JP2015206777A - Tread force detection sensor - Google Patents

Tread force detection sensor Download PDF

Info

Publication number
JP2015206777A
JP2015206777A JP2014099031A JP2014099031A JP2015206777A JP 2015206777 A JP2015206777 A JP 2015206777A JP 2014099031 A JP2014099031 A JP 2014099031A JP 2014099031 A JP2014099031 A JP 2014099031A JP 2015206777 A JP2015206777 A JP 2015206777A
Authority
JP
Japan
Prior art keywords
hollow shaft
primary coil
coil
secondary coil
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014099031A
Other languages
Japanese (ja)
Inventor
満 馬場
Mitsuru Baba
満 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014099031A priority Critical patent/JP2015206777A/en
Publication of JP2015206777A publication Critical patent/JP2015206777A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the following problem:it is a mainstream conventionally that a tread force sensor and a drive motor are integrated and arranged on the lower part of a crank shaft of a body frame of a bicycle because power assisted bicycles have been disseminated and more refined design and functions are sought after, and the tread force sensor is required to be compact and high in functionality.SOLUTION: In the structure in which a hollow shaft 4 is connected to a crank shaft 2 of a bicycle in a penetration manner and a chain wheel 3 is fixed to the other end of the hollow shaft 4, a secondary coil 6 and a strain gauge 8 are fixed to an outer periphery of the hollow shaft. In addition, a sensor case 5 is arranged in the outside of the hollow shaft 4, and a primary coil 7 is placed in the inside thereof, and both the sensor case and the primary coil are allowed to rotate without contacting with each other, thereby using the hollow shaft 4 as a rotary transformer. The primary coil side is provided with a load resistance 12 in series with the coil, and a power consumption state on the side of the secondary coil 6 can be acquired as a primary coil current also by applying an AC signal 13 to the primary coil 7. When the tread force is applied to the pedal, a strain gauge resistance is changed and the power consumption is changed. This leads to the current change of the primary coil. The voltage at both ends of the load resistance 12 is proportional to the tread force.

Description

本発明は、電動アシスト自転車などに於いて、踏力を検出する為に用いられるセンサーに関するものである。  The present invention relates to a sensor used for detecting a pedaling force in an electrically assisted bicycle or the like.

電動アシスト自転車は国内に於いては認知度も上がり、今では老人や主婦向けの限定的な用途に限らず若者や、スポーツ向け、業務用にも使われている。アシスト機能も洗練されてきており、またバッテリーも軽量で小型になって使い易くなり、また乗れる距離もより長くなっている為、普及にも加速がついている。  The power-assisted bicycle has gained recognition in the country, and is now used not only for limited use for the elderly and housewives, but also for youth, sports and business. The assist function has also been refined, and the battery has become lighter and smaller, making it easier to use, and the distance that can be ridden has become longer.

世界的な省エネ、省資源への関心から、海外に於いても国内同様に販売数が増加しており、今後も長期的にかつ広範囲に市場が拡大すると考えられる。この事から、事業の将来性を見出し、多くの自転車関連企業や他業種からも参入が相次いでいる。  Due to global energy and resource conservation concerns, the number of sales overseas has increased as well as in Japan, and the market is expected to expand over the long term and over a wide range. For this reason, the future of the business has been found, and many bicycle-related companies and other industries have entered the market one after another.

現在電動アシスト自転車に搭載されている踏力検知センサーの方式には、踏力を垂直方向の力に変換して磁性コアを出し入れさせ、コイルのインダクタンスを変化させる事で非接触で検出するもの、また、踏力をクランク軸の捩れに変換し、磁歪原理を利用して非接触検出するもの、踏力を弾性材で結合した2枚の板の位置ずれに変換して、板に付設した磁気突起の位相ずれを非接触検出するものなどが代表例である。  The pedal force detection sensor currently installed in electric-assisted bicycles uses a non-contact detection method by converting the pedal force into a vertical force and moving the magnetic core in and out and changing the coil inductance. Converts pedaling force into crankshaft torsion, detects non-contact using the magnetostriction principle, converts pedaling force into displacement of two plates joined by an elastic material, and shifts the phase of magnetic protrusions attached to the plate A typical example is one that detects non-contact.

