JP2015210135A - Electric power measurement device - Google Patents

Electric power measurement device Download PDF

Info

Publication number
JP2015210135A
JP2015210135A JP2014090758A JP2014090758A JP2015210135A JP 2015210135 A JP2015210135 A JP 2015210135A JP 2014090758 A JP2014090758 A JP 2014090758A JP 2014090758 A JP2014090758 A JP 2014090758A JP 2015210135 A JP2015210135 A JP 2015210135A
Authority
JP
Japan
Prior art keywords
measurement
power
conversion
current
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014090758A
Other languages
Japanese (ja)
Other versions
JP6347144B2 (en
Inventor
泰輔 加藤
Taisuke Kato
泰輔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2014090758A priority Critical patent/JP6347144B2/en
Publication of JP2015210135A publication Critical patent/JP2015210135A/en
Application granted granted Critical
Publication of JP6347144B2 publication Critical patent/JP6347144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power measurement device capable of measuring electric power with high accuracy even in a situation where the electric power supplied via an electric power line fluctuates severely.SOLUTION: A current transformer 101 outputs an electric current in accordance with the electric current flowing in an electric power line 109. A switching element 102 switches the connection destination of the current transformer 101 to a charging circuit 107 or a measurement circuit 103 under control of an MCU 105. The measurement circuit 103 outputs a voltage corresponding to the output electric current of the current transformer 101. An A/D converter 104 A/D converts the output voltage of the measurement circuit 103. The MCU 105 executes an ordinary measurement or a reference measurement using the A/D converter synchronously with the measurement period. The MCU 105 controls the sampling period of A/D conversion in the ordinary measurement in accordance with the A/D conversion value. When the A/D conversion values of the reference measurement and ordinary measurement are close, the electric power obtained by the reference measurement is made the measured electric power in the ordinary measurement.

Description

この発明は、電力線を介して供給される電力を計測する電力計測装置に関する。   The present invention relates to a power measuring device that measures power supplied through a power line.

この種の電力計測装置として、電力線を介して負荷に供給される電流に応じたアナログ信号を発生し、このアナログ信号のA/D変換を行い、その結果得られるA/D変換値に基づいて電力を算出する装置がある(例えば特許文献1参照)。また、この種の電力計測装置の中には、計測対象の電力線に流れる電流に応じた電流を電磁誘導により発生し、この電流を2次電池やスーパーキャパシタ等のキャパシタに充電し、このキャパシタを電源として使用する構成のものがある。この電力計測装置によれば、商用電源やバッテリ等の電源からの電力供給を受けることなく、電力計測を行うことができる。   As this type of power measuring device, an analog signal corresponding to the current supplied to the load via the power line is generated, A / D conversion of the analog signal is performed, and the resulting A / D conversion value is used. There is an apparatus for calculating electric power (see, for example, Patent Document 1). Also, in this type of power measuring device, a current corresponding to the current flowing through the power line to be measured is generated by electromagnetic induction, and this current is charged into a capacitor such as a secondary battery or a super capacitor. Some are used as a power source. According to this power measuring apparatus, power measurement can be performed without receiving power supply from a power source such as a commercial power source or a battery.

このような電力計測装置は、キャパシタを電源としているため、電力計測中の消費電力量をなるべく少なくすることが求められる。そこで、従来の電力計測装置では、図8に示すように、計測周期に同期して間欠的に電力の計測を行う。図8に示すように、計測周期は、電力計測装置が電力線に流れる電流値をサンプリングして電力計測を行う計測期間と、電力計測を行うことなく電力線からの電磁誘導より得られる電流をキャパシタに充電する充電期間とからなる。ここで、計測周期は、カレントトランスから又は電力線からの電磁誘導より供給可能な電流の下限値により決定される。また、従来の電力計測装置では、カレントトランスから又は電力線からの電磁誘導より供給可能な電流の下限値が減少すると、充電期間を長くして計測周期を長くする制御が行われる。   Since such a power measuring device uses a capacitor as a power source, it is required to reduce the power consumption during power measurement as much as possible. Therefore, in the conventional power measuring apparatus, as shown in FIG. 8, power is intermittently measured in synchronization with the measurement cycle. As shown in FIG. 8, the measurement cycle includes a measurement period in which the power measurement device samples the current value flowing through the power line and performs power measurement, and a current obtained from electromagnetic induction from the power line without performing power measurement to the capacitor. It consists of a charging period for charging. Here, the measurement cycle is determined by the lower limit value of the current that can be supplied from the current transformer or electromagnetic induction from the power line. Further, in the conventional power measuring device, when the lower limit value of the current that can be supplied from the current transformer or electromagnetic induction from the power line decreases, control is performed to lengthen the charging period and lengthen the measurement cycle.

特開2012−225767号公報JP 2012-225767 A

ところで、上述した従来の電力計測装置は、カレントトランスから又は電力線からの電磁誘導より供給可能な電流の下限値が低下し、計測周期が長くなると、電力線の電力変動が激しいときに、時々刻々と変動する電力を詳細に算出することができず、電力計測精度が低下するという問題があった。また、従来の電力計測装置は、カレントトランスから又は電力線からの電磁誘導より供給可能な電流の下限値に基づいて計測周期が決定されるため、必要な電力計測精度を得るために、電力線の電力変動の激しい地域への設置を避ける必要があり、そのために設置条件が制限されるという問題があった。   By the way, the above-described conventional power measuring device has a lower limit value of the current that can be supplied from the current transformer or electromagnetic induction from the power line, and when the measurement cycle is lengthened, when the power fluctuation of the power line is severe, every moment There is a problem that the power that fluctuates cannot be calculated in detail and the power measurement accuracy is reduced. In addition, since the measurement cycle is determined based on the lower limit value of the current that can be supplied from the current transformer or electromagnetic induction from the power line in the conventional power measurement device, in order to obtain the required power measurement accuracy, There was a problem that it was necessary to avoid the installation in the area where the fluctuation was severe, and the installation conditions were limited.

この発明は、以上説明した事情に鑑みてなされたものであり、電力線を介して供給される電力の変動が激しい状況においても高い精度で電力計測を行うことができる電力計測装置を提供することを目的としている。   The present invention has been made in view of the circumstances described above, and provides a power measuring device capable of performing power measurement with high accuracy even in a situation where fluctuations in power supplied via a power line are severe. It is aimed.

この発明は、計測対象の電力線に流れる電流に応じた電流を発生してキャパシタに充電し、前記キャパシタを電源として前記電力線が供給する電力を計測する電力計測装置において、予め設定されたサンプリング周期に同期して前記電力線に流れる電流波形を示す信号をA/D変換するA/D変換器と、前記A/D変換器から得られるA/D変換値に基づいて前記電力線が供給する電力を算出する制御手段とを具備し、前記制御手段は、前記A/D変換値に応じて前記サンプリング周期を制御することを特徴とする電力計測装置を提供する。   The present invention relates to a power measuring device that generates a current corresponding to a current flowing through a power line to be measured, charges the capacitor, and measures the power supplied from the power line using the capacitor as a power source, at a preset sampling cycle. An A / D converter that A / D-converts a signal indicating a current waveform flowing through the power line synchronously, and calculates the power supplied by the power line based on an A / D conversion value obtained from the A / D converter And a control unit configured to control the sampling period according to the A / D conversion value.

