JP2015210238A - Concentration measurement device - Google Patents

Concentration measurement device Download PDF

Info

Publication number
JP2015210238A
JP2015210238A JP2014093858A JP2014093858A JP2015210238A JP 2015210238 A JP2015210238 A JP 2015210238A JP 2014093858 A JP2014093858 A JP 2014093858A JP 2014093858 A JP2014093858 A JP 2014093858A JP 2015210238 A JP2015210238 A JP 2015210238A
Authority
JP
Japan
Prior art keywords
microwave
concentration measuring
ray
unit
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014093858A
Other languages
Japanese (ja)
Inventor
宏之 内田
Hiroyuki Uchida
宏之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earthnix Corp
Original Assignee
Earthnix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earthnix Corp filed Critical Earthnix Corp
Priority to JP2014093858A priority Critical patent/JP2015210238A/en
Publication of JP2015210238A publication Critical patent/JP2015210238A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentration measurement device that can be installed to a pipe with a large diameter or a storage bottle, for example, and further can be put into a branch pipe attached to a main pipe and therefore can precisely measure the concentration by phase measurement or power measurement or a combination thereof.SOLUTION: A concentration measurement device 40 is formed of parallel arrangement of a window material 3 of a microwave transmitting unit transmitting a microwave 7 to a measurement target 31 and a window material 4 of a microwave receiving unit receiving a microwave going through the measurement target 31. The microwave 7 is transmitted into the direction of the parallel arrangement of the window materials 3 and 4.

Description

本発明は、マイクロ波を用いて試料の濃度を計測する濃度計測装置に関するものである。   The present invention relates to a concentration measuring apparatus that measures the concentration of a sample using a microwave.

従来、試料中にある物質の濃度を測定する濃度計測装置として、例えばマイクロ波の伝搬速度の変化を位相差として測定し、位相差によって濃度を計測するものがある。試料は、例えば、紙パルプにおける黒液、緑液、白液、カラー、パルプ液など、化学工業における各種溶液、スラリーなど、製鐵および非鉄金属精錬における各種金属スラリーなど、土木における土砂スラリー、セメントスラリーなど、が挙げられる。   Conventionally, as a concentration measuring apparatus that measures the concentration of a substance in a sample, for example, there is a device that measures a change in the propagation speed of a microwave as a phase difference and measures the concentration based on the phase difference. Samples include, for example, black liquor, green liquor, white liquor, color, pulp liquor in paper pulp, various solutions and slurries in the chemical industry, various metal slurries in ironmaking and nonferrous metal refining, earth and sand slurries in civil engineering, cement Slurry and the like.

このような濃度計測装置として、例えば、下記特許文献1に記載されたマイクロ波式濃度計がある。このマイクロ波式濃度計は、検出部として、金属管で成形される配管の側面に設けられたマイクロ波送信アンテナと受信アンテナとが、配管を介して、配管の管軸と直交する方向で、互いに対向して配置されている。   As such a concentration measuring device, for example, there is a microwave densitometer described in Patent Document 1 below. This microwave densitometer has a microwave transmitting antenna and a receiving antenna provided on a side surface of a pipe formed of a metal pipe as a detection unit in a direction perpendicular to the pipe axis of the pipe via the pipe. They are arranged opposite to each other.

特開2010−2268号公報JP 2010-2268 A

しかし、従来のマイクロ波式濃度計は、上記したとおり、マイクロ波送信アンテナと受信アンテナとが、配管を介して、配管の管軸と直交する方向で、互いに対向して配置されているため、配管の管径に合わせる必要がある。すなわち、管径に応じて、専用配管一体のものか専用配管を用意しなければならない。紙パルプ液や下水道水などの領域では、管径が大きいものが多く、適用配管に応じた品揃えが必要になる。   However, in the conventional microwave densitometer, as described above, the microwave transmitting antenna and the receiving antenna are arranged opposite to each other in a direction orthogonal to the pipe axis of the pipe via the pipe. It is necessary to match the pipe diameter. In other words, depending on the pipe diameter, a dedicated pipe or a dedicated pipe must be prepared. In areas such as paper pulp liquid and sewage water, many pipe diameters are large, and an assortment according to the applicable piping is required.

