JP2015206933A - Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same - Google Patents

Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same Download PDF

Info

Publication number
JP2015206933A
JP2015206933A JP2014088165A JP2014088165A JP2015206933A JP 2015206933 A JP2015206933 A JP 2015206933A JP 2014088165 A JP2014088165 A JP 2014088165A JP 2014088165 A JP2014088165 A JP 2014088165A JP 2015206933 A JP2015206933 A JP 2015206933A
Authority
JP
Japan
Prior art keywords
optical waveguide
resin composition
photosensitive resin
photosensitizer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014088165A
Other languages
Japanese (ja)
Inventor
直哉 杉本
Naoya Sugimoto
直哉 杉本
智之 平山
Tomoyuki Hirayama
智之 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014088165A priority Critical patent/JP2015206933A/en
Priority to TW104111286A priority patent/TW201610565A/en
Priority to PCT/JP2015/060919 priority patent/WO2015163144A1/en
Publication of JP2015206933A publication Critical patent/JP2015206933A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid photosensitive resin composition for forming an optical waveguide core, which has both of a high absorptivity to light at a wavelength of 300 to 500 nm used for exposure of the photosensitive resin and a low absorptivity to light at a wavelength near 850 nm used for optical signals, and an optical waveguide, a flexible printed wiring board and a touch sensor using the above resin composition.SOLUTION: An optical waveguide is formed by using the following photosensitive resin composition as a material for forming an optical waveguide core. The composition comprises a cationic polymerizable compound, a photoacid generator, and a photosensitizer, in which the photosensitizer is a compound showing a change rate ΔG of Gibbs free energy of -41.86 kJ/mol or less and having a light absorption wavelength in a wavelength range from 300 to 500 nm.

Description

本発明は、光通信,光情報処理,その他一般光学等で広く用いられる光信号伝送用フレキシブルプリント配線板における光導波路のコアを構成する液状感光性樹脂組成物、およびそれを用いて形成した光導波路と、この光導波路を備えるフレキシブルプリント配線板ならびにタッチセンサに関するものである。   The present invention relates to a liquid photosensitive resin composition constituting a core of an optical waveguide in a flexible printed wiring board for optical signal transmission widely used in optical communication, optical information processing, and other general optics, and light formed using the same. The present invention relates to a waveguide, a flexible printed wiring board including the optical waveguide, and a touch sensor.

光信号伝送用のフレキシブルプリント配線板や光学式タッチセンサ等に使用されるフィルム状の光導波路(ポリマー光導波路)のコアの形成材料には、液状の感光性樹脂組成物(光硬化性樹脂組成物)が用いられる。そして、それを用いたコアの形成は、樹脂組成物に溶剤を加えた液状樹脂組成物(ワニス)を塗布し、所望のパターン形状の開口を有するフォトマスクを介して、紫外線(UV)等の活性光線を照射して照射部位を硬化させ、その後、未硬化の不要部分を除去する「フォトリソグラフィ」が用いられている。   A liquid photosensitive resin composition (photo-curable resin composition) is used as a material for forming a core of a film-like optical waveguide (polymer optical waveguide) used for a flexible printed wiring board for optical signal transmission, an optical touch sensor, or the like. Is used. The core is formed by applying a liquid resin composition (varnish) obtained by adding a solvent to the resin composition, and using ultraviolet light (UV) or the like through a photomask having an opening having a desired pattern shape. “Photolithography” is used in which actinic rays are irradiated to cure the irradiated area, and then uncured unnecessary portions are removed.

上記用途に用いられる光導波路のコアの形成材料(樹脂組成物)は、材料の硬化後の屈折率,透明性,解像パターニング性,耐熱性といった、成形後の硬化物(以下「硬化体」)の諸物性を考慮して配合を設計することが求められており、用途に応じた要求特性を満足するために、組成物を構成する種々の原料の選択や、配合バランスを検討する等の数多くの提案が行われている(特許文献1,2等を参照)。   The optical waveguide core forming material (resin composition) used in the above applications is a cured product after molding (hereinafter referred to as “cured product”) such as refractive index, transparency, resolution patterning property, and heat resistance after curing of the material. ) In consideration of various physical properties, and in order to satisfy the required characteristics according to the application, selection of various raw materials constituting the composition, examination of the blending balance, etc. Many proposals have been made (see Patent Documents 1 and 2).

なかでも、上記フレキシブルプリント配線板に用いられる光導波路のコアでは、要求される特性を考慮したうえで、硬化体を形成する材料(感光性樹脂組成物)のベースとして、エポキシ化合物等のカチオン重合性化合物が好適に選定されている。上記硬化体を形成する材料には、感光性(光硬化性)を付与する目的で、光酸発生剤(光カチオン重合開始剤)等が適宜配合され、その硬化(上記フォトリソグラフィを用いたパターニング)には、I線(波長365nmの紫外線)等の活性光線が用いられる。   In particular, in the core of the optical waveguide used for the flexible printed wiring board, cation polymerization such as an epoxy compound is used as a base of a material (photosensitive resin composition) for forming a cured body in consideration of required characteristics. A suitable compound is selected. For the purpose of imparting photosensitivity (photocurability) to the material forming the cured body, a photoacid generator (photocation polymerization initiator) or the like is appropriately blended and cured (patterning using the photolithography). ) Is an actinic ray such as I-ray (ultraviolet light having a wavelength of 365 nm).

上記のような光導波路のコアの形成に用いられる液状の感光性樹脂組成物(以下、「光導波路コア形成用液状感光性樹脂組成物」)に用いられる光酸発生剤(光カチオン重合開始剤)としては、樹脂としてカチオン重合性化合物を使用した場合、光硬化(フォトリソグラフィ)による成形形状の精度(微細性やエッジの鋭さ)や安定性等のパターニング性を考慮して、一般に、比較的広いπ共役系を持つカチオン骨格を有するスルホニウム塩系の光カチオン重合開始剤(例えば、トリフェニルスルホニウム塩系の光酸発生剤等)が用いられる。   Photoacid generator (photocation polymerization initiator) used in a liquid photosensitive resin composition (hereinafter referred to as “liquid photosensitive resin composition for forming an optical waveguide core”) used for forming the core of an optical waveguide as described above ), In the case of using a cationically polymerizable compound as a resin, in consideration of patterning properties such as accuracy (fineness and sharpness of edges) and stability of a molded shape by photocuring (photolithography), A sulfonium salt-based photocationic polymerization initiator having a cationic skeleton having a wide π-conjugated system (for example, a triphenylsulfonium salt-based photoacid generator) is used.

しかしながら、上記のようなスルホニウム塩系の光酸発生剤を、カチオン重合性化合物の光重合開始剤として利用する場合、以下のような問題があった。すなわち、上記スルホニウム塩系の光酸発生剤は、前述のような広いπ共役系骨格が、光酸発生時の光分解で生じる副生成物(π共役系拡張因子)により劣化(着色)するため、本来、短波長(紫外)帯域のみに有していた光吸収帯が、長波長(赤外)帯域にまで拡大(ブロード化)する。そのため、波長850nm付近の近赤外光をコア内の光信号等の伝送に利用する光信号伝送用光導波路においては、この光信号の一部が吸収され、光導波路内の光伝搬損失が増大してしまうという問題があった。   However, when the above-described sulfonium salt photoacid generator is used as a photopolymerization initiator of a cationic polymerizable compound, there are the following problems. That is, in the sulfonium salt photoacid generator, the wide π-conjugated skeleton as described above is deteriorated (colored) by a by-product (π-conjugated expansion factor) generated by photolysis during photoacid generation. Originally, the light absorption band which was originally included only in the short wavelength (ultraviolet) band is expanded (broadened) to the long wavelength (infrared) band. Therefore, in an optical signal transmission optical waveguide that uses near-infrared light having a wavelength of about 850 nm for transmission of an optical signal or the like in the core, a part of the optical signal is absorbed and the optical propagation loss in the optical waveguide increases. There was a problem of doing.

そこで、本発明者らは、上記コアの着色の要因となるスルホニウム塩系に代えて、ヨードニウム塩系(ジフェニルヨードニウム塩系)の光酸発生剤を、カチオン重合性化合物の光重合開始剤として使用する提案(特願2013−231730)を、既に行っている。この提案によれば、活性光線(紫外線)の照射による硬化であっても、光導波路のコアは着色せず、高い透明性(低い光伝搬損失)を有する、光信号伝送用フレキシブルプリント配線板等に適した光導波路を作製することができる。   Accordingly, the present inventors use an iodonium salt-based (diphenyliodonium salt-based) photoacid generator as a photopolymerization initiator for a cationically polymerizable compound in place of the sulfonium salt-based color causing the core. Has already been made (Japanese Patent Application No. 2013-231730). According to this proposal, a flexible printed wiring board for optical signal transmission that has high transparency (low light propagation loss) without coloring the core of the optical waveguide even when cured by irradiation with actinic rays (ultraviolet rays), etc. An optical waveguide suitable for the above can be produced.

