JP2015210011A - Natural circulation type cooling device - Google Patents

Natural circulation type cooling device Download PDF

Info

Publication number
JP2015210011A
JP2015210011A JP2014091296A JP2014091296A JP2015210011A JP 2015210011 A JP2015210011 A JP 2015210011A JP 2014091296 A JP2014091296 A JP 2014091296A JP 2014091296 A JP2014091296 A JP 2014091296A JP 2015210011 A JP2015210011 A JP 2015210011A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
expansion valve
heat exchanger
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014091296A
Other languages
Japanese (ja)
Other versions
JP6342207B2 (en
Inventor
鐵雄 呉
Tetsuo Go
鐵雄 呉
井上 良則
Yoshinori Inoue
良則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2014091296A priority Critical patent/JP6342207B2/en
Publication of JP2015210011A publication Critical patent/JP2015210011A/en
Application granted granted Critical
Publication of JP6342207B2 publication Critical patent/JP6342207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately eliminate gas occurring in a refrigerant liquid feeding pipe line in startup to attain smooth operation, in a natural circulation type cooling device that utilizes the elevation difference between a heat exchanger for air conditioning and a condenser to naturally circulate refrigerant.SOLUTION: A condenser 3 is arranged at a higher place than a heat exchanger 2 for air conditioning, and they are connected by a refrigerant gas return pipe line 6 and a refrigerant liquid feeding pipe line 7. In the refrigerant liquid feeding pipe line 7, an expansion valve 13 is arranged in the vicinity of the heat exchanger 2 for air conditioning. A bypass passage 14 is connected in a state of straddling the expansion valve 13, and a relief valve 15 is provided in the bypass passage 14. When a pressure sensor 16 detects excessive low pressure of the refrigerant liquid feeding pipe line 7, gas is discharged to the side of the heat exchanger 2 for air conditioning by opening the relief valve 15. Since gas is discharged in the dedicated bypass passage 14, gas is rapidly and surely discharged.

Description

本願発明は、空調用熱交換器と凝縮器との高低差を利用して冷媒を無動力で循環させる自然循環式冷房装置に関するものである。   The present invention relates to a natural circulation type cooling device that circulates a refrigerant without power using a difference in height between an air conditioning heat exchanger and a condenser.

自然循環式冷房装置ではフロンのような気化温度(沸点)が低い冷媒が使用されており、空調用熱交換器(室内機)よりも高い位置に凝縮器を配置している。凝縮器からは液体の冷媒(冷媒液)が重力によって空調用熱交換器に流れ、空調用熱交換器を通って蒸発した冷媒(冷媒ガス)は空気よりも軽いため冷媒ガス戻り管路を通って凝縮器に戻り、冷媒ガスは凝縮器で冷却されて冷媒液に戻って冷媒液送り管路から再び空調用熱交換器に向かう、という循環を繰り返す。冷媒液送り管路の下端部には電磁式等の膨張弁を設けており、膨張弁の開度を調節することで冷房温度が調節される。   In the natural circulation type cooling device, a refrigerant having a low vaporization temperature (boiling point) such as chlorofluorocarbon is used, and the condenser is disposed at a position higher than the heat exchanger for air conditioning (indoor unit). Liquid refrigerant (refrigerant liquid) flows from the condenser to the air conditioning heat exchanger by gravity, and the refrigerant (refrigerant gas) evaporated through the air conditioning heat exchanger passes through the refrigerant gas return line because it is lighter than air. Then, the refrigerant gas is returned to the condenser, and the refrigerant gas is cooled by the condenser and returned to the refrigerant liquid to repeat the circulation from the refrigerant liquid feed line to the air conditioning heat exchanger. An electromagnetic expansion valve or the like is provided at the lower end of the refrigerant liquid feed line, and the cooling temperature is adjusted by adjusting the opening of the expansion valve.

凝縮器は水冷方式が一般的であり、冷却水が通る細管に冷媒ガスを接触させることで冷媒ガスを液化している。そして、自然循環式冷房装置では、凝縮器に冷却水を通すことで運転が開始されるが、長時間に亙って運転を停止した後に装置を始動すると、凝縮器の内部の温度が低下して凝縮器の内圧が低くなることに起因して、冷媒液送り管路の下部にガス(フォーミングガス、フラッシュガス)が発生することがある。   The condenser is generally water-cooled, and the refrigerant gas is liquefied by bringing the refrigerant gas into contact with a narrow tube through which the cooling water passes. In a natural circulation type cooling device, the operation is started by passing the cooling water through the condenser. Due to the lower internal pressure of the condenser, gas (forming gas, flash gas) may be generated in the lower part of the refrigerant liquid feed line.

そして、空調用熱交換器にガスが排出されると、膨張弁を挟んだ両側で圧力差が殆どなくなってしまって、冷媒の循環が行われずに冷房機能を発揮できなくなってしまう。また、複数台の空調用熱交換器を備えた設備で一部の空調用熱交換器を停止することで、相対的に他の空調用熱交換器に対する凝縮器の能力が高くなることによっても、冷媒液送り管路にガスが発生することがあり、この場合も、自然循環が停止又は抑制されることがあり得る。更に、冷房装置の運転停止によって冷媒液送り管路にガスが発生することもある。   And if gas is discharged | emitted by the heat exchanger for an air conditioning, a pressure difference will almost disappear on both sides which pinched | interposed the expansion valve, and it will become impossible to exhibit a cooling function without circulating a refrigerant | coolant. In addition, by stopping some of the air conditioning heat exchangers in equipment equipped with a plurality of air conditioning heat exchangers, the capacity of the condenser relative to other air conditioning heat exchangers can be relatively increased. Gas may be generated in the refrigerant liquid feed pipe, and in this case, natural circulation may be stopped or suppressed. Further, gas may be generated in the refrigerant liquid feed line due to the shutdown of the cooling device.