また、古紙や下水道汚水の計測の場合、連行気泡が発生しやすく、気泡によって測定値が実際の値よりも大きくなる場合がある。そのため、加圧して気泡をつぶす必要があり、また、γ線密度計を設けて嵩密度補正をかける必要がある。特に、管径が大きい場合はガンマ線源を強くする必要があるため、使い勝手が悪く、事実上嵩密度補正をかけることができない。また貯蔵ビンなどは、事実上嵩密度補正をかけることができない。   In the case of measuring waste paper or sewer sewage, entrained bubbles are likely to be generated, and the measured value may be larger than the actual value due to the bubbles. Therefore, it is necessary to crush bubbles by applying pressure, and it is necessary to correct the bulk density by providing a γ-ray density meter. In particular, when the tube diameter is large, it is necessary to strengthen the gamma ray source, so that it is not convenient and the bulk density cannot be corrected in practice. In addition, a storage bin or the like cannot be subjected to bulk density correction in practice.

本発明は、上記の実情に鑑みて提案されたものである。すなわち、管径が大きい配管や貯蔵ビンなどに取りつけることができると共に、本管に取り付けた枝管に挿入することができ、そのため、位相計測やパワー計測、またその組み合わせにより、精度よく計測することができる濃度計測装置の提供を目的とする。   The present invention has been proposed in view of the above circumstances. In other words, it can be installed in pipes or storage bins with large pipe diameters, and can be inserted into branch pipes attached to the main pipe. Therefore, it must be accurately measured by phase measurement, power measurement, and combinations thereof. An object is to provide a concentration measuring apparatus capable of performing the above.

上記目的を達成するために、本発明に係る濃度計測装置は、マイクロ波によって試料の濃度が測定される濃度計測装置において、前記マイクロ波を送信するマイクロ波送信部と、前記試料を透過した前記マイクロ波を受信するマイクロ波受信部とが、並列して配置され、前記マイクロ波送信部と前記マイクロ波受信部とが並列する方向に前記マイクロ波が送信される、ことを特徴としている。   In order to achieve the above object, a concentration measuring apparatus according to the present invention is a concentration measuring apparatus for measuring a concentration of a sample by a microwave, and a microwave transmission unit that transmits the microwave and the sample that has passed through the sample. A microwave receiving unit that receives a microwave is arranged in parallel, and the microwave is transmitted in a direction in which the microwave transmitting unit and the microwave receiving unit are arranged in parallel.

本発明に係る濃度計測装置は、前記マイクロ波送信部と前記マイクロ波受信部とが、同一面部材によって同一面上で支持された、ことを特徴としている。   The concentration measuring apparatus according to the present invention is characterized in that the microwave transmitter and the microwave receiver are supported on the same surface by the same surface member.

本発明に係る濃度計測装置は、γ線反射型密度計が備えられ、嵩密度が計測されて密度補正される、ことを特徴としている。   The concentration measuring apparatus according to the present invention includes a γ-ray reflection type density meter, and is characterized in that the bulk density is measured and the density is corrected.

本発明に係る濃度計測装置は、前記γ線反射型密度計のγ線孔が、前記マイクロ波送信部および前記マイクロ波受信部と並列して配置された、ことを特徴としている。   The concentration measuring apparatus according to the present invention is characterized in that the γ-ray hole of the γ-ray reflection type densitometer is arranged in parallel with the microwave transmitter and the microwave receiver.

本発明に係る濃度計測装置は、前記マイクロ波と前記γ線反射型密度計のγ線とを交差させる、ことを特徴としている。   The concentration measuring apparatus according to the present invention is characterized in that the microwave and the γ-ray of the γ-ray reflection type density meter are crossed.

本発明に係る濃度計測装置は上記した構成である。したがって、管径が大きい配管や貯蔵ビンなどに取りつけることができ、また、本管に取り付けた枝管に挿入することができる。そのため、位相計測やパワー計測、またその組み合わせにより、精度よく計測することができる。   The concentration measuring apparatus according to the present invention has the above-described configuration. Therefore, it can be attached to a pipe or a storage bottle having a large pipe diameter, and can be inserted into a branch pipe attached to the main pipe. Therefore, it is possible to accurately measure by phase measurement, power measurement, or a combination thereof.

挿入ユニットは種類を絞り込むことができるため、より短い波長を用いることができ、小型化が可能となると共に精度を上げることが可能となる。   Since the types of the insertion units can be narrowed down, shorter wavelengths can be used, and the size can be reduced and the accuracy can be increased.

また、γ線の反射型密度計と組み合わせることにより、嵩密度補正をかけることが可能となり、微弱線源で精度よく安定した計測が可能となる。   Further, by combining with a reflection density meter for γ-rays, it is possible to perform bulk density correction, and it is possible to perform accurate and stable measurement with a weak radiation source.

