9). There is no disclosure of use for the undercoat layer. Due to the difference in function between the photosensitive layer and the undercoat layer, if the layer containing a specific compound is different, the effect of containing the compound is also different.

特開2000−242016号公報Japanese Patent Laid-Open No. 2000-24216 特開2001−100595号公報JP 2001-100595 A 特開2002−287395号公報JP 2002-287395 A 特開2002−091044号公報JP 2002-091044 A 特開2004−093792号公報Japanese Unexamined Patent Application Publication No. 2004-093792 特開2010−127963号公報JP 2010-127963 A 特開2013−200417号公報JP 2013-200417 A 特開昭58−54346号公報JP 58-54346 A 特開平3−48852号公報JP-A-3-48852

電子写真感光体が下引き層を有する場合には、導電性基体の影響を緩和できるが残留電位が上昇する問題があった。また、残留電位上昇を抑制するため、下引き層に化合物を含有させる場合、初期の残留電位上昇を抑えることができても、繰り返しプロセスに使用した後の電気特性が悪化する、又は繰り返しプロセスに使用すると電気特性が安定するが、初期の残留電位が上昇する問題があった。上述の課題に鑑みてなされたものである。即ち、本発明の目的は、下引き層を有する場合において、潜像書き込み時の露光エネルギーに対する電子写真感光体の初期及び繰り返し使用後の表面電位、及び残留電位を低減し、画像欠陥を生じない電子写真感光体を提供すること、また、カートリッジ及び画像形成装置を提供することにある。   When the electrophotographic photosensitive member has an undercoat layer, the influence of the conductive substrate can be alleviated, but there is a problem that the residual potential increases. In addition, when a compound is contained in the undercoat layer in order to suppress an increase in the residual potential, even if the initial residual potential increase can be suppressed, the electrical characteristics after use in the repetitive process deteriorate, or the repetitive process When used, the electrical characteristics are stabilized, but there is a problem that the initial residual potential increases. It is made in view of the above-mentioned subject. That is, the object of the present invention is to reduce the surface potential of the electrophotographic photosensitive member at the initial stage and after repeated use, and the residual potential with respect to the exposure energy at the time of writing a latent image in the case of having an undercoat layer, and does not cause image defects. An electrophotographic photosensitive member is provided, and a cartridge and an image forming apparatus are provided.

本発明者らは電子写真感光体において、 下引き層に特定のLUMOエネルギー準位及び分
極率の範囲である電子吸引性化合物を含有することにより、潜像書き込み時の露光エネルギーに対する感光体表面電位、及び残留電位の低減という電気特性的に良好な効果が得られることを見出した。即ち本発明の要旨は以下の5点に存する。
<1>導電性支持体上に、下引き層、感光層を有する電子写真感光体であって、前記下引き層が電子吸引性化合物を含有し、前記電子吸引性化合物のLUMOエネルギー準位が−2.50〜−3.20eV、分極率が27〜43Åであり、前記感光層がポリカーボネート樹脂を含有することを特徴とする電子写真感光体。
<2>前記下引き層における前記電子吸引性化合物の含有率が、前記下引き層全質量に対し0.25〜20質量%である<1>に記載の電子写真感光体。
<3>前記下引き層が、金属酸化物粒子を含む<1>又は<2>に記載の電子写真感光体。
<4>前記金属酸化物粒子が、酸化チタン又は酸化アルミニウムである<3>に記載の電子写真感光体。
<5>前記電荷発生層がオキシチタニウムフタロシアニンを含有することを特徴とする<1>〜<4>のいずれかに記載の電子写真感光体。
In the electrophotographic photosensitive member, the electrophotographic photosensitive member contains an electron-withdrawing compound having a specific LUMO energy level and a polarizability range in the undercoat layer, so that the photosensitive member surface potential with respect to the exposure energy at the time of writing a latent image. It has been found that a good effect in terms of electrical characteristics such as reduction of residual potential can be obtained. That is, the gist of the present invention resides in the following five points.
<1> An electrophotographic photosensitive member having an undercoat layer and a photosensitive layer on a conductive support, wherein the undercoat layer contains an electron-withdrawing compound, and the LUMO energy level of the electron-withdrawing compound is An electrophotographic photosensitive member, wherein the electrophotographic photosensitive member has −2.50 to −3.20 eV, a polarizability of 27 to 43 × 3 , and the photosensitive layer contains a polycarbonate resin.
<2> The electrophotographic photosensitive member according to <1>, wherein the content of the electron withdrawing compound in the undercoat layer is 0.25 to 20% by mass with respect to the total mass of the undercoat layer.
<3> The electrophotographic photosensitive member according to <1> or <2>, wherein the undercoat layer contains metal oxide particles.
<4> The electrophotographic photosensitive member according to <3>, wherein the metal oxide particles are titanium oxide or aluminum oxide.
<5> The electrophotographic photosensitive member according to any one of <1> to <4>, wherein the charge generation layer contains oxytitanium phthalocyanine.

本発明によれば、潜像書き込み時の露光エネルギーに対する電子写真感光体の初期及び繰り返し使用後の表面電位、及び残留電位を低減し、画像欠陥を生じない電子写真感光体を提供することができる。   According to the present invention, it is possible to provide an electrophotographic photoconductor that does not cause image defects by reducing the surface potential and the residual potential of the electrophotographic photoconductor at the initial stage and after repeated use with respect to the exposure energy at the time of writing a latent image. .

本発明に係る画像形成装置の一実施態様の要部構成を示す概略図である。1 is a schematic diagram illustrating a main configuration of an embodiment of an image forming apparatus according to the present invention. 実施例で使用するチタニルフタロシアニン顔料のCuKα特性X線回折ピークを示すチャート図である。It is a chart figure which shows the CuKalpha characteristic X-ray-diffraction peak of the titanyl phthalocyanine pigment used in an Example.

以下、本発明の実施の形態につき詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更して実施することがで
きる。
Hereinafter, the embodiments of the present invention will be described in detail. However, the present invention is not limited to the following descriptions, and can be appropriately modified and implemented without departing from the gist of the present invention.

[電子写真感光体]
本発明は、導電性支持体上に、下引き層、感光層を有する電子写真感光体である。以下、本発明の電子写真感光体について詳述する。
[Electrophotographic photoreceptor]
The present invention is an electrophotographic photosensitive member having an undercoat layer and a photosensitive layer on a conductive support. Hereinafter, the electrophotographic photoreceptor of the present invention will be described in detail.

<導電性支持体>
感光体に用いる導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状などのものが用いられる。金属材料の導電性支持体に、導電性・表面性などの制御のためや欠陥被覆のために、適当な抵抗値をもつ導電性材料を塗布したものでもよい。
<Conductive support>
As the conductive support used for the photoreceptor, for example, metal materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and conductive powders such as metal, carbon, and tin oxide are added to impart conductivity. A resin material, a resin, glass, paper, or the like on which a conductive material such as aluminum, nickel, or ITO (indium tin oxide) is deposited or applied on the surface is mainly used. As a form, a drum shape, a sheet shape, a belt shape or the like is used. A conductive material having an appropriate resistance value may be applied to a conductive support of a metal material in order to control conductivity, surface properties, etc., or to cover defects.

導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合、公知の方法により封孔処理を施すのが望ましい。
支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム基体を用いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くなり、均一で清浄な基体が得られるので好ましい。
When a metal material such as an aluminum alloy is used as the conductive support, it may be used after an anodized film is applied. When an anodized film is applied, it is desirable to perform a sealing treatment by a known method.
The support surface may be smooth, or may be roughened by using a special cutting method or polishing. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support. In order to reduce the cost, it is possible to use the drawing tube as it is without cutting. In particular, when using a non-cutting aluminum substrate such as drawing, impact processing, ironing, etc., it is preferable because the treatment eliminates dirt, foreign matter, and other foreign matters, small scratches, etc., and a uniform and clean substrate can be obtained. .