特開2010−230944号公報JP 2010-230944 A 特開2011−237645号公報JP2011-237645A

ところで、上記提案のような、ヨードニウム塩系の光カチオン重合開始剤を含有する感光性樹脂組成物は、光重合硬化(光酸発生)の際、前記スルホニウム塩系のような着色性の副生成物(光伝搬損失の原因)は生成しないものの、この種の光重合硬化工程で主に使用される露光波長(I線:波長365nmの紫外線)に対してほとんど吸収帯を有さず、露光光に対する感度が低いという特色を有する。そのため、上記感光性樹脂組成物の充分な光硬化を得るためには、従来よりも波長範囲が広く強い紫外線を、長時間照射する必要があり、これにより、従来よりも光導波路の生産効率が低下してしまうという問題があった。   By the way, the photosensitive resin composition containing the iodonium salt-based photocationic polymerization initiator as described above has a coloring by-product as in the sulfonium salt-based upon photopolymerization curing (photoacid generation). Although an object (cause of light propagation loss) is not generated, it has almost no absorption band with respect to the exposure wavelength (I-line: ultraviolet light having a wavelength of 365 nm) mainly used in this type of photopolymerization curing process, and exposure light It has the feature that the sensitivity to is low. Therefore, in order to obtain sufficient photocuring of the photosensitive resin composition, it is necessary to irradiate ultraviolet rays having a wider wavelength range and stronger than before, and thus the production efficiency of the optical waveguide is improved compared to the conventional case. There was a problem of being lowered.

したがって、光導波路の生産という観点からは、光導波路の性能(信号光に対する低伝搬損失)と生産性(露光光に対する高感度)のバランスのとれた、既存の設備を用いて製造することのできる感光性材料の開発が望まれている。   Therefore, from the viewpoint of optical waveguide production, it can be manufactured using existing equipment that balances optical waveguide performance (low propagation loss with respect to signal light) and productivity (high sensitivity with respect to exposure light). Development of photosensitive materials is desired.

本発明は、このような事情に鑑みなされたもので、感光性樹脂の露光に用いられる波長300〜500nmの光に対する高吸収率と、光信号に用いられる波長850nm付近の光に対する低吸収率とを、兼ね備える光導波路コア形成用液状感光性樹脂組成物と、それを用いた光導波路、フレキシブルプリント配線板ならびにタッチセンサの提供をその目的とする。   The present invention has been made in view of such circumstances, and has a high absorption rate for light having a wavelength of 300 to 500 nm used for exposure of a photosensitive resin, and a low absorption rate for light having a wavelength of about 850 nm used for an optical signal. An object of the present invention is to provide a liquid photosensitive resin composition for forming an optical waveguide core that combines the above, an optical waveguide using the same, a flexible printed wiring board, and a touch sensor.

上記の目的を達成するため、本発明は、カチオン重合性化合物と、光酸発生剤と、光増感剤とを含有し、上記光増感剤が、下記式(1)で表されるギブス自由エネルギー変化ΔGが−41.86kJ/mol以下で、かつ、波長300〜500nmの範囲に光吸収波長を有する化合物である光導波路コア形成用液状感光性樹脂組成物を、第1の要旨とする。

Figure 2015206933
〔式(1)において、E(1/2)oxは光増感剤の酸化電位を、E(1/2)redは光酸発生剤の還元電位を、E(p)*は光増感剤の励起エネルギーを示す。〕 In order to achieve the above object, the present invention includes a cationically polymerizable compound, a photoacid generator, and a photosensitizer, wherein the photosensitizer is represented by the following formula (1). A liquid photosensitive resin composition for forming an optical waveguide core, which is a compound having a free energy change ΔG of −41.86 kJ / mol or less and a light absorption wavelength in a wavelength range of 300 to 500 nm, is a first gist. .
Figure 2015206933
[In Formula (1), E (1/2) ox is the oxidation potential of the photosensitizer, E (1/2) red is the reduction potential of the photoacid generator, and E (p) * is the photosensitization. The excitation energy of the agent is shown. ]

また、本発明は、光導波路のコアが、上記第1の要旨の光導波路コア形成用液状感光性樹脂組成物に波長300〜500nmの範囲内の紫外線を照射して硬化させた硬化体で形成されている光導波路を、第2の要旨とする。   In the present invention, the core of the optical waveguide is formed of a cured body obtained by irradiating the liquid photosensitive resin composition for forming an optical waveguide core according to the first aspect with ultraviolet rays in a wavelength range of 300 to 500 nm. Let the optical waveguide currently made be the 2nd summary.

そして、本発明は、上記第2の要旨の光導波路を備えるフレキシブルプリント配線板を第3の要旨とし、上記第2の要旨の光導波路を備えるタッチセンサを第4の要旨とする。   And this invention makes a flexible printed wiring board provided with the optical waveguide of the said 2nd summary a 3rd summary, and makes a touch sensor provided with the optical waveguide of the said 2nd summary a 4th summary.

本発明者らは、信号伝搬光の低損失化と、フォトリソグラフィを用いたパターン露光時の高感度化とを両立する感光性樹脂組成物を得るために、鋭意検討を重ねた。その結果、特定の条件を満たし、光酸発生剤に対して光励起エネルギーを伝達し易い性質を有する光増感剤を、前記タイプの光酸発生剤(ヨードニウム塩系の光カチオン重合開始剤)と併用すると、所期の目的を達成可能なことを見出し、本発明に到達した。   The inventors of the present invention have made extensive studies in order to obtain a photosensitive resin composition that achieves both low loss of signal propagation light and high sensitivity during pattern exposure using photolithography. As a result, a photosensitizer that satisfies specific conditions and has the property of easily transmitting photoexcitation energy to the photoacid generator is referred to as a photoacid generator of the above type (iodonium salt-based photocation polymerization initiator). It has been found that the intended purpose can be achieved when used in combination, and the present invention has been achieved.

このように、本発明の光導波路コア形成用液状感光性樹脂組成物は、下記式(1)で表されるギブス自由エネルギー変化ΔGが−41.86kJ/mol以下で、かつ、波長300〜500nmの範囲に光吸収波長を有する光増感剤を、含有している。

Figure 2015206933
〔式(1)において、E(1/2)oxは光増感剤の酸化電位を、E(1/2)redは光酸発生剤の還元電位を、E(p)*は光増感剤の励起エネルギーを示す。〕 Thus, the liquid photosensitive resin composition for forming an optical waveguide core of the present invention has a Gibbs free energy change ΔG represented by the following formula (1) of −41.86 kJ / mol or less and a wavelength of 300 to 500 nm. The photosensitizer which has a light absorption wavelength in the range is contained.
Figure 2015206933
[In Formula (1), E (1/2) ox is the oxidation potential of the photosensitizer, E (1/2) red is the reduction potential of the photoacid generator, and E (p) * is the photosensitization. The excitation energy of the agent is shown. ]

そのため、上記光導波路コア形成用液状感光性樹脂組成物は、紫外線(UV)等の活性光線が照射された場合、光増感剤が上記波長300〜500nmの紫外線を吸収し、その励起エネルギーが光酸発生剤に伝達され、この光酸発生剤とその触媒作用によるカチオン重合反応が、効率良く生成される。したがって、上記光導波路コア形成用液状感光性樹脂組成物を用いて、フォトリソグラフィ等の光硬化工程により光導波路を作製する際は、上記紫外線等による露光時間が短縮されるとともに、硬化後は、透明度の高い、低光伝搬損失の硬化体(光導波路コア)を得ることができる。また、本発明の光導波路コア形成用液状感光性樹脂組成物を用いれば、その性能にロット間のぶれがなく、寸法および品質の揃った高品質な光導波路を、短い加工時間で効率良く、低コストで製造することが可能になる。   Therefore, when the liquid photosensitive resin composition for forming an optical waveguide core is irradiated with actinic rays such as ultraviolet rays (UV), the photosensitizer absorbs ultraviolet rays having a wavelength of 300 to 500 nm, and the excitation energy thereof is The photoacid generator is transmitted to the photoacid generator, and a cationic polymerization reaction by the photoacid generator and its catalytic action is efficiently generated. Therefore, when producing an optical waveguide by a photocuring process such as photolithography using the liquid photosensitive resin composition for forming an optical waveguide core, the exposure time due to the ultraviolet rays and the like is shortened, and after curing, A cured product (optical waveguide core) having high transparency and low light propagation loss can be obtained. In addition, if the liquid photosensitive resin composition for forming an optical waveguide core of the present invention is used, there is no lot-to-lot fluctuation in performance, and a high-quality optical waveguide with uniform dimensions and quality can be efficiently obtained in a short processing time, It becomes possible to manufacture at low cost.