そこで、始動時等に冷媒液送り管路に発生したガスを除去することが考えられており、その例として特許文献1には、冷媒液送り管路のうち膨張弁の上流側に電磁弁を設けて、冷媒ガス戻り管路と冷媒液送り管路との圧力差が所定値に低下すると電磁弁を全開してガスを空調用熱交換器に排出することが開示されている。   Therefore, it is considered to remove the gas generated in the refrigerant liquid feed line at the time of starting or the like. As an example, Patent Document 1 discloses that an electromagnetic valve is provided upstream of the expansion valve in the refrigerant liquid feed line. It is disclosed that when the pressure difference between the refrigerant gas return line and the refrigerant liquid feed line drops to a predetermined value, the solenoid valve is fully opened to discharge the gas to the air conditioning heat exchanger.

他方、特許文献2には、膨張弁の開度を制御してガスを冷媒ガス戻り管路に排出することが開示されている。更に、特許文献3,4には、冷房装置の運転を停止しているときに膨張弁を開くことで、冷媒液送り管路に溜まったガスを冷媒ガス戻り管路に排出することが開示されている。   On the other hand, Patent Document 2 discloses that the gas is discharged to the refrigerant gas return pipe by controlling the opening degree of the expansion valve. Further, Patent Documents 3 and 4 disclose that the gas accumulated in the refrigerant liquid feed line is discharged to the refrigerant gas return line by opening the expansion valve when the operation of the cooling device is stopped. ing.

特開平7−151353号公報JP-A-7-151353 特開2005−337540号公報JP 2005-337540 A 特開2000−292025号公報JP 2000-292025 A 特開2005−308302号公報JP 2005-308302 A

特許文献1,2は、ガスの発生を不可避としてガスを逃がすものであるが、いずれにしてもガスは膨張弁を通じて空調用熱交換器(室内機)に逃がすものであるため、ガスの逃げ量は膨張弁の開度に依存するが、膨張弁は少量の液体の流量を調節するものであるため、大量のガスを一気に逃がすようなことはできず、このため、ガスの排出に時間か掛かって、冷房の立ち上がりが遅いという問題がある。   In Patent Documents 1 and 2, the generation of gas is unavoidable and gas is released. However, in any case, the gas escapes to the heat exchanger for air conditioning (indoor unit) through the expansion valve. Depends on the opening of the expansion valve, but since the expansion valve adjusts the flow rate of a small amount of liquid, it is impossible to escape a large amount of gas at a stretch, and it takes time to exhaust the gas. Therefore, there is a problem that the cooling rise is slow.

他方、特許文献3,4では、運転停止によって生じたガスは排除できても、始動によって発生したガスの排除はできないという問題がある。   On the other hand, Patent Documents 3 and 4 have a problem that even if the gas generated by the operation stop can be excluded, the gas generated by starting cannot be excluded.

本願発明は、このような現状を改善すべく成されたものである。   The present invention has been made to improve the current situation.

本願発明の自然循環式冷房装置は、冷媒が通過する過程で蒸発して冷房を行う空調用熱交換器と、前記熱交換器よりも高所に配置された凝縮器とを備えており、前記熱交換器の出口と凝縮器の入口とは冷媒ガス戻り管路で接続されて、前記空調用熱交換器の入口と凝縮器の出口とは冷媒液送り管路とで接続されており、前記液化冷媒送り管路のうち空調用熱交換器の近くの部位に膨張弁を設けている、という基本構成である。   The natural circulation type cooling device of the present invention includes an air conditioning heat exchanger that cools by evaporating in the process of passing the refrigerant, and a condenser that is disposed at a higher position than the heat exchanger, The outlet of the heat exchanger and the inlet of the condenser are connected by a refrigerant gas return line, and the inlet of the heat exchanger for air conditioning and the outlet of the condenser are connected by a refrigerant liquid feed line, This is a basic configuration in which an expansion valve is provided in a portion of the liquefied refrigerant feed line near the heat exchanger for air conditioning.

そして、本願発明は上記の基本構成の下で多くの特徴ある構成を含んでおり、その典型を各請求項で特定している。このうち請求項1の発明では、前記冷媒液送り管路の下端部でかつ前記膨張弁の上流側の部位に、前記冷媒液送り管路に発生したガスを膨張弁13の下流側に逃がすバイパス通路を接続し、前記バイパス通路に、前記膨張弁の上流側の近傍部の圧力が予め設定した圧力以下に低下すると開くリリーフ弁を設けている。   The present invention includes many characteristic configurations under the basic configuration described above, and typical examples thereof are specified in the respective claims. Among these, in the first aspect of the present invention, a bypass is provided for letting the gas generated in the refrigerant liquid feed pipe to the downstream side of the expansion valve 13 at the lower end portion of the refrigerant liquid feed pipe and upstream of the expansion valve. A passage is connected, and a relief valve that opens when the pressure in the vicinity of the upstream side of the expansion valve drops below a preset pressure is provided in the bypass passage.

請求項2の発明では、請求項1において、前記バイパス通路は、前記冷媒液送り管路の下端部のうち前記膨張弁を挟んだ両側に接続されている。また、請求項3の発明は、請求項1又は2において、前記冷媒液送り管路の下部のうち前記膨張弁よりも上流側でかつ前記膨張弁に近い部位か、又は、前記バイパス通路のうちリリーフ弁よりも上流側に圧力検知手段を設けており、前記圧力検知手段に基づいて前記リリーフ弁の開閉が制御されるようになっている。   According to a second aspect of the present invention, in the first aspect, the bypass passage is connected to both sides of the lower end portion of the refrigerant liquid feed pipe with the expansion valve interposed therebetween. Further, the invention of claim 3 is the invention according to claim 1 or 2, wherein the lower part of the refrigerant liquid feed line is a portion upstream of the expansion valve and close to the expansion valve, or of the bypass passage. Pressure detection means is provided upstream of the relief valve, and the opening and closing of the relief valve is controlled based on the pressure detection means.