<下引き層>
前記導電性支持体と後述する感光層との間には、下引き層が設けられる。下引き層は、LUMOエネルギー準位が−2.50〜−3.20eV、分極率が27〜43Åである電子吸引性化合物を含有する。又、強度確保のためバインダー樹脂を含有することが好ましい。下引き層は複数の層を有していてもよく、複数の層を有する場合、電気的ブロッキング機能を保持しつつ、ゴースト画像の発生を抑制する観点からは、導電層及びブロッキング層を有する二層型下引き層が好ましい。この場合、導電層にはカーボンブラック、金属粒子や金属酸化物粒子等の導電性粒子、及びバインダー樹脂を含有し、ブロッキング層には感光体表面に帯電される電荷とは同極性の電荷を移動できる機能を有するもの、及びバインダー樹脂を含有することが好ましい。又、厚膜化による残留電位の観点からは、導電性及びブロッキングの両方の機能を有する単層型下引き層が好ましい。下引き層の膜厚は、電子写真感光体の電気特性、強露光特性、画像特性、繰り返し特性、及び外来異物によるリーク防止の観点から、通常は1μm以上、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上、特に好ましくは20μm以上である。また、通常30μm以下、好ましくは25μm以下である。下引き層には、公知の酸化防止剤等を混合しても良い。また、下引き層は、画像欠陥防止などを目的として、顔料粒子、樹脂粒子等を含有させてもよい。
<Underlayer>
An undercoat layer is provided between the conductive support and a photosensitive layer described later. The undercoat layer contains an electron-withdrawing compound having a LUMO energy level of −2.50 to −3.20 eV and a polarizability of 27 to 43 3 3 . Moreover, it is preferable to contain binder resin for ensuring strength. The undercoat layer may have a plurality of layers, and in the case of having a plurality of layers, from the viewpoint of suppressing the generation of a ghost image while maintaining the electrical blocking function, the undercoat layer has a conductive layer and a blocking layer. A layer-type undercoat layer is preferred. In this case, the conductive layer contains carbon black, conductive particles such as metal particles and metal oxide particles, and a binder resin, and the blocking layer moves charges having the same polarity as the charge charged on the surface of the photoreceptor. It is preferable to contain what has the function which can be performed, and binder resin. From the viewpoint of residual potential due to thickening, a single layer type undercoat layer having both functions of conductivity and blocking is preferable. The thickness of the undercoat layer is usually 1 μm or more, preferably 5 μm or more, more preferably 10 μm, from the viewpoints of the electrical characteristics, strong exposure characteristics, image characteristics, repeat characteristics, and leakage due to foreign matter of the electrophotographic photoreceptor. Above, more preferably 15 μm or more, particularly preferably 20 μm or more. Moreover, it is 30 micrometers or less normally, Preferably it is 25 micrometers or less. A known antioxidant or the like may be mixed in the undercoat layer. The undercoat layer may contain pigment particles, resin particles, and the like for the purpose of preventing image defects.

〔電子吸引性化合物〕
本発明の電子吸引性化合物は、LUMOエネルギー準位が−2.50〜−3.20eV、分極率が27〜43Åである。LUMOエネルギー準位及び分極率は、B3LYP/6-31G(d,p)を用いた構造最適化計算(特開2011−170041参照)によって算出できる。LUMOエネルギー準位は、電荷発生層からの電子受け渡しの観点から、−2.60eV以下が好ましく、−2.70eV以下がより好ましい。一方、電子写真感光体の帯電性の観点から−3
.00eV以上が好ましく、−2.90eV以上がより好ましい。また、分極率は、分子間の相互作用の観点から、28Å以上が好ましく、30Å以上がより好ましい。一方、分子安定性の観点から42Å以下が好ましく、40Å以下がより好ましい。
[Electron-withdrawing compound]
The electron withdrawing compound of the present invention has a LUMO energy level of −2.50 to −3.20 eV and a polarizability of 27 to 43 3 3 . The LUMO energy level and the polarizability can be calculated by structure optimization calculation using B3LYP / 6-31G (d, p) (see JP 2011-170041). The LUMO energy level is preferably −2.60 eV or less, more preferably −2.70 eV or less, from the viewpoint of electron transfer from the charge generation layer. On the other hand, from the viewpoint of chargeability of the electrophotographic photosensitive member, −3
. 00 eV or more is preferable, and -2.90 eV or more is more preferable. The polarizability is preferably 28 3 or more, more preferably 30 3 or more, from the viewpoint of the interaction between molecules. On the other hand, from the viewpoint of molecular stability, it is preferably 42 3 or less, and more preferably 40 3 or less.

LUMOエネルギー準位が−2.50〜−3.20eV、分極率が27〜43Åの両方を満たす電子吸引性化合物は、電子を受け取りやすく溶解性が高い化合物であることを示し、電荷発生層からの電子の受け渡しと帯電性が両立して作用するためこの範囲の化合物であれば潜像書き込み時の露光エネルギーに対する電子写真感光体の初期及び繰り返し使用後の表面電位、及び残留電位を低減することができる。 An electron-withdrawing compound satisfying both the LUMO energy level of −2.50 to −3.20 eV and the polarizability of 27 to 43 3 indicates that it is a compound that is easy to accept electrons and has high solubility. In this range, the surface potential and residual potential of the electrophotographic photosensitive member relative to the exposure energy at the time of writing a latent image and the residual potential are reduced. be able to.

電子吸引性化合物の構造の具体例を以下に示す。これら具体例は例示のために示したものであり、これらの態様に限定されない。   Specific examples of the structure of the electron-withdrawing compound are shown below. These specific examples are shown for illustrative purposes and are not limited to these embodiments.

Figure 2015210477
Figure 2015210477

これらの中でも、電気特性の観点から、一般式(1)で表される化合物であることが好ましい。   Among these, it is preferable that it is a compound represented by General formula (1) from a viewpoint of an electrical property.

Figure 2015210477
Figure 2015210477

(一般式(1)中、Xは,-OSOAr,又は-OCOArを表す。Aは、フェニル
基、ナフチル基、又はアントラセニル基を表す。Ar及びArはシアノ基,アルキル基,ヒドロキシル基、ハロゲン原子を有していてもよいフェニル基を表す。nは0〜3を表す。)
(In the general formula (1), X represents —OSO 2 Ar 1 or —OCOAr 2. A represents a phenyl group, a naphthyl group, or an anthracenyl group. Ar 1 and Ar 2 represent a cyano group and an alkyl group. , A hydroxyl group, a phenyl group which may have a halogen atom, and n represents 0-3.)

具体的には、アルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基等の直鎖状アルキル基、イソプロピル基、エチルヘキシル基等の分岐状アルキル基、シクロヘキシル基等の環状アルキル基が挙げられる。これらの中でも、製造原料の汎用性から炭素数1〜20のアルキル基が好ましく、製造時の取扱性の面から、炭素数1〜12のアルキル基がより好ましく、電子写真感光体としての光減衰特性の面から、炭素数1〜6のアルキル基が更に好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。これらの中でも、残留電位の観点から、塩素原子が好ましい。残留電位低減の観点から、Xは-OSOArが好ましく、Arは塩素原子を有するフェニル
基であることが好ましい。nは、残留電位低減の観点から0〜2であることが好ましい。Aがフェニル基の場合、Xの置換位置は、製造容易性の観点からオルト位又はパラ位であることが好ましく、残留電位低減の観点からパラ位がより好ましい。好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、これらの態様に限定されない。
Specifically, as the alkyl group, a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group or an n-butyl group, a branched alkyl group such as an isopropyl group or an ethylhexyl group, or a cyclic group such as a cyclohexyl group. An alkyl group is mentioned. Among these, a C1-C20 alkyl group is preferable from the versatility of a manufacturing raw material, and a C1-C12 alkyl group is more preferable from the surface of the handleability at the time of manufacture, and light attenuation as an electrophotographic photoreceptor From the viewpoint of characteristics, an alkyl group having 1 to 6 carbon atoms is more preferable. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Among these, a chlorine atom is preferable from the viewpoint of residual potential. From the viewpoint of reducing the residual potential, X is preferably —OSO 2 Ar 1 , and Ar 1 is preferably a phenyl group having a chlorine atom. n is preferably 0 to 2 from the viewpoint of reducing the residual potential. When A is a phenyl group, the substitution position of X is preferably the ortho-position or para-position from the viewpoint of ease of production, and more preferably para-position from the viewpoint of reducing residual potential. Specific examples of suitable structures are shown below. These specific examples are shown for illustrative purposes and are not limited to these embodiments.