参照用に挙げる下記の文献は、上記のそれぞれに対応する踏力検知手段である。
特開2004−106837 特許第3415325 特開2003−276672号公報
The following documents listed for reference are pedal force detection means corresponding to the above.
JP 2004-106837 A Japanese Patent No. 3415325 JP 2003-276672 A

上述した文献1の発明に於いては、踏力による駆動方向に対して垂直方向にコアを移動させ、その外周にあるコイル巻線のインダクタンスを変化させる事で踏力を検出するものであるが、コアをスムーズに出し入れする為に隙間を持った溝が必要であり、その為に踏力に対するインダクタンスの変化が常に一様という訳では無く、出力の正確さに問題がある。また、コアの移動方向に厚みが必要であり薄く作れないので、実装上のデザイン性にも問題がある。  In the invention of the above-described Document 1, the core is moved in the direction perpendicular to the driving direction by the pedal force, and the pedal force is detected by changing the inductance of the coil winding on the outer periphery. In order to smoothly put in and out, a groove with a gap is necessary. For this reason, the change in inductance with respect to the pedal force is not always uniform, and there is a problem in the accuracy of output. Moreover, since the thickness is required in the moving direction of the core and it cannot be made thin, there is also a problem in design on mounting.

文献2に於ける発明は、自転車のクランク軸構造内にトルク検出機構を構成する事から、外部に露出するものが無く外観上の見栄えは良いが、一般のクランク軸廻りとはならず専用車体を必要とする。また、クランク軸の内部で捩れを発生させる機構として、一端にクランク軸と噛み合うスプライン及び他端の外周にチェーンホイールに噛み合うネジ部を構成する金属パイプ状の中空部材が必要で、これは金型による打ち抜きなどでは出来ず、旋盤などでの精密加工が必要であり、また薄い磁性膜と厳密なギャップ管理も必要となるから、量産性とコスト低減には問題がある。  Since the invention in Document 2 has a torque detection mechanism in the crankshaft structure of the bicycle, there is nothing exposed to the outside and the appearance is good, but it is not around the general crankshaft but a dedicated vehicle body Need. In addition, as a mechanism for generating torsion inside the crankshaft, a metal pipe-like hollow member is required which constitutes a spline that meshes with the crankshaft at one end and a screw portion that meshes with the chain wheel at the other end. It is not possible to perform punching by, but requires precision machining with a lathe and the like, and also requires a thin magnetic film and strict gap management, so there is a problem in mass productivity and cost reduction.

文献3は弾性材で結合された2枚の円板間のずれを、相対する磁性突起の位置ずれとして踏力検知を行なうものであるが、簡単な構造で量産性にも問題は無いが、静止時の踏力検知ができないと言う問題が残っている。  Reference 3 detects the treading force by detecting the displacement between two disks joined by an elastic material as the displacement of the opposing magnetic projections, but it has a simple structure and has no problem with mass productivity. There remains a problem that the pedaling force cannot be detected.

本発明はこれらの問題を解決し、使い易くスマートな踏力検知センサーを提供するものである。前述した先行文献に於いては、単独での踏力センサーについて示されているが、電動アシスト自転車の構成として主流となっているのは、駆動用のモーターと一体となった内蔵型センサーである。駆動用モーターと踏力センサーを一体化し、自転車の中心下部に置く事で重量バランスの最適化やユニット化によるコスト削減、配線の削減などに大きなメリットが出る。  The present invention solves these problems and provides an easy-to-use smart treading force detection sensor. In the above-mentioned prior documents, a single pedal force sensor is shown. However, the mainstream of the configuration of the electric assist bicycle is a built-in sensor integrated with a drive motor. By integrating the drive motor and the pedal force sensor and placing it in the lower center of the bicycle, you can achieve great benefits in terms of weight balance optimization, unit cost reduction, and wiring reduction.

本発明による踏力検知センサーは、前述した先行文献の[特許文献2]と同様な構造に於いて、捩れの検出に異なる特徴を持つ簡易な方式に関するものであり、この方式は駆動用のモーターに組み込まれて一体構造となる事を想定している。本案での踏力検知方式は、軸のねじれ具合を電力消費量の変化に置き換えて、非接触にて踏力信号を出力するものである。  The treading force detection sensor according to the present invention relates to a simple system having a different feature in torsion detection in the same structure as that of the above-mentioned prior document [Patent Document 2]. It is assumed that it will be integrated into an integrated structure. The pedaling force detection method in the present plan replaces the twisting state of the shaft with a change in power consumption, and outputs a pedaling force signal in a non-contact manner.