さらに、マイクロ波の透過とγ線の反射を交互やクロスさせて計測することにより計測位置を合わせることができ、また、精度を上げることができ、正確な計測ができるようになる。   Furthermore, the measurement position can be adjusted by measuring the transmission of microwaves and the reflection of γ rays alternately or crossed, the accuracy can be improved, and accurate measurement can be performed.

本発明の第一実施形態に係る濃度計測装置の概略図である。It is a schematic diagram of a concentration measuring device concerning a first embodiment of the present invention. 本発明の第二実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 6th embodiment of this invention. 本発明の第七実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 7th embodiment of this invention. 本発明の第八実施形態に係る濃度計測装置の概略図である。It is the schematic of the density | concentration measuring apparatus which concerns on 8th embodiment of this invention.

以下に、本発明の実施形態に係る濃度計測装置を図面に基づいて説明する。   Hereinafter, a concentration measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、マイクロ波送信部の窓材とマイクロ波受信部の窓材とを、凸状に同一挿入面に配置した濃度計測装置を角型の容器に挿入した例である。   FIG. 1 is an example in which a concentration measuring device in which a window material of a microwave transmission unit and a window material of a microwave reception unit are convexly arranged on the same insertion surface is inserted into a rectangular container.

すなわち、図1に示されているとおり、第一実施形態の濃度計測装置40は、マイクロ波7を送信するマイクロ波送信部1およびその窓材であるマイクロ波送信窓材3と、試料である測定対象31を透過したマイクロ波7を受信するマイクロ波受信部2およびその窓材であるマイクロ波受信窓材4と、マイクロ波送信部1を保持するマイクロ波送信部保持部材5と、マイクロ波受信部4を保持するマイクロ波受信部保持部材6とが備えられている。マイクロ波送信部1とマイクロ波受信部2とは並列して同一挿入面21上に配置され、これらが並列する方向にマイクロ波7が送信される。各窓材3,4は、同一挿入面21から凸状に突出し、並列して配置されている。   That is, as shown in FIG. 1, the concentration measuring device 40 according to the first embodiment is a microwave transmitter 1 that transmits a microwave 7, a microwave transmission window member 3 that is a window member thereof, and a sample. The microwave receiving unit 2 that receives the microwave 7 that has passed through the measurement object 31, the microwave receiving window member 4 that is the window member thereof, the microwave transmitting unit holding member 5 that holds the microwave transmitting unit 1, and the microwave A microwave receiver holding member 6 that holds the receiver 4 is provided. The microwave transmission unit 1 and the microwave reception unit 2 are arranged in parallel on the same insertion surface 21, and the microwave 7 is transmitted in the direction in which they are arranged in parallel. The window members 3 and 4 protrude from the same insertion surface 21 in a convex shape and are arranged in parallel.

濃度計測装置40は角型の容器32の側面に取り付けられ、各窓材3,4が容器32の内側で並列して配置されている。マイクロ波送信部1(マイクロ波送信部窓材3)から送信されたマイクロ波7は、各窓材3,4が並列する方向に送信され、容器32の内側で測定対象31を透過してマイクロ波受信部2(マイクロ波受信部窓材4)で受信される。   The concentration measuring device 40 is attached to the side surface of the rectangular container 32, and the window members 3 and 4 are arranged in parallel inside the container 32. The microwave 7 transmitted from the microwave transmission unit 1 (microwave transmission unit window material 3) is transmitted in a direction in which the window materials 3 and 4 are arranged in parallel, passes through the measurement object 31 inside the container 32, and is microscopic. It is received by the wave receiving unit 2 (microwave receiving unit window material 4).

ここで、図3は、マイクロ波送信部の窓材とマイクロ波受信部の窓材とが、凸状に同一面部材によって同一挿入面上で支持された濃度計測装置を角型の容器に挿入した例である。   Here, FIG. 3 shows that the concentration measuring device in which the window material of the microwave transmission unit and the window material of the microwave reception unit are convexly supported on the same insertion surface by the same surface member is inserted into a rectangular container. This is an example.