なお、上記光導波路コア形成用液状感光性樹脂組成物に使用する光増感剤は、その光吸収スペクトルにおける極大値のうち、少なくとも1つのピークが300〜500nmの範囲内にあるものを、好適に採用することができる。これにより、通常のフォトリソグラフィ過程に用いられるI線(波長365nm)等の紫外線が、より効率良く吸収され、光硬化工程の硬化効率を、より一層高めることができる。   In addition, the photosensitizer used in the liquid photosensitive resin composition for forming an optical waveguide core is preferably a photosensitizer having at least one peak in the range of 300 to 500 nm among the maximum value in the light absorption spectrum. Can be adopted. Thereby, ultraviolet rays such as I-line (wavelength 365 nm) used in a normal photolithography process are absorbed more efficiently, and the curing efficiency of the photocuring process can be further increased.

また、上記光導波路コア形成用液状感光性樹脂組成物に波長300〜500nmの範囲内の紫外線を照射して硬化させた硬化体で形成される光導波路と、それを備えるフレキシブルプリント配線板およびタッチセンサも、光導波路に起因するトラブルが少なく、信頼性の高い装置またはシステム等を構築することができる。   Further, an optical waveguide formed of a cured body obtained by irradiating the liquid photosensitive resin composition for forming an optical waveguide core with ultraviolet rays in a wavelength range of 300 to 500 nm and cured, a flexible printed wiring board including the optical waveguide, and a touch The sensor also has few troubles caused by the optical waveguide, and can construct a highly reliable device or system.

つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限定されるものではない。   Next, embodiments of the present invention will be described in detail. However, the present invention is not limited to this embodiment.

《光導波路コア形成用液状感光性樹脂組成物》
本発明の光導波路コア形成用液状感光性樹脂組成物(以下、単に「液状樹脂組成物」という場合もある。)は、(A)カチオン重合性化合物,(B)光酸発生剤,(C)光増感剤等を含有するものであり、(C)光増感剤が、下記式(1)で表されるギブス自由エネルギー変化ΔGが−41.86kJ/mol以下で、かつ、波長300〜500nmの範囲に光吸収波長を有する化合物であることを特徴とする。

Figure 2015206933
〔式(1)において、E(1/2)oxは光増感剤の酸化電位を、E(1/2)redは光酸発生剤の還元電位を、E(p)*は光増感剤の励起エネルギーを示す。〕
以下、各種成分について順に説明する。 << Liquid photosensitive resin composition for optical waveguide core formation >>
The liquid photosensitive resin composition for forming an optical waveguide core of the present invention (hereinafter sometimes simply referred to as “liquid resin composition”) includes (A) a cationic polymerizable compound, (B) a photoacid generator, (C ) Containing a photosensitizer and the like. (C) The photosensitizer has a Gibbs free energy change ΔG represented by the following formula (1) of −41.86 kJ / mol or less and a wavelength of 300 It is a compound having a light absorption wavelength in a range of ˜500 nm.
Figure 2015206933
[In Formula (1), E (1/2) ox is the oxidation potential of the photosensitizer, E (1/2) red is the reduction potential of the photoacid generator, and E (p) * is the photosensitization. The excitation energy of the agent is shown. ]
Hereinafter, various components will be described in order.

<カチオン重合性化合物>
上記カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、エピスルフィド化合物およびビニルエーテル化合物等があげられる。
エポキシ化合物としては、例えば、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物等の多官能脂肪族エポキシ樹脂、3’,4’−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート等の脂肪族エポキシ樹脂があげられる。さらには、バインダー樹脂としての作用を奏する樹脂として、例えば、芳香環を有さない、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、等があげられる。これらは単独でもしくは2種以上併せて用いられる。
<Cationically polymerizable compound>
Examples of the cationic polymerizable compound include an epoxy compound, an oxetane compound, an episulfide compound, a vinyl ether compound, and the like.
Examples of the epoxy compound include polyfunctional aliphatic epoxy resins such as 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol. Examples thereof include aliphatic epoxy resins such as' -epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. Furthermore, examples of the resin that acts as a binder resin include hydrogenated bisphenol A type epoxy resins and hydrogenated bisphenol F type epoxy resins that do not have an aromatic ring. These may be used alone or in combination of two or more.

具体的には、EHPE3150、EHPE3150CE(いずれもダイセル社製)、YX−8040、YX−8000、YX−8034(いずれも三菱化学社製)、ST−4000D(新日鐵化学社製)、セロキサイド2021P(ダイセル社製)等があげられる。なお、本発明においては、脂肪族エポキシ樹脂としては、脂環式エポキシ樹脂を含める趣旨である。そして、上記脂肪族系樹脂としては、固形を示すものであることが好ましく、この場合の固形とは、常温(25℃)の温度下において固体状態を呈することを意味する。   Specifically, EHPE3150, EHPE3150CE (all manufactured by Daicel Corporation), YX-8040, YX-8000, YX-8034 (all manufactured by Mitsubishi Chemical Corporation), ST-4000D (manufactured by Nippon Steel Chemical Co., Ltd.), Celoxide 2021P (Manufactured by Daicel Corporation). In the present invention, the aliphatic epoxy resin includes an alicyclic epoxy resin. And as said aliphatic resin, it is preferable to show solid, The solid in this case means exhibiting a solid state under normal temperature (25 degreeC) temperature.

つぎに、オキセタン化合物としては、具体的には、OXT−101(3−エチル−3−ヒドロキシメチルオキセタン(オキセタンアルコール)、OXT−212(2−エチルヘキシルオキセタン)、OXT−121(キシリレンビスオキセタン)、OXT−221(3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン)(いずれも東亞合成社製)、ETERNACOLL OXBP、EHO、OXTP、OXMA(いずれも宇部興産社製)等があげられる。なお、前記エポキシ化合物と上記オキセタン化合物とを混合して用いてもよい。   Next, as the oxetane compound, specifically, OXT-101 (3-ethyl-3-hydroxymethyloxetane (oxetane alcohol), OXT-212 (2-ethylhexyloxetane), OXT-121 (xylylenebisoxetane) , OXT-221 (3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane) (all manufactured by Toagosei Co., Ltd.), ETERNACOLL OXBP, EHO, OXTP, OXMA (all Ube Industries In addition, you may mix and use the said epoxy compound and the said oxetane compound.

また、カチオン重合性化合物として、エピスルフィド化合物を用いることもできる。エピスルフィド化合物としては、SR100H(日本合成化学工業社製)等があげられる。   Moreover, an episulfide compound can also be used as a cationically polymerizable compound. Examples of the episulfide compound include SR100H (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).

またさらに、カチオン重合性化合物として、ビニルエーテル化合物を用いることも可能である。ビニルエーテル化合物としては、エチルビニルエーテル、イソブチルビニルエーテル、ヒドロキシブチルビニルエーテル、ブタンジオールジビニルエーテル、シクロヘキシルビニルエーテル、N−ブチルビニルエーテル、tert.−ブチルビニルエーテル、トリエチレングリコールジビニルエーテルオクタデシルビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル(いずれもBASFジャパン社製)等があげられる。   Furthermore, a vinyl ether compound can be used as the cationic polymerizable compound. Examples of vinyl ether compounds include ethyl vinyl ether, isobutyl vinyl ether, hydroxybutyl vinyl ether, butanediol divinyl ether, cyclohexyl vinyl ether, N-butyl vinyl ether, tert.-butyl vinyl ether, triethylene glycol divinyl ether octadecyl vinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether. Examples include vinyl ether and cyclohexanedimethanol monovinyl ether (both manufactured by BASF Japan Ltd.).

<光酸発生剤>(光カチオン重合開始剤)
上記光酸発生剤は、感光性樹脂組成物に対して光照射(例えば、紫外線照射)による硬化性を付与するために用いられるものである。光酸発生剤としては、スルホニウム塩系,ヨードニウム塩系等のオニウム塩系光酸発生剤(光カチオン重合開始剤)を用いることができ、なかでも、先に述べたような「副生成物によるコアの着色」の観点から、ヨードニウム塩系の光カチオン重合開始剤が、好適に使用される。
<Photo acid generator> (photo cationic polymerization initiator)
The photoacid generator is used for imparting curability to the photosensitive resin composition by light irradiation (for example, ultraviolet irradiation). As the photoacid generator, sulfonium salt-based and iodonium salt-based onium salt-based photoacid generators (photocation polymerization initiators) can be used. From the viewpoint of “coloring of the core”, an iodonium salt-based photocationic polymerization initiator is preferably used.

具体的には、WPI−116、WPI−113、WPI−169、WPI−170、WPI−116(いずれも和光純薬工業社製)や、IRGACURE205(BASFジャパン社製)等のジフェニルヨードニウム塩系光カチオン重合開始剤が、あげられる。   Specifically, diphenyliodonium salt light such as WPI-116, WPI-113, WPI-169, WPI-170, WPI-116 (all manufactured by Wako Pure Chemical Industries, Ltd.) and IRGACURE205 (BASF Japan). Examples thereof include cationic polymerization initiators.