本案の検出方式に於いては[特許文献2]に示す磁歪式の物ではなく、磁性膜を必要としない。この為、磁性膜の作成や厳しい磁気空隙の加工を省く事が出来、量産とコストダウンに於いてメリットがある。また、この踏力検知センサーを駆動用モーターと一体化する事で、工場での一括生産が可能となり、センサーと駆動部との配線も無くなり、信号品質の向上にも優位である。  The detection method of the present invention is not the magnetostrictive type disclosed in [Patent Document 2] and does not require a magnetic film. For this reason, the creation of a magnetic film and the processing of a severe magnetic gap can be omitted, which is advantageous in mass production and cost reduction. Also, by integrating the pedal force detection sensor with the drive motor, batch production at the factory is possible, and wiring between the sensor and the drive unit is eliminated, which is advantageous in improving signal quality.

このように、難しい加工や高価な磁性膜を必要としない簡単な機構により、駆動用のモーターと一体に組み合わせる事が出来る為、実用的にも極めて有用である。  Thus, since it can be combined with a driving motor by a simple mechanism that does not require difficult processing or an expensive magnetic film, it is extremely useful practically.

以下に図1、図3を参照しながら本発明の構成概要を説明した上で、各図を使用して動作の内容と応用に関する説明を行なう。  The outline of the configuration of the present invention will be described below with reference to FIGS. 1 and 3, and the contents and applications of the operation will be described with reference to the drawings.

先ず図1に於いて構成を簡単に説明すると、同図は本発明に於ける踏力検知センサーの第一の構成図であり、ペダル1に直結するクランク軸2とそれに貫入した中空軸4及びその外周に二次コイル6及び歪みゲージ8が固定されている。中空軸4は磁性材でできている必要がある。  First, the configuration will be briefly described with reference to FIG. 1. FIG. 1 is a first configuration diagram of a treading force detection sensor according to the present invention, a crankshaft 2 directly connected to a pedal 1, a hollow shaft 4 penetrating into the crankshaft 2, and its A secondary coil 6 and a strain gauge 8 are fixed to the outer periphery. The hollow shaft 4 needs to be made of a magnetic material.

中空軸4の一端はクランク軸2に貫入固定されているが、他端は図示しない後輪を駆動するチェーン11を掛けるチェーンホイール3の中心部に固定されている。中空軸4の外側には踏力検知センサーの外皮としての機能を持つセンサーケース5があり、その内側に中空軸とは僅かに空隙を設けて一次コイル7を構成している。  One end of the hollow shaft 4 is fixed so as to penetrate into the crankshaft 2, while the other end is fixed to the center portion of the chain wheel 3 on which a chain 11 for driving a rear wheel (not shown) is hung. A sensor case 5 having a function as an outer skin of a treading force detection sensor is provided on the outer side of the hollow shaft 4, and a primary coil 7 is formed by providing a slight gap on the inner side of the hollow shaft 4.

図3は本発明に於ける踏力検知センサーの第二の構成図であり、中空軸の外周に構成する部品の構成が図1と異なる。図3に示す二次コイル6は、中空軸が受ける捩れの影響が出るようにその全面をカバーする如く広く巻かれている。また、同じく図1の歪みゲージに代わり、素子9が配置されているが、この素子は、例えば抵抗、コンデンサ、回路などを意味し、二次コイル6両端に接続されている。  FIG. 3 is a second block diagram of the pedaling force detection sensor according to the present invention, and the configuration of the parts formed on the outer periphery of the hollow shaft is different from that of FIG. The secondary coil 6 shown in FIG. 3 is widely wound so as to cover the entire surface so as to be affected by the twist received by the hollow shaft. Similarly, an element 9 is arranged instead of the strain gauge of FIG. 1, and this element means, for example, a resistor, a capacitor, a circuit, and the like, and is connected to both ends of the secondary coil 6.

図2は、図1に於ける電気回路を示しており、図1の各機械部品と番号で対応しているが、交流信号源13と負荷抵抗12は図1、図3の構成部品としては示していない。    FIG. 2 shows the electrical circuit in FIG. 1 and corresponds to the machine parts in FIG. 1 by numbers, but the AC signal source 13 and the load resistor 12 are the components in FIGS. Not shown.