すなわち、図3に示された第三実施形態の濃度計測装置42のとおり、同一挿入面21は同一面部材22によって実現されていてもよい。同一面部材22は、マイクロ波送信部窓材3およびマイクロ波受信部窓材4が取り付けられる開口部が並列して形成されている。各窓材3,4は開口部に取り付けられ、マイクロ波送信部1とマイクロ波受信部2とが並列して同一面部材22に配置されている。同一面部材22は、例えば電磁波吸収材などの様々な性質のものが用いられる。この構成により、測定精度を上げることが可能となる。   That is, the same insertion surface 21 may be realized by the same surface member 22 as in the concentration measuring device 42 of the third embodiment shown in FIG. The same surface member 22 is formed with an opening to which the microwave transmission part window member 3 and the microwave reception part window member 4 are attached in parallel. Each of the window members 3 and 4 is attached to the opening, and the microwave transmission unit 1 and the microwave reception unit 2 are arranged on the same surface member 22 in parallel. The same surface member 22 has various properties such as an electromagnetic wave absorber. With this configuration, measurement accuracy can be increased.

図2は、湾曲した挿入面に沿ってマイクロ波送信部の窓材とマイクロ波受信部の窓材とが配置された濃度計測装置を円型の容器に挿入した例である。   FIG. 2 shows an example in which a concentration measuring device in which a window material of a microwave transmission unit and a window material of a microwave reception unit are arranged along a curved insertion surface is inserted into a circular container.

すなわち、図2に示されているとおり、第二実施形態の濃度計測装置41は、湾曲した容器32に沿って同一挿入面21が湾曲している。マイクロ波送信部1とマイクロ波受信部2とは並列して同一挿入面21上に配置され、これらが並列する方向にマイクロ波7が送信される。各窓材3,4は同一挿入面21に沿って湾曲している。濃度計測装置41は円型の容器32の側面に取り付けられ、各窓材3,4が容器32の内側で並列して配置されている。その他の構成は第一実施形態と同じである。   That is, as shown in FIG. 2, in the concentration measuring device 41 of the second embodiment, the same insertion surface 21 is curved along the curved container 32. The microwave transmission unit 1 and the microwave reception unit 2 are arranged in parallel on the same insertion surface 21, and the microwave 7 is transmitted in the direction in which they are arranged in parallel. Each window member 3, 4 is curved along the same insertion surface 21. The concentration measuring device 41 is attached to the side surface of the circular container 32, and the window members 3 and 4 are arranged in parallel inside the container 32. Other configurations are the same as those in the first embodiment.

ここで、図4は、湾曲した挿入面部材にマイクロ波送信部の窓材とマイクロ波受信部の窓材とが支持された濃度計測装置を円型の容器に挿入した例である。   Here, FIG. 4 is an example in which a concentration measuring device in which a window material of a microwave transmission unit and a window material of a microwave reception unit are supported on a curved insertion surface member is inserted into a circular container.

すなわち、図4に示された第四実施形態の濃度計測装置43のとおり、同一挿入面21は同一面部材22によって実現されていてもよい。同一面部材22は、湾曲した容器32に沿って湾曲している。第三実施形態と同様に、同一面部材22は、マイクロ波送信部窓材3およびマイクロ波受信部窓材4が取り付けられる開口部が並列して形成されている。各窓材3,4は開口部に取り付けられ、マイクロ波送信部1とマイクロ波受信部2とが並列して同一面部材22に配置されている。各窓材3,4は同一面部材22に沿って湾曲している。同一面部材22は、例えば電磁波吸収材などの様々な性質のものが用いられる。この構成により、測定精度を上げることが可能となる。   That is, the same insertion surface 21 may be realized by the same surface member 22 as in the concentration measuring device 43 of the fourth embodiment shown in FIG. The same surface member 22 is curved along the curved container 32. Similarly to the third embodiment, the same surface member 22 is formed with an opening to which the microwave transmitter window member 3 and the microwave receiver window member 4 are attached in parallel. Each of the window members 3 and 4 is attached to the opening, and the microwave transmission unit 1 and the microwave reception unit 2 are arranged on the same surface member 22 in parallel. Each window member 3, 4 is curved along the same surface member 22. The same surface member 22 has various properties such as an electromagnetic wave absorber. With this configuration, measurement accuracy can be increased.

また、図5は、湾曲した挿入面部材に、凸状にマイクロ波送信部の窓材とマイクロ波受信部の窓材とが支持された濃度計測装置を円型の容器に挿入した例であり、図5に示された第五実施形態の濃度計測装置44のとおり、各窓材3,4は同一挿入面部材22から凸状に突出していてもよい。   FIG. 5 is an example in which a concentration measuring device in which a window material of a microwave transmission unit and a window material of a microwave reception unit are supported in a convex shape on a curved insertion surface member is inserted into a circular container. As in the concentration measuring device 44 of the fifth embodiment shown in FIG. 5, the window members 3 and 4 may protrude from the same insertion surface member 22 in a convex shape.