この発明によれば、A/D変換器から得られるA/D変換値に基づいて、A/D変換のサンプリング周期が制御されるため、低消費電力化のために計測周期を長くするのを回避することができ、電力線を介して供給される電力の変動が激しい状況においても、高い精度で電力の計測を行うことができる。   According to the present invention, since the sampling period of A / D conversion is controlled based on the A / D conversion value obtained from the A / D converter, it is possible to lengthen the measurement period in order to reduce power consumption. This can be avoided, and power can be measured with high accuracy even in a situation where fluctuations in the power supplied via the power line are severe.

この発明の一実施形態である電力計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power measuring apparatus which is one Embodiment of this invention. 同実施形態において実行される通常計測とリファレンス計測を説明するタイムチャートである。It is a time chart explaining the normal measurement and reference measurement which are performed in the embodiment. 同実施形態において電力線が供給する電力の算出方法を示す図である。It is a figure which shows the calculation method of the electric power which a power line supplies in the same embodiment. 同実施形態において行われる電力計測装置の初期設定を示す図である。It is a figure which shows the initial setting of the electric power measurement apparatus performed in the embodiment. 同実施形態におけるMCUが実行するメインプログラムの処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the main program which MCU in the same embodiment performs. 同実施形態におけるMCUが実行する通常モードおよびSleepモードのプログラムの処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the program of the normal mode and Sleep mode which MCU performs in the same embodiment. 同実施形態におけるMCUが実行する計測モードのプログラムの処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the program of the measurement mode which MCU performs in the same embodiment. 従来の電力計測装置の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the conventional electric power measurement apparatus.

以下、図面を参照しつつ、この発明の実施形態について説明する。
図1は、この発明の一実施形態である電力計測装置100の構成を示すブロック図である。この電力計測装置100は、カレントトランス101と、スイッチング素子102と、計測回路103と、A/D変換器104と、MCU(Micrо Contrоller Unit;マイクロコントローラユニット)105と、通信回路106と、充電回路107と、2次電池108とを有している。なお、図1では、電力計測装置100の電圧測定に関する回路等は図示を省略している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a power measuring apparatus 100 according to an embodiment of the present invention. The power measuring apparatus 100 includes a current transformer 101, a switching element 102, a measuring circuit 103, an A / D converter 104, an MCU (Micro Controller Unit) 105, a communication circuit 106, and a charging circuit. 107 and a secondary battery 108. In FIG. 1, the circuit related to voltage measurement of the power measuring apparatus 100 is not shown.

カレントトランス101は、電力線109に流れる電流に応じた電流を出力するトランスである。スイッチング素子102は、MCU105からの制御指令に従い、カレントトランス101の出力電流の供給先を計測回路103または充電回路107に切り換えるスイッチング素子である。   The current transformer 101 is a transformer that outputs a current corresponding to the current flowing through the power line 109. The switching element 102 is a switching element that switches the supply destination of the output current of the current transformer 101 to the measurement circuit 103 or the charging circuit 107 in accordance with a control command from the MCU 105.

計測回路103は、抵抗等から構成されており、カレントトランス101からスイッチング素子102を介して供給される交流電流に比例した交流電圧をA/D変換器104に出力する。A/D変換器104は、MCU105による制御の下、計測回路103から供給される交流電圧をサンプリングしてA/D変換し、その結果得られるA/D変換値をMCU105に出力する。   The measurement circuit 103 includes a resistor and the like, and outputs an AC voltage proportional to the AC current supplied from the current transformer 101 via the switching element 102 to the A / D converter 104. The A / D converter 104 samples the AC voltage supplied from the measurement circuit 103 and performs A / D conversion under the control of the MCU 105, and outputs the A / D conversion value obtained as a result to the MCU 105.

充電回路107は、カレントトランス101からスイッチング素子102を介して供給される交流電流を整流して直流電流を発生し、この直流電流により2次電池108を充電する回路である。電力計測装置100を構成する計測回路103、A/D変換器104、MCU105および通信回路106は、この2次電池108を電源として動作する。なお、2次電池108に代えてスーパーキャパシタを電力計測装置100の電源としてもよい。   The charging circuit 107 is a circuit that rectifies an alternating current supplied from the current transformer 101 via the switching element 102 to generate a direct current, and charges the secondary battery 108 with the direct current. The measurement circuit 103, the A / D converter 104, the MCU 105, and the communication circuit 106 that constitute the power measurement apparatus 100 operate using the secondary battery 108 as a power source. Note that a supercapacitor may be used as the power source of the power measuring apparatus 100 instead of the secondary battery 108.

MCU105は、各種のプログラムを記憶したROMと、ワークエリアとして使用するRAMと、EEPROM等の書き換え可能な不揮発性メモリを有する。MCU105は、ROM内のプログラムを実行することにより、電力計測装置100内の各部を制御するとともに、A/D変換器104から供給されるA/D変換値に基づいて電力線109に流れる電流値を算出し、この電流値と図示しない電圧測定回路から得られる電圧値を乗算して電力値を算出し、この電力値を通信回路106に出力する。通信回路106は、MCU105から入力された電力値を図示しないサーバに送信する。このサーバは、多くの電力計測装置100から送信される電力値を管理する装置である。   The MCU 105 includes a ROM that stores various programs, a RAM that is used as a work area, and a rewritable nonvolatile memory such as an EEPROM. The MCU 105 controls each unit in the power measurement apparatus 100 by executing a program in the ROM, and calculates a current value flowing through the power line 109 based on the A / D conversion value supplied from the A / D converter 104. The power value is calculated by multiplying the current value by a voltage value obtained from a voltage measurement circuit (not shown), and the power value is output to the communication circuit 106. The communication circuit 106 transmits the power value input from the MCU 105 to a server (not shown). This server is a device that manages power values transmitted from many power measurement devices 100.