請求項4の発明は、請求項1〜3のうちのいずれかにおいて、前記バイパス通路は略水平状の姿勢に配置されており、請求項5の発明は、請求項1〜4のうちのいずれかにおいて、前記リリーフ弁は、気体は通すが液体は全く又は殆ど通さないドレントラップタイプになっている。他方、請求項6の発明は、請求項1〜4のうちのいずれかにおいて、前記リリーフ弁は気液ともに通すタイプであり、前記リリーフ弁が開いている状態では前記膨張弁は全閉されているか又は通常運転状態よりも絞られている。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the bypass passage is disposed in a substantially horizontal posture, and a fifth aspect of the invention is directed to any one of the first to fourth aspects. In this case, the relief valve is of a drain trap type that allows gas to pass but does not allow or hardly pass liquid. On the other hand, the invention of claim 6 is the type according to any one of claims 1 to 4, wherein the relief valve is of a type that allows gas and liquid to pass through, and the expansion valve is fully closed when the relief valve is open. Or it is narrower than the normal operating state.

本願発明の空調用熱交換器はファンコイルタイプも使用可能であるが、請求項7の発明では、前記空調用熱交換器は、伝熱性基板に冷媒流路を設けた放射冷却パネルより成っている。   The air-conditioning heat exchanger of the present invention can use a fan coil type, but in the invention of claim 7, the air-conditioning heat exchanger comprises a radiant cooling panel in which a refrigerant channel is provided on a heat conductive substrate. Yes.

本願発明では、冷媒液送り管路に発生したガスは、専用のバイパス通路によって膨張弁の下流側に排出される。このため、ガスの排除を迅速に行って、冷媒液送り管路が液体の冷媒で満たされた状態を早期に実現ができる。その結果、冷媒が自然循環する条件を早期に整えて、冷房のサイクルを素早く立ち上げることができる。   In the present invention, the gas generated in the refrigerant liquid feed pipe is discharged to the downstream side of the expansion valve by a dedicated bypass passage. For this reason, the state where the refrigerant liquid feed line is filled with the liquid refrigerant can be realized at an early stage by quickly removing the gas. As a result, the conditions for the natural circulation of the refrigerant can be adjusted early, and the cooling cycle can be quickly started.

バイパス通路の出口は、例えば冷媒ガス戻り管路に接続したり凝縮タンクに接続したりすることも可能であるが、この場合は、バイパス通路の長さが長くなるため、コストアップや重量増大の問題が生じるおそれがある。これに対して請求項2のようにバイパス通路の入口と出口を膨張弁の近くに接続すると、バイパス通路の長さをできるだけ短くしてコスト及び重量の抑制に貢献できる。   The outlet of the bypass passage can be connected, for example, to a refrigerant gas return pipe or to a condensation tank. In this case, the length of the bypass passage becomes longer, which increases costs and increases weight. Problems may arise. On the other hand, if the inlet and outlet of the bypass passage are connected near the expansion valve as in the second aspect, the length of the bypass passage can be made as short as possible to contribute to cost and weight reduction.

また、請求項2では、バイパス通路からリークした冷媒は、ガスの状態であっても液体の状態であっても全て空調用熱交換器を流れるため、バイパス通路にガスが溜まったままになるような問題はないと共に、液体の冷媒を空調用熱交換器に流すことで冷房の立ち上がりを促進できるという利点もある。   Further, in claim 2, since the refrigerant leaking from the bypass passage flows through the heat exchanger for air conditioning regardless of whether it is in a gas state or a liquid state, gas remains in the bypass passage. There is no particular problem, and there is an advantage that the rise of the cooling can be promoted by flowing the liquid refrigerant through the heat exchanger for air conditioning.

請求項3の構成を採用すると、膨張弁に近い部位の圧力をリリーフ弁の作動に反映させることができるため、ガスの発生に対するリリーフ弁の作動の応答性を高めることができる。その結果、ガスを早期に排除して、冷房のスムースな立ち上がりをより確実化できる利点がある。   If the structure of Claim 3 is employ | adopted, since the pressure of the site | part close | similar to an expansion valve can be reflected in the action | operation of a relief valve, the responsiveness of the action | operation of the relief valve with respect to generation | occurrence | production of gas can be improved. As a result, there is an advantage that the gas can be eliminated at an early stage and the smooth start-up of the cooling can be further ensured.

また、請求項4の構成を採用すると、ガスがバイパス通路に溜まることを的確に防止できるため、リリーフ弁を閉じた後にバイパス通路に溜まったガスが空調用熱交換器に逃げてベイパーロック現象を発生させるような不具合を無くすことができる。   In addition, when the configuration of claim 4 is adopted, it is possible to accurately prevent the gas from accumulating in the bypass passage, so that the gas accumulated in the bypass passage after closing the relief valve escapes to the heat exchanger for air conditioning and the vapor lock phenomenon is prevented. It is possible to eliminate problems that may occur.

請求項5のように、リリーフ弁としてドレントラップタイプのバルブを使用すると、液体の冷媒が空調用熱交換器に過剰に供給されることを防止できるため、冷媒が自然循環する環境をより早く実現できる利点がある。この場合は、膨張弁を適当な開度で開くことで冷房機能も発揮できるため、冷房システムの立ち上がり性も向上できる。他方、請求項6の構成を採用すると、リリーフ弁を通ってきた液体の冷媒に冷房の仕事をさせることができるため、この場合も、冷房の立ち上がりを早くすることができる。   If a drain trap type valve is used as a relief valve, liquid refrigerant can be prevented from being excessively supplied to the air-conditioning heat exchanger, so that an environment where the refrigerant naturally circulates can be realized more quickly. There are advantages you can do. In this case, since the cooling function can be exhibited by opening the expansion valve at an appropriate opening degree, the start-up property of the cooling system can be improved. On the other hand, if the structure of Claim 6 is employ | adopted, since the cooling work of the liquid which has passed through the relief valve can be made to perform the work of cooling, also in this case, the start-up of cooling can be accelerated.