図6は、マイクロ波送信部の窓材とマイクロ波受信部の窓材とが、凸状に同一挿入面に配置され、嵩密度計測して密度補正するγ線の反射型密度計が一体に同一面上に配置された濃度計測装置を角型の容器に挿入した例である。   FIG. 6 shows that the window material of the microwave transmission unit and the window material of the microwave reception unit are arranged on the same insertion surface in a convex shape, and a γ-ray reflection type densitometer that performs density correction by measuring the bulk density is integrated. This is an example in which a concentration measuring device arranged on the same surface is inserted into a rectangular container.

すなわち、図6に示されているとおり、第六実施形態の濃度計測装置45は、上記した第一実施形態の濃度計測装置40に、嵩密度計測して密度補正するγ線反射型密度計50が備えられている。γ線反射型密度計50は、γ線線源部8の放出孔(γ線孔)とγ線検出部9の検出孔(γ線孔)とが、マイクロ波送信部1とマイクロ波受信部2との間に配置されている。γ線線源部8とγ線検出部9とは、同一挿入面21との間が空けられている。   That is, as shown in FIG. 6, the concentration measuring device 45 of the sixth embodiment adds a γ-ray reflection type densitometer 50 that performs bulk density measurement and density correction to the above-described concentration measuring device 40 of the first embodiment. Is provided. In the γ-ray reflection type density meter 50, the emission hole (γ-ray hole) of the γ-ray source unit 8 and the detection hole (γ-ray hole) of the γ-ray detection unit 9 include the microwave transmission unit 1 and the microwave reception unit. Between the two. The γ-ray source unit 8 and the γ-ray detection unit 9 are spaced from the same insertion surface 21.

図7は、マイクロ波によって試料の濃度が測定される濃度計測装置において、試料に向けてマイクロ波を送信するマイクロ波送信部の窓材と、試料を透過してマイクロ波を受信するマイクロ波受信部窓材とが同一挿入面上に配置された濃度計測装置の例であり、マイクロ波送信部の窓材と、マイクロ波受信部の窓材とγ線源反射型密度計のγ線孔とが同一挿入面上に配置された濃度計測装置の例である。   FIG. 7 shows a microwave measuring unit that measures the concentration of a sample by using a microwave, and a microwave receiving unit that transmits a microwave toward the sample, and a microwave receiver that transmits the microwave through the sample. The window material is an example of a concentration measuring device arranged on the same insertion surface, the window material of the microwave transmission unit, the window material of the microwave reception unit, and the γ-ray hole of the γ-ray source reflection type density meter Is an example of a concentration measuring device arranged on the same insertion surface.

すなわち、図7に示された第七実施形態の密度計測装置46のとおり、同一挿入面21は同一面部材22によって実現されていてもよい。第三実施形態と同様に、同一面部材22は、マイクロ波送信部窓材3およびマイクロ波受信部窓材4が取り付けられる開口部に加えて、γ線線源部8およびγ線検出部9が取り付けられる開口部が並列して形成されている。γ線線源部8およびγ線検出部9は、各窓材3,4と共に開口部に取り付けられ、マイクロ波送信部1およびマイクロ波受信部2と共に並列して同一面部材22に配置されている。   That is, the same insertion surface 21 may be realized by the same surface member 22 as in the density measuring device 46 of the seventh embodiment shown in FIG. Similar to the third embodiment, the coplanar member 22 includes the γ-ray source unit 8 and the γ-ray detection unit 9 in addition to the opening to which the microwave transmission unit window material 3 and the microwave reception unit window material 4 are attached. Are formed in parallel. The γ-ray source unit 8 and the γ-ray detection unit 9 are attached to the opening together with the window members 3 and 4, and are arranged on the same surface member 22 in parallel with the microwave transmission unit 1 and the microwave reception unit 2. Yes.

図8は、マイクロ波によって試料の濃度が測定される濃度計測装置において、試料に向けて前記マイクロ波を送信するマイクロ波送信部の窓材と、試料を透過してマイクロ波が受信されるマイクロ波受信部窓材とが同一挿入面上に配置された濃度計測装置の例であり、マイクロ波の送信部の窓材と、マイクロ波の受信の窓材とγ線源反射型密度計のγ線孔とが同一挿入面上に配置された濃度計測装置の例で、かつ、マイクロ波の送信部と受信部とγ線の線源部と検出部を重ねるかクロスするように配置してマイクロ波とγ線のビームを重ねるかクロスするように重ねて後方散乱する反射計測領域を重ねた例である。   FIG. 8 shows a microwave measuring unit for measuring the concentration of a sample by using a microwave, a window member of a microwave transmission unit that transmits the microwave toward the sample, and a microwave through which the microwave is received. It is an example of the concentration measuring device in which the wave receiving part window material is arranged on the same insertion surface, the window material of the microwave transmission part, the window material of the microwave reception and the γ of the γ-ray source reflection type density meter An example of a concentration measuring device in which a wire hole is arranged on the same insertion surface, and a microwave transmitting unit, a receiving unit, a γ-ray source unit, and a detecting unit are arranged so as to overlap or cross each other. This is an example in which reflection measurement regions that are backscattered by overlapping or crossing a wave and a beam of γ rays are overlapped.

すなわち、図8に示されているとおり、第八実施形態の密度計測装置47は、マイクロ波送信部1(マイクロ波送信部窓材3)およびマイクロ波受信部2(マイクロ波受信部窓材4)と、γ線線源部8およびγ線検出部9とを、クロスするように配置してマイクロ波7とγ線散乱線10とをクロスするように重ね、後方散乱する反射計測領域を重ねる。すなわち、マイクロ波送信部1(マイクロ波送信部窓材3)およびマイクロ波受信部2(マイクロ波受信部窓材4)と、γ線線源部8およびγ線検出部9とは、互いが対面すると共に、平面視して交差して配置されている。   That is, as shown in FIG. 8, the density measuring device 47 of the eighth embodiment includes the microwave transmission unit 1 (microwave transmission unit window material 3) and the microwave reception unit 2 (microwave reception unit window material 4). ) And the γ-ray source unit 8 and the γ-ray detection unit 9 are arranged so as to cross each other so that the microwave 7 and the γ-ray scattered ray 10 are crossed, and the reflection measurement region for backscattering is overlapped. . That is, the microwave transmission unit 1 (microwave transmission unit window material 3) and the microwave reception unit 2 (microwave reception unit window material 4), the γ-ray source unit 8 and the γ-ray detection unit 9 are mutually connected. They face each other and are arranged so as to intersect in plan view.

マイクロ波7は、図8において紙面表側でマイクロ波送信部1(マイクロ波送信部窓材3)から送信され、測定対象31を透過してマイクロ波受信部2(マイクロ波受信部窓材4)で受信される。γ線散乱線10は、紙面表側から裏側に向けてγ線線源部8のγ線放出孔11(γ線孔)から放出され、紙面裏側から表側に向けて反射し、γ線検出部9の検出孔(γ線孔)で検出される。その際、マイクロ波7とγ線散乱線10とが交差する。   The microwave 7 is transmitted from the microwave transmission unit 1 (microwave transmission unit window material 3) on the front side in FIG. 8 and passes through the measurement target 31, and is received by the microwave reception unit 2 (microwave reception unit window material 4). Received at. The γ-ray scattered ray 10 is emitted from the γ-ray emission hole 11 (γ-ray hole) of the γ-ray source unit 8 from the front side to the back side of the paper surface, reflected from the back side of the paper surface to the front side, and the γ-ray detection unit 9. It is detected in the detection hole (γ ray hole). At that time, the microwave 7 and the γ-ray scattered ray 10 intersect.

次に、本発明の実施形態の効果を説明する。   Next, effects of the embodiment of the present invention will be described.

上記したように、濃度計測装置40から47によれば、マイクロ波送信部1とマイクロ波受信部2とは並列して同一挿入面21上または同一面部材22上に配置され、これらが並列する方向にマイクロ波7が送信される。濃度計測装置40から47は、容器32の側面に取り付けられ、各窓材3,4が容器32の内側で並列して配置されている。したがって、配管の直径方向に対向させて取り付ける必要がないため、管径が大きい配管や貯蔵ビンなどに取りつけることができ、また、本管に取り付けた枝管に挿入することができる。そのため、位相計測やパワー計測、またその組み合わせにより、精度よく計測することができる。   As described above, according to the concentration measuring devices 40 to 47, the microwave transmitter 1 and the microwave receiver 2 are arranged in parallel on the same insertion surface 21 or the same surface member 22, and these are arranged in parallel. A microwave 7 is transmitted in the direction. The concentration measuring devices 40 to 47 are attached to the side surface of the container 32, and the window members 3 and 4 are arranged in parallel inside the container 32. Therefore, since it is not necessary to mount it facing the diametrical direction of the pipe, it can be attached to a pipe having a large pipe diameter, a storage bottle, or the like, and can be inserted into a branch pipe attached to the main pipe. Therefore, it is possible to accurately measure by phase measurement, power measurement, or a combination thereof.

濃度計測装置42,43,44,46によれば、同一面部材22は、例えば電磁波吸収材などの様々な性質のものが用いられる。この構成により、測定精度を上げることが可能となる。   According to the concentration measuring devices 42, 43, 44, and 46, the same surface member 22 has various properties such as an electromagnetic wave absorbing material. With this configuration, measurement accuracy can be increased.

濃度計測装置45から47は、γ線の反射型密度計と組み合わせることにより、嵩密度補正をかけることが可能となり、微弱線源で精度よく安定した計測が可能となる。   The density measuring devices 45 to 47 can perform bulk density correction by being combined with a γ-ray reflection densitometer, and can perform accurate and stable measurement with a weak radiation source.

密度計測装置47は、マイクロ波送信部1およびマイクロ波受信部2と、γ線線源部8およびγ線検出部9とが、互いが対面すると共に交差して配置されている。したがって、マイクロ波7の透過とγ線散乱線10の反射を交互やクロスさせて計測することにより計測位置を合わせることができ、精度を上げることができ、正確な計測ができるようになる。   In the density measuring device 47, the microwave transmission unit 1 and the microwave reception unit 2, the γ-ray source unit 8, and the γ-ray detection unit 9 face each other and are arranged so as to intersect each other. Therefore, the measurement position can be adjusted by measuring the transmission of the microwave 7 and the reflection of the γ-ray scattered ray 10 alternately or crossed, the accuracy can be improved, and an accurate measurement can be performed.

以上、本発明の実施形態を詳述したが、本発明は上記実施形態に限定されるものではない。そして本発明は、特許請求の範囲に記載された事項を逸脱することがなければ、種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment. The present invention can be modified in various ways without departing from the scope of the claims.

1 マイクロ波送信部
2 マイクロ波受信部
3 マイクロ波送信部窓材
4 マイクロ波受信部窓材
5 マイクロ波送信部保持部材
6 マイクロ波受信部保持部材
7 マイクロ波
8 γ線線源部
9 γ線検出部
10 γ線散乱線
11 γ線放出孔
21 同一面挿入面
22 同一面部材
31 測定対象(試料)
32 容器
40から47 濃度計測装置
50 γ線反射型密度計
DESCRIPTION OF SYMBOLS 1 Microwave transmission part 2 Microwave reception part 3 Microwave transmission part window material 4 Microwave reception part window material 5 Microwave transmission part holding member 6 Microwave reception part holding member 7 Microwave 8 γ-ray source part 9 γ-ray Detection unit 10 γ-ray scattered ray 11 γ-ray emission hole 21 Coplanar insertion surface 22 Coplanar member 31 Measurement object (sample)
32 containers 40 to 47 Concentration measuring device 50 γ-ray reflection type density meter

Claims (5)