Figure 2015210477
Figure 2015210477

下引き層中において、前記電子吸引性化合物は、前記下引き層全質量に対し、通常0.25質量%以上で使用する。繰り返し使用した際の安定性の観点から、5質量%以上であることが好ましい。一方、前記電子吸引性化合物は、前記下引き層全質量に対し、通常20質量%以下で使用する。電子吸引性化合物とバインダー樹脂との相溶性の観点から15質量%以下であることが好ましい。また、バインダー樹脂と電子吸引性化合物との割合は、残留電位低減の観点から、バインダー樹脂100質量部に対して電子吸引性化合物を1質量部以上の比率で使用する。中でも、繰り返し使用した際の安定性の観点から、5質量部以上が好ましく、電子移動度の観点から8質量部以上がより好ましい。一方、下引き層の膜強度性の観点から、電子吸引性化合物を通常100質量部以下の比率で使用する。中でも、電子吸引性化合物とバインダー樹脂との相溶性の観点から80質量部以下が好まし
く、耐リークの観点から50質量部以下がより好ましく、メモリーの観点から30質量部以下がさらに好ましい。
In the undercoat layer, the electron-withdrawing compound is usually used at 0.25% by mass or more based on the total mass of the undercoat layer. From the viewpoint of stability when used repeatedly, the content is preferably 5% by mass or more. On the other hand, the electron withdrawing compound is usually used in an amount of 20% by mass or less based on the total mass of the undercoat layer. It is preferable that it is 15 mass% or less from a compatible viewpoint of an electron withdrawing compound and binder resin. Moreover, the ratio of binder resin and an electron withdrawing compound uses an electron withdrawing compound in the ratio of 1 mass part or more with respect to 100 mass parts of binder resin from a viewpoint of residual potential reduction. Among these, 5 parts by mass or more is preferable from the viewpoint of stability when repeatedly used, and 8 parts by mass or more is more preferable from the viewpoint of electron mobility. On the other hand, from the viewpoint of the film strength of the undercoat layer, the electron withdrawing compound is usually used at a ratio of 100 parts by mass or less. Among these, 80 parts by mass or less is preferable from the viewpoint of compatibility between the electron-withdrawing compound and the binder resin, 50 parts by mass or less is more preferable from the viewpoint of leakage resistance, and 30 parts by mass or less is more preferable from the viewpoint of memory.

〔金属酸化物粒子〕
下引き層は残留電位の観点から金属酸化物粒子を含有することが好ましい。金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子などが挙げられる。これらは一種類の粒子を単独で用いても良いし、複数の種類の粒子を混合して用いても良い。これらの中でも屈折率の大きい材料を有することが有効でモアレ像の発生を防止する隠蔽力の観点から、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコーン等の有機物による処理を施されていても良い。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルックカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていても良い。
[Metal oxide particles]
The undercoat layer preferably contains metal oxide particles from the viewpoint of residual potential. Examples of the metal oxide particles include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, strontium titanate, titanate. Examples thereof include metal oxide particles containing a plurality of metal elements such as barium. One kind of these particles may be used alone, or a plurality of kinds of particles may be mixed and used. Among these, titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable from the viewpoint of concealing power which is effective to have a material having a high refractive index and prevents the generation of moire images. The surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. As the crystal form of the titanium oxide particles, any of rutile, anatase, brookite, and amorphous can be used. Moreover, the thing of a several crystal state may be contained.

また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも特性及び液の安定性の面から、平均一次粒径として通常1nm以上、好ましくは10nm以上、また、通常100nm以下、好ましくは50nm以下のものが望ましい。バインダー樹脂に対する無機粒子の使用比率は、分散液の安定性、塗布性の観点から、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。   In addition, various particle sizes of the metal oxide particles can be used. Among these, from the viewpoint of characteristics and liquid stability, the average primary particle size is usually 1 nm or more, preferably 10 nm or more, and usually 100 nm or less. Preferably it is 50 nm or less. The use ratio of the inorganic particles to the binder resin is usually preferably in the range of 10% by mass or more and 500% by mass or less from the viewpoint of the stability of the dispersion and the coating property.

〔バインダー樹脂〕
下引き層に用いられるバインダー樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂などの公知のバインダー樹脂が挙げられる。これらは単独で用いても良く、或いは2種以上を任意の組み合わせ及び比率で併用しても良い。また、硬化剤とともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等のポリアミド樹脂は、良好な分散性、塗布性を示すことから好ましい。
[Binder resin]
As binder resin used for the undercoat layer, epoxy resin, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, Known binder resins such as polyimide resin, vinylidene chloride resin, polyvinyl acetal resin, vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol resin, polyurethane resin, polyacrylic acid resin and the like can be mentioned. These may be used alone or in combination of two or more in any combination and ratio. Moreover, you may use with the hardening | curing form with the hardening | curing agent. Of these, polyamide resins such as alcohol-soluble copolymerized polyamides and modified polyamides are preferable because they exhibit good dispersibility and coating properties.

熱硬化型樹脂としては、アルキッド/メラミン樹脂の混合物が特に良好に使用される。この際、アルキッド/メラミン樹脂の混合比は、下引層の構造及び特性を決定する重要な因子である。両者の比( 質量比) が5/5乃至8/2の範囲が良好な混合比の範囲として挙げられる。5/5よりもメラミン樹脂が少ない場合、熱硬化の際に体積収縮が大きくならず塗膜欠陥を生じにくく、感光体の残留電位を低減するため好ましい。また、8/2よりもアルキッド樹脂が少ない場合、バルク抵抗が低すぎず、地汚れが良好になるため好ましい。
バインダー樹脂の数平均分子量は、塗布性の観点から通常5000以上、好ましくは6000以上、より好ましくは8000以上である。ベンザルマロノニトリル化合物との相溶性の観点から、通常200000以下、好ましくは100000以下、残留電位の観点からより好ましくは70000以下である。
As the thermosetting resin, a mixture of alkyd / melamine resin is particularly preferably used. At this time, the mixing ratio of the alkyd / melamine resin is an important factor for determining the structure and characteristics of the undercoat layer. A range where the ratio (mass ratio) of the two is 5/5 to 8/2 is a good range of the mixing ratio. When the amount of melamine resin is less than 5/5, volume shrinkage does not increase during thermosetting, and coating film defects are less likely to occur, and the residual potential of the photoreceptor is reduced. Further, when the amount of alkyd resin is less than 8/2, the bulk resistance is not too low, and the soiling becomes good, which is preferable.
The number average molecular weight of the binder resin is usually 5000 or more, preferably 6000 or more, more preferably 8000 or more from the viewpoint of coatability. From the viewpoint of compatibility with the benzalmalononitrile compound, it is usually 200000 or less, preferably 100,000 or less, and more preferably 70000 or less from the viewpoint of residual potential.

<感光層>
本発明の感光体は、導電性支持体上に感光層を有する。感光層は、ポリカーボネート樹脂を含有する。本発明の感光体には、電荷発生層(電荷発生材料を含む層)と電荷輸送層(電荷輸送材料を含む層)を含む積層型感光層を有する積層型感光体、あるいは電荷発生
材料と電荷輸送材料を同一の感光層中に含む単層型感光体がある。
<Photosensitive layer>
The photoreceptor of the present invention has a photosensitive layer on a conductive support. The photosensitive layer contains a polycarbonate resin. The photoreceptor of the present invention includes a laminate type photoreceptor having a laminate type photosensitive layer including a charge generation layer (a layer containing a charge generation material) and a charge transport layer (a layer containing a charge transport material), or a charge generation material and a charge. There is a single-layer type photoreceptor containing a transport material in the same photosensitive layer.

<積層型感光層>
〔電荷発生層〕
積層型感光層(機能分離型感光層)の電荷発生層は、電荷発生材料を含有すると共に、通常はバインダー樹脂と、必要に応じて使用されるその他の成分とを含有する。このような電荷発生層は、例えば、電荷発生材料及びバインダー樹脂を溶媒又は分散媒に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)、また、逆積層型感光層の場合には電荷輸送層上に塗布、乾燥して得ることができる。電荷発生層の膜厚は特に制限されないが、通常0.1μm以上、好ましくは0.15μm以上であり、通常1μm以下、好ましくは0.6μm以下である。
<Laminated photosensitive layer>
(Charge generation layer)
The charge generation layer of the laminated photosensitive layer (function-separated type photosensitive layer) contains a charge generation material and usually contains a binder resin and other components used as necessary. Such a charge generation layer is prepared, for example, by dissolving or dispersing a charge generation material and a binder resin in a solvent or dispersion medium to prepare a coating solution, and in the case of a sequentially laminated photosensitive layer, this is formed on a conductive support. (If an undercoat layer is provided, it can be obtained on the undercoat layer). In the case of a reverse laminated type photosensitive layer, it can be obtained by coating on a charge transport layer and drying. The film thickness of the charge generation layer is not particularly limited, but is usually 0.1 μm or more, preferably 0.15 μm or more, and usually 1 μm or less, preferably 0.6 μm or less.

電荷発生物質としては、例えば、セレニウム及びその合金、硫化カドミウム、その他無機系光導電材料;フタロシアニン顔料、アゾ顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料などの有機顔料;などの各種光導電材料が使用できる。特に有機顔料が好ましく、更にはフタロシアニン顔料及びアゾ顔料が特に好ましい。なお、電荷発生物質は1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。   Examples of charge generation materials include selenium and its alloys, cadmium sulfide, and other inorganic photoconductive materials; phthalocyanine pigments, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, benzimidazole pigments Various photoconductive materials such as organic pigments; In particular, organic pigments are preferable, and phthalocyanine pigments and azo pigments are particularly preferable. Note that one type of charge generation material may be used, or two or more types may be used in any combination and in any ratio.