MCU105によって行われる電力計測装置100内の各部の制御の概略を説明すると次の通りである。まず、MCU105は、予め設定された計測周期に同期して、カレントトランス101をスイッチング素子102により計測回路103に接続し、予め設定された計測期間だけ計測回路103の出力電圧のA/D変換をA/D変換器104に実行させる。そして、各計測周期において、計測期間が終了すると、残りの時間を充電期間とする。この充電期間では、カレントトランス101をスイッチング素子102により充電回路107に接続し、充電回路107に2次電池108の充電を行わせる。
図2に示すように、MCU105は、各計測周期において、通常計測またはリファレンス計測を実行する。さらに詳述すると、MCU105は、計測周期の整数倍の周期であるリファレンス計測周期に同期してリファレンス計測を実行する。そして、MCU105は、リファレンス計測を実行しない各計測周期において通常計測を実行する。リファレンス計測周期は、不揮発性メモリに記憶されたサンプリングテーブルを参照することにより設定される。なお、このサンプリングテーブルについては後述する。
The outline of the control of each part in the power measuring apparatus 100 performed by the MCU 105 will be described as follows. First, in synchronization with a preset measurement cycle, the MCU 105 connects the current transformer 101 to the measurement circuit 103 by the switching element 102, and performs A / D conversion of the output voltage of the measurement circuit 103 only for a preset measurement period. The A / D converter 104 is executed. In each measurement cycle, when the measurement period ends, the remaining time is set as the charging period. In this charging period, the current transformer 101 is connected to the charging circuit 107 by the switching element 102, and the charging circuit 107 is charged with the secondary battery 108.
As shown in FIG. 2, the MCU 105 performs normal measurement or reference measurement in each measurement cycle. More specifically, the MCU 105 performs reference measurement in synchronization with a reference measurement cycle that is an integer multiple of the measurement cycle. Then, the MCU 105 performs normal measurement in each measurement cycle in which reference measurement is not performed. The reference measurement period is set by referring to the sampling table stored in the nonvolatile memory. This sampling table will be described later.

通常計測において、MCU105は、A/D変換器104のA/D変換値に応じて定まるサンプリング周期でA/D変換器104にA/D変換を行わせ、A/D変換値を取得する。この通常計測において、A/D変換器104のA/D変換値に応じて定まるサンプリング周期を採用する理由は次の通りである。   In normal measurement, the MCU 105 causes the A / D converter 104 to perform A / D conversion at a sampling period determined according to the A / D conversion value of the A / D converter 104, and acquires the A / D conversion value. In this normal measurement, the reason for adopting the sampling period determined according to the A / D conversion value of the A / D converter 104 is as follows.

まず、A/D変換器104が出力するA/D変換値の振幅が大きい場合、電力線109を介して供給される電力が大きく、充電回路107から2次電池108に供給される充電電流も大きい。このような場合、2次電池108が電力計測装置100内の各部に供給可能な電流の下限値が大きいので、A/D変換器104のサンプリング周期を短くしてA/D変換器104の消費電力を増やすことが可能である。   First, when the amplitude of the A / D conversion value output from the A / D converter 104 is large, the power supplied via the power line 109 is large and the charging current supplied from the charging circuit 107 to the secondary battery 108 is also large. . In such a case, since the lower limit value of the current that can be supplied to each part in the power measuring apparatus 100 by the secondary battery 108 is large, the sampling period of the A / D converter 104 is shortened to consume the A / D converter 104. It is possible to increase power.

一方、A/D変換器104が出力するA/D変換値の振幅が小さい場合、電力線109を介して供給される電力が小さく、充電回路107から2次電池108に供給される充電電流も小さい。このような場合、2次電池108が電力計測装置100内の各部に供給可能な電流の下限値が小さいので、A/D変換器104のサンプリング周期を短くするのが困難である。   On the other hand, when the amplitude of the A / D conversion value output from the A / D converter 104 is small, the power supplied via the power line 109 is small and the charging current supplied from the charging circuit 107 to the secondary battery 108 is also small. . In such a case, since the lower limit value of the current that the secondary battery 108 can supply to each part in the power measuring apparatus 100 is small, it is difficult to shorten the sampling period of the A / D converter 104.

そこで、本実施形態において、MCU105は、A/D変換器104のA/D変換値が大きい場合は通常計測におけるサンプリング周期を短くし、A/D変換器104のA/D変換値が小さい場合は通常計測におけるサンプリング周期を長くする制御を行うのである。この制御は不揮発性メモリに記憶されたサンプリングテーブルを参照して行われる。   Therefore, in this embodiment, the MCU 105 shortens the sampling period in normal measurement when the A / D conversion value of the A / D converter 104 is large, and the A / D conversion value of the A / D converter 104 is small. Controls to increase the sampling period in normal measurement. This control is performed with reference to a sampling table stored in the nonvolatile memory.

リファレンス計測において、MCU105は、2次電池108から供給可能な電流値が十分に大きい場合に採用されるサンプリング周期で、A/D変換器104にA/D変換を行わせ、A/D変換値を取得する。このリファレンス計測におけるサンプリング周期は、通常計測において採用されるサンプリング周期よりも短い。   In the reference measurement, the MCU 105 causes the A / D converter 104 to perform A / D conversion at a sampling period employed when the current value that can be supplied from the secondary battery 108 is sufficiently large, and the A / D conversion value. To get. The sampling period in this reference measurement is shorter than the sampling period employed in normal measurement.

本実施形態において、MCU105は、各計測周期において電力線109を介して伝送される電力を算出する。しかし、通常計測はサンプリング周期が長くなることが多いので、この通常計測において得られたA/D変換値を用いて電力線109が供給する電力を求めると、電力計測精度が劣化する可能性がある。そこで、本実施形態では、図3に示す方法により、電力線109が供給する電力を算出する。   In the present embodiment, the MCU 105 calculates the power transmitted through the power line 109 in each measurement cycle. However, since the normal measurement often has a long sampling cycle, if the power supplied by the power line 109 is obtained using the A / D conversion value obtained in the normal measurement, the power measurement accuracy may be deteriorated. . Therefore, in this embodiment, the power supplied by the power line 109 is calculated by the method shown in FIG.

まず、本実施形態において、MCU105は、リファレンス計測を行った場合、このリファレンス計測において得られた各A/D変換値を用いて電力線109が供給する電力を算出する。   First, in this embodiment, when the reference measurement is performed, the MCU 105 calculates the power supplied by the power line 109 using each A / D conversion value obtained in the reference measurement.

次に通常計測を行った場合、MCU105は、通常計測において得られた各A/D変換値の合計値とリファレンス計測において得られた各A/D変換値の合計値とを比較する。合計値の比較の際は、通常計測のサンプリングに合わせてリファレンス計測時のデータを一部間引く。そして、両A/D変換値の合計値が一定の誤差範囲内で一致した場合、MCU105は、リファレンス計測において算出した電力を通常計測時の電力とみなすのである。このように取り扱うことで、通常計測時は、A/D変換値から電力を算出する演算処理が不要となり、電力の計測精度の劣化を防止しつつ、MCU105の消費電力を節約することができる。
以上が、本実施形態による電力計測装置100の構成である。
Next, when normal measurement is performed, the MCU 105 compares the total value of each A / D conversion value obtained in the normal measurement with the total value of each A / D conversion value obtained in the reference measurement. When comparing the total value, a part of the data at the reference measurement is thinned out in accordance with the sampling of the normal measurement. When the total value of both A / D conversion values coincides within a certain error range, the MCU 105 regards the power calculated in the reference measurement as the power during normal measurement. By handling in this way, at the time of normal measurement, the calculation process for calculating the power from the A / D conversion value becomes unnecessary, and the power consumption of the MCU 105 can be saved while preventing the deterioration of the power measurement accuracy.
The above is the configuration of the power measuring apparatus 100 according to the present embodiment.