上記光酸発生剤の含有量は、ワニス(液状樹脂組成物)の固形分100重量部に対して0.1〜3重量部に設定することが好ましく、より好ましくは0.5〜1重量部である。光酸発生剤(光重合開始剤)の含有量が少なすぎると、満足のいく光照射(紫外線照射)による光硬化性が得られにくく、多すぎると、光感度が上がり、コアのパターニングに際して、形状異常をきたす傾向がみられ、初期損失等の要求物性が悪化する傾向もみられる。   The content of the photoacid generator is preferably set to 0.1 to 3 parts by weight, more preferably 0.5 to 1 part by weight with respect to 100 parts by weight of the solid content of the varnish (liquid resin composition). It is. If the content of the photoacid generator (photopolymerization initiator) is too small, it is difficult to obtain photocurability by satisfactory light irradiation (ultraviolet irradiation), and if it is too large, the photosensitivity increases, and when patterning the core, There is a tendency to cause shape abnormalities, and there is also a tendency to deteriorate required physical properties such as initial loss.

<光増感剤>
上記光増感剤は、感光性樹脂組成物に対して、紫外線照射による光硬化反応の感度を増大させるものである。この光増感剤は、先にも述べたように、下記式(1)で表されるギブス自由エネルギー変化ΔGが−41.86kJ/mol以下で、かつ、波長300〜500nmの範囲に光吸収波長を有する化合物である。なお、上記光増感剤のギブス自由エネルギー変化ΔGは、好ましくは−41.86kJ/mol以下、より好ましくは−60kJ/mol以下、さらに好ましくは−80kJ/mol以下で、その光増感剤の光吸収スペクトルにおける極大値のうち、少なくとも1つのピークを300〜500nmの範囲内に有する化合物であることが望ましい。

Figure 2015206933
〔式(1)において、E(1/2)oxは光増感剤の酸化電位を、E(1/2)redは光酸発生剤の還元電位を、E(p)*は光増感剤の励起エネルギーを示す。〕 <Photosensitizer>
The said photosensitizer increases the sensitivity of the photocuring reaction by ultraviolet irradiation with respect to the photosensitive resin composition. As described above, this photosensitizer has a Gibbs free energy change ΔG represented by the following formula (1) of −41.86 kJ / mol or less and absorbs light in a wavelength range of 300 to 500 nm. A compound having a wavelength. The Gibbs free energy change ΔG of the photosensitizer is preferably −41.86 kJ / mol or less, more preferably −60 kJ / mol or less, and even more preferably −80 kJ / mol or less. It is desirable that the compound has at least one peak in the range of 300 to 500 nm among the maximum values in the light absorption spectrum.
Figure 2015206933
[In Formula (1), E (1/2) ox is the oxidation potential of the photosensitizer, E (1/2) red is the reduction potential of the photoacid generator, and E (p) * is the photosensitization. The excitation energy of the agent is shown. ]

上記式(1)は、Rehm−Weller方程式として知られており、光酸発生剤と組み合わせた際の「ギブス自由エネルギー変化ΔG」が−41.86kJ/mol以下の場合に、これらの組み合わせの系が光増感反応に敏感(高感度)で、光硬化に好適な系になるとされている。〔参考文献:Zaza Gomurashvili and James V. Crivello, Journal of Polymer Science Part A: Polymer Chemistry, Volume 39, Issue 8, pages 1187-1197, 15 April (2001), 「Phenothiazine photosensitizers for onium salt photoinitiated cationic polymerization」〕   The above formula (1) is known as the Rehm-Weller equation, and when the “Gibbs free energy change ΔG” when combined with a photoacid generator is −41.86 kJ / mol or less, a system of these combinations Is sensitive to photosensitization reaction (high sensitivity) and is considered to be a system suitable for photocuring. (Reference: Zaza Gomurashvili and James V. Crivello, Journal of Polymer Science Part A: Polymer Chemistry, Volume 39, Issue 8, pages 1187-1197, 15 April (2001), “Phenothiazine photosensitizers for onium salt photoinitiated cyclic polymerization”)

上記本発明の感光性樹脂組成物に使用する光増感剤としては、例えば、ジフェニルヨードニウム塩系光カチオン重合開始剤(WPI−116等)と組み合わせる場合、チオキサトン(ΔG=約−93.7kJ/mol、光吸収波長の極大=380nm)、アントラセン(ΔG=約−193.8kJ/mol、光吸収波長の極大=241nm,357nm,376nm)、フェノチアジン(ΔG=約−162.0kJ/mol、光吸収波長の極大=250nm,318nm)およびペリレン(ΔG=約−170.7kJ/mol、光吸収波長の極大=436nm,460nm)等を用いることができる。ちなみに、光増感剤として一般的に使用される、アセトフェノン(ΔG=約−8.8kJ/mol、光吸収波長の極大=246nm)やベンゾフェノン(ΔG=約−10.0kJ/mol、光吸収波長の極大=360nm)等は、上記ジフェニルヨードニウム塩系光カチオン重合開始剤との組み合わせに適さない。   As a photosensitizer used for the photosensitive resin composition of the present invention, for example, when combined with a diphenyliodonium salt photocationic polymerization initiator (WPI-116 or the like), thioxaton (ΔG = about −93.7 kJ / mol, maximum of light absorption wavelength = 380 nm), anthracene (ΔG = about −193.8 kJ / mol, maximum of light absorption wavelength = 241 nm, 357 nm, 376 nm), phenothiazine (ΔG = about −162.0 kJ / mol, light absorption) Wavelength maxima = 250 nm, 318 nm) and perylene (ΔG = about −170.7 kJ / mol, optical absorption wavelength maxima = 436 nm, 460 nm) and the like can be used. Incidentally, acetophenone (ΔG = about −8.8 kJ / mol, maximum of light absorption wavelength = 246 nm) and benzophenone (ΔG = about −10.0 kJ / mol, light absorption wavelength) commonly used as a photosensitizer. Is not suitable for combination with the diphenyliodonium salt-based photocationic polymerization initiator.

上記好適な光増感剤の含有量は、ワニス(液状樹脂組成物)の固形分100重量部に対して0.01〜3.0重量部に設定することが好ましく、より好ましくは0.05〜1.0重量部である。なお、光増感剤の含有量が少なすぎると、満足のいく光照射(紫外線照射)による光硬化性が得られにくく、多すぎると、コアのパターニングに際して形状異常をきたす傾向がみられ、光伝搬損失等の要求物性が悪化する傾向もみられる。   The content of the suitable photosensitizer is preferably set to 0.01 to 3.0 parts by weight, more preferably 0.05 to 100 parts by weight of the solid content of the varnish (liquid resin composition). -1.0 part by weight. If the content of the photosensitizer is too small, satisfactory photo-curing property by light irradiation (ultraviolet irradiation) is difficult to obtain, and if it is too large, there is a tendency to cause abnormal shape during patterning of the core. There is also a tendency for required physical properties such as propagation loss to deteriorate.

<溶剤>
本発明の液状樹脂組成物(ワニス)に用いられる溶剤としては、例えば、エチレングリコールモノメチルエーテル等のグリコールエーテル類、メチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート類、ジエチレングリコールモノメチルエーテル等のジエチレングリコール類、プロピレングリコールメチルエーテルアセテート等のプロピレングリコールアルキルエーテルアセテート類、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルイミダゾリジノン等のアミド類、トルエン等の芳香族炭化水素類、シクロヘキサノン、シクロペンタノン等のケトン類、ガンマブチロラクトン等のラクトン類、2−ヒドロキシプロピオン酸、乳酸エチル等があげられる。これらは単独でもしくは2種以上併せて用いられる。
<Solvent>
Examples of the solvent used in the liquid resin composition (varnish) of the present invention include glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol alkyl ether acetates such as methyl cellosolve acetate, diethylene glycols such as diethylene glycol monomethyl ether, and propylene. Propylene glycol alkyl ether acetates such as glycol methyl ether acetate, amides such as dimethylformamide, dimethylacetamide, dimethylimidazolidinone, aromatic hydrocarbons such as toluene, ketones such as cyclohexanone and cyclopentanone, gamma butyrolactone, etc. Lactones, 2-hydroxypropionic acid, ethyl lactate and the like. These may be used alone or in combination of two or more.

上記溶剤の含有量は、ワニス(液状樹脂組成物)の固形分100重量部に対して10〜90重量部に設定することが好ましく、より好ましくは30〜80重量部である。なお、溶剤はワニスの粘度調整用であるため、ワニス調製後に、追加で添加される場合もある。   The content of the solvent is preferably set to 10 to 90 parts by weight, and more preferably 30 to 80 parts by weight with respect to 100 parts by weight of the solid content of the varnish (liquid resin composition). Since the solvent is used for adjusting the viscosity of the varnish, it may be added additionally after the varnish is prepared.