図4は、図3に於ける中空軸の捩れに伴う二次コイルの変化について説明する為の図で、中空軸の外周に二次コイルがゴムシートのような弾性体15の上に巻かれている事を示している。  FIG. 4 is a diagram for explaining the change of the secondary coil accompanying the twist of the hollow shaft in FIG. 3, and the secondary coil is wound around the elastic body 15 such as a rubber sheet around the outer periphery of the hollow shaft. It shows that.

図5は図3に於ける電気回路を示しており、同図の二次コイル6に矢印が追加され上部にn2+Δとあるのは、コイルの巻き数が僅かに変化する事を示している。この事が、出力電圧やインダクタンスの変化を引き起こす。  FIG. 5 shows an electric circuit in FIG. 3. An arrow is added to the secondary coil 6 and n2 + Δ at the top indicates that the number of turns of the coil slightly changes. This causes changes in output voltage and inductance.

図6は図3に示す素子9にコンデンサ10を適用した場合の回路図であり、二次コイルのインダクタンスとの間で直列共振回路を構成する事が考えられる。  FIG. 6 is a circuit diagram in the case where the capacitor 10 is applied to the element 9 shown in FIG. 3, and it is conceivable to form a series resonance circuit with the inductance of the secondary coil.

図8は図3の素子9としてダイオード、コンデンサ、ツェナーダイオードから構成した場合の回路図を示しているが、別の回路構成も考えられる。
図7はツェナーダイオード17の入出力特性のグラフであり、X軸の電圧(Vo)の小変化に対しY軸の電流(Id)が大幅に変動する事を示している。
(第1の実施形態)
FIG. 8 shows a circuit diagram in the case where the element 9 in FIG. 3 is composed of a diode, a capacitor, and a Zener diode, but another circuit configuration is also conceivable.
FIG. 7 is a graph of the input / output characteristics of the Zener diode 17 and shows that the Y-axis current (Id) varies greatly with a small change in the X-axis voltage (Vo).
(First embodiment)

以下、第1の実施形態について図1、図2を用いてより詳しく説明を行なうと、図1のクランク1に踏力が掛かると、その力はクランク軸2から中空軸4に伝わり、更にチェーンホイール3を駆動し、チェーン11を介して後輪を回転させる。ペダル1の荷重とチェーンホイール3に掛かる後輪の負荷との関係により、中空軸4の両端に捩れストレスが発生し、クランク軸2との接続部位近辺に大きな歪みが起こり、貼付けされた歪みゲージの抵抗値が変化する。  Hereinafter, the first embodiment will be described in more detail with reference to FIGS. 1 and 2. When a pedaling force is applied to the crank 1 of FIG. 1, the force is transmitted from the crankshaft 2 to the hollow shaft 4. 3 is driven to rotate the rear wheel through the chain 11. Due to the relationship between the load on the pedal 1 and the load on the rear wheel applied to the chain wheel 3, a torsional stress is generated at both ends of the hollow shaft 4, and a large strain occurs in the vicinity of the connecting portion with the crankshaft 2. The resistance value of changes.

図2に示すように、中空軸4の外周に巻かれた二次コイル6とセンサーケース5内に巻かれた一次コイル7とは中空軸4が磁性体である為、電気的には変圧器を構成している。また、一次コイル7とセンサーケース5は自転車車体側に固定されて回転しないが、その他の要素(2,3,4,6,8)は、ペダル1の回転につれてペダルと共に回転する。一次コイル7と二次コイル6は微小な空間を空けて互いに機械的に干渉しないような配置になっている。  As shown in FIG. 2, the secondary coil 6 wound around the outer periphery of the hollow shaft 4 and the primary coil 7 wound in the sensor case 5 are electrically transformers because the hollow shaft 4 is a magnetic material. Is configured. The primary coil 7 and the sensor case 5 are fixed to the bicycle body and do not rotate, but the other elements (2, 3, 4, 6, 8) rotate with the pedal as the pedal 1 rotates. The primary coil 7 and the secondary coil 6 are arranged so as not to mechanically interfere with each other with a small space.

ここで、一次コイル側に負荷抵抗12と交流信号源13を図のように接続して交流電圧を与えると、二次コイル側にも電圧が誘起し、歪みゲージ8がその負荷として電力を消費する。この電力は、一次コイル7から供給される電力となる為、一次コイルに相応の電流が流れ、それは負荷抵抗12に電圧として現われる。Here, when the load resistance 12 and the AC signal source 13 are connected to the primary coil side as shown in the figure and an AC voltage is applied, a voltage is also induced on the secondary coil side, and the strain gauge 8 consumes power as its load. To do. Since this electric power is the electric power supplied from the primary coil 7, a corresponding current flows through the primary coil, which appears as a voltage at the load resistor 12.

この電圧は、二次コイル側の電力消費に比例するから、歪みゲージの抵抗変化を負荷抵抗12の両端で見る事になる。つまり、ペダルに掛かった踏力を、一次コイルがある固定側で非接触にて測る事ができる。図1では、歪みゲージを1個しか示していないが、複数個の歪みゲージを円環状に置き直列接続して、歪みに関する感度を上げる事も可能である。
(第2の実施形態)
Since this voltage is proportional to the power consumption on the secondary coil side, the resistance change of the strain gauge is seen at both ends of the load resistor 12. That is, the pedaling force applied to the pedal can be measured in a non-contact manner on the fixed side where the primary coil is located. Although only one strain gauge is shown in FIG. 1, it is possible to increase sensitivity related to strain by placing a plurality of strain gauges in an annular shape and connecting them in series.
(Second Embodiment)

図3の構造に於いて、クランク軸2に固着した中空軸4の外周には、二次コイル6と素子9が固定されている。二次コイル6は中空軸4の長手方向に広く巻かれており、中空軸の捩れが二次コイルの巻き方に影響を与える効果を狙っている。  In the structure of FIG. 3, a secondary coil 6 and an element 9 are fixed to the outer periphery of the hollow shaft 4 fixed to the crankshaft 2. The secondary coil 6 is widely wound in the longitudinal direction of the hollow shaft 4, and aims at an effect that the twist of the hollow shaft affects the winding method of the secondary coil.

図4は中空軸4の捩れによる二次コイル6への影響について説明する為の図である。図3に於いてペダル荷重が掛かった時に、クランク軸2は同図の右側から見て右回転するとすれば、中空軸4の左端は同様に少し右回転するが、チェーンホイール3により後輪に引っ張られる右端は回転しないまま中空軸が捩れる。  FIG. 4 is a diagram for explaining the influence on the secondary coil 6 due to the twist of the hollow shaft 4. In FIG. 3, when the pedal load is applied, if the crankshaft 2 rotates to the right when viewed from the right side of the figure, the left end of the hollow shaft 4 also rotates slightly to the right. The hollow shaft is twisted without rotating the pulled right end.

図4に於いて説明すれば、図のC端は右回転するがA端は回転しないので中空軸は捩れ、外周に巻かれた二次コイル端部がCからBの位置に移動する。この事は、二次コイルの巻き数が少し増えた事を意味する。同時に、両端が固定されたコイルが円筒により多く巻き付く事により、きつく巻かれて表面に貼られた弾性体15を締め付ける事になり、僅かに中空軸の磁性体に接近し、漏れ磁束の減少に寄与するから、二次コイルに誘起する電圧は総合的に上昇する。  Referring to FIG. 4, the C end of the figure rotates clockwise, but the A end does not rotate, so the hollow shaft is twisted and the end of the secondary coil wound around the outer periphery moves from C to B. This means that the number of turns of the secondary coil has increased a little. At the same time, the coil with both ends fixed is wound more in the cylinder, so that the elastic body 15 tightly wound and stuck on the surface is tightened, slightly approaching the hollow shaft magnetic body, and the leakage magnetic flux is reduced. Therefore, the voltage induced in the secondary coil rises overall.

図5に於いて説明すると、ペダル荷重が掛かると二次コイル6の巻き数が多くなり、かつ磁気特性も改善するので二次コイルの負荷である抵抗14にはより多くの電圧が掛かり、より多くの電力が消費される。
このように、踏力を多く掛ける事により、電力消費が上がり、一次コイルの電流が増えて、負荷抵抗12の電圧が上がる事になる。この電圧出力は踏力に比例し、非接触での検出となる。
Referring to FIG. 5, when the pedal load is applied, the number of turns of the secondary coil 6 is increased and the magnetic characteristics are also improved. Therefore, more voltage is applied to the resistor 14 which is the load of the secondary coil, and more A lot of power is consumed.
In this way, by applying a large amount of pedal effort, power consumption increases, the primary coil current increases, and the voltage of the load resistor 12 increases. This voltage output is proportional to the treading force and is detected without contact.

図3の構成に於いて、図3に於ける素子9をコンデンサにした別の実施案を図6に示して説明を行なう。前述の理由により、踏力が掛かると二次コイルの巻き数が僅かに変化する。因って、二次コイルのインダクタンスも変化する為、この二次コイルとコンデンサで直列共振回路を構成しておくと、共振状態時と共振状態からずれた時に流れる電流は大きく変化する。  In the configuration of FIG. 3, another embodiment in which the element 9 in FIG. 3 is a capacitor will be described with reference to FIG. For the reasons described above, when the pedal force is applied, the number of turns of the secondary coil slightly changes. Therefore, since the inductance of the secondary coil also changes, if a series resonance circuit is configured with the secondary coil and the capacitor, the current that flows when the resonance state is shifted from the resonance state greatly changes.

この電流の変化は前述と同じ理由で、一次コイルを通じて負荷抵抗12に現出する。回路が共振した場合は大きな電流が流れるが、ずれた場合は大きく減少するので、このずれ具合で踏力の大きさを知る事ができる。  This change in current appears on the load resistor 12 through the primary coil for the same reason as described above. When the circuit resonates, a large current flows, but when the circuit is deviated, the current greatly decreases. Therefore, the magnitude of the pedaling force can be known from the degree of deviation.

図8は図3に於ける構成に於いての別の応用例である。図3の素子9に3つの素子を回路構成したもので、電力消費手段としてツェナーダイオード17の出力特性を利用したものである。ツェナーダイオードのツェナー電圧を超えて電圧を印加した場合、図7に示すように電流が徐々に流れ始め、印可電圧の僅かな変化で大きな電流変化を得られる。  FIG. 8 shows another application example of the configuration shown in FIG. The element 9 shown in FIG. 3 is configured by three elements, and the output characteristic of the Zener diode 17 is used as power consuming means. When a voltage is applied exceeding the Zener voltage of the Zener diode, the current starts to flow gradually as shown in FIG. 7, and a large current change can be obtained with a slight change in the applied voltage.

二次コイルの巻き数の変動により、二次コイルの誘起電圧が変化し、その電圧はダイオード16とコンデンサ10により直流化され、ツェナーダイオード17に加えられ、そこに電流が流れる。この電流の大きさは一次コイル側に反映されて負荷抵抗12で読み取れる。  Due to the change in the number of turns of the secondary coil, the induced voltage of the secondary coil changes, and the voltage is converted into a direct current by the diode 16 and the capacitor 10 and applied to the Zener diode 17, and a current flows therethrough. The magnitude of this current is reflected on the primary coil side and can be read by the load resistor 12.

このように、負荷抵抗12に現われる踏力に比例する電圧は、交流信号源の振幅として変化する電圧となるが、この信号は例えば直流化してCPUで読み込み、踏力比例信号としてアシスト制御に利用される。  As described above, the voltage proportional to the pedaling force appearing at the load resistor 12 is a voltage that changes as the amplitude of the AC signal source. This signal is converted into a DC signal and read by the CPU and used as a pedaling force proportional signal for assist control. .

図1、図3の各電気要素は、薄型のチップ部品やプリントコイルなどを使用する事が可能で、その場合には実装に於いても、作業性や耐久・信頼性に於いてもメリットを出す事ができる。  Each electrical element in Fig. 1 and Fig. 3 can use thin chip parts, printed coils, etc. In that case, there are advantages in mounting, workability, durability and reliability. It can be put out.

以上述べたように、本発明によれば、踏力の大きさを変圧器の二次側電力消費に変換して一次側で検出するようにした事で、高価な磁性膜や斜め溝加工等を使わずに済むので、部材加工も簡単になり、安価、かつ容易に非接触で踏力比例信号を得る事ができ、実効性、優位性がある。  As described above, according to the present invention, since the magnitude of the pedal force is converted into the secondary power consumption of the transformer and detected on the primary side, an expensive magnetic film, oblique groove processing, etc. can be performed. Since it does not need to be used, the machining of the members is simplified, and it is possible to obtain a pedaling force proportional signal in a non-contact manner at low cost, which is effective and advantageous.

本発明の第一案の全体構成を示す概略図Schematic showing the overall configuration of the first proposal of the present invention 本発明の第一案による回路図Circuit diagram according to the first proposal of the present invention 本発明の第二案の全体構成を示す概略図Schematic showing the overall configuration of the second proposal of the present invention 中空軸の捩れによるコイルの変化を説明する図The figure explaining the change of the coil by twist of the hollow shaft 本発明の第二案による回路図Circuit diagram according to the second proposal of the present invention 本発明の第二案による応用回路図その1Application circuit diagram 1 according to the second proposal of the present invention ツェナーダイオードの入出力特性を示すグラフGraph showing input / output characteristics of Zener diode 本発明の第二案による応用回路図その2Second application circuit diagram of the present invention, part 2

1:ペダル 2:クランク軸 3:チェーンホイール
4:中空軸 5:センサーケース 6:二次コイル
7:一次コイル 8:歪みゲージ 9:素子
10:コンデンサ 11:チェーン 12:負荷抵抗
13:交流信号源 14:抵抗 15:弾性体
16:ダイオード 17:ツェナーダイオード 18:リード線
1: pedal 2: crankshaft 3: chain wheel 4: hollow shaft 5: sensor case 6: secondary coil 7: primary coil 8: strain gauge 9: element 10: capacitor 11: chain 12: load resistance 13: AC signal source 14: Resistance 15: Elastic body 16: Diode 17: Zener diode 18: Lead wire

Claims (4)

踏力が掛かるクランク軸の外側に中空軸を固着接合させ、その他端にチェーンホイールを固着する構造に於いて、中空軸外周に二次コイルと歪みゲージを配して双方を接続し、更に中空軸に接触しないように空隙を空けて一次コイルを外装となるセンサーケース内側に配置する事により、一次コイルと中空軸と二次コイルにより変圧器を構成し、一次コイル側に交流信号を供給する事で、二次コイル側の消費電力に見合う交流電流を一次コイル側に現出させる事を特徴とする踏力検知センサー  In the structure where the hollow shaft is fixedly joined to the outside of the crankshaft where the pedaling force is applied and the chain wheel is fixed to the other end, a secondary coil and a strain gauge are arranged on the outer periphery of the hollow shaft, and both are connected. A primary coil, a hollow shaft, and a secondary coil are used to form a transformer, and an alternating current signal is supplied to the primary coil side by opening the primary coil inside the outer sensor case so that it does not come into contact with the primary coil. The pedal force detection sensor is characterized in that an AC current corresponding to the power consumption on the secondary coil side appears on the primary coil side. 踏力が掛かるクランク軸の外側に中空軸を固着接合させ、その他端にチェーンホイールを固着する構造に於いて、中空軸外周に中空軸の捩れが巻き数に影響する手段として長手方向に広く二次コイルを巻き、かつ抵抗を配して双方を接続し、更に中空軸に接触しないように空隙を空けて一次コイルを外装となるセンサーケース内側に配置する事により、一次コイルと中空軸と二次コイルによる変圧器を構成し、一次コイル側に交流信号を供給する事で、二次コイル側の消費電力に見合う交流電流を一次コイル側に現出させる事を特徴とする踏力検知センサー  In the structure in which the hollow shaft is fixedly joined to the outside of the crankshaft where the pedaling force is applied and the chain wheel is fixed to the other end, the twist of the hollow shaft on the outer periphery of the hollow shaft is widely secondary in the longitudinal direction as a means of affecting the number of turns. The primary coil, the hollow shaft, and the secondary are wound by winding the coil and connecting the resistors to each other, and then placing the primary coil inside the outer sensor case so as not to contact the hollow shaft. A treading force detection sensor characterized by forming a transformer with a coil and supplying an AC signal to the primary coil side to cause an AC current corresponding to the power consumption on the secondary coil side to appear on the primary coil side. 請求項2に於いて、抵抗の代わりにコンデンサを置く事で二次コイルとコンデンサ間で直列共振回路を構成する事を特徴とする踏力検知センサー3. A treading force detection sensor according to claim 2, wherein a series resonance circuit is formed between the secondary coil and the capacitor by placing a capacitor instead of a resistor. 請求項2に於いて、抵抗の代わりに整流回路とツェナーダイオードを置く事を特徴とする踏力検知センサー  3. A treading force detection sensor according to claim 2, wherein a rectifier circuit and a Zener diode are placed in place of the resistor.
JP2014099031A 2014-04-21 2014-04-21 Tread force detection sensor Pending JP2015206777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099031A JP2015206777A (en) 2014-04-21 2014-04-21 Tread force detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099031A JP2015206777A (en) 2014-04-21 2014-04-21 Tread force detection sensor

Publications (1)

Publication Number Publication Date
JP2015206777A true JP2015206777A (en) 2015-11-19

Family

ID=54603651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099031A Pending JP2015206777A (en) 2014-04-21 2014-04-21 Tread force detection sensor

Country Status (1)

Country Link
JP (1) JP2015206777A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595924A (en) * 2016-12-31 2017-04-26 重庆樽明汽车零部件有限公司 Motorcycle effective power dynamic test method
CN106679863A (en) * 2016-12-31 2017-05-17 重庆樽明汽车零部件有限公司 Motorcycle effective power dynamic testing method and device
WO2018040337A1 (en) * 2016-08-31 2018-03-08 太仓市悦博电动科技有限公司 Bilateral power meter used in bicycle or auxiliary power bicycle
CN109875831A (en) * 2019-01-24 2019-06-14 苏州睿智瀚医疗科技有限公司 A kind of interaction force measuring method of human body and ectoskeleton
JP2021505912A (en) * 2017-12-08 2021-02-18 広州市快易達工貿有限公司 Dynamic sensor structure
TWI769802B (en) * 2021-04-29 2022-07-01 摩特動力工業股份有限公司 Pedaling force detection mechanism of electric assisted bicycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040337A1 (en) * 2016-08-31 2018-03-08 太仓市悦博电动科技有限公司 Bilateral power meter used in bicycle or auxiliary power bicycle
CN106595924A (en) * 2016-12-31 2017-04-26 重庆樽明汽车零部件有限公司 Motorcycle effective power dynamic test method
CN106679863A (en) * 2016-12-31 2017-05-17 重庆樽明汽车零部件有限公司 Motorcycle effective power dynamic testing method and device
JP2021505912A (en) * 2017-12-08 2021-02-18 広州市快易達工貿有限公司 Dynamic sensor structure
CN109875831A (en) * 2019-01-24 2019-06-14 苏州睿智瀚医疗科技有限公司 A kind of interaction force measuring method of human body and ectoskeleton
TWI769802B (en) * 2021-04-29 2022-07-01 摩特動力工業股份有限公司 Pedaling force detection mechanism of electric assisted bicycle

Similar Documents

Publication Publication Date Title
JP2015206777A (en) Tread force detection sensor
EP3056421B1 (en) Electric bicycle central axle torque speed sense device
CN1952637B (en) Magnetostrictive torque sensor and electrically powered steering apparatus using same
US5591925A (en) Circularly magnetized non-contact power sensor and method for measuring torque and power using same
JP6056458B2 (en) Torque detection device and steering device including the same
US8746083B2 (en) Torque sensor having a ring-shaped stator
CN108885148B (en) Torque sensing device and vehicle
CN104139799A (en) Torque detector and electric power steering system including the torque detector
CN104039632A (en) Torque sensor for measuring torsion of steering column and measurement method using the same
US11320328B2 (en) Operation parameter detecting apparatus for vehicle
JP3898610B2 (en) Torque sensor
US10418541B2 (en) Magnetostrictive torque sensor
NL2030660B1 (en) Electric Auxiliary Drive for a Bicycle
CN102928141A (en) Metal resistance strain piece type torque transducer
CN103528601A (en) Non-contact compound torque and angle position sensor
CN108163128A (en) A kind of bilateral chain wheel axle torsion sensor of moped based on counter magnetostriction effect
JP5164728B2 (en) Torque sensor
CN113418637B (en) Torsion sensor for electric power-assisted vehicle
CN107727279A (en) Be particularly suitable for use in tractor electro-hydraulic lowering or hoisting gear adjustment portion force snesor
CN204775795U (en) Electric bicycle's moment and speedtransmitter
CN203064150U (en) Center-shaft moment sensing device for electric bicycle
CN203172841U (en) Center shaft torque sensing device for electric bicycle
CN104743047A (en) Torque and speed sensor of electric bicycle
WO2019146637A1 (en) Inductive rotation detection device
JP2002139390A (en) Torque detector, electric assist motor using it, and power assisted bicycle therewith