次に本実施形態の動作を説明する。図4は、本実施形態において行われる電力計測装置100の初期設定の手順を示す図である。この初期設定は、電力計測装置100の出荷前に行われる。まず、カレントトランス101の接続された電力線109に既知の交流電力を伝送させる。そして、スイッチング素子102によりカレントトランス101の接続先を計測回路103とし、このときA/D変換器104から得られるA/D変換値を取得する。次に同じ交流電力が電力線109を介して伝送されている状態において、スイッチング素子102によりカレントトランス101の接続先を充電回路107とし、このとき充電回路107から2次電池108に供給される電流値を取得し、この電流値に基づいて、通常計測における最適なサンプリング周期、リファレンス計測周期、計測周期を求める。電力線109を介して伝送する電力を各種変更して、このような処理を繰り返し、各処理におけるA/D変換器104のA/D変換値の代表値と、最適なサンプリング周期、リファレンス計測周期および計測周期とを対応付けるサンプリングテーブルを作成し、不揮発性メモリに書き込む。A/D変換器104のA/D変換値の代表値をどのように定めるかに関しては、各種の態様が考えられるが、例えば一定時間内のA/D変換値の実効値を代表値としてもよい。
以上が、電力計測装置100の初期設定である。
Next, the operation of this embodiment will be described. FIG. 4 is a diagram illustrating an initial setting procedure of the power measuring apparatus 100 performed in the present embodiment. This initial setting is performed before the power measuring apparatus 100 is shipped. First, known AC power is transmitted to the power line 109 to which the current transformer 101 is connected. Then, the connection destination of the current transformer 101 is set to the measurement circuit 103 by the switching element 102, and an A / D conversion value obtained from the A / D converter 104 at this time is acquired. Next, in the state where the same AC power is transmitted via the power line 109, the switching element 102 sets the connection destination of the current transformer 101 as the charging circuit 107, and at this time, the current value supplied from the charging circuit 107 to the secondary battery 108 And obtaining the optimum sampling period, reference measurement period, and measurement period in the normal measurement based on the current value. Various kinds of power transmitted through the power line 109 are changed, and such processing is repeated, and the representative value of the A / D conversion value of the A / D converter 104 in each processing, the optimum sampling cycle, the reference measurement cycle, and Create a sampling table that correlates the measurement cycle and write it to the non-volatile memory. Although various aspects can be considered as to how to determine the representative value of the A / D conversion value of the A / D converter 104, for example, the effective value of the A / D conversion value within a predetermined time may be used as the representative value. Good.
The above is the initial setting of the power measuring apparatus 100.

次に、電力計測装置100の計測動作について説明する。計測対象の電力線109に電力計測装置100が設置され、カレントトランス101が電力線109に接続されると、電力線109の電流に応じた電流がカレントトランス101に流れる。ここで、初期状態においてスイッチング素子102はカレントトランス101を充電回路107に接続している。このため、充電回路107は、カレントトランス101からの電流の供給を受けて、2次電池108に充電電流を流す。この結果、2次電池108の充電電圧(すなわち、電力計測装置100の電源電圧)が立ち上がる。これによりMCU105は、図5に示すメインプログラムの実行を開始する。   Next, the measurement operation of the power measuring apparatus 100 will be described. When the power measuring device 100 is installed on the power line 109 to be measured and the current transformer 101 is connected to the power line 109, a current corresponding to the current of the power line 109 flows to the current transformer 101. Here, in the initial state, the switching element 102 connects the current transformer 101 to the charging circuit 107. For this reason, the charging circuit 107 receives a supply of current from the current transformer 101 and causes a charging current to flow through the secondary battery 108. As a result, the charging voltage of the secondary battery 108 (that is, the power supply voltage of the power measuring device 100) rises. Thereby, the MCU 105 starts executing the main program shown in FIG.

MCU105は、プログラムカウンタをRESETし(ステップS101)、ROM内の所定アドレスに格納されたイニシャル処理プログラムを実行して、RAM内に各種の制御用レジスタ、タイマ等を設定する(ステップS102)。次にMCU105は、不揮発性メモリからサンプリングテーブルを読み出してRAMに格納する(ステップS103)。   The MCU 105 resets the program counter (step S101), executes the initial processing program stored at a predetermined address in the ROM, and sets various control registers, timers, and the like in the RAM (step S102). Next, the MCU 105 reads the sampling table from the nonvolatile memory and stores it in the RAM (step S103).

次に、MCU105は、リファレンス計測を行う(ステップS104)。さらに詳述すると、MCU105は、スイッチング素子102に制御指令を与え、カレントトランス101の接続先を充電回路107から計測回路103に切り換える。そして、MCU105は、A/D変換器104のサンプリング周期をリファレンス計測用のサンプリング周期に設定し、所定回数だけ計測回路103の出力電圧のA/D変換をA/D変換器104に行わせ、A/D変換値を取得する。そして、取得した所定個数のA/D変換値を用いて電力線109が供給する電力を算出する。   Next, the MCU 105 performs reference measurement (step S104). More specifically, the MCU 105 gives a control command to the switching element 102 and switches the connection destination of the current transformer 101 from the charging circuit 107 to the measuring circuit 103. Then, the MCU 105 sets the sampling period of the A / D converter 104 to the sampling period for reference measurement, causes the A / D converter 104 to perform A / D conversion of the output voltage of the measurement circuit 103 a predetermined number of times, An A / D conversion value is acquired. Then, the power supplied by the power line 109 is calculated using the predetermined number of acquired A / D conversion values.

次にMCU105は、ステップS104において取得した所定個数のA/D変換値から求められる例えば所定期間内の実効値を求め、RAM内のサンプリングテーブルからこの実効値に対応付けられたサンプリング周期、リファレンス計測周期および計測周期を読み出す。そして、この読み出した各周期を通常計測のサンプリング周期、リファレンス計測周期および計測周期として初期設定する(ステップS105)。   Next, the MCU 105 obtains, for example, an effective value within a predetermined period obtained from the predetermined number of A / D conversion values acquired at step S104, and from the sampling table in the RAM, the sampling period and reference measurement associated with this effective value. Read cycle and measurement cycle. Each read cycle is initialized as a normal measurement sampling cycle, a reference measurement cycle, and a measurement cycle (step S105).