中でも電荷発生物質としてフタロシアニン化合物を用いる場合、その具体例としては、無金属フタロシアニン;銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコーン、ゲルマニウム等の金属、又はその酸化物、ハロゲン化物等の配位したフタロシアニン類;などが使用される。3価以上の金属原子への配位子の例としては、上に示した酸素原子、塩素原子の他、水酸基、アルコキシ基などが挙げられる。特に感度の高いX型、τ型無金属フタロシアニン、A型、B型、D型等のチタニルフタロシアニン、バナジルフタロシアニン、クロロインジウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン等が好適である。なお、ここで挙げたチタニルフタロシアニンの結晶型のうち、A型、B型についてはW.HellerらによってそれぞれI相、II相として示されており(Zeit. Kristallogr.159(1982)173)、A型はβ型とも呼ばれ、安定型として知られているものである。D型はY型とも呼ばれる準安定型で、CuKα線を用いた粉末X線回折において、回折角2θ±0.2゜が27.3゜に明瞭なピークを示すことを特徴とする結晶型である。   In particular, when a phthalocyanine compound is used as the charge generating substance, specific examples thereof include metal-free phthalocyanine; metals such as copper, indium, gallium, tin, titanium, zinc, vanadium, silicone, germanium, or oxides thereof, halides, and the like. Phthalocyanines coordinated with, and the like. Examples of the ligand to the metal atom having 3 or more valences include a hydroxyl group and an alkoxy group in addition to the oxygen atom and chlorine atom shown above. Particularly preferred are X-type, τ-type metal-free phthalocyanine, titanyl phthalocyanine such as A-type, B-type, and D-type, vanadyl phthalocyanine, chloroindium phthalocyanine, chlorogallium phthalocyanine, and hydroxygallium phthalocyanine. Of the crystal forms of titanyl phthalocyanine mentioned here, A type and B type are described in W.W. Heller et al. Have shown them as phase I and phase II (Zeit. Kristallogr. 159 (1982) 173), respectively, and the A type is also called the β type and is known as the stable type. D-type is a metastable type, also called Y-type, and is a crystal type characterized by a clear peak at a diffraction angle 2θ ± 0.2 ° of 27.3 ° in powder X-ray diffraction using CuKα rays. is there.

フタロシアニン化合物は単一の化合物のもののみを用いても良いし、いくつかの混合状態でも良い。ここでのフタロシアニン化合物ないしは結晶状態における混合状態として、それぞれの構成要素を後から混合して用いても良いし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じせしめたものでも良い。このような処理としては、酸ペースト処理、磨砕処理、溶剤処理等が知られている。   As the phthalocyanine compound, only a single compound may be used, or several mixed states may be used. As the mixed state in the phthalocyanine compound or the crystalline state here, the respective constituent elements may be mixed and used later, or a mixed state is generated in the production and processing steps of the phthalocyanine compound such as synthesis, pigmentation, and crystallization. It can be stuffed. As such treatment, acid paste treatment, grinding treatment, solvent treatment and the like are known.

これらの電荷発生物質は、通常、その微粒子を例えばポリエステル樹脂、ポリビニルアセテート樹脂、ポリアクリル酸エステル樹脂、ポリメタクリル酸エステル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアセトアセタール樹脂、ポリビニルプロピオナール樹脂、ポリビニルブチラール樹脂、フェノキシ樹脂、エポキシ樹脂、ウレタン樹脂、セルロースエステル、セルロースエーテルなどの各種バインダー樹脂で結着した形で使用される。なお、この際バインダー樹脂として本発明に係るポリエステル樹脂を使用してもよい。また、バインダー樹脂は1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
電荷発生層における電荷発生物質の使用比率は、バインダー樹脂100質量部に対して、通常30質量部以上、好ましくは50質量部以上であり、通常500質量部以下、好ま
しくは300質量部以下である。
These charge generation materials usually have fine particles such as polyester resin, polyvinyl acetate resin, polyacrylate resin, polymethacrylate resin, polyester resin, polycarbonate resin, polyvinyl acetoacetal resin, polyvinyl propional resin, polyvinyl butyral. It is used in a form bound with various binder resins such as resin, phenoxy resin, epoxy resin, urethane resin, cellulose ester, and cellulose ether. In this case, the polyester resin according to the present invention may be used as the binder resin. Moreover, 1 type may be used for binder resin and it may use 2 or more types together by arbitrary combinations and arbitrary ratios.
The use ratio of the charge generation material in the charge generation layer is usually 30 parts by mass or more, preferably 50 parts by mass or more, and usually 500 parts by mass or less, preferably 300 parts by mass or less with respect to 100 parts by mass of the binder resin. .

〔電荷輸送層〕
積層型感光体の電荷輸送層は、電荷輸送材料、バインダー樹脂と、必要に応じて使用されるその他の成分とを含有する。バインダー樹脂は、ポリカーボネート樹脂であることが好ましい。このような電荷輸送層は、具体的には、電荷輸送材料等とバインダー樹脂とを溶剤に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には電荷発生層上に、また、逆積層型感光層の場合には下引き層上に塗布、乾燥して得ることができる。電荷輸送層の膜厚は特に制限されないが、長寿命、画像安定性の観点、更には帯電安定性の観点から、通常5μm以上、好ましくは10μm以上、一方、通常50μm以下、好ましくは45μm以下、更には40μm以下の範囲で、高解像度化の観点からは35μm以下が特に好適に用いられる。
(Charge transport layer)
The charge transport layer of the multilayer photoreceptor contains a charge transport material, a binder resin, and other components used as necessary. The binder resin is preferably a polycarbonate resin. Specifically, such a charge transport layer is prepared by dissolving or dispersing a charge transport material or the like and a binder resin in a solvent to prepare a coating solution. In addition, in the case of a reverse lamination type photosensitive layer, it can be obtained by coating on an undercoat layer and drying. The film thickness of the charge transport layer is not particularly limited, but is usually 5 μm or more, preferably 10 μm or more, on the other hand, usually 50 μm or less, preferably 45 μm or less, from the viewpoints of long life, image stability, and charging stability. Furthermore, in the range of 40 μm or less, 35 μm or less is particularly preferably used from the viewpoint of increasing the resolution.

電荷輸送材料としては、公知の他の電荷輸送材料を用いることができ、その種類は特に制限されないが、例えば、カルバゾール誘導体、ヒドラゾン化合物、芳香族アミン誘導体、エナミン誘導体、ブタジエン誘導体及びこれらの誘導体が複数結合されたものが好ましい。前記電荷輸送材料の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の電荷輸送材料を用いてもよい。   As the charge transporting material, other known charge transporting materials can be used, and the kind thereof is not particularly limited. What was combined two or more is preferable. Specific examples of suitable structures of the charge transport material are shown below. These specific examples are shown for illustration, and any known charge transport material may be used as long as it is not contrary to the gist of the present invention.

Figure 2015210477
Figure 2015210477

Figure 2015210477
Figure 2015210477

バインダー樹脂としては、ブタジエン樹脂、スチレン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ビニルアルコール樹脂、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、部分変性ポリビニルアセタール、ポリアミド樹脂、ポリウレタン樹脂、セルロースエステル樹脂、フェノキシ樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂が好適に使用される。このうち、ポリカーボネート樹脂、ポリアリレート樹脂が好ましい。電気特性維持の観点から、ポリカーボネート樹脂であることが特に好ましい。   Binder resins include butadiene resins, styrene resins, vinyl acetate resins, vinyl chloride resins, acrylic ester resins, methacrylic ester resins, vinyl alcohol resins, polymers of vinyl compounds such as ethyl vinyl ether, copolymers, and polyvinyl butyral resins. Polyvinyl formal resin, partially modified polyvinyl acetal, polyamide resin, polyurethane resin, cellulose ester resin, phenoxy resin, silicone resin, silicone-alkyd resin, poly-N-vinylcarbazole resin, polycarbonate resin, polyester resin are preferably used. . Of these, polycarbonate resins and polyarylate resins are preferred. From the viewpoint of maintaining electrical characteristics, a polycarbonate resin is particularly preferable.

前記バインダー樹脂の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知のバインダー樹脂を用いてもよい。   Specific examples of suitable structures of the binder resin are shown below. These specific examples are shown for illustration, and any known binder resin may be used as long as it does not contradict the gist of the present invention.

Figure 2015210477
Figure 2015210477

電荷輸送層に用いられるバインダー樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、強度の観点から、下限は通常20,000以上、好ましくは30,000以上、より好ましくは50,000以上である。また、塗布性の観点から、
その上限は通常150,000以下、好ましくは100,000以下、より好ましくは90,000以下である。
The viscosity average molecular weight of the binder resin used for the charge transport layer is arbitrary as long as the effects of the present invention are not significantly impaired. From the viewpoint of strength, the lower limit is usually 20,000 or more, preferably 30,000 or more, more preferably. Is over 50,000. From the viewpoint of applicability,
The upper limit is usually 150,000 or less, preferably 100,000 or less, more preferably 90,000 or less.

バインダー樹脂と電荷輸送材料との割合は、バインダー樹脂100質量部に対して電荷輸送材料を通常は10質量部以上の比率で使用する。中でも、残留電位低減の観点から20質量部以上が好ましく、更には、繰り返し使用した際の安定性や電荷移動度の観点から30質量部以上がより好ましい。一方、感光層の熱安定性の観点から、電荷輸送材料を通常は120質量部以下の比率で使用する。中でも、電荷輸送材料とバインダー樹脂との相溶性の観点から100質量部以下が好ましく、耐刷性の観点から70質量部以下がより好ましく、耐傷性の観点から50質量部以下が特に好ましい。   As for the ratio of the binder resin to the charge transport material, the charge transport material is usually used at a ratio of 10 parts by mass or more with respect to 100 parts by mass of the binder resin. Among these, 20 parts by mass or more is preferable from the viewpoint of residual potential reduction, and more preferably 30 parts by mass or more from the viewpoint of stability and charge mobility when repeatedly used. On the other hand, from the viewpoint of thermal stability of the photosensitive layer, the charge transport material is usually used at a ratio of 120 parts by mass or less. Among these, 100 parts by mass or less is preferable from the viewpoint of compatibility between the charge transport material and the binder resin, 70 parts by mass or less is more preferable from the viewpoint of printing durability, and 50 parts by mass or less is particularly preferable from the viewpoint of scratch resistance.

<単層型感光層>
単層型感光層は、電荷発生物質と電荷輸送材料に加えて、積層型感光体の電荷輸送層と同様に、膜強度確保のためにポリカーボネート樹脂を使用して形成する。具体的には、電荷発生物質と電荷輸送材料とポリカーボネート樹脂とを溶剤に溶解又は分散して塗布液を作製し下引き層上に塗布、乾燥して得ることができる。単層型感光層の膜厚は、通常5μm以上、好ましくは10μm以上、また、通常100μm以下、好ましくは50μm以下の範囲である。
<Single layer type photosensitive layer>
In addition to the charge generation material and the charge transport material, the single-layer type photosensitive layer is formed using a polycarbonate resin in order to ensure film strength, in the same manner as the charge transport layer of the multilayer photoreceptor. Specifically, the charge generation material, the charge transport material, and the polycarbonate resin can be dissolved or dispersed in a solvent to prepare a coating solution, which can be applied on the undercoat layer and dried. The film thickness of the single-layer type photosensitive layer is usually 5 μm or more, preferably 10 μm or more, and usually 100 μm or less, preferably 50 μm or less.

電荷輸送材料及びバインダー樹脂の種類並びにこれらの使用比率は、積層型感光体の電荷輸送層について説明したものと同様である。これらの電荷輸送材料及びバインダー樹脂からなる電荷輸送媒体中に、更に電荷発生物質が分散される。
電荷発生物質は、積層型感光体の電荷発生層について説明したものと同様のものが使用できる。但し、単層型感光体の感光層の場合、電荷発生物質の粒子径を十分に小さくする必要がある。具体的には、通常1μm以下、好ましくは0.5μm以下の範囲とする。
また、単層型感光層におけるバインダー樹脂と電荷発生物質との使用比率は、バインダー樹脂100質量部に対して電荷発生物質が通常0.1質量部以上、好ましくは1質量部以上、また、通常30質量部以下、好ましくは10質量部以下の範囲とする。
The types of the charge transport material and the binder resin, and the usage ratios thereof are the same as those described for the charge transport layer of the multilayer photoreceptor. A charge generating substance is further dispersed in a charge transport medium comprising these charge transport material and binder resin.
As the charge generation material, the same materials as those described for the charge generation layer of the multilayer photoreceptor can be used. However, in the case of a photosensitive layer of a single layer type photoreceptor, it is necessary to sufficiently reduce the particle size of the charge generating material. Specifically, the range is usually 1 μm or less, preferably 0.5 μm or less.
In addition, the usage ratio of the binder resin and the charge generation material in the single-layer type photosensitive layer is such that the charge generation material is usually 0.1 parts by weight or more, preferably 1 part by weight or more, based on 100 parts by weight of the binder resin. It is 30 mass parts or less, Preferably it is set as the range of 10 mass parts or less.

<その他の機能層>
積層型感光体、単層型感光体ともに、感光層又はそれを構成する各層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させる目的で、周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤等の添加物を含有させても良い。
また、積層型感光体、単層型感光体ともに、上記手順により形成された感光層を最上層、即ち表面層としてもよいが、その上に更に別の層を設け、これを表面層としてもよい。例えば、感光層の損耗を防止したり、帯電器等から発生する放電生成物等による感光層の劣化を防止・軽減したりする目的で、保護層を設けてもよい。
<Other functional layers>
For the purpose of improving film-forming properties, flexibility, coating properties, stain resistance, gas resistance, light resistance, etc., in both the photosensitive layer and each layer constituting it, both in the multilayer type photosensitive member and the single layer type photosensitive member. Additives such as well-known antioxidants, plasticizers, ultraviolet absorbers, electron-withdrawing compounds, leveling agents, and visible light shielding agents may be included.
Further, in both the laminated type photoreceptor and the single layer type photoreceptor, the photosensitive layer formed by the above procedure may be the uppermost layer, that is, the surface layer, but another layer may be provided on the photosensitive layer and used as the surface layer. Good. For example, a protective layer may be provided for the purpose of preventing wear of the photosensitive layer or preventing or reducing deterioration of the photosensitive layer due to discharge products generated from a charger or the like.

保護層の電気抵抗は、通常10Ω・cm以上、1014Ω・cm以下の範囲とする。電気抵抗が該範囲より高くなると、残留電位が上昇しカブリの多い画像となってしまう一方、前記範囲より低くなると、画像のボケ、解像度の低下が生じてしまう。また、保護層は像露光の際に照射される光の透過を実質上妨げないように構成されなければならない。
また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂等、又はこれらの樹脂からなる粒子や無機化合物の粒子を含有させても良い。或いは、これらの樹脂や粒子を含む層を新たに表面層として形成しても良い。
The electrical resistance of the protective layer is usually in the range of 10 9 Ω · cm to 10 14 Ω · cm. When the electric resistance is higher than the range, the residual potential is increased, resulting in an image with much fogging. On the other hand, when the electric resistance is lower than the range, the image is blurred and the resolution is reduced. Further, the protective layer must be configured so as not to substantially prevent transmission of light irradiated during image exposure.
Further, for the purpose of reducing the frictional resistance and wear on the surface of the photoconductor, and increasing the transfer efficiency of the toner from the photoconductor to the transfer belt and paper, etc., the surface layer is made of a fluororesin, silicone resin, polyethylene resin, You may contain the particle | grains which consist of these resin, and the particle | grains of an inorganic compound. Alternatively, a layer containing these resins and particles may be newly formed as a surface layer.

[カートリッジ、画像形成装置]
次に、本発明の電子写真感光体を用いたドラムカートリッジ、画像形成装置について、装置の一例を示す図1に基づいて説明する。
図1において、1はドラム状感光体であり、矢印方向に所定の周速度で回転駆動される。感光体1はその回転過程で帯電手段2により、その表面に正または負の所定電位の均一帯電を受け、ついで露光部3において像露光手段により潜像形成のための露光が行われる。
[Cartridge, image forming device]
Next, a drum cartridge and an image forming apparatus using the electrophotographic photosensitive member of the present invention will be described with reference to FIG.
In FIG. 1, reference numeral 1 denotes a drum-shaped photoconductor, which is rotationally driven at a predetermined peripheral speed in the direction of an arrow. The photosensitive member 1 is uniformly charged at a predetermined positive or negative potential on the surface thereof by the charging unit 2 during the rotation process, and then exposure for forming a latent image is performed by the image exposure unit in the exposure unit 3.

形成された静電潜像は、次に現像手段4でトナー現像され、そのトナー現像像がコロナ転写手段5により給紙部から給送された転写体(紙など)Pに順次転写されていく。図1では、現像手段4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となって
いる。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像手段4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。
The formed electrostatic latent image is then developed with toner by the developing means 4, and the toner developed image is sequentially transferred onto the transfer body (paper or the like) P fed from the paper feeding unit by the corona transfer means 5. . In FIG. 1, the developing unit 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41. . Further, a replenishing device (not shown) for replenishing the toner T may be attached to the developing unit 4 as necessary. The replenishing device is configured to be able to replenish toner T from a container such as a bottle or a cartridge.