<液状感光性樹脂組成物>
本発明の光導波路コア形成用液状感光性樹脂組成物は、前記感光性樹脂組成物の各成分(A)カチオン重合性化合物,(B)光酸発生剤,(C)光増感剤と上記溶剤、さらには必要に応じて、他の添加剤を所定の配合割合にして撹拌・混合することにより、本発明の光導波路のコア形成用材料となる「感光性のワニス」を、調製することができる。また、上記感光性樹脂組成物を塗工用ワニスとして調製するために、加熱(例えば、60〜90℃程度)しながら、溶剤に撹拌溶解させてもよい。上記溶剤(有機溶剤)の使用量は、適宜調整されるものであるが、例えば、感光性樹脂組成物の樹脂成分(光重合性樹脂)100重量部に対して20〜80重量部に設定することが好ましく、特に好ましくは30〜50重量部である。すなわち、溶剤の使用量が少なすぎると、塗工用ワニスとして調製した際に高粘度となり、塗工性が低下する傾向がみられ、溶剤の使用量が多すぎると、塗工用ワニスを用いて厚膜に塗工形成することが困難となる傾向が、みられる。
<Liquid photosensitive resin composition>
The liquid photosensitive resin composition for forming an optical waveguide core of the present invention comprises the components (A) a cationic polymerizable compound, (B) a photoacid generator, (C) a photosensitizer and the above components of the photosensitive resin composition. Preparing a “photosensitive varnish” that is a material for forming the core of the optical waveguide of the present invention by stirring and mixing a solvent and, if necessary, other additives in a predetermined mixing ratio. Can do. Moreover, in order to prepare the said photosensitive resin composition as a varnish for coating, you may stir and dissolve in a solvent, heating (for example, about 60-90 degreeC). Although the usage-amount of the said solvent (organic solvent) is adjusted suitably, it sets to 20-80 weight part with respect to 100 weight part of resin components (photopolymerizable resin) of the photosensitive resin composition, for example. It is preferably 30 to 50 parts by weight. That is, if the amount of solvent used is too small, the viscosity becomes high when prepared as a coating varnish, and the coating property tends to decrease. If the amount of solvent used is too large, the coating varnish is used. Therefore, it tends to be difficult to form a thick film.

《光導波路》
つぎに、本発明の液状感光性樹脂組成物をコアの形成材料として用いてなる光導波路について説明する。
<Optical waveguide>
Next, an optical waveguide using the liquid photosensitive resin composition of the present invention as a core forming material will be described.

本発明により得られる光導波路は、例えば、基材と、その基材上に、所定パターンで形成されたクラッド層(アンダークラッド層)と、上記クラッド層上に、光信号を伝搬する光路として所定パターンで形成されたコアと、さらに、上記コア(層)上に形成されたクラッド層(オーバークラッド層)とからなる。そして、本発明により得られる光導波路では、上記コアが、前述の液状感光性樹脂組成物によって形成されていることが特徴である。   The optical waveguide obtained by the present invention is, for example, a base material, a clad layer (under clad layer) formed in a predetermined pattern on the base material, and a predetermined optical path for transmitting an optical signal on the clad layer. It consists of a core formed by a pattern and a clad layer (over clad layer) formed on the core (layer). And the optical waveguide obtained by this invention is characterized by the said core being formed with the above-mentioned liquid photosensitive resin composition.

また、上記アンダークラッド層形成材料およびオーバークラッド層形成材料に関しては、同じ成分組成からなるクラッド層形成用液状樹脂組成物を用いてもよいし、異なる成分組成の液状樹脂組成物を用いてもよい。なお、本発明により得られる光導波路において、上記クラッド層は、コアよりも屈折率が小さくなるよう形成する必要がある。   Moreover, regarding the under clad layer forming material and the over clad layer forming material, a liquid resin composition for forming a clad layer having the same component composition may be used, or a liquid resin composition having a different component composition may be used. . In the optical waveguide obtained by the present invention, the cladding layer needs to be formed so that the refractive index is smaller than that of the core.

本発明において、光導波路は、例えば、つぎのような工程を経由することにより製造することができる。すなわち、基材を準備し、その基材上に、クラッド層形成用材料である液状感光性樹脂組成物からなる感光性ワニスW2を塗工する。このワニスW2の塗工面に対して紫外線等の光照射を行い、さらに必要に応じて加熱処理を行うことにより感光性ワニスW2を硬化させる。このようにしてアンダークラッド層(クラッド層の下方部分)を形成する。   In the present invention, the optical waveguide can be manufactured through the following processes, for example. That is, a base material is prepared, and a photosensitive varnish W2 made of a liquid photosensitive resin composition, which is a cladding layer forming material, is applied onto the base material. The photosensitive varnish W2 is cured by irradiating the coated surface of the varnish W2 with light such as ultraviolet rays and further performing heat treatment as necessary. In this manner, an under cladding layer (a lower portion of the cladding layer) is formed.

ついで、上記アンダークラッド層上に、本発明の液状感光性樹脂組成物からなるコア形成用材料(感光性ワニスW1)を塗工することにより、コア形成用の未硬化の樹脂層を形成する。このとき、上記コア形成用材料(感光性ワニスW1)を塗工した後、有機溶剤(溶媒)を加熱乾燥して除去することにより、未硬化の光導波路コア形成用樹脂層(液状)を、膜状(フィルム状)に形成できる。そして、このコア形成用未硬化層面上に、所定パターン(コアパターン)を露光させるためのフォトマスクを配設し、このフォトマスクを介して紫外線等の光照射を行い、さらに必要に応じて加熱処理を行う。その後、上記コア形成用未硬化層の未露光部分を、現像液を用いて溶解除去することにより、所定パターンのコアが形成される。   Next, an uncured resin layer for core formation is formed by applying a core forming material (photosensitive varnish W1) made of the liquid photosensitive resin composition of the present invention on the undercladding layer. At this time, after coating the core forming material (photosensitive varnish W1), the organic solvent (solvent) is dried by heating to remove an uncured optical waveguide core forming resin layer (liquid). It can be formed into a film (film). Then, a photomask for exposing a predetermined pattern (core pattern) is disposed on the surface of the core-forming uncured layer, irradiated with light such as ultraviolet rays through the photomask, and further heated as necessary. Process. Then, the core of a predetermined pattern is formed by dissolving and removing the unexposed part of the uncured core forming layer using a developer.

つぎに、上記コア(層)上に、上述のクラッド層形成材料である液状感光性樹脂組成物からなる感光性ワニスW2を、再び塗工した後、紫外線照射等の光照射を行い、さらに必要に応じて加熱処理を行うことにより、オーバークラッド層(クラッド層の上方部分)を形成する。このような工程を経由することにより、目的とする光導波路を製造することができる。   Next, the photosensitive varnish W2 made of the liquid photosensitive resin composition, which is the above-described cladding layer forming material, is applied again on the core (layer), and then irradiated with light such as ultraviolet irradiation, and further required. By performing heat treatment according to the above, an over clad layer (upper part of the clad layer) is formed. By going through such a process, the target optical waveguide can be manufactured.

上記光導波路の作製に用いる基材としては、例えば、シリコンウェハ、金属製基板、高分子フィルム、ガラス基板等があげられる。そして、上記金属製基板としては、SUS等のステンレス板等があげられる。また、上記高分子フィルムとしては、具体的には、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム等があげられる。そして、その厚みは、通常、10μm〜3mmの範囲内に設定される。   Examples of the base material used for the production of the optical waveguide include a silicon wafer, a metal substrate, a polymer film, and a glass substrate. Examples of the metal substrate include stainless steel plates such as SUS. Specific examples of the polymer film include a polyethylene terephthalate (PET) film, a polyethylene naphthalate film, and a polyimide film. And the thickness is normally set in the range of 10 micrometers-3 mm.

また、上記光照射では、具体的には、波長300〜500nmの範囲内の紫外線照射が行われる。上記紫外線照射での紫外線の光源としては、例えば、低圧水銀灯,高圧水銀灯,超高圧水銀灯,紫外LED光源,エキシマレーザ等があげられる。また、紫外線の照射量は、通常、10〜20000mJ/cm2、好ましくは100〜15000mJ/cm2、より好ましくは500〜10000mJ/cm2程度である。 In the light irradiation, specifically, ultraviolet irradiation within a wavelength range of 300 to 500 nm is performed. Examples of the ultraviolet light source in the ultraviolet irradiation include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an ultraviolet LED light source, and an excimer laser. The irradiation amount of ultraviolet rays is usually, 10~20000mJ / cm 2, preferably 100~15000mJ / cm 2, more preferably 500~10000mJ / cm 2 approximately.

上記紫外線照射による露光後、光反応による硬化を完結させるために、さらに加熱処理を施してもよい。上記加熱処理条件としては、通常、80〜250℃、好ましくは、100〜150℃にて、10秒〜2時間、好ましくは、5分〜1時間の範囲内で行われる。   After the exposure by the ultraviolet irradiation, a heat treatment may be further performed in order to complete the curing by the photoreaction. The heat treatment conditions are usually 80 to 250 ° C., preferably 100 to 150 ° C., for 10 seconds to 2 hours, preferably 5 minutes to 1 hour.

また、上記クラッド層形成用の材料としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フッ素化エポキシ樹脂、エポキシ変性シリコーン樹脂等の各種液状エポキシ樹脂、固形エポキシ樹脂、さらには、前述の各種光酸発生剤を適宜含有する樹脂組成物があげられ、コア形成用材料と比較して、適宜、低屈折率となる配合設計が行われる。さらに、必要に応じてクラッド層形成用の材料をワニス(W2)として調製し塗工するため、塗工に好適な粘度が得られるように従来公知の各種有機溶剤、また、上記コア形成用材料を用いた光導波路としての機能を低下させない程度の、各種添加剤(酸化防止剤、密着付与剤、レベリング剤、UV吸収剤)を適量用いてもよい。   Examples of the material for forming the cladding layer include various liquid epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, fluorinated epoxy resin, and epoxy-modified silicone resin. Examples of the resin composition include the solid epoxy resin and the above-described various photoacid generators as appropriate, and the compounding design is appropriately performed so as to have a low refractive index as compared with the core forming material. Furthermore, since a clad layer forming material is prepared and applied as a varnish (W2) as necessary, various conventionally known organic solvents and the above core forming material so as to obtain a viscosity suitable for coating. Appropriate amounts of various additives (antioxidants, adhesion-imparting agents, leveling agents, UV absorbers) that do not deteriorate the function of the optical waveguide using the above may be used.

上記クラッド層形成用の感光性ワニスW2の調製用に用いられる有機溶剤としては、例えば、乳酸エチル、メチルエチルケトン、シクロヘキサノン、エチルラクテート、2−ブタノン、N,N−ジメチルアセトアミド、ジグライム、ジエチレングリコールメチルエチルエーテル、プロピレングリコールメチルアセテート、プロピレングリコールモノメチルエーテル、テトラメチルフラン、ジメトキシエタン等があげられる。これら有機溶剤は、単独でまたは2種類以上併用して、塗布に好適な粘度が得られるように、適量用いられる。   Examples of the organic solvent used for preparing the photosensitive varnish W2 for forming the clad layer include ethyl lactate, methyl ethyl ketone, cyclohexanone, ethyl lactate, 2-butanone, N, N-dimethylacetamide, diglyme, diethylene glycol methyl ethyl ether. Propylene glycol methyl acetate, propylene glycol monomethyl ether, tetramethylfuran, dimethoxyethane and the like. These organic solvents are used alone or in combination of two or more in an appropriate amount so as to obtain a viscosity suitable for coating.

なお、上記基材上における、各層の形成材料を用いての塗工方法としては、例えば、スピンコーター、コーター、円コーター、バーコーター等の塗工による方法や、スクリーン印刷、スペーサを用いてギャップを形成し、そのなかに毛細管現象により注入する方法、マルチコーター等の塗工機により、ロール・トゥ・ロールで連続的に塗工する方法等を用いることができる。また、上記光導波路は、上記基材を剥離除去することにより、フィルム状の光導波路(ポリマー光導波路)とすることも可能である。   In addition, as a coating method using the forming material of each layer on the substrate, for example, a spin coater, a coater, a circular coater, a bar coater, or a coating method, screen printing, a gap using a spacer, or the like. And a method of injecting by capillarity, a method of coating continuously by roll-to-roll with a coating machine such as a multi-coater, and the like can be used. The optical waveguide can also be made into a film-like optical waveguide (polymer optical waveguide) by peeling and removing the substrate.

このようにして得られた光導波路は、本発明の光信号伝送用のフレキシブルプリント配線板用の光導波路用や光学式タッチセンサ用として用いられる。   The optical waveguide thus obtained is used for an optical waveguide for a flexible printed wiring board for optical signal transmission and for an optical touch sensor of the present invention.

つぎに、本発明を実施例にもとづいて説明する。ただし、本発明は、これら実施例に限定されるものではない。なお、例中、「部」とあるのは、断りのない限り重量基準を意味する。   Next, the present invention will be described based on examples. However, the present invention is not limited to these examples. In the examples, “parts” means weight basis unless otherwise specified.

[実施例1]
まず、実施例となる光導波路の作製に先立ち、クラッド層形成材料の感光性ワニスW2、および、本発明のコア(層)形成材料である感光性ワニスW1を調製した。
[Example 1]
First, prior to the production of the optical waveguide as an example, a photosensitive varnish W2 as a cladding layer forming material and a photosensitive varnish W1 as a core (layer) forming material of the present invention were prepared.

(クラッド層形成材料の調製):参考
遮光条件下にて、液状二官能フッ化アルキルエポキシ樹脂(H022、東ソーエフテック社製)50部、液状二官能脂環式エポキシ樹脂(セロキサイド2021P、ダイセル社製)50部、光酸発生剤(アデカオプトマーSP−170、ADEKA社製)4.0部、リン系酸化防止剤(HCA、三光社製)0.54部、シランカップリング剤(KBM−403、信越シリコーン社製)1部を混合し80℃加熱下にて撹拌完溶させ、その後室温(25℃)まで冷却した後、直径1.0μmのメンブランフィルタを用いて加熱加圧濾過を行うことにより、クラッド層形成材料となる感光性ワニスW2を調製した。
(Preparation of cladding layer forming material): Reference Under light-shielding conditions, 50 parts of liquid bifunctional fluorinated alkyl epoxy resin (H022, manufactured by Tosoh F-Tech), liquid bifunctional alicyclic epoxy resin (Celoxide 2021P, manufactured by Daicel) ) 50 parts, photoacid generator (Adekaoptomer SP-170, manufactured by ADEKA) 4.0 parts, phosphorus antioxidant (HCA, manufactured by Sanko) 0.54 parts, silane coupling agent (KBM-403) , Manufactured by Shin-Etsu Silicone Co., Ltd.), 1 part of the mixture was mixed and stirred to complete dissolution under heating at 80 ° C., then cooled to room temperature (25 ° C.), and then filtered with heating and pressure using a membrane filter having a diameter of 1.0 μm. Thus, a photosensitive varnish W2 serving as a cladding layer forming material was prepared.

<コア形成材料の調製>
同様に、遮光条件下にて、固形多官能脂肪族エポキシ樹脂(EHPE3150、ダイセル社製)80部、固形水添ビスフェノールA型エポキシ樹脂(YX―8040、三菱化学社製)20部、光酸発生剤(WPI−116、和光純薬工業社製)1.0部、光増感剤(2−イソプロピルチオキサントン、関東化学社製)0.1部を、乳酸エチル(昭和電工社製)40部に混合し、85℃加熱下にて撹拌完溶させ、その後室温(25℃)まで冷却した後、直径1.0μmのメンブランフィルタを用い加熱加圧濾過を行うことにより、コア形成材料となる感光性ワニスW1を調製した。なお、この配合系における光増感剤(2−イソプロピルチオキサントン)のギブス自由エネルギー変化ΔGは−93.7kJ/molで、上記光増感剤の最大光吸収波長(ピーク)は380nmである(すなわち、2−イソプロピルチオキサントンは、本発明の設定条件に合致する。)。
<Preparation of core forming material>
Similarly, 80 parts of a solid polyfunctional aliphatic epoxy resin (EHPE3150, manufactured by Daicel), 20 parts of a solid hydrogenated bisphenol A type epoxy resin (YX-8040, manufactured by Mitsubishi Chemical) under light-shielding conditions, photoacid generation Agent (WPI-116, manufactured by Wako Pure Chemical Industries) 1.0 part, photosensitizer (2-isopropylthioxanthone, manufactured by Kanto Chemical Co.) 0.1 part, ethyl lactate (Showa Denko Co., Ltd.) 40 parts The mixture is mixed and completely dissolved under heating at 85 ° C., and then cooled to room temperature (25 ° C.), followed by heating and pressure filtration using a membrane filter having a diameter of 1.0 μm, thereby providing a photosensitivity as a core forming material. Varnish W1 was prepared. The Gibbs free energy change ΔG of the photosensitizer (2-isopropylthioxanthone) in this compounding system is −93.7 kJ / mol, and the maximum light absorption wavelength (peak) of the photosensitizer is 380 nm (ie, 2-isopropylthioxanthone meets the set conditions of the present invention).

(アンダークラッド層の作製)
総厚22μm厚のFPC基材の裏面上に、クラッド層用感光性ワニスW2を、スピンコーターにて塗工し、ホットプレート上で、溶剤を乾燥(130℃×10分)した後、5000mJ/cm2(I線フィルタ)のマスクパターン露光を行った。その後、130℃×10分のプレベーキングを行い、γ−ブチロラクトン中にて現像(室温下、3分)、水洗、ホットプレート上で水分を乾燥(120℃×10分)を順次行うことで、アンダークラッド層(厚み:15μm)を得た。
(Preparation of underclad layer)
The photosensitive varnish W2 for the cladding layer was applied on the back surface of the FPC base material having a total thickness of 22 μm with a spin coater, and the solvent was dried (130 ° C. × 10 minutes) on a hot plate, and then 5000 mJ / Mask pattern exposure of cm 2 (I-line filter) was performed. Then, pre-baking at 130 ° C. × 10 minutes, developing in γ-butyrolactone (at room temperature, 3 minutes), washing with water, and drying water on a hot plate (120 ° C. × 10 minutes) in sequence, An underclad layer (thickness: 15 μm) was obtained.