次にMCU105は、通常モードでの処理を実行する(ステップS106)。そして、MCU105は、この通常モードでの処理中にRESET操作が行われたか否かを判断する(ステップS107)。この判断結果が「YES」である場合、MCU105は、ステップS101からS106の処理を繰り返す。一方、ステップS107の判断結果が「NO」である場合、MCU105は、通常モードでの処理(ステップS106)を継続する。なお、RESET操作とは、具体的には、電力計測装置100の筐体に設けられたRESETボタンの押下またはサーバからのRESET信号の受信である。   Next, the MCU 105 executes processing in the normal mode (step S106). Then, the MCU 105 determines whether or not a RESET operation has been performed during the processing in the normal mode (step S107). If the determination result is “YES”, the MCU 105 repeats the processing of steps S101 to S106. On the other hand, if the determination result in step S107 is “NO”, the MCU 105 continues the process in the normal mode (step S106). Note that the RESET operation is specifically pressing of a RESET button provided on the casing of the power measuring apparatus 100 or receiving a RESET signal from the server.

図6(a)は、図5のステップS106において実行される通常モードのプログラムの処理内容を示すフローチャートである。この通常モードのプログラムにおいて、MCU105は、まず、図6(b)に示すSleepモードへの移行処理に進む(ステップS201)。この移行処理では、まず、スイッチング素子102に制御指令を与え、カレントトランス101の接続先を計測回路103から充電回路107に切り換える(ステップS211)。次にMCU105は、2次電池108から計測回路103への電源供給を遮断する(ステップS212)。なお、この処理は、計測回路103の消費電力が大きい場合に実行すればよく、そうでない場合は必ずしも実行する必要はない。次にMCU105は、図示しないクロックジェネレータがMCU105に供給するクロックを周波数の高いメインクロックから周波数の低いサブクロックに切り換え、Sleepモードに移行する(ステップS213)。そして、SleepモードにおいてMCU105は、タイマからのインターバル割り込みが発生するのを待つ。   FIG. 6A is a flowchart showing the processing contents of the normal mode program executed in step S106 of FIG. In this normal mode program, the MCU 105 first proceeds to a transition process to the sleep mode shown in FIG. 6B (step S201). In this transition process, first, a control command is given to the switching element 102, and the connection destination of the current transformer 101 is switched from the measurement circuit 103 to the charging circuit 107 (step S211). Next, the MCU 105 cuts off the power supply from the secondary battery 108 to the measurement circuit 103 (step S212). This process may be executed when the power consumption of the measurement circuit 103 is large, and does not necessarily need to be executed otherwise. Next, the MCU 105 switches the clock supplied from the clock generator (not shown) to the MCU 105 from the main clock having a high frequency to the sub clock having a low frequency, and shifts to the sleep mode (step S213). In the sleep mode, the MCU 105 waits for an interval interrupt from the timer to occur.

タイマのタイマ値が予めコンペアレジスタに設定されたタイマコンペア値に到達すると、タイマのインターバル割り込みが発生する。これによりMCU105は、図6(a)のステップS202の処理に進み、クロックジェネレータのクロックをサブクロックからメインクロックに戻し、計測モードの処理を実行する。そして、計測モードの処理を終えると、MCU105は、計測モードの処理において求めた計測周期をタイマコンペア値としてコンペアレジスタに書き込み、タイマをスタートさせる(ステップS203)。そして、ステップS201に戻る。従って、通常モードでは、ステップS202においてタイマコンペア値として設定される計測周期で、ステップS201〜S203の処理が繰り返される。   When the timer value reaches the timer compare value preset in the compare register, a timer interval interrupt is generated. Thereby, the MCU 105 proceeds to the process of step S202 of FIG. 6A, returns the clock of the clock generator from the sub clock to the main clock, and executes the process of the measurement mode. When the measurement mode processing ends, the MCU 105 writes the measurement cycle obtained in the measurement mode processing as a timer compare value in the compare register and starts the timer (step S203). Then, the process returns to step S201. Therefore, in the normal mode, the processes in steps S201 to S203 are repeated at the measurement cycle set as the timer compare value in step S202.

図7は図6(a)のステップS202において実行される計測モードのプログラムの処理内容を示すフローチャートである。この計測モードのプログラムは、計測周期毎に1回起動される。まず、MCU105は、スイッチング素子102に制御指令を与え、カレントトランス101の接続先を充電回路107から計測回路103に切り換える(ステップS301)。次にMCU105は、現在の計測周期がリファレンス計測を行う計測周期か否かを判断する(ステップS302)。この判断結果が「NO」である場合は、ステップS311に進み、現在の計測周期が通常計測を行う計測周期か否かを判断する。この判断結果が「NO」である場合は計測モードの処理を終了し、図6(a)のステップS203に戻る。   FIG. 7 is a flowchart showing the processing contents of the measurement mode program executed in step S202 of FIG. This measurement mode program is started once every measurement cycle. First, the MCU 105 gives a control command to the switching element 102, and switches the connection destination of the current transformer 101 from the charging circuit 107 to the measuring circuit 103 (step S301). Next, the MCU 105 determines whether or not the current measurement cycle is a measurement cycle for performing reference measurement (step S302). If this determination is “NO”, the flow proceeds to step S 311 to determine whether the current measurement cycle is a measurement cycle in which normal measurement is performed. If the determination result is “NO”, the measurement mode process is terminated, and the process returns to step S203 in FIG.

一方、現在の計測周期が通常計測を行う計測周期である場合は、ステップS311の判断結果が「YES」となってステップS312へ進む。次にステップS312に進むと、MCU105は、通常計測用のサンプリング周期(この例では図5のステップS105において初期設定したサンプリング周期)をA/D変換器104に設定する。次にステップS313に進み、MCU105は、A/D変換器104に計測回路103の出力電圧のA/D変換を行わせることにより通常計測を行う。次にステップS314に進み、MCU105は、直前のリファレンス計測(計測モードのプログラムを最初に実行する場合はメインプログラムのステップS104において行われたリファレンス計測)において得られたA/D変換値の合計値と、ステップS313の通常計測により得られたA/D変換値の合計値とを比較し、両A/D変換値の合計値が一致しているか否かを判断する。   On the other hand, if the current measurement cycle is a measurement cycle for performing normal measurement, the determination result in step S311 is “YES”, and the flow proceeds to step S312. Next, in step S312, the MCU 105 sets a sampling period for normal measurement (in this example, the sampling period initially set in step S105 in FIG. 5) in the A / D converter 104. In step S313, the MCU 105 performs normal measurement by causing the A / D converter 104 to perform A / D conversion of the output voltage of the measurement circuit 103. Next, in step S314, the MCU 105 determines the total value of the A / D conversion values obtained in the immediately preceding reference measurement (or the reference measurement performed in step S104 of the main program when the measurement mode program is executed first). Is compared with the total value of the A / D conversion values obtained by the normal measurement in step S313, and it is determined whether or not the total values of both A / D conversion values match.