マイクロ波によって試料の濃度が測定される濃度計測装置において、
前記マイクロ波を送信するマイクロ波送信部と、前記試料を透過した前記マイクロ波を受信するマイクロ波受信部とが、並列して配置され、前記マイクロ波送信部と前記マイクロ波受信部とが並列する方向に前記マイクロ波が送信される、
ことを特徴とする濃度計測装置。
In a concentration measuring device that measures the concentration of a sample by microwaves,
A microwave transmitter that transmits the microwave and a microwave receiver that receives the microwave that has passed through the sample are arranged in parallel, and the microwave transmitter and the microwave receiver are parallel. The microwave is transmitted in a direction to
Concentration measuring device characterized by that.
前記マイクロ波送信部と前記マイクロ波受信部とが、同一面部材によって同一面上で支持された、
ことを特徴とする請求項1に記載された濃度計測装置。
The microwave transmission unit and the microwave reception unit are supported on the same surface by the same surface member,
The concentration measuring apparatus according to claim 1, wherein:
γ線反射型密度計が備えられ、嵩密度が計測されて密度補正される、
ことを特徴とする請求項1または請求項2に記載された濃度計測装置。
A γ-ray reflection type density meter is provided, and the bulk density is measured and the density is corrected.
The concentration measuring apparatus according to claim 1 or 2, characterized in that
前記γ線反射型密度計のγ線孔が、前記マイクロ波送信部および前記マイクロ波受信部と並列して配置された、
ことを特徴とする請求項3に記載に記載された濃度計測装置。
The γ-ray hole of the γ-ray reflective densimeter is arranged in parallel with the microwave transmitter and the microwave receiver,
The concentration measuring apparatus according to claim 3, wherein:
前記マイクロ波と前記γ線反射型密度計のγ線とを交差させる、
ことを特徴とする請求項3または請求項4に記載された濃度計測装置。
Crossing the microwave and the γ-ray of the γ-ray reflective densimeter,
5. The concentration measuring apparatus according to claim 3, wherein the concentration measuring apparatus is characterized in that
JP2014093858A 2014-04-30 2014-04-30 Concentration measurement device Pending JP2015210238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093858A JP2015210238A (en) 2014-04-30 2014-04-30 Concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093858A JP2015210238A (en) 2014-04-30 2014-04-30 Concentration measurement device

Publications (1)

Publication Number Publication Date
JP2015210238A true JP2015210238A (en) 2015-11-24

Family

ID=54612510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093858A Pending JP2015210238A (en) 2014-04-30 2014-04-30 Concentration measurement device

Country Status (1)

Country Link
JP (1) JP2015210238A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142352A (en) * 1997-11-12 1999-05-28 Earthnics Corp Microwave moisture meter
JP2000258361A (en) * 1999-03-05 2000-09-22 Toshiba Joho Seigyo System Kk Microwave type densitometer
JP2003014659A (en) * 2001-06-28 2003-01-15 Earthnics Corp Moisture measuring instrument
JP2006029935A (en) * 2004-07-15 2006-02-02 Toshiba Corp Microwave-type densitometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142352A (en) * 1997-11-12 1999-05-28 Earthnics Corp Microwave moisture meter
JP2000258361A (en) * 1999-03-05 2000-09-22 Toshiba Joho Seigyo System Kk Microwave type densitometer
JP2003014659A (en) * 2001-06-28 2003-01-15 Earthnics Corp Moisture measuring instrument
JP2006029935A (en) * 2004-07-15 2006-02-02 Toshiba Corp Microwave-type densitometer

Similar Documents

Publication Publication Date Title
US8306187B2 (en) Optimal detector position for gamma backscatter
US20170153136A1 (en) Clamp-on ultrasonic flow rate measuring device having automatic pipe thickness measuring function
US10281315B2 (en) System and method for measuring a speed of sound in a liquid or gaseous medium
EP3183541B1 (en) Method and apparatus to detect contaminants in pressurized fluid flows
EP3115753A1 (en) System and method for non-intrusive and continuous level measurement of a liquid specification
RU2386946C2 (en) Measurement of density with application of reverse scattering of gamma-radiation
US10151610B2 (en) Flow rate measurement device and flow rate measurement method
CN109915738B (en) Pipeline ultrasonic attenuation detection system and method
EA037645B9 (en) Method and apparatus for detecting deposits in a pipe system of an apparatus
JP2018004339A (en) Measuring device
US20090183564A1 (en) Ultrasonic liquid level detector
JP2015210238A (en) Concentration measurement device
JP6221624B2 (en) Fluid type discrimination device and fluid type discrimination method
CN204556840U (en) Distinguish the on-line measurement device of uranium ore
CN108496075B (en) Method for determining a property of a medium and device for determining a property of a medium
US20110126636A1 (en) Method and device for determining a flow rate of a fluid
JP2019052866A (en) Tubular body inspection method
Abou-Khousa et al. Hermetically sealed microwave probe for in-situ detection of black powder in gas pipelines
JP2014219208A (en) Moisture measuring device
CN109799247B (en) Device and method for detecting phase content of two-phase flow based on microwave transmission time
RU2597666C1 (en) Method of measuring mass flow rate of liquid media
BR112022011986A2 (en) METHOD TO MEASURE THE QUANTITY OF AN ANALYTE IN A SAMPLE AND DEVICE TO CARRY OUT SUCH METHOD
KR101379934B1 (en) Apparatus and method for measuring the thickness of the scale in a pipe
RU2601273C1 (en) Device for measuring mass flow of liquid media
JP4252222B2 (en) Tube type identification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508