<コアの作製>
ついで、得られたアンダークラッド層上に、コア用感光性ワニスW1を、スピンコーターにて塗工し、ホットプレート上で、溶剤の乾燥(130℃×5分)を行った。得られた未硬化のコア層(膜状またはフィルム状)に、波長365nm(I線フィルタ)の紫外線を、ライン・アンド・スペースパターンのマスクを介して、1000〜20000mJ/cm2まで1000mJ/cm2きざみ(1000, 2000, 3000,・・・18000, 19000, 20000の計20露光条件)で照射して露光を行い、得られた露光量ごとのサンプルに、それぞれ130℃×10分のプレベーキングを施した。その後、各サンプルに、γ−ブチロラクトン中にて現像(室温下、4分)、水洗、ホットプレート上で水分を乾燥(120℃×10分)を順次行うことにより、アンダークラッド層上に、長手方向に伸びる、所定線状パターンのコア(厚み:50μm,設計コア幅:50μm)が複数条形成された1セット(20組)のサンプルを得た。
<Fabrication of core>
Next, the core photosensitive varnish W1 was coated on the obtained underclad layer with a spin coater, and the solvent was dried on a hot plate (130 ° C. × 5 minutes). The obtained uncured core layer (film or film) is irradiated with ultraviolet light having a wavelength of 365 nm (I-line filter) through a line and space pattern mask to 1000 to 20000 mJ / cm 2 and 1000 mJ / cm 2. Exposure is performed in 2 steps (1000, 2000, 3000, ... 18000, 19000, 20000 total 20 exposure conditions), and prebaked at 130 ° C for 10 minutes for each sample obtained for each exposure. Was given. Thereafter, each sample was developed in γ-butyrolactone (at room temperature for 4 minutes), washed with water, and dried on a hot plate (120 ° C. × 10 minutes) in order, thereby forming a longitudinal layer on the undercladding layer. A set (20 sets) of samples in which a plurality of cores having a predetermined linear pattern (thickness: 50 μm, design core width: 50 μm) extending in the direction was formed.

[実施例2]
上記「コア形成材料の調整」において、光増感剤としてアントラセン(和光純薬工業社製)0.1部を使用したこと以外、上記実施例1と同様にして、光導波路のコアを作成した。なお、この配合系における光増感剤(アントラセン)のギブス自由エネルギー変化ΔGは−193.8kJ/molで、上記光増感剤の最大光吸収波長(ピーク)は376nmである(すなわち、アントラセンは、本発明の設定条件に合致する。)。
[Example 2]
In the “adjustment of the core forming material”, an optical waveguide core was prepared in the same manner as in Example 1 except that 0.1 part of anthracene (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a photosensitizer. . The Gibbs free energy change ΔG of the photosensitizer (anthracene) in this compounding system is −193.8 kJ / mol, and the maximum light absorption wavelength (peak) of the photosensitizer is 376 nm (that is, anthracene is This matches the setting conditions of the present invention).

[実施例3]
上記「コア形成材料の調整」において、光増感剤としてフェノチアジン(和光純薬工業社製)0.1部を使用したこと以外、上記実施例1と同様にして、光導波路のコアを作成した。なお、この配合系における光増感剤(フェノチアジン)のギブス自由エネルギー変化ΔGは−162.0kJ/molで、上記光増感剤の最大光吸収波長(ピーク)は318nmである(すなわち、フェノチアジンは、本発明の設定条件に合致する。)。
[Example 3]
In the “adjustment of core-forming material”, an optical waveguide core was prepared in the same manner as in Example 1 except that 0.1 part of phenothiazine (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a photosensitizer. . The Gibbs free energy change ΔG of the photosensitizer (phenothiazine) in this compounding system is −162.0 kJ / mol, and the maximum light absorption wavelength (peak) of the photosensitizer is 318 nm (that is, phenothiazine is This matches the setting conditions of the present invention).

[比較例1]
上記「コア形成材料の調整」において、光増感剤を使用しないこと以外、上記実施例1と同様にして、光導波路のコアを作成した。なお、20000mJ/cm2まで1000mJ/cm2きざみ(計20露光条件)で紫外線照射して露光を行ったが、充分な硬化は得られなかった。
[Comparative Example 1]
In the “adjustment of core forming material”, a core of an optical waveguide was prepared in the same manner as in Example 1 except that no photosensitizer was used. Although exposure was performed by irradiating with ultraviolet rays in increments of 1000 mJ / cm 2 (total 20 exposure conditions) up to 20000 mJ / cm 2 , sufficient curing could not be obtained.

[比較例2]
上記「コア形成材料の調整」において、光増感剤としてアセトフェノン(和光純薬工業社製)0.1部を使用したこと以外、上記実施例1と同様にして、光導波路のコアを作成した。なお、この配合系における光増感剤(アセトフェノン)のギブス自由エネルギー変化ΔGは−8.8kJ/molで、上記光増感剤の最大光吸収波長(ピーク)は246nmである(すなわち、アセトフェノンは、ΔGおよび最大光吸収波長とも、本発明の設定条件に合致しない。)。また、20000mJ/cm2まで1000mJ/cm2きざみ(計20露光条件)で紫外線照射して露光を行ったが、充分な硬化は得られなかった。
[Comparative Example 2]
In the “adjustment of the core forming material”, an optical waveguide core was prepared in the same manner as in Example 1 except that 0.1 part of acetophenone (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a photosensitizer. . The Gibbs free energy change ΔG of the photosensitizer (acetophenone) in this compounding system is −8.8 kJ / mol, and the maximum light absorption wavelength (peak) of the photosensitizer is 246 nm (that is, acetophenone is , ΔG and the maximum light absorption wavelength do not meet the setting conditions of the present invention. In addition, exposure was performed by irradiating with ultraviolet rays in increments of 1000 mJ / cm 2 up to 20000 mJ / cm 2 (total 20 exposure conditions), but sufficient curing was not obtained.

<コア形成材料のパターン形成性評価>
各実施例および各比較例で得られた光導波路サンプル(アンダークラッド層+複数条のコア,露光量毎)を光学顕微鏡を用いて観察し、硬化体(コア)のパターン(上面から見た各コアの線幅)が設計値(50μm)に最も近いものを、その配合系における「最適露光量」(mJ/cm2)とした。なお、20000mJ/cm2まで紫外線照射して露光を行っても、充分な硬化を得られないものは、「20000以上」と表記した。
<Evaluation of pattern formability of core forming material>
The optical waveguide samples (underclad layer + multiple cores, each exposure amount) obtained in each example and each comparative example were observed using an optical microscope, and a cured body (core) pattern (each viewed from above) The one whose core line width was closest to the design value (50 μm) was determined as the “optimal exposure amount” (mJ / cm 2 ) in the blending system. In addition, even if exposure was performed by irradiating ultraviolet rays up to 20000 mJ / cm 2 , those that could not obtain sufficient curing were described as “20,000 or more”.

<光伝搬損失の評価>
つぎに、上記各実施例および各比較例のうち、充分な硬化を得られたサンプル〔「最適露光量」に相当するサンプル(アンダークラッド層+コア)〕を用いて、前記「アンダークラッド層の作製」と同様にして、上記コア(層)の上に、コアを覆うオーバークラッド層を形成した。
(プリズムカップラー法)
得られた3層構造(アンダークラッド層+コア+オーバークラッド層)の供試品のコアに、プリズムカップリングにより波長850nmの光を入射させ、上記コア中を伝搬させた。そして、伝搬長を変えて、その長さにおける光強度を、光計測システム(オプティカルマルチパワーメーターQ8221、アドバンテスト社製)にて測定し、伝搬長に対する光損失をプロットし、直線近似を行い、その直線の傾きから各サンプル(上記「最適露光量」相当品)の光伝搬損失(dB/cm)を算出した。
<Evaluation of optical propagation loss>
Next, among the above Examples and Comparative Examples, a sample [sample corresponding to “optimum exposure amount” (under clad layer + core)] obtained with sufficient curing was used. In the same manner as in “Production”, an over clad layer covering the core was formed on the core (layer).
(Prism coupler method)
Light having a wavelength of 850 nm was incident on the core of a test sample having an obtained three-layer structure (under clad layer + core + over clad layer) by prism coupling and propagated through the core. Then, changing the propagation length, measuring the light intensity at that length with an optical measurement system (Optical Multi Power Meter Q8221, manufactured by Advantest), plotting the optical loss against the propagation length, performing linear approximation, The light propagation loss (dB / cm) of each sample (the “optimum exposure dose” equivalent product) was calculated from the slope of the straight line.