そして、両A/D変換値の合計値が一定の誤差範囲内で一致している場合、MCU105は、直前のリファレンス計測(計測モードのプログラムを最初に実行する場合はメインプログラムのステップS104において行われたリファレンス計測)において算出された電力値をステップS313の通常計測での測定電力とする(ステップS315)。そして、計測モードの処理を終了し、図6(a)のステップS203に戻る。   If the total value of the two A / D conversion values coincides within a certain error range, the MCU 105 performs the immediately preceding reference measurement (when the program in the measurement mode is executed first, in step S104 of the main program). The power value calculated in the reference measurement) is used as the measured power in the normal measurement in step S313 (step S315). Then, the measurement mode process ends, and the process returns to step S203 in FIG.

これに対し、ステップS314において、両A/D変換値の合計値が一定の誤差範囲内で一致していない場合、MCU105は、RAM内に設定された不一致FLAGを“1”とし、リファレンス計測周期に計測周期を上書きする(ステップS316)。そして、計測モードの処理を終了し、図6(a)のステップS203に戻る。   On the other hand, when the total value of both A / D conversion values does not match within a certain error range in step S314, the MCU 105 sets the mismatch FLAG set in the RAM to “1”, and the reference measurement cycle. The measurement cycle is overwritten on (step S316). Then, the measurement mode process ends, and the process returns to step S203 in FIG.

リファレンス計測を行うべき計測周期では、計測モードのプログラムにおいて、ステップS301を介してステップS302に進んだとき、このステップS302の判断結果が「YES」となってステップS321へ進む。次にステップS321へ進むと、MCU105は、リファレンス計測用のサンプリング周期をA/D変換器104に設定し、A/D変換器104に計測回路103の出力電圧のA/D変換を行わせることによりリファレンス計測を行う。そして、A/D変換器104から得られるA/D変換値を用いて電力線109が供給する電力を算出する。次にステップS322に進み、MCU105は、ステップS321のリファレンス計測において取得したA/D変換値の実効値を求め、RAM内のサンプリングテーブルにおいて、この実効値に対応付けられたサンプリング周期、リファレンス計測周期および計測周期を読み出す。そして、この読み出した各周期を通常計測のサンプリング周期、リファレンス計測周期および計測周期として再設定する。   In the measurement cycle in which the reference measurement is to be performed, in the measurement mode program, when the process proceeds to step S302 via step S301, the determination result in step S302 is “YES”, and the process proceeds to step S321. Next, in step S321, the MCU 105 sets the reference measurement sampling period in the A / D converter 104, and causes the A / D converter 104 to perform A / D conversion of the output voltage of the measurement circuit 103. The reference measurement is performed by Then, the power supplied from the power line 109 is calculated using the A / D conversion value obtained from the A / D converter 104. Next, proceeding to step S322, the MCU 105 obtains an effective value of the A / D conversion value acquired in the reference measurement of step S321, and in the sampling table in the RAM, the sampling period and reference measurement period associated with this effective value. And read the measurement cycle. Then, each read cycle is reset as a normal measurement sampling cycle, a reference measurement cycle, and a measurement cycle.

次にMCU105は、不一致FLAGが“1”か否かを判断する(ステップS323)。この判断結果が「NO」である場合、MCU105は、計測モードの処理を終了し、図6(a)のステップS203に戻る。これに対し、ステップS323の判断結果が「YES」である場合、ステップS324へ進む。このステップS324において、MCU105は、前回のリファレンス計測(ステップS104またはステップS321)において求めた電力と今回のリファレンス計測(ステップS321)において求めた電力の平均値を測定電力とし、不一致FLAGを“0”とする。そして、計測モードの処理を終了し、図6(a)のステップS203に戻る。   Next, the MCU 105 determines whether or not the mismatch FLAG is “1” (step S323). If the determination result is “NO”, the MCU 105 ends the measurement mode process and returns to step S203 in FIG. On the other hand, if the determination result of step S323 is “YES”, the process proceeds to step S324. In this step S324, the MCU 105 uses the average value of the power obtained in the previous reference measurement (step S104 or step S321) and the current reference measurement (step S321) as the measured power, and the mismatch FLAG is “0”. And Then, the measurement mode process ends, and the process returns to step S203 in FIG.

その後、再び計測モードのプログラムが起動された場合、ステップS314の処理では、ステップS321のリファレンス計測により得られたA/D変換値が通常計測(ステップS313)において得られたA/D変換値との比較の対象になる。また、ステップS321のリファレンス計測により得られた電力が、ステップS315においてリファレンス計測により算出された電力として使用される。   Thereafter, when the measurement mode program is activated again, in the process of step S314, the A / D conversion value obtained by the reference measurement in step S321 is the same as the A / D conversion value obtained in the normal measurement (step S313). It becomes the object of comparison. Further, the power obtained by the reference measurement in step S321 is used as the power calculated by the reference measurement in step S315.

以上説明した計測モードの処理において、通常計測(ステップS313)におけるA/D変換値と、その直前のリファレンス計測により得られたA/D変換値とが一定の誤差範囲内で一致する状況が継続する場合、サンプリングテーブルに基づいて設定されたリファレンス周期に到達するまでの間、ステップS311からS315の処理が繰り返される。この場合、ステップS302の判断結果が「YES」となり、ステップS321、S322を介してステップS323に進んだとき、その判断結果が「NO」になる。従って、この場合には、サンプリングテーブルに定義されたリファレンス計測周期に同期してリファレンス計測が行われ、このリファレス計測が行われる都度、測定電力が更新される。   In the measurement mode processing described above, the situation in which the A / D conversion value in the normal measurement (step S313) and the A / D conversion value obtained by the immediately preceding reference measurement match within a certain error range continues. If so, the processing from step S311 to S315 is repeated until the reference period set based on the sampling table is reached. In this case, the determination result in step S302 is “YES”, and when the process proceeds to step S323 via steps S321 and S322, the determination result is “NO”. Therefore, in this case, reference measurement is performed in synchronization with the reference measurement period defined in the sampling table, and the measured power is updated each time this reference measurement is performed.

これに対し、通常計測(ステップS313)におけるA/D変換値と、その直前のリファレンス計測により得られたA/D変換値とが一定の誤差範囲内で一致しないと、不一致FLAGが“1”とされ、かつ、リファレンス計測周期に計測周期が上書きされる(ステップS316)。従って、その次の計測周期において、図7の計測モードのプログラムが起動されたとき、当該計測周期はステップS316の処理によりリファレンス計測周期とされたため、ステップS302の判断結果が「YES」となって、リファレンス計測が実行される(ステップS321)。そして、ステップS323の判断結果が「YES」となるため、今回のリファレンス計測により得られた電力と前回のリファレンス計測により得られた電力との平均値が測定電力とされる(ステップS324)。   On the other hand, if the A / D conversion value in the normal measurement (step S313) and the A / D conversion value obtained by the immediately preceding reference measurement do not match within a certain error range, the mismatch FLAG is “1”. And the measurement cycle is overwritten on the reference measurement cycle (step S316). Therefore, when the program in the measurement mode of FIG. 7 is started in the next measurement cycle, the measurement cycle is set to the reference measurement cycle by the process of step S316, and the determination result in step S302 is “YES”. Reference measurement is executed (step S321). Since the determination result in step S323 is “YES”, the average value of the power obtained by the current reference measurement and the power obtained by the previous reference measurement is set as the measured power (step S324).