本願発明では,空調用熱交換器としてはファンコイルタイプのものも使用できるが、請求項7のように放射パネルを採用すると、ファンの動力が不要になるため、冷媒の搬送動力を無くしてコスト抑制や騒音を無くすという自然循環式冷房装置のコンセプトとマッチしている。すなわち、請求項7の発明は、自然循環式冷房装置に好適であると云える。   In the present invention, a fan coil type heat exchanger can be used as the air conditioner heat exchanger. However, if a radiant panel is used as in claim 7, the power of the fan becomes unnecessary, so the power for transporting the refrigerant is eliminated and the cost is reduced. It matches the concept of a natural circulation type cooling system that eliminates suppression and noise. That is, it can be said that the invention of claim 7 is suitable for a natural circulation type cooling device.

実施形態の模式的な正面図である。It is a typical front view of an embodiment. 図1のII-II 視平面図である。FIG. 2 is a plan view taken along the line II-II in FIG. 1. (A)(B)は作用を示す模式的な正面図、(C)は制御を示すグラフである。(A) (B) is a typical front view which shows an effect | action, (C) is a graph which shows control. 変形例を示す図である。It is a figure which shows a modification. 更に他の変形例を示す図である。It is a figure which shows another modification.

(1).第1実施形態
次に、本願発明の実施形態を図面に基づいて説明する。まず、図1〜3に示す実施形態を説明する。本実施形態の自然循環式冷房装置は、空調空間の天井面に配置した多数枚の放射パネル1から成る空調用熱交換器2と、空調用熱交換器2の群よりも高い位置(例えば屋上)に配置された凝縮器3とを備えている。
(1). First Embodiment Next, an embodiment of the present invention will be described with reference to the drawings. First, the embodiment shown in FIGS. The natural circulation type cooling device of the present embodiment has a higher position than the group of the air conditioning heat exchanger 2 and the air conditioning heat exchanger 2 (for example, the rooftop), which is composed of a large number of radiation panels 1 arranged on the ceiling surface of the air conditioning space. And a condenser 3 arranged in the above.

凝縮器3は、凝縮タンク4の内部(上部)に細管群よりなる冷媒用熱交換ユニット5を配置した構成であり、空調用熱交換器2の出口と凝縮タンク4の入口とが冷媒ガス戻り管路6で接続されて、空調用熱交換器2の入口と凝縮タンク4の出口とが冷媒液送り管路7で接続されている。凝縮器3の冷媒用熱交換ユニット5には冷却配管8が接続されており、冷却配管8には冷却水制御弁9を設けている。空調用熱交換器2と凝縮器3とは高さが相違するので、冷媒ガス戻り管路6と冷媒液送り管路7とは、上下方向(重力方向)に長い部分を有している。   The condenser 3 has a configuration in which a refrigerant heat exchange unit 5 made of a thin tube group is arranged inside (upper part) of the condensation tank 4, and the refrigerant gas returns from the outlet of the air conditioning heat exchanger 2 and the inlet of the condensation tank 4. The refrigerant 6 is connected by a pipe 6, and the inlet of the heat exchanger 2 for air conditioning and the outlet of the condensation tank 4 are connected by a refrigerant liquid feed pipe 7. A cooling pipe 8 is connected to the refrigerant heat exchange unit 5 of the condenser 3, and a cooling water control valve 9 is provided in the cooling pipe 8. Since the air-conditioning heat exchanger 2 and the condenser 3 have different heights, the refrigerant gas return pipe 6 and the refrigerant liquid feed pipe 7 have long portions in the vertical direction (gravity direction).

上記のとおり、空調用熱交換器2は多数枚の放射パネル1で構成されており、図2に示すように、放射パネル1は縦横に整列して配置されている。各放射パネル1は、平面視長方形の基板10の上面部に冷媒パイプ11をジグザグ状に蛇行させて配置した(或いは一体化した)構造であり、複数枚の放射パネル1をその長手方向に直列配置することで1つのパネルユニット12を構成し、パネルユニット12において隣り合った放射パネル1の冷媒パイプ11を継手(図示せず)で接続している。また、多数のパネルユニット12が並列配置されている。   As described above, the heat exchanger 2 for air conditioning is composed of a large number of radiating panels 1, and as shown in FIG. 2, the radiating panels 1 are arranged vertically and horizontally. Each radiating panel 1 has a structure in which refrigerant pipes 11 are arranged in a zigzag manner (or integrated) on the upper surface of a rectangular substrate 10 in plan view, and a plurality of radiating panels 1 are arranged in series in the longitudinal direction. Arrangement constitutes one panel unit 12, and the refrigerant pipes 11 of the radiating panels 1 adjacent to each other in the panel unit 12 are connected by a joint (not shown). A number of panel units 12 are arranged in parallel.

冷媒ガス戻り管路6の水平状下端部は、パネルユニット12の並び方向に長い水平姿勢の集合管6aになっており、この集合管6aに、パネルユニット12における冷媒パイプ11の出口が枝管6bを介して接続されている。   The horizontal lower end of the refrigerant gas return pipe 6 is a collecting pipe 6a having a horizontal posture that is long in the arrangement direction of the panel units 12, and the outlet of the refrigerant pipe 11 in the panel unit 12 is connected to the collecting pipe 6a. 6b is connected.

他方、冷媒液送り管路7の下端は水平状下部7aになっており、水平状下部7aからパネルユニット12の並び方向に長い分配管7bを分岐させて、分配管7bには、各パネルユニット12における冷媒パイプ11の入口が枝管7cを介して接続されている。   On the other hand, the lower end of the refrigerant liquid feed pipe 7 is a horizontal lower part 7a. A long distribution pipe 7b is branched from the horizontal lower part 7a in the direction in which the panel units 12 are arranged. 12, the inlet of the refrigerant pipe 11 is connected via the branch pipe 7c.

そして、冷媒液送り管路7の水平状下部部7aには、電磁式の膨張弁13を介在させていると共に、膨張弁13を挟んだ上流側と下流側とに水平姿勢のバイパス通路14が接続されており、バイパス通路14の中途部に電磁式のリリーフ弁15を設けている。本実施形態のリリーフ弁15は、気液とも通すタイプを使用している。冷媒液送り管路7の水平状下部7aのうち、膨張弁13の上流側でかつバイパス通路14の始端よりも下流側の部位に、圧力センサ16を設けている。   An electromagnetic expansion valve 13 is interposed in the horizontal lower portion 7 a of the refrigerant liquid feed pipe 7, and a horizontal bypass passage 14 is provided between the upstream side and the downstream side across the expansion valve 13. An electromagnetic relief valve 15 is provided in the middle of the bypass passage 14. The relief valve 15 of the present embodiment uses a type that allows gas and liquid to pass through. A pressure sensor 16 is provided in a portion of the horizontal lower portion 7 a of the refrigerant liquid feed pipe 7 on the upstream side of the expansion valve 13 and on the downstream side of the start end of the bypass passage 14.

冷房装置は、マイコンや記憶デバイス等を備えた制御装置(コントローラ)17を有しており、各弁9,13,15や圧力センサ16は、制御装置17に電気的に接続されている。また、制御装置17には、操作パネル(或いはリモコン)18も接続されている(操作パネル18に制御装置17を組み込むことも可能である。)。   The cooling device includes a control device (controller) 17 including a microcomputer, a storage device, and the like, and the valves 9, 13, 15 and the pressure sensor 16 are electrically connected to the control device 17. An operation panel (or remote controller) 18 is also connected to the control device 17 (the control device 17 can be incorporated in the operation panel 18).

(2).まとめ
冷媒(例えばフロン)が気相を呈するか液相を呈するかは温度と圧力とに関連しており、冷房装置の運転を長時間に亙って停止させると、図3(A)に示すように、温度は外気温と同じになるが圧力が運転状態よりも上昇することで、冷媒液送り管路7の内部で冷媒は液相になっており、凝縮タンク4の内部では、液相と気相とが分離し均衡している。
(2). Summary Whether the refrigerant (for example, chlorofluorocarbon) exhibits a gas phase or a liquid phase is related to temperature and pressure, and when the operation of the cooling device is stopped for a long time, FIG. As shown in A), the temperature is the same as the outside air temperature, but the pressure is higher than the operating state, so that the refrigerant is in the liquid phase inside the refrigerant liquid feed line 7 and the inside of the condensing tank 4 Then, the liquid phase and the gas phase are separated and balanced.

この状態から冷房装置の運転スイッチをONして装置を始動させると、冷却水制御弁9が開いて冷水が冷媒用熱交換ユニット5に流れ、このため凝縮タンク4の内部は温度が低下する。すると、図3(B)に示すように,凝縮タンク4にあった気相の冷媒が液化することで凝縮タンク4の液面が上昇し、すると、冷媒液送り管路7で圧力が低下するため、冷媒液送り管路7の下部(或いは下半部)で冷媒の一部がガス化する。すなわち、冷媒液送り管路7の下部では、液相と気相とが混在した気液混在状態になる。   When the operation switch of the cooling device is turned on to start the device from this state, the cooling water control valve 9 is opened and the cold water flows to the refrigerant heat exchange unit 5, so that the temperature inside the condensing tank 4 decreases. Then, as shown in FIG. 3B, the liquid level of the condensing tank 4 rises due to the liquefaction of the gas-phase refrigerant in the condensing tank 4, and then the pressure drops in the refrigerant liquid feed line 7. Therefore, a part of the refrigerant is gasified at the lower part (or lower half part) of the refrigerant liquid feed pipe 7. That is, in the lower part of the refrigerant liquid feed line 7, a gas-liquid mixed state in which the liquid phase and the gas phase are mixed is obtained.

そして、この状態で膨張弁13を開くと、冷媒液送り管路7の下部では冷媒が気液混合状態になっていて圧力が低いことから、膨張弁13を挟んだ両側において圧力差があまりない一方、膨張弁13はニードル方式であって液体の冷媒が通るにはある程度の圧力差が必要であるため、冷媒が膨張弁13を通らずに冷房されないて状態が長く続いてしまい、使用者に不快感を与えることがある。   When the expansion valve 13 is opened in this state, the refrigerant is in a gas-liquid mixed state in the lower part of the refrigerant liquid feed line 7 and the pressure is low, so there is not much pressure difference between both sides of the expansion valve 13. On the other hand, since the expansion valve 13 is a needle type and requires a certain pressure difference for the liquid refrigerant to pass, the refrigerant will not be cooled without passing through the expansion valve 13 and the state will continue for a long time. May cause discomfort.

これに対して本実施形態では、図3(B)に示すように、膨張弁13の直上流部の圧力が所定値以下であることを圧力センサ16によって検知したら、リリーフ弁15を開いて、冷媒液送り管路7の下部を膨張弁13を挟んだ上流側と下流側とを連通させる。すると、冷媒液送り管路7に発生したガスは液体の冷媒と共に各放射パネル1の冷媒パイプ11にダイレクトに流れ、放射パネル1を通過して冷媒ガス戻り管路6に流れていく。この場合、膨張弁13は全閉しておくか、ごく僅かの開度に絞っている。   In contrast, in this embodiment, as shown in FIG. 3B, when the pressure sensor 16 detects that the pressure immediately upstream of the expansion valve 13 is equal to or lower than a predetermined value, the relief valve 15 is opened, The lower part of the refrigerant liquid feed line 7 is connected to the upstream side and the downstream side with the expansion valve 13 interposed therebetween. Then, the gas generated in the refrigerant liquid feed line 7 flows directly to the refrigerant pipe 11 of each radiation panel 1 together with the liquid refrigerant, passes through the radiation panel 1 and flows to the refrigerant gas return line 6. In this case, the expansion valve 13 is fully closed or throttled to a very small opening.

放射パネル1を通過した冷媒ガスは冷媒ガス戻り管路6から凝縮器3に至り、凝縮器3で冷却されることで液化していく。このため、冷媒液送り管路7では冷媒の液化比率は時間と共に進んでいき、やがて、冷媒液送り管路7は液体冷媒のみで満たされ、これに伴って、冷媒液送り管路7の下部の圧力も上昇していく。   The refrigerant gas that has passed through the radiation panel 1 reaches the condenser 3 from the refrigerant gas return pipe 6 and is liquefied by being cooled by the condenser 3. For this reason, the liquefaction ratio of the refrigerant progresses with time in the refrigerant liquid feed line 7, and eventually the refrigerant liquid feed line 7 is filled with only the liquid refrigerant, and accordingly, the lower part of the refrigerant liquid feed line 7. The pressure of will also rise.

図3(C)では、冷媒液送り管路7の下部における圧力の変化を表示しており、始動(t0)から僅かのタイムラグをおいたt1から圧力は低下していき、下限まで低下すると上昇に転じ、やがて、P2まで上昇すると安定した定常状態になる。そして、圧力が予め設定した値P1まで低下するとリリーフ弁15を開き、圧力が設定値P1を超えるとリリーフ弁15を閉じる。   In FIG. 3 (C), the change in pressure in the lower part of the refrigerant liquid feed line 7 is displayed, and the pressure decreases from t1 after a slight time lag from the start (t0), and increases when it decreases to the lower limit. After that, when it rises to P2, it will be in a stable steady state. When the pressure drops to a preset value P1, the relief valve 15 is opened, and when the pressure exceeds the set value P1, the relief valve 15 is closed.

従って、圧力がP1以下になっているt1からt3までの範囲がリリーフ弁15の開き領域であるが、専用のバイパス通路14を使用してガスを早期に排除できるため、冷媒液送り管路7が液体冷媒で満たされて自然循環がスムースに行われる定常状態に至る時間t4を短縮できるのである。   Accordingly, the range from t1 to t3 where the pressure is equal to or less than P1 is the opening region of the relief valve 15. However, since the gas can be quickly removed using the dedicated bypass passage 14, the refrigerant liquid feed line 7 It is possible to shorten the time t4 until the steady state in which the natural circulation is smoothly performed by being filled with the liquid refrigerant.

リリーフ弁15としてON・OFF式のものを使用して、一定の開度に開いた状態に保持してもよいし、開度を調節できるものを使用し、圧力に応じて開度を調節してもよい。すなわち、圧力が低いと開度を大きくして、圧力が高いと開度が小さくなる、というように制御することも可能である。また、リリーフ弁15が開く圧力とリリーフ弁15が閉じる圧力とを異ならせることも可能である。   An ON / OFF type relief valve 15 may be used to keep it open at a certain opening, or a valve that can adjust the opening is used, and the opening is adjusted according to the pressure. May be. That is, it is possible to control such that the opening degree is increased when the pressure is low and the opening degree is decreased when the pressure is high. It is also possible to make the pressure at which the relief valve 15 opens differ from the pressure at which the relief valve 15 closes.

また、リリーフ弁15の作動は必ずしも圧力センサ16の絶対値に基づく必要はないのであり、例えば冷媒ガス戻り管路6の始端部に他の圧力センサを設けて、冷媒液送り管路7と冷媒ガス戻り管路6との圧力差が所定値よりも低い状態になったらリリーフ弁15を開き操作する、といったことも可能である。   The operation of the relief valve 15 does not necessarily need to be based on the absolute value of the pressure sensor 16. For example, another pressure sensor is provided at the start end of the refrigerant gas return pipe 6, and the refrigerant liquid feed pipe 7 and the refrigerant It is also possible to open the relief valve 15 when the pressure difference with the gas return line 6 is lower than a predetermined value.

更に、リリーフ弁15として、気体のみを通しドレントラップタイプ(気液分離通過タイプ)のバルブを使用して、バイパス通路14からガスのみを放射パネル1に逃がすことも可能である。この場合は、膨張弁13を適度に開いて液体の冷媒を放射パネル1に流すことで、始動と共に冷房もスタートさせるのが好ましい。冷媒液送り管路7の圧力が非常に低い場合、膨張弁13も全開させてガスの排出をサポートさせることは可能である。   Furthermore, as the relief valve 15, it is also possible to let only gas pass through the bypass passage 14 to the radiating panel 1 using a drain trap type (gas-liquid separation passing type) valve. In this case, it is preferable that the expansion valve 13 is appropriately opened to allow the liquid refrigerant to flow through the radiation panel 1 so that the cooling is started together with the start-up. When the pressure of the refrigerant liquid feed line 7 is very low, the expansion valve 13 can be fully opened to support gas discharge.

図1ではバイパス通路14は冷媒液送り管路7の水平状下部7aから上向きに突出している状態に表示しているが、これは図面の制約による便宜的なものであり、実際には、図2のようにバイパス通路14は水平姿勢に配置されている。このため、リリーフ弁15を閉じた後にはガスは放射パネル1に向けて吸引されて、ガスがバイパス通路14に残るようなことはない。   In FIG. 1, the bypass passage 14 is shown in a state of protruding upward from the horizontal lower portion 7 a of the refrigerant liquid feed pipe 7. 2, the bypass passage 14 is arranged in a horizontal posture. For this reason, after the relief valve 15 is closed, the gas is not sucked toward the radiation panel 1 and the gas does not remain in the bypass passage 14.

(3).変形例・その他
図4に示す変形例では、圧力センサ16は、バイパス通路14のうちリリーフ弁15よりも下流側の部位に設けている。図ではバイパス通路14は上向きに突出した状態に描いているが、実際には水平姿勢になっている。
(3). Modification / Others In the modification shown in FIG. 4, the pressure sensor 16 is provided in a portion of the bypass passage 14 on the downstream side of the relief valve 15. In the drawing, the bypass passage 14 is depicted as projecting upward, but is actually in a horizontal position.

また、図5に示す変形例では、各パネルユニット12ごとに膨張弁13とバイパス通路14とを設けている。この例では、各パネルユニット12ごとにきめ細かく制御できる利点がある。バイパス通路14及びリリーフ弁15をどの程度の密度で設けるかは、冷媒の配管系統や空調面積等を勘案して任意に設定できる。   In the modification shown in FIG. 5, an expansion valve 13 and a bypass passage 14 are provided for each panel unit 12. In this example, there is an advantage that each panel unit 12 can be finely controlled. The density of the bypass passage 14 and the relief valve 15 can be arbitrarily set in consideration of the refrigerant piping system, the air-conditioning area, and the like.

冷媒液送り管路7にガスが発生するのは始動時に多いが、1台の凝縮器3で複数の系統の空調用熱交換器2を駆動していて、そのうちの一部をOFFすることで残りの空調用熱交換器2に対する凝縮器3の能力が過剰になった場合も、残りの冷媒液送り管路7が過冷却状態になってガスが発生するおそれがあるので、この場合も、圧力センサ16からの信号に基づいてリリーフ弁15を開き作動させることでガスを排除できる。   Gas is often generated in the refrigerant liquid feed line 7 at the time of starting, but a single condenser 3 drives a plurality of air conditioning heat exchangers 2 and turns off some of them. Even if the capacity of the condenser 3 with respect to the remaining heat exchanger 2 for air conditioning becomes excessive, the remaining refrigerant liquid feed line 7 may be in a supercooled state and gas may be generated. The gas can be eliminated by opening the relief valve 15 based on the signal from the pressure sensor 16.

凝縮器としては、冷媒が通る細管に冷却水を散水する方式も採用できる。また、コストやスペース等の条件が許せば、図4に一点鎖線で示すように、バイパス通路14のうちリリーフ弁15の下流側の部位14aを上向きに設けて、ガスを冷媒ガス戻り管路6や凝縮タンク4に戻すことも可能である。   As the condenser, a system in which cooling water is sprinkled through a thin tube through which the refrigerant passes can also be adopted. If conditions such as cost and space permit, as shown by a one-dot chain line in FIG. 4, a portion 14 a on the downstream side of the relief valve 15 in the bypass passage 14 is provided upward, and the gas is supplied to the refrigerant gas return pipe 6. It is also possible to return to the condensation tank 4.

本願発明は、実際に自然循環式冷房装置に具体化できる。従って、産業上利用できる。   The present invention can actually be embodied in a natural circulation cooling device. Therefore, it can be used industrially.

1 放射パネル
2 空調用熱交換器
3 凝縮器
4 凝縮タンク
5 冷媒用熱交換ユニット
6 冷媒ガス戻り管路
7 冷媒液送り管路
10 基板
11 冷媒パイプ
12 パネルユニット
13 膨張弁
14 バイパス通路
15 リリーフ弁
16 圧力検知手段の一例としての圧力センサ
17 制御装置(コントローラ)
DESCRIPTION OF SYMBOLS 1 Radiation panel 2 Heat exchanger for air conditioning 3 Condenser 4 Condensing tank 5 Refrigerant heat exchange unit 6 Refrigerant gas return line 7 Refrigerant liquid feed line 10 Substrate 11 Refrigerant pipe 12 Panel unit 13 Expansion valve 14 Bypass path 15 Relief valve 16 Pressure sensor as an example of pressure detection means 17 Control device (controller)

Claims (7)

冷媒が通過する過程で蒸発して冷房を行う空調用熱交換器と、前記熱交換器よりも高所に配置された凝縮器とを備えており、前記熱交換器の出口と凝縮器の入口とは冷媒ガス戻り管路で接続されて、前記空調用熱交換器の入口と凝縮器の出口とは冷媒液送り管路とで接続されており、前記液化冷媒送り管路のうち空調用熱交換器の近くの部位に膨張弁を設けている構成であって、
前記冷媒液送り管路の下端部でかつ前記膨張弁の上流側の部位に、前記冷媒液送り管路に発生したガスを膨張弁13の下流側に逃がすバイパス通路を接続し、前記バイパス通路に、前記膨張弁の上流側の近傍部の圧力が予め設定した圧力以下に低下すると開くリリーフ弁を設けている、
自然循環式冷房装置。
A heat exchanger for air conditioning that evaporates and cools in the process of passing the refrigerant, and a condenser that is disposed at a higher position than the heat exchanger, and an outlet of the heat exchanger and an inlet of the condenser Is connected by a refrigerant gas return line, and the inlet of the air conditioner heat exchanger and the outlet of the condenser are connected by a refrigerant liquid feed line, and the heat for air conditioning in the liquefied refrigerant feed line is connected. It is the structure which has provided the expansion valve in the site near the exchanger,
A bypass passage for letting the gas generated in the refrigerant liquid feed pipe escape to the downstream side of the expansion valve 13 is connected to a lower end portion of the refrigerant liquid feed pipe and an upstream side of the expansion valve. A relief valve that opens when the pressure in the vicinity of the upstream side of the expansion valve drops below a preset pressure is provided,
Natural circulation cooling system.
前記バイパス通路は、前記冷媒液送り管路の下端部のうち前記膨張弁を挟んだ両側に接続されている、
請求項1に記載した自然循環式冷房装置。
The bypass passage is connected to both sides sandwiching the expansion valve in the lower end portion of the refrigerant liquid feed line,
The natural circulation type cooling device according to claim 1.
前記冷媒液送り管路の下部のうち前記膨張弁よりも上流側でかつ前記膨張弁に近い部位か、又は、前記バイパス通路のうちリリーフ弁よりも上流側に圧力検知手段を設けており、前記圧力検知手段に基づいて前記リリーフ弁の開閉が制御される、
請求項1又は2に記載した自然循環式冷房装置。
In the lower part of the refrigerant liquid feed line, a pressure detection means is provided on the upstream side of the expansion valve and close to the expansion valve, or on the upstream side of the relief valve in the bypass passage, Opening and closing of the relief valve is controlled based on pressure detection means,
The natural circulation type cooling device according to claim 1 or 2.
前記バイパス通路は略水平状の姿勢に配置されている、
請求項1〜4のうちのいずれかに記載した自然循環式冷房装置。
The bypass passage is disposed in a substantially horizontal posture;
The natural circulation type cooling device according to any one of claims 1 to 4.
前記リリーフ弁は、気体は通すが液体は全く又は殆ど通さないドレントラップタイプである、
請求項1〜4のうちのいずれかに記載した自然循環式冷房装置。
The relief valve is of a drain trap type that allows gas to pass but does not allow or hardly pass liquid.
The natural circulation type cooling device according to any one of claims 1 to 4.
前記リリーフ弁は気液ともに通すタイプであり、前記リリーフ弁が開いている状態では前記膨張弁は全閉されているか又は通常運転状態よりも絞られている、
請求項1〜4のうちのいずれかに記載した自然循環式冷房装置。
The relief valve is of a type that allows gas and liquid to pass through, and when the relief valve is open, the expansion valve is fully closed or throttled more than in a normal operation state.
The natural circulation type cooling device according to any one of claims 1 to 4.
前記空調用熱交換器は、伝熱性基板に冷媒流路を設けた放射冷却パネルより成っている、
請求項1〜6のうちのいずれかに記載した自然循環式冷房装置。
The heat exchanger for air conditioning consists of a radiant cooling panel in which a refrigerant channel is provided on a heat conductive substrate,
The natural circulation type cooling device according to any one of claims 1 to 6.
JP2014091296A 2014-04-25 2014-04-25 Natural circulation cooling system Active JP6342207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014091296A JP6342207B2 (en) 2014-04-25 2014-04-25 Natural circulation cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091296A JP6342207B2 (en) 2014-04-25 2014-04-25 Natural circulation cooling system

Publications (2)

Publication Number Publication Date
JP2015210011A true JP2015210011A (en) 2015-11-24
JP6342207B2 JP6342207B2 (en) 2018-06-13

Family

ID=54612337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091296A Active JP6342207B2 (en) 2014-04-25 2014-04-25 Natural circulation cooling system

Country Status (1)

Country Link
JP (1) JP6342207B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151353A (en) * 1993-11-30 1995-06-13 Shinko Kogyo Co Ltd Preventive method for stopping circulation of refrigerant in natural refrigerant-circulation air-conditioning system
JPH09273876A (en) * 1996-04-08 1997-10-21 Mitsubishi Denki Bill Techno Service Kk Cooler with natural circulation loop
JPH11148680A (en) * 1997-11-19 1999-06-02 Sanyo Electric Co Ltd Air conditioner
JP2000046423A (en) * 1998-07-31 2000-02-18 Mitsubishi Electric Building Techno Service Co Ltd Natural circulation cooling apparatus
JP2000292025A (en) * 1999-04-06 2000-10-20 Shinko Kogyo Co Ltd Air conditioning system and method for removing standing gas
CN101520219A (en) * 2009-04-03 2009-09-02 清华大学 All-year cold supply chiller with natural cooling function
JP2011112249A (en) * 2009-11-25 2011-06-09 Sasakura Engineering Co Ltd Cooling device and air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151353A (en) * 1993-11-30 1995-06-13 Shinko Kogyo Co Ltd Preventive method for stopping circulation of refrigerant in natural refrigerant-circulation air-conditioning system
JPH09273876A (en) * 1996-04-08 1997-10-21 Mitsubishi Denki Bill Techno Service Kk Cooler with natural circulation loop
JPH11148680A (en) * 1997-11-19 1999-06-02 Sanyo Electric Co Ltd Air conditioner
JP2000046423A (en) * 1998-07-31 2000-02-18 Mitsubishi Electric Building Techno Service Co Ltd Natural circulation cooling apparatus
JP2000292025A (en) * 1999-04-06 2000-10-20 Shinko Kogyo Co Ltd Air conditioning system and method for removing standing gas
CN101520219A (en) * 2009-04-03 2009-09-02 清华大学 All-year cold supply chiller with natural cooling function
JP2011112249A (en) * 2009-11-25 2011-06-09 Sasakura Engineering Co Ltd Cooling device and air conditioning system

Also Published As

Publication number Publication date
JP6342207B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6091399B2 (en) Air conditioner
US20150159920A1 (en) Dehumidifier
JP5472391B2 (en) Container refrigeration equipment
KR20150000449A (en) Feed water heating system
JP5632629B2 (en) Air conditioner
JP5514787B2 (en) Environmental test equipment
JP2010190553A (en) Cooling system for electronic apparatus
TWI558962B (en) Constant temperature liquid circulation device and its operation method
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
JP6403907B2 (en) Refrigeration cycle equipment
JP5983451B2 (en) Heating system
WO2017183588A1 (en) Vehicle air-conditioning device and vehicle provided with same
KR102184235B1 (en) Liquid thermostat and temperature control system
JP2020022954A (en) Test chamber and air adjustment method
MX2013015043A (en) Apparatus for gasifying low-temperature liquefied gas and method for gasifying low-temperature liquefied gas.
WO2012096078A1 (en) Cooling system and method for operating same
JP5202073B2 (en) Refrigeration air conditioner
WO2015118580A1 (en) Heat pump hot water supply device
US11175172B2 (en) Liquid level detection device, accumulator, and air-conditioning apparatus
JP5834625B2 (en) Heat pump water heater
JP2014029246A (en) Container refrigerating apparatus
JP5404231B2 (en) Air conditioner
JP6342207B2 (en) Natural circulation cooling system
JP6213781B2 (en) External controller control method
JP4947558B2 (en) Rack cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250