上記試験の結果を下記の「表1」に示す。

Figure 2015206933
The results of the above test are shown in “Table 1” below.
Figure 2015206933

上記実施例1〜3の光導波路のコア(硬化体)は、設計通りの、矩形性の高い(エッジが鋭い、または、角の立った)シャープな形状であることが確認できた。また、性能(光伝搬損失)も良好で、透明度が高い(着色がない)ことがわかった。これに対して、比較例1,2のコア(硬化体)は、紫外線照射20000mJ/cm2までに充分な硬化が得られず、光伝搬損失を測定できなかった。このことから、比較例1,2は、光硬化工程およびそれを用いる製造工程全体の生産効率が低く、製造コストが嵩むことが推定される。 It was confirmed that the cores (cured bodies) of the optical waveguides of Examples 1 to 3 had a sharp shape with high rectangularity (sharp edges or corners) as designed. It was also found that the performance (light propagation loss) was good and the transparency was high (no coloration). On the other hand, the cores (cured bodies) of Comparative Examples 1 and 2 were not sufficiently cured by the ultraviolet irradiation of 20000 mJ / cm 2 , and the light propagation loss could not be measured. From this, it is estimated that Comparative Examples 1 and 2 have low production efficiency of the photocuring process and the entire manufacturing process using the photocuring process, and increase the manufacturing cost.

本発明の光導波路コア形成用液状感光性樹脂組成物は、光信号伝送用フレキシブルプリント配線板や光学式タッチセンサ向けの光導波路のコアの形成材料として、特に有用である。そして、上記光導波路コア形成用液状感光性樹脂組成物を用いて作製される光導波路は、上記フレキシブルプリント配線板や光学式タッチセンサ等に用いられる。   The liquid photosensitive resin composition for forming an optical waveguide core of the present invention is particularly useful as a material for forming an optical waveguide core for a flexible printed wiring board for optical signal transmission or an optical touch sensor. And the optical waveguide produced using the said liquid photosensitive resin composition for optical waveguide core formation is used for the said flexible printed wiring board, an optical touch sensor, etc.

Claims (7)

カチオン重合性化合物と、光酸発生剤と、光増感剤とを含有し、上記光増感剤が、下記式(1)で表されるギブス自由エネルギー変化ΔGが−41.86kJ/mol以下で、かつ、波長300〜500nmの範囲に光吸収波長を有する化合物であることを特徴とする光導波路コア形成用液状感光性樹脂組成物。
Figure 2015206933
〔式(1)において、E(1/2)oxは光増感剤の酸化電位を、E(1/2)redは光酸発生剤の還元電位を、E(p)*は光増感剤の励起エネルギーを示す。〕
A cationic polymerizable compound, a photoacid generator, and a photosensitizer are included. The photosensitizer has a Gibbs free energy change ΔG represented by the following formula (1) of −41.86 kJ / mol or less. And the liquid photosensitive resin composition for optical waveguide core formation characterized by being a compound which has a light absorption wavelength in the wavelength range of 300-500 nm.
Figure 2015206933
[In Formula (1), E (1/2) ox is the oxidation potential of the photosensitizer, E (1/2) red is the reduction potential of the photoacid generator, and E (p) * is the photosensitization. The excitation energy of the agent is shown. ]
上記光増感剤の光吸収スペクトルにおける極大値のうち、少なくとも1つのピークが300〜500nmの範囲内にある請求項1記載の光導波路コア形成用液状感光性樹脂組成物。   2. The liquid photosensitive resin composition for forming an optical waveguide core according to claim 1, wherein at least one peak in the light absorption spectrum of the photosensitizer is in the range of 300 to 500 nm. 上記カチオン重合性化合物が、エポキシ化合物,オキセタン化合物,エピスルフィド化合物およびビニルエーテル化合物からなる群から選ばれた少なくとも一つである請求項1または2記載の光導波路コア形成用液状感光性樹脂組成物。   3. The liquid photosensitive resin composition for forming an optical waveguide core according to claim 1, wherein the cationic polymerizable compound is at least one selected from the group consisting of an epoxy compound, an oxetane compound, an episulfide compound, and a vinyl ether compound. 上記光酸発生剤が、ヨードニウム塩系の光カチオン重合開始剤である請求項1〜3のいずれか一項に記載の光導波路コア形成用液状感光性樹脂組成物。   The liquid photosensitive resin composition for forming an optical waveguide core according to any one of claims 1 to 3, wherein the photoacid generator is an iodonium salt-based photocationic polymerization initiator. 光導波路のコアが、請求項1〜4のいずれか一項に記載の光導波路コア形成用液状感光性樹脂組成物に波長300〜500nmの範囲内の紫外線を照射して硬化させた硬化体で形成されていることを特徴とする光導波路。   The core of the optical waveguide is a cured product obtained by irradiating the liquid photosensitive resin composition for forming an optical waveguide core according to any one of claims 1 to 4 with ultraviolet rays having a wavelength in the range of 300 to 500 nm. An optical waveguide characterized by being formed. 請求項5に記載の光導波路を備えることを特徴とするフレキシブルプリント配線板。   A flexible printed wiring board comprising the optical waveguide according to claim 5. 請求項5に記載の光導波路を備えることを特徴とするタッチセンサ。   A touch sensor comprising the optical waveguide according to claim 5.
JP2014088165A 2014-04-22 2014-04-22 Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same Pending JP2015206933A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014088165A JP2015206933A (en) 2014-04-22 2014-04-22 Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same
TW104111286A TW201610565A (en) 2014-04-22 2015-04-08 Liquid photosensitive resin composition for forming optical waveguide core, optical waveguide employing same, flexible wiring board, and touch sensor
PCT/JP2015/060919 WO2015163144A1 (en) 2014-04-22 2015-04-08 Liquid photosensitive resin composition for forming optical waveguide core, optical waveguide employing same, flexible wiring board, and touch sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088165A JP2015206933A (en) 2014-04-22 2014-04-22 Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same

Publications (1)

Publication Number Publication Date
JP2015206933A true JP2015206933A (en) 2015-11-19

Family

ID=54332311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088165A Pending JP2015206933A (en) 2014-04-22 2014-04-22 Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same

Country Status (3)

Country Link
JP (1) JP2015206933A (en)
TW (1) TW201610565A (en)
WO (1) WO2015163144A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684460B2 (en) * 2009-04-06 2015-03-11 株式会社ダイセル Cationic polymerizable resin composition and cured product thereof
JP2012003107A (en) * 2010-06-18 2012-01-05 Nitto Denko Corp Light guide device

Also Published As

Publication number Publication date
WO2015163144A1 (en) 2015-10-29
TW201610565A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5905303B2 (en) Epoxy resin composition for forming optical waveguide, curable film for forming optical waveguide obtained therefrom, and flexible printed board for optical transmission
JP5905325B2 (en) Epoxy resin composition for forming optical waveguide, curable film for forming optical waveguide, flexible printed circuit board for optical transmission, and method for producing the same
TWI653505B (en) Photocurable resin composition for optical waveguide, photocurable thin film for forming optical waveguide core layer, optical waveguide using the same, and hybrid flexible printed wiring board for photoelectric transmission
JP6537061B2 (en) Photosensitive resin composition for optical waveguide, photocurable film for forming optical waveguide core layer, and optical waveguide using the same, mixed flexible printed wiring board for light and electric transmission
WO2018116648A1 (en) Photosensitive epoxy resin composition for forming optical waveguide, curable film for forming optical waveguide, optical waveguide using same, and hybrid flexible printed wiring board for optical/electrical transmission
JP6694180B2 (en) Photosensitive epoxy resin composition for forming optical waveguide, photosensitive film for forming optical waveguide, optical waveguide using the same, and mixed flexible printed wiring board for optical / electrical transmission
TWI659057B (en) A photosensitive resin composition for an optical waveguide, a photocurable film for forming an optical waveguide core layer, and an optical waveguide and light using the same. Hybrid flexible printed wiring board for electric transmission
TWI653286B (en) Photocurable resin composition for optical waveguide, photocurable thin film for forming optical waveguide core layer, optical waveguide using the same, and hybrid flexible printed wiring board for photoelectric transmission
KR20210036343A (en) Photosensitive epoxy resin composition for forming optical waveguides, photosensitive film for forming optical waveguides, and optical waveguides using the same, mixed flexible printed wiring board for optical/electrical transmission
KR102267991B1 (en) Photosensitive resin composition for optical waveguide, photocurable film for formation of optical waveguide core layer, optical waveguide produced by using the resin composition or the photocurable film, and hybrid flexible printed wiring board for optical/electrical transmission
JP6332619B2 (en) Photosensitive resin composition for optical waveguide, photocurable film for forming optical waveguide core layer, optical waveguide using the same, mixed flexible printed wiring board for optical / electrical transmission
JP6566417B2 (en) Photosensitive epoxy resin composition for optical waveguide formation, photosensitive film for optical waveguide formation, optical waveguide using the same, mixed flexible printed wiring board for optical / electrical transmission
JP2015206933A (en) Liquid photosensitive resin composition for forming optical waveguide core, and optical waveguide, flexible printed wiring board and touch sensor using the same