このように通常計測におけるA/D変換値とリファレンス計測におけるA/D変換値との誤差が大きい状況では、サンプリングテーブルに定義されたリファレンス計測周期よりも短い周期で、リファレンス計測が繰り返され、今回のリファレンス計測により得られた電力と前回のリファレンス計測により得られた電力により測定電力が更新される。従って、電力線109を介して供給される電力の変動が激しい状況においても高い精度で電力の測定を行うことができる。   In this way, in the situation where the error between the A / D conversion value in the normal measurement and the A / D conversion value in the reference measurement is large, the reference measurement is repeated at a cycle shorter than the reference measurement cycle defined in the sampling table. The measured power is updated by the power obtained by the reference measurement and the power obtained by the previous reference measurement. Therefore, power can be measured with high accuracy even in a situation where fluctuation of power supplied through the power line 109 is severe.

以上のように、本実施形態によれば、A/D変換器104から得られるA/D変換値に基づいて、A/D変換のサンプリング周期が制御されるため、電力線109を介して供給される電力の変動が激しい状況においても、高い精度で電力の計測を行うことができる。また、本実施形態では、A/D変換値に依存したサンプリング周期でA/D変換器104にA/D変換を行わせる通常計測を計測周期に同期して行うとともに、この計測周期の整数倍の周期で、十分に長いサンプリング周期でA/D変換器104にA/D変換を行わせるリファレンス計測を実行した。そして、本実施形態では、通常計測でのA/D変換値とリファレンス計測でのA/D変換値とが十分に近似している場合には、リファレンス計測でのA/D変換値から算出した電力を通常計測時の測定電力とした。従って、本実施形態によれば、電力の計測精度を高く維持しつつ、MCU105の演算量を減らし、電力計測装置100の消費電力を減らすことができる。   As described above, according to the present embodiment, since the sampling period of A / D conversion is controlled based on the A / D conversion value obtained from the A / D converter 104, the power is supplied via the power line 109. It is possible to measure power with high accuracy even in a situation where fluctuations in power are severe. In the present embodiment, normal measurement for causing the A / D converter 104 to perform A / D conversion at a sampling period depending on the A / D conversion value is performed in synchronization with the measurement period, and an integral multiple of this measurement period. In this cycle, reference measurement was performed to cause the A / D converter 104 to perform A / D conversion with a sufficiently long sampling cycle. In this embodiment, when the A / D conversion value in the normal measurement and the A / D conversion value in the reference measurement are sufficiently approximated, the calculation is performed from the A / D conversion value in the reference measurement. The power was taken as the measured power during normal measurement. Therefore, according to the present embodiment, the calculation amount of the MCU 105 can be reduced and the power consumption of the power measuring apparatus 100 can be reduced while maintaining high power measurement accuracy.

100……電力計測装置、101……カレントトランス、102……スイッチング素子、103……計測回路、104……A/D変換器、105……MCU、106……通信回路、107……充電回路、108……2次電池、109……電力線。
DESCRIPTION OF SYMBOLS 100 ... Electric power measuring device, 101 ... Current transformer, 102 ... Switching element, 103 ... Measuring circuit, 104 ... A / D converter, 105 ... MCU, 106 ... Communication circuit, 107 ... Charging circuit 108 ... secondary battery 109 ... power line.

Claims (5)

計測対象の電力線に流れる電流に応じた電流を発生してキャパシタに充電し、前記キャパシタを電源として前記電力線が供給する電力を計測する電力計測装置において、
予め設定されたサンプリング周期に同期して前記電力線に流れる電流波形を示す信号をA/D変換するA/D変換器と、
前記A/D変換器から得られるA/D変換値に基づいて前記電力線が供給する電力を算出する制御手段とを具備し、
前記制御手段は、前記A/D変換値に応じて前記サンプリング周期を制御することを特徴とする電力計測装置。
In a power measuring device that generates a current according to a current flowing through a power line to be measured and charges the capacitor, and measures the power supplied by the power line using the capacitor as a power source,
An A / D converter for A / D converting a signal indicating a current waveform flowing in the power line in synchronization with a preset sampling period;
Control means for calculating the power supplied by the power line based on the A / D conversion value obtained from the A / D converter,
The power measuring apparatus, wherein the control means controls the sampling period according to the A / D conversion value.
前記制御手段は、予め設定された計測周期毎に、前記A/D変換器から得られるA/D変換値に基づいて前記電力線が供給する電力を算出するものであり、各計測周期では、前記A/D変換値に基づいて定まるサンプリング周期で前記A/D変換を行わせる通常計測または所定のサンプリング周期でA/D変換を行わせるリファレンス計測のいずれかを行い、前記リファレンス計測を行った場合には、その結果得られたA/D変換値に基づいて電力を算出し、前記通常計測を行った場合には、前記通常計測により得られたA/D変換値の合計値と、前記通常計測に合わせて一部を間引いた前記リファレンス計測により得られたA/D変換値の合計値とを比較し、両者が所定の誤差範囲内で一致している場合に、前記リファレンス計測により得られたA/D変換値から算出した電力を当該通常計測時の電力とすることを特徴とする請求項1に記載の電力計測装置。   The control means calculates power supplied by the power line based on an A / D conversion value obtained from the A / D converter for each preset measurement cycle. In each measurement cycle, When the reference measurement is performed by performing either the normal measurement in which the A / D conversion is performed at a sampling cycle determined based on the A / D conversion value or the reference measurement in which the A / D conversion is performed at a predetermined sampling cycle. The power is calculated based on the A / D conversion value obtained as a result, and when the normal measurement is performed, the total value of the A / D conversion values obtained by the normal measurement and the normal Compared with the total value of the A / D conversion values obtained by the reference measurement, which is partially thinned in accordance with the measurement, and obtained by the reference measurement when both coincide with each other within a predetermined error range. Power measurement device according to the power calculated from the A / D converted value to claim 1, characterized in that the power at the time of the normal measurements made. 前記通常計測により得られたA/D変換値の合計値と、前記通常計測に合わせて一部を間引いた前記リファレンス計測により得られたA/D変換値の合計値とが所定の誤差範囲内で一致しない場合に、前記制御手段は、直ちにリファレンス計測を行い、このリファレンス計測により得られたA/D変換値から算出した電力と直前のリファレンス計測により得られたA/D変換値から算出した電力とを平均化して、前記電力線が供給する電力を算出することを特徴とする請求項1に記載の電力計測装置。   A total value of A / D conversion values obtained by the normal measurement and a total value of A / D conversion values obtained by the reference measurement obtained by thinning a part in accordance with the normal measurement are within a predetermined error range. In the case where they do not coincide with each other, the control means immediately performs reference measurement, and calculates from the power calculated from the A / D conversion value obtained by the reference measurement and the A / D conversion value obtained by the immediately previous reference measurement. The power measurement apparatus according to claim 1, wherein the power supplied from the power line is calculated by averaging power. 通常計測時のサンプリング周期を前記A/D変換器のA/D変換値に対応付けるサンプリングテーブルを記憶した不揮発性メモリを具備し、
前記制御手段は、前記不揮発性メモリに記憶されたサンプリングテーブルを参照することにより、前記A/D変換器のA/D変換値に対応した通常計測のサンプリング周期を決定することを特徴とする請求項2または3に記載の電力計測装置。
Comprising a non-volatile memory storing a sampling table for associating a sampling period during normal measurement with an A / D conversion value of the A / D converter;
The control means determines a normal measurement sampling period corresponding to an A / D conversion value of the A / D converter by referring to a sampling table stored in the nonvolatile memory. Item 4. The power measuring device according to Item 2 or 3.
前記電力線に流れる電流に応じて電流を出力するカレントトランスと、
前記カレントトランスの出力電流に応じた電圧を出力する計測回路とを具備し、
前記A/D変換器は、前記計測回路の出力電圧のA/D変換を行うものであり、
前記制御手段は、各計測周期において、前記カレントトランスを前記計測回路に接続して前記通常計測または前記リファレンス計測を行った後、前記カレントトランスの接続先を前記計測回路から前記キャパシタへの充電を行う充電回路に切り換え、前記キャパシタの充電を行わせることを特徴とする請求項2〜4のいずれか1の請求項に記載の電力計測装置。
A current transformer that outputs a current according to a current flowing through the power line;
A measurement circuit that outputs a voltage according to the output current of the current transformer,
The A / D converter performs A / D conversion of the output voltage of the measurement circuit,
In each measurement cycle, the control means connects the current transformer to the measurement circuit and performs the normal measurement or the reference measurement, and then connects the connection destination of the current transformer from the measurement circuit to the capacitor. The power measuring device according to any one of claims 2 to 4, wherein the capacitor is charged by switching to a charging circuit to be performed.
JP2014090758A 2014-04-24 2014-04-24 Power measuring device Expired - Fee Related JP6347144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014090758A JP6347144B2 (en) 2014-04-24 2014-04-24 Power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090758A JP6347144B2 (en) 2014-04-24 2014-04-24 Power measuring device