像転写された転写体はついで定着手段7に送られ、像定着され、機外へプリントアウトされる。定着手段7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71、72は、ステンレス、アルミニウムなどの金属素管にシリコンゴムを被覆した定着ロール、更にテフロン(登録商標)樹脂で被覆した定着ロール、定着シートなどが公知の熱定着部材を使用することができる。更に、各定着部材71、72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。   The image-transferred transfer body is then sent to the fixing means 7 where the image is fixed and printed out of the apparatus. The fixing unit 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside the fixing member 71 or 72. FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71. The upper and lower fixing members 71 and 72 include a fixing roll in which a metal base tube made of stainless steel, aluminum or the like is coated with silicon rubber, a fixing roll in which Teflon (registered trademark) resin is coated, a fixing sheet, or the like. A member can be used. Further, the fixing members 71 and 72 may be configured to supply a release agent such as silicone oil in order to improve the releasability, or may be configured to forcibly apply pressure to each other by a spring or the like.

記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。像転写後の感光体1の表面はクリーニング手段6により転写残りのトナーが除去され、除電手段により除電されて次の画像形成のために清浄化される。   When the toner transferred onto the recording paper P passes between the upper fixing member 71 and the lower fixing member 72 heated to a predetermined temperature, the toner is heated to a molten state and cooled after passing through the recording paper. Toner is fixed on P. The surface of the photoreceptor 1 after the image transfer is cleaned by the cleaning unit 6 to remove the transfer residual toner, and is neutralized by the neutralization unit for the next image formation.

本発明の電子写真感光体を使用するにあたって、帯電器としては、コロトロン、スコロトロンなどのコロナ帯電器の他に、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電手段を用いてもよい。直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器などが挙げられる。直接帯電手段として、気中放電を伴うもの、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、および直流に交流を重畳させて用いることもできる。   In using the electrophotographic photosensitive member of the present invention, as a charger, in addition to a corona charger such as corotron or scorotron, a direct charging means for charging a charged member by contacting a directly charged member to which a voltage is applied is provided. It may be used. Examples of direct charging means include contact chargers such as charging rollers and charging brushes. As the direct charging means, any one that involves air discharge or injection charging that does not involve air discharge is possible. In addition, as a voltage applied at the time of charging, in the case of only a direct current voltage, an alternating current can be superimposed on a direct current.

露光はハロゲンランプ、蛍光灯、レーザー(半導体、He−Ne)、LED、感光体内部露光方式等が用いられるが、デジタル式電子写真方式として、レーザー、LED、光シャッターアレイ等を用いることが好ましい。波長としては780nmの単色光の他、600〜700nm領域のやや短波長寄りの単色光を用いることができる。
現像行程はカスケード現像、1成分絶縁トナー現像、1成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や湿式現像方式などが用いられる。
For the exposure, a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), LED, a photoreceptor internal exposure system, or the like is used. As a digital electrophotographic system, it is preferable to use a laser, an LED, an optical shutter array, or the like. . As the wavelength, in addition to 780 nm monochromatic light, it is possible to use monochromatic light in the 600 to 700 nm region and slightly shorter wavelength.
In the development process, a dry development method such as cascade development, one-component insulating toner development, one-component conductive toner development, two-component magnetic brush development, or the like is used.

トナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケミカルトナーを用いることができる。特に、ケミカルトナーの場合には、4〜8μm程度の小粒径のものが用いられ、形状も球形に近いものから、ポテト状の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化には好適に用いられる。   As the toner, in addition to the pulverized toner, chemical toners such as suspension granulation, suspension polymerization, and emulsion polymerization aggregation can be used. In particular, in the case of chemical toners, those having a small particle diameter of about 4 to 8 μm are used, and those having a shape close to a sphere, and those outside a potato-like sphere can also be used. The polymerized toner is excellent in charging uniformity and transferability, and is preferably used for high image quality.

転写行程はコロナ転写、ローラ転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法が用いられる。定着は熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着、IH定着、ベルト定着、IHF定着などが用いられ、これら定着方式は単独で用いても良く、複数の定着方式を組み合わせた形で使用してもよい。
クリーニングにはブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなどが用いられる。
For the transfer process, electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer methods, and adhesive transfer methods are used. For fixing, heat roller fixing, flash fixing, oven fixing, pressure fixing, IH fixing, belt fixing, IHF fixing, etc. may be used. These fixing methods may be used alone or in combination with a plurality of fixing methods. May be.
For cleaning, brush cleaner, magnetic brush cleaner, electrostatic brush cleaner, magnetic roller cleaner, blade cleaner, etc. are used.

除電工程は、省略される場合も多いが、使用される場合には、蛍光灯、LED等が使用され、強度としては露光光の3倍以上の露光エネルギーが使用される場合が多い。これらのプロセスのほかに、前露光工程、補助帯電工程のプロセスを有してもよい。
本発明に係る電子写真感光体を用いたカートリッジは、上記感光体1と、帯電手段2、露光部3、現像手段4及びクリーニング手段6からなる群のうち少なくとも一の部分とを備えていればよい。
In many cases, the static elimination step is omitted, but when used, a fluorescent lamp, LED, or the like is used, and an exposure energy that is three times or more of the exposure light is often used as the intensity. In addition to these processes, a pre-exposure process and an auxiliary charging process may be included.
A cartridge using the electrophotographic photosensitive member according to the present invention includes the photosensitive member 1 and at least one portion of the group consisting of the charging unit 2, the exposure unit 3, the developing unit 4, and the cleaning unit 6. Good.

本発明においては、上記ドラム状感光体1、帯電手段2、現像手段4及びクリーニング手段6等の構成要素の内の複数のものをドラムカートリッジとして一体に結合して構成し、このドラムカートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。例えば、帯電手段2、現像手段4及びクリーニング手段6の内、少なくとも1つをドラム状感光体1と共に一体に支持してカートリッジ化とすることが出来る。
また、本発明に係る電子写真感光体、帯電手段2、露光部3、現像手段4及びクリーニング手段6を備える画像形成装置に適用することも可能である。
In the present invention, a plurality of components such as the drum-shaped photosensitive member 1, the charging unit 2, the developing unit 4 and the cleaning unit 6 are integrally combined as a drum cartridge, and the drum cartridge is copied. It may be configured to be detachable from the main body of an electrophotographic apparatus such as a machine or a laser beam printer. For example, at least one of the charging unit 2, the developing unit 4, and the cleaning unit 6 can be integrally supported together with the drum-shaped photoreceptor 1 to form a cartridge.
The present invention can also be applied to an image forming apparatus including the electrophotographic photosensitive member, the charging unit 2, the exposure unit 3, the developing unit 4, and the cleaning unit 6 according to the present invention.

以下、製造例、実施例及び比較例を挙げて、本発明を更に詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to production examples, examples and comparative examples. In addition, the following examples are shown in order to explain the present invention in detail, and the present invention is not limited to the following examples unless it is contrary to the gist thereof.

Figure 2015210477
Figure 2015210477

Figure 2015210477
Figure 2015210477

Figure 2015210477
Figure 2015210477

<本実施例・比較例で使用する化合物のLUMOと分極率>   <LUMO and polarizability of compounds used in Examples and Comparative Examples>

Figure 2015210477
Figure 2015210477

<下引き層用分散液の調製>
(調液例1)
下引き層用分散液は、次のようにして製造した。即ち、平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、高速流動式混合混練機((株)カワタ社製「SMG300」)に投入し、回転周速34.5m/秒で高速混合して得られた表面処理酸化チタンを、メタノール/1−プロパノールの混合溶媒中でボールミルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとした。該分散スラリーと、メタノール/1−プロパノール/トルエンの混合溶媒、および、ε−カプロラクタム/ビス(4−アミノ−3−メチルシクロヘキシル)メタン/ヘキサメチ
レンジアミン/デカメチレンジカルボン酸/オクタデカメチレンジカルボン酸の組成モル比率が、60%/15%/5%/15%/5%からなる共重合ポリアミドのペレットと該ポリアミド樹脂の10%質量比に相当する電子吸引性化合物(A-1)とを加熱しながら撹
拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行なうことにより、メタノール/1−プロパノール/トルエンの質量比が7/1/2で、疎水性処理酸化チタン/共重合ポリアミドを質量比3/1で含有する、固形分濃度18.0%の下引き層用分散液とした。
<Preparation of dispersion for undercoat layer>
(Preparation Example 1)
The undercoat layer dispersion was produced as follows. That is, a rutile type titanium oxide having an average primary particle size of 40 nm (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were flowed at high speed. In a mixed solvent of methanol / 1-propanol in a mixed solvent of methanol / 1-propanol, which was introduced into a mixing kneader (“SMG300” manufactured by Kawata Co., Ltd.) and mixed at a high rotational speed of 34.5 m / sec. Then, a dispersion slurry of hydrophobized titanium oxide was obtained by dispersing with a ball mill. The dispersion slurry, a mixed solvent of methanol / 1-propanol / toluene, and ε-caprolactam / bis (4-amino-3-methylcyclohexyl) methane / hexamethylenediamine / decamethylenedicarboxylic acid / octadecamethylenedicarboxylic acid Heating a copolyamide pellet having a composition molar ratio of 60% / 15% / 5% / 15% / 5% and an electron withdrawing compound (A-1) corresponding to a 10% mass ratio of the polyamide resin While stirring and mixing, the polyamide pellets are dissolved, and then subjected to ultrasonic dispersion treatment, so that the mass ratio of methanol / 1-propanol / toluene is 7/1/2, and hydrophobically treated titanium oxide / copolymerization. An undercoat layer dispersion containing a polyamide in a mass ratio of 3/1 and having a solid content concentration of 18.0% was obtained.

(調液例2)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-2)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(調液例3)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-3)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Preparation example 2)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-2) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.
(Preparation example 3)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-3) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(調液例4)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-4)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(調液例5)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-5)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Preparation example 4)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-4) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.
(Preparation example 5)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-5) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(比較調液例1)
調液例1で、電子吸引性化合物(A-1)を使用しなかった以外は、調液例1と同じよう
にして下引き層用分散液を調製した。
(比較調液例2)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-6)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Comparison preparation example 1)
A dispersion for undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron-withdrawing compound (A-1) was not used in Preparation Example 1.
(Comparison preparation example 2)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-6) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(比較調液例3)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-7)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(比較調液例4)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-8)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Comparison preparation example 3)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-7) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.
(Comparison preparation example 4)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-8) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(比較調液例5)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-9)を使用した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(比較調液例6)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-10)を使用
した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Comparison preparation example 5)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-9) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.
(Comparison preparation example 6)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-10) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(比較調液例7)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-11)を使用
した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(比較調液例8)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-12)を使用
した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Comparison preparation example 7)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-11) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.
(Comparison preparation example 8)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-12) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(比較調液例9)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-13)を使用
した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(比較調液例10)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-14)を使用
した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Comparison preparation example 9)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-13) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.
(Comparative preparation example 10)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-14) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

(比較調液例11)
調液例1で、電子吸引性化合物(A-1)の代わりに、電子吸引性化合物(A-15)を使用
した以外は、調液例1と同じようにして下引き層用分散液を調製した。
(Comparative Preparation Example 11)
The dispersion for the undercoat layer was prepared in the same manner as in Preparation Example 1 except that the electron withdrawing compound (A-15) was used instead of the electron withdrawing compound (A-1) in Preparation Example 1. Prepared.

Figure 2015210477
Figure 2015210477

<感光体シート作成方法>
[実施例1]
調液例1で得られた下引き層形成用塗布液を、表面にアルミ蒸着したポリエチレンテレフタレートシート(厚さ75μm)上に、乾燥後の膜厚が1.2μmになるようにワイヤーバーで塗布、乾燥して下引き層を設けた。
<Photosensitive sheet preparation method>
[Example 1]
Apply the coating solution for forming the undercoat layer obtained in Preparation Example 1 on a polyethylene terephthalate sheet (thickness 75 μm) with aluminum deposited on the surface so that the film thickness after drying is 1.2 μm. And dried to provide an undercoat layer.

次に、特開2007-148387号公報の比較合成例1と同様の方法で機械的処理によりアモル
ファス化した後に溶媒に接触させ得られた、CuKα線によるX線回折においてブラッグ角(2θ±0.2)が27.3゜に強い回折ピークを示し(D型)、図2に示す粉末X線回折スペクトルを有するオキシチタニウムフタロシアニン10質量部を1,2−ジメトキシエタン150質量部に加え、サンドグラインドミルにて粉砕分散処理を行い、顔料分散液を作製した。こうして得られた160質量部の顔料分散液をポリビニルブチラール(電気化学工業(株)製、商品名#6000C)の5質量%1,2−ジメトキシエタン溶液100質量部に加え、適量の1,2−ジメトキシエタンを加え、最終的に固形分濃度4.0
質量%の電荷発生層形成用塗布液を作製した。この電荷発生層形成用塗布液を、上述の下引き層上に乾燥後の膜厚が0.4μmとなるようにワイヤーバーで塗布した後、乾燥して電荷発生層を形成した。
Next, the Bragg angle (2θ ± 0. 0) in X-ray diffraction by CuKα rays obtained by making it amorphous by mechanical treatment by the same method as in Comparative Synthesis Example 1 of JP-A-2007-148387 was obtained. 2) showed a strong diffraction peak at 27.3 ° (D-type), 10 parts by mass of oxytitanium phthalocyanine having the powder X-ray diffraction spectrum shown in FIG. 2 was added to 150 parts by mass of 1,2-dimethoxyethane, A pulverization dispersion treatment was performed with a mill to prepare a pigment dispersion. 160 parts by mass of the pigment dispersion thus obtained was added to 100 parts by mass of a 5% 1,2-dimethoxyethane solution of polyvinyl butyral (trade name # 6000C, manufactured by Denki Kagaku Kogyo Co., Ltd.), and an appropriate amount of 1,2 -Dimethoxyethane is added and finally the solids concentration is 4.0
A coating solution for forming a mass% charge generation layer was prepared. This charge generation layer forming coating solution was applied on the above-described undercoat layer with a wire bar so that the film thickness after drying was 0.4 μm, and then dried to form a charge generation layer.

次に、電荷輸送物質として下記構造式で示されるCTM-1を50質量部、酸化防止剤とし
て下記式で示される酸化防止剤(1)を8質量部、バインダー樹脂として下記繰り返し構造からなるポリカーボネート樹脂(PCR-A、粘度平均分子量40,000)100質量部
、およびレベリング剤としてシリコーンオイル0.1質量部を、テトラヒドロフランとトルエンとの混合溶媒(テトラヒドロフラン80質量%、トルエン20質量%)640質量部に混合し、電荷輸送層形成用塗布液を調製した。
Next, 50 parts by mass of CTM-1 represented by the following structural formula as a charge transport material, 8 parts by mass of an antioxidant (1) represented by the following formula as an antioxidant, and a polycarbonate having the following repeating structure as a binder resin Resin (PCR-A, viscosity average molecular weight 40,000) 100 parts by mass, silicone oil 0.1 parts by mass as a leveling agent, mixed solvent of tetrahydrofuran and toluene (tetrahydrofuran 80 mass%, toluene 20 mass%) 640 mass The coating solution for forming a charge transport layer was prepared by mixing with the part.

Figure 2015210477
Figure 2015210477

[実施例2〜5]
実施例1で使用した調液例1の下引き層形成用塗布液の代わりに、調液例2〜5の下引き層形成用塗布液を使用した以外は実施例1と同様にして、電子写真感光体シートサンプルを作製した。
[Examples 2 to 5]
In the same manner as in Example 1 except that the undercoat layer forming coating solution of Preparation Examples 2 to 5 was used instead of the undercoat layer forming coating solution of Preparation Example 1 used in Example 1, A photoconductor sheet sample was prepared.

[比較例1]
実施例1で使用した調液例1の下引き層形成用塗布液の代わりに、比較調液例1の下引き層形成用塗布液を使用した以外は実施例1と同様にして、電子写真感光体シートサンプルを作製した。
[Comparative Example 1]
In the same manner as in Example 1, except that the undercoat layer forming coating solution of Comparative Preparation Example 1 was used instead of the undercoat layer forming coating solution of Preparation Example 1 used in Example 1, electrophotography A photoreceptor sheet sample was prepared.

[比較例2〜11]
実施例1で使用した調液例1の下引き層形成用塗布液の代わりに、比較調液例2〜9の下引き層形成用塗布液を使用した以外は実施例1と同様にして、電子写真感光体シートサンプルを作製した。
[Comparative Examples 2 to 11]
Instead of the coating solution for forming the undercoat layer of Preparation Example 1 used in Example 1, the coating solution for forming the undercoat layer of Comparative Preparation Examples 2 to 9 was used in the same manner as in Example 1, An electrophotographic photoreceptor sheet sample was prepared.

<感光体の電気特性の評価>
電子写真学会測定標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404−405頁記載)を使用し、上記感光体をアルミニウム製ドラムに貼り付けて円筒状にし、アルミニウム製ドラムと感光体のアルミニウム基体との導通を取った上で、ドラムを一定回転数で回転させ、帯電、露光、電位測定、除電のサイクルによる電気特性評価試験を行った。
<Evaluation of electrical characteristics of photoconductor>
Using an electrophotographic characteristic evaluation apparatus (basic and applied electrophotographic technology, edited by the Electrophotographic Society, Corona, pages 404-405) prepared according to the Electrophotographic Society measurement standard, the photoconductor is made into an aluminum drum. Attached to a cylindrical shape, the aluminum drum and the aluminum base of the photoconductor are connected, and then the drum is rotated at a constant rotational speed, and an electrical property evaluation test is performed by a cycle of charging, exposure, potential measurement, and static elimination. went.

その際、初期表面電位を−700Vとし、露光は780nm、除電は660nmの単色光を用いた。780nmの光を1.0μJ/cm照射した時点の表面電位(VL)、および感度を表す指標として、表面電位を−350Vまで半減させるのに必要な露光量(半減露光量)を測定した。VL測定に際しては、露光−電位測定に要する時間を100msとした。測定環境は、温度35℃、相対湿度85%下であり、初期と5000回繰り返した後に測定を行った。電気特性の結果を表−5に示す。初期のVLと5000回繰り返し後のVLの差をΔVLとした。この値が小さいほど、繰り返しの特性が良好である。 At that time, the initial surface potential was −700 V, exposure was 780 nm, and charge removal was monochromatic light of 660 nm. As the surface potential (VL) when 780 nm light was irradiated at 1.0 μJ / cm 2 and the index representing sensitivity, the exposure amount (half exposure amount) required to halve the surface potential to −350 V was measured. In the VL measurement, the time required for the exposure-potential measurement was 100 ms. The measurement environment was a temperature of 35 ° C. and a relative humidity of 85%, and the measurement was performed after repeating the initial and 5000 times. The results of electrical characteristics are shown in Table-5. The difference between the initial VL and the VL after 5000 iterations was taken as ΔVL. The smaller this value, the better the repetition characteristics.

Figure 2015210477
Figure 2015210477

上記表−5の結果から分かるように、本発明の範囲内の電子吸引性化合物を下引き層に含有することにより、何も加えない、または本発明の範囲外の化合物に比べて繰り返しの特性が良好である。比較例4、比較例6、比較例7、比較例10は、ΔVLの値が実施例よりも小さいが初期のVLの値が大きい。下引き層に本実施形態の構成を用いることで、電荷発生層から下引き層への電子の移動が速やかになり内部の残留電荷が低下し、表面電
位VLの低減効果につながったと考えられる。
As can be seen from the results of Table-5 above, the inclusion of an electron withdrawing compound within the scope of the present invention in the undercoat layer results in nothing added or repeated characteristics compared to compounds outside the scope of the present invention. Is good. In Comparative Example 4, Comparative Example 6, Comparative Example 7, and Comparative Example 10, the value of ΔVL is smaller than that of the example, but the initial value of VL is large. By using the configuration of the present embodiment for the undercoat layer, it is considered that the movement of electrons from the charge generation layer to the undercoat layer is accelerated, the internal residual charge is reduced, and this leads to the effect of reducing the surface potential VL.

Claims (5)

導電性支持体上に、下引き層、感光層を有する電子写真感光体であって、前記下引き層が電子吸引性化合物を含有し、前記電子吸引性化合物のLUMOエネルギー準位が−2.50〜−3.20eV、分極率が27〜43Åであり、前記感光層がポリカーボネート樹脂を含有することを特徴とする電子写真感光体。 An electrophotographic photosensitive member having an undercoat layer and a photosensitive layer on a conductive support, wherein the undercoat layer contains an electron-withdrawing compound, and the LUMO energy level of the electron-withdrawing compound is -2. An electrophotographic photoreceptor, wherein the electrophotographic photoreceptor has a 50 to -3.20 eV and a polarizability of 27 to 43 3 , and the photosensitive layer contains a polycarbonate resin. 前記下引き層における前記電子吸引性化合物の含有率が、前記下引き層全質量に対し、0.25〜20質量%である請求項1に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the content of the electron-withdrawing compound in the undercoat layer is 0.25 to 20% by mass with respect to the total mass of the undercoat layer. 前記下引き層が、金属酸化物粒子を含む請求項1又は2に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the undercoat layer contains metal oxide particles. 前記金属酸化物粒子が、酸化チタン又は酸化アルミニウムである請求項3に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 3, wherein the metal oxide particles are titanium oxide or aluminum oxide. 前記電荷発生層がオキシチタニウムフタロシアニンを含有することを特徴とする請求項1〜4のいずれか1項に記載の電子写真感光体。   The electrophotographic photosensitive member according to any one of claims 1 to 4, wherein the charge generation layer contains oxytitanium phthalocyanine.
JP2014093718A 2014-04-30 2014-04-30 Electrophotographic photosensitive member, cartridge, and image forming apparatus Active JP6357853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093718A JP6357853B2 (en) 2014-04-30 2014-04-30 Electrophotographic photosensitive member, cartridge, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093718A JP6357853B2 (en) 2014-04-30 2014-04-30 Electrophotographic photosensitive member, cartridge, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2015210477A true JP2015210477A (en) 2015-11-24
JP6357853B2 JP6357853B2 (en) 2018-07-18

Family

ID=54612676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093718A Active JP6357853B2 (en) 2014-04-30 2014-04-30 Electrophotographic photosensitive member, cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6357853B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908521B2 (en) 2018-10-25 2021-02-02 Canon Kabushiki Kaisha Electrophotographic photoconductor, process cartridge, and electrophotographic apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348852A (en) * 1989-07-18 1991-03-01 Mitsubishi Kasei Corp Electrophotographic sensitive body
JPH0372365A (en) * 1989-08-11 1991-03-27 Mitsubishi Kasei Corp Electrophotographic sensitive body
JP2003345048A (en) * 2002-05-28 2003-12-03 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2003345049A (en) * 2002-05-28 2003-12-03 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2004096808A (en) * 2002-08-29 2004-03-25 Aisin Seiki Co Ltd Synchronous reluctance motor
JP2007293319A (en) * 2006-03-30 2007-11-08 Mitsubishi Chemicals Corp Image forming apparatus
JP2010127963A (en) * 2008-11-25 2010-06-10 Konica Minolta Business Technologies Inc Organic photoreceptor, image forming method, image forming apparatus, and process cartridge
JP2011128596A (en) * 2009-11-18 2011-06-30 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2014063119A (en) * 2012-08-31 2014-04-10 Canon Inc Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348852A (en) * 1989-07-18 1991-03-01 Mitsubishi Kasei Corp Electrophotographic sensitive body
JPH0372365A (en) * 1989-08-11 1991-03-27 Mitsubishi Kasei Corp Electrophotographic sensitive body
JP2003345048A (en) * 2002-05-28 2003-12-03 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2003345049A (en) * 2002-05-28 2003-12-03 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2004096808A (en) * 2002-08-29 2004-03-25 Aisin Seiki Co Ltd Synchronous reluctance motor
JP2007293319A (en) * 2006-03-30 2007-11-08 Mitsubishi Chemicals Corp Image forming apparatus
JP2010127963A (en) * 2008-11-25 2010-06-10 Konica Minolta Business Technologies Inc Organic photoreceptor, image forming method, image forming apparatus, and process cartridge
JP2011128596A (en) * 2009-11-18 2011-06-30 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2014063119A (en) * 2012-08-31 2014-04-10 Canon Inc Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908521B2 (en) 2018-10-25 2021-02-02 Canon Kabushiki Kaisha Electrophotographic photoconductor, process cartridge, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP6357853B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
US10503088B2 (en) Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer
JP2016095513A (en) Electrophotographic photoreceptor and image forming apparatus
JP6019922B2 (en) Electrophotographic photosensitive member, image forming apparatus, and electrophotographic cartridge
JP6051907B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6264084B2 (en) Electrophotographic photosensitive member, cartridge, and image forming apparatus
WO2016148035A1 (en) Single-layer-type electrophotographic photoreceptor for positive electrification, electrophotographic photoreceptor cartridge, and image-forming device
JP6160103B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2005292817A (en) Photoconductive material, electrophotographic photoreceptor using the same, electrophotographic photoreceptor cartridge, and image forming apparatus
JP6060738B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6357853B2 (en) Electrophotographic photosensitive member, cartridge, and image forming apparatus
JP5659455B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP7092033B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge and image forming apparatus
JP5482399B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP5655490B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and electrophotographic cartridge
JP5309465B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP6447062B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2014123114A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP5772264B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
JP6331630B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2014167555A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP5556327B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2017182063A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2013097270A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2015184355A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2015191167A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6357853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151