Publications (2)

Publication Number Publication Date
JP2015210135A true JP2015210135A (en) 2015-11-24
JP6347144B2 JP6347144B2 (en) 2018-06-27

Family

ID=54612436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090758A Expired - Fee Related JP6347144B2 (en) 2014-04-24 2014-04-24 Power measuring device

Country Status (1)

Country Link
JP (1) JP6347144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597085A (en) * 2016-12-21 2017-04-26 珠海市魅族科技有限公司 Power consumption testing method, device and system
JP2017223561A (en) * 2016-06-15 2017-12-21 富士電機機器制御株式会社 Power measurement device and current measurement device
JP2019527341A (en) * 2016-06-20 2019-09-26 グルプラグGulplug Electrical energy measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119858A (en) * 1980-02-27 1981-09-19 Hitachi Ltd High-speed collecting processor for analog data
JPS5927632U (en) * 1982-08-12 1984-02-21 横河電機株式会社 A/D converter
US20130021021A1 (en) * 2011-07-21 2013-01-24 Landis+Gyr, Inc. Utility meter with capacitor charging circuit
JP2014055831A (en) * 2012-09-12 2014-03-27 Fujitsu Ltd Measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119858A (en) * 1980-02-27 1981-09-19 Hitachi Ltd High-speed collecting processor for analog data
JPS5927632U (en) * 1982-08-12 1984-02-21 横河電機株式会社 A/D converter
US20130021021A1 (en) * 2011-07-21 2013-01-24 Landis+Gyr, Inc. Utility meter with capacitor charging circuit
JP2014055831A (en) * 2012-09-12 2014-03-27 Fujitsu Ltd Measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223561A (en) * 2016-06-15 2017-12-21 富士電機機器制御株式会社 Power measurement device and current measurement device
JP2019527341A (en) * 2016-06-20 2019-09-26 グルプラグGulplug Electrical energy measuring device
CN106597085A (en) * 2016-12-21 2017-04-26 珠海市魅族科技有限公司 Power consumption testing method, device and system
CN106597085B (en) * 2016-12-21 2020-02-07 珠海市魅族科技有限公司 Power consumption testing method, device and system

Also Published As

Publication number Publication date
JP6347144B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP5525862B2 (en) Charger, program
JP6648614B2 (en) Power storage device
EP2365346A2 (en) Switching power supply
JP2016506708A5 (en)
JP6260329B2 (en) CURRENT MEASURING DEVICE, ITS CONTROL METHOD, CONTROL PROGRAM, RECORDING MEDIUM, AND POWER MEASURING DEVICE
RU2015125308A (en) MANAGEMENT OF LOADING SYSTEMS OF ELECTRIC NETWORKS ON THE BASIS OF SIGNAL LEVELS
KR101709886B1 (en) Sensor device and monitoring system
JP6347144B2 (en) Power measuring device
JP6701922B2 (en) Storage controller
JP2013225297A (en) Control apparatus, control method, program and semiconductor device
JP7039869B2 (en) Control circuit, sensor device and battery level measurement method
JP2023101509A (en) Semiconductor device and method for detecting remaining amount of battery
EP3799286B1 (en) Control system and power supply unit
WO2021129544A1 (en) Voltage detection and adaptation method, device control method and apparatus, and storage medium
JP2016142632A (en) Power measurement device and current measurement device
WO2010143605A1 (en) Power supply circuit and power supply method
KR20170080383A (en) Energy storage system and method for controlling power frequency
JP2011181273A (en) Power saving device for high pressure discharge lamp
JP4891885B2 (en) Resonance point tracking drive
CN105204325A (en) Timing method and circuit
JP5974893B2 (en) Processing apparatus and processing method
JP2015171253A (en) Controller, power converter, power supply system, and program
JP2018206741A (en) Lighting control device, lighting fixture, and illumination system
JP6468181B2 (en) Time-series data conversion device and power storage device
KR101746949B1 (en) Power combination device of multiple small power sources and generation method of control signal therefor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180514

R150 Certificate of patent or registration of utility model

Ref document number: 